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ABSTRACT

Hemin Utilization in Rhizobium leguminosarum ATCC 14479
by

John R. Lusby

Rhizobium leguminosarum is a Gram negative, motile, nitrogen-fixing soil bacterium. Due to the
scarcity of iron in the soil bacteria have developed a wide range of iron scavenging systems. The
two types of iron scavenging systems used are indirect and direct. In-silico analysis of the
genome identified a unique direct iron scavenging system the Hmu operon. This system has been
identified in other closely related rhizobium species and is believed to be involved in utilizing
heme compounds as a sole source of iron. We have attempted to characterize the role of the Hmu
operon in iron utilization by monitoring the growth of R. leguminosarum ATCC 14479 in hemin
supplemented media. Growth curves show that it is capable of using hemin as a sole source of

iron. The outer membrane profiles were analyzed for the presence of hemin binding proteins.
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CHAPTER 1. INTRODUCTION

Iron and Its Importance

Iron is an essential micronutrient for living organisms including both eukaryotes and
prokaryotes, It’s required at an intracellular concentration of 10" to 10”7 Molar (M) to maintain
homeostasis in bacteria (Weinberg 1974). Iron is required for many cellular functions as it
serves as an important cofactor for many crucial enzymes required for a multitude of functions
such as DNA synthesis, respiration, and gene regulation (Andrews et al. 2003). Iron deficiencies
in bacteria can lead to: defects in DNA/ RNA biosynthesis, cellular morphology, reduced
respiration activity, oxidative stress response, Nitrogen fixation, and oxidative phosphorylation
(Messenger and Barclay 1983). Inversely an excess of iron in bacteria can lead to the buildup of

reactive oxygen species (ROS) which can lead to cell death (Touati et al. 1995).

In humans, excess iron also known as iron overload is mainly caused by
hemochromatosis, a hereditary condition which causes an individual to absorb to much iron from
their diet. The excess absorption of iron leads to deposition of the excess iron into various tissues
and organs, the main regions it is deposited are: the liver, skin, heart, pancreases and joints
(Hereditary hemochromatosis 2020). Excess iron buildup in these organs can lead to a multitude
of issues ranging from impaired organ function to organ failure due to the buildup of ROSs
(Crownover & Covey 2013). Inversely, iron deficiency can cause a vast array of physiological
problems as well, ranging from: impaired cognitive performance in children and elderly,
pregnancy complications, chronic fatigue, impaired heart function, and increased risk of

infections (Camaschella 2015).
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Iron Availability

Iron is found in two oxidation states in the environment, the insoluble ferric (Fe III) and
soluble ferrous (Fe II); soluble iron is a scarce resource that is found in most soil environments at
a concentration from 10 to 1018 M (Miethke and Marahiel 2007). Most microorganisms require
an intracellular iron concentration around 10°°M in order to maintain homeostasis (Miethke and
Marahiel 2007). Pathogenic bacteria are also faced with iron scarcity while inside their host.
Iron is tightly regulated in eukaryotic cells, due to its homeostatic importance. Mammalian cells
keep the free iron pool extremely low to prevent iron overload and to limit pathogen growth
(Miethke and Marahiel 2007). Eukaryotic cells reduce the free iron pool by storing it in proteins
such as heme compounds and ferritins, keeping free iron concentrations at 102*M (Miethke and
Marahiel 2007). Due to both soil dwelling and pathogenic bacteria being faced with
environments in which iron is scarce, they have developed a multitude of complex iron

acquisition systems.

Iron Acquisition Systems

Due to the important role iron plays in maintaining homeostasis and it’s scarcity in the
environment bacteria have developed a wide array of iron scavenging systems to gather both free
and complexed forms of iron from their environment. Bacteria can acquire iron from the
environment via direct and indirect iron uptake systems (Krewulak and Vogel 2007). Direct
systems require the bacteria to make physical contact with a source of iron such as heme,
transferrin, lactoferrin, and hemoproteins (Miethke am Marahiel 2007). The drawback to direct
uptake systems is each type of iron compound must have its own specific surface receptor and

transport system for that compound to be utilized. This high specificity limits the range of
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growth to areas where that iron source is available (Miethke and Marahiel 2007). Pathogenic
bacteria contain a plethora of direct iron acquisition systems, an example would be Pseudomonas
aeruginosa’s phuSTUVW system. This system binds heme through PhuR a specific heme
surface receptor. Once bound, the ATP-binding cassette (ABC) encoded by the phuSTUVW
operon transports and breaks down the heme to release the iron to be used by the cell (Ochsner et
al. 2000). Other pathogenic bacteria utilize similar approaches such as the hemoglobin utilization
system hmuRPSTUYV in Yersinia pestis, and Neisseria’s Transferrin-binding protein A and B
(Perkins-Balding et al. 2004; Schwieosow et al. 2018). Due to the limitation of direct iron
acquisition systems limiting bacterial growth to locations where the useable iron source is
available, bacteria have also developed indirect iron acquisitions systems to help compensate for

this limitation.

Indirect iron acquisition systems are more diverse than direct iron acquisition systems,
thus broadening the area of colonization. Indirect systems involve the secretion of compounds
into the environment to capture free iron or iron containing compounds (Miethke and Marahiel
2007). The HxuABC system in Haemophlis influenzae is an example of an indirect uptake
system. HxuA is secreted into the extracellular environment through HxuB, once secreted HxuA
binds a hemoprotein which results in the release of the heme component (Zambolin et al. 2015).
Once the heme component is released it is bound by the TonB dependent 2 surface receptor
(Zambolin et al. 2016). The other major type of indirect iron acquisition system is a low
molecular weight compound known as siderophores. Siderophores are produced by both
prokaryotic and eukaryotic cells and are classified into three major categories; which are
catecholates, hydroxamates, and carboxylates (Miethke and Marahiel 2007). Siderophores have a

high affinity for iron, and when secreted into the environment they bind ferric iron (Miethke
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Marahiel 2007). Once the ferric siderophore complex is obtained bacteria are able to bind this
complex through siderophore specific receptors (Wilson et al. 2017). Differences arise between
Gram positive and Gram negative organisms once this complex is bound. Gram negative bacteria
have to transport this complex across two membranes, requiring the help of a periplasmic
binding protein to traffic the complex to the inner membrane permease (Wilson et al. 2017).
This trafficking process of the ferric siderophore complex from extracellular to intracellular
requires energy which is presumably provided by the TonB-ExbB/D complex (Miethke and
Marahiel 2007). Gram positive organisms contain only one membrane to transport the ferric
siderophore complex, requiring only the siderophore receptor and associated permease (Wilson
et al. 2017). Once the ferric siderophore complex is inside the cell the bacteria must release the
iron to make it available for use. The release of iron from the siderophore is done by breaking
down the siderophore via esterases or reducing the ferric iron to ferrous iron via reductases
(Miethke and Marahiel 2007). The combination of both direct and indirect iron acquisition
systems give bacteria an evolutionary advantage by increasing the range of environments they
can colonize; however, due to the high specificity of direct acquisition systems it is more

beneficial for bacteria to utilize indirect acquisition systems.

Genetic Regulation of Iron Acquisition Systems

Due to the importance iron plays in maintaining homeostasis in bacterial growth, they have
developed a multitude of iron scavenging systems. These systems are only expressed in iron
limited conditions due to the amount of energy they require to scavenge iron from the
environment (Miethke and Marahiel 2007). These systems are also tightly regulated due to the
buildup of deadly ROS when intracellular iron is in excess (Kadner 2005). One of the most

common iron starvation gene regulation mechanisms is known as the ferric uptake regulator
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(Fur). The Fur protein is an iron-dependent transcriptional repressor; the system was first found
in Escherichia coli, but it is also common in other Gram negative bacteria (Kadner 2005). Fur is
a Fe-sulfur protein that is a global iron starvation response regulator which binds to a specific
DNA sequence called the Fur box. This protein works by using either ferric iron or Manganese*>
as a corepressor (Bagg and Neilands 1978; De Lorenzo et al. 1987). When ferric iron is abundant
inside the cell it binds to Fur causing a conformational change, this allows for the protein to bind
to the Fur box. Once the protein is bound to the Fur box it blocks DNA transcription of the
downstream genes involved in iron scavenging systems (Miethke and Marahiel 2007). When
bacteria are in iron limited conditions the ferric iron is released from the fur protein resulting a

conformational change that leads to the disassociation between Fur and the Fur box, thus

allowing for gene expression (Troxell and Hassan 2013).

The Fur Family of proteins also contains the iron-response regulator (Irr), while Irr is in the
Fur family of proteins it uses a different mode of action to measure iron levels (Costa et al.
2017). Fur operates by measuring intracellular iron levels, while Irr in Bradyrhizobium operates

by sensing heme biosynthetic levels (O’Brian 2015).

Another iron gene regulator is the rhizobial iron regulator (RirA) which belongs to the Rrf2
family of transcription regulators, mutations to RirA have shown to alter not only iron-response
genes but also alter the expression of over 100 proteins (Chao et al. 2005). DNA and protein
sequence homology searches of the RirA protein shows no homology to known iron-response
regulators and is unique to Rhizobiales order (Chao et al. 2005). The RirA protein is a Fe-sulfur
protein that’s exact mode of action is not fully understood, but an iron-responsive operator (IRO)

motive has been described as a putative DNA binding site for RirA protein (Costa et al. 2017).
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RirA is known to repress iron-response genes in iron rich environment, and allows for iron-

response gene expression in iron poor environments (Todd et al. 2002).

A newly investigated method of gene regulation in bacterial iron starvation response is the
Two-Component Signaling system (TCS) also called histidine sensor kinase system. The TCS
work by sensing changes in the environment around the bacteria, once a change is perceived a
phosphorylation relay occurs that leads to a change in gene expression allowing the bacteria to
adapt to the changing environment (Bijlsma and Groisman, 2003; Cheung and Hendrickson,
2010). This system is comprised of two components, a sensor histidine kinase that is
transmembrane, and a cytoplasmic response regulator (Bijlsma and Groisman, 2003; Cheung and
Hendrickson, 2010). The sensor histidine kinase detects changes in the environment through the
N-terminus leading to autophosphorylation of a conserved histidine residue on the C-terminus
(Tiwari et al. 2017). The phosphorylated C-terminus then interacts with the response regulator
and the phosphate group is transferred to a conserved aspartate residue on the N-terminus of the
regulator. This phosphate transfer causes a conformational change in the regulator’s C-terminus
(Tiwari et al. 2017). Once the response regulator undergoes a conformational change it interacts
with the bacterial DNA allowing for changes in gene regulation (Tiwari et al. 2017). A new TCS
in Xanthomonas campestris has been shown to be involved with iron homeostasis (Wang et al.
2016). The sensor histidine kinase is called VgrS, while the response regulator is called VgrR.
This system has been shown to not only detect extracellular iron scarcity but also intracellular;
when VgrS/R was mutated the bacteria showed highly impaired growth compared to the wild

type (Wang et al. 2016).
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Rhizobium leguminosarum

Rhizobium leguminosarum ATCC 14479 is a Gram negative bacteria which is known for
being a soil dwelling, aerobic, motile, nitrogen fixing bacteria that forms a symbiotic relationship
with legume plant roots (LeRoux et al. 2016). Rhizobia are present in a free-living form, and
they infect legumes once they detect the flavonoids released by plant roots which triggers the
infection of the root hairs. (Peters et al. 1986). Upon infecting the root hairs the bacteria express
the nodulation factors and begin formation of root nodules (D’Haeze and Holsters 2002). Upon
the completion of the root nodule, a portion of the bacterial population invades the nodule. Once
intracellular the bacteria differentiate into bacteroides which are capable of converting
atmospheric nitrogen into ammonia (Gage 2004). The root nodules provide bacteria with suitable
environment to grow by providing protection and nutrients, while bacteria supply the plant with
a nitrogen source (Postgate 1998.). The root nodule provides a low oxygen environment by the
production of leghemoglobin, which binds molecular oxygen (Brear et al. 2013). The creation of
this low oxygen environment is crucial in the nitrogen fixation process due to bacterial oxygen
demands for growth and irreversible inactivation of bacterial nitrogenase by molecular oxygen
(Postgate 1998). The resulting ammonia formed by a reduction of nitrogen by the bacteria is then
assimilated into organic compounds used by the plant (Postgate 1998). The organic-nitrogen
from the dead plants is then dispersed in the surrounding soil increasing its fertility, in turn

allowing other legumes and plants to thrive (Postgate 1998).

There are three biovars of R. leguminosarum each of which form nodules with different
plants: biovar trifolii nodulates with clovers, biovar viciae nodulates with legumes, and biovar
phasoli specifically nodulates with kidney beans (Young et al. 2006). The three biovars share

many similarities from infection process, nodule formation, nitrogen fixation, to genetic
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similarities (Ramirez-Bahena 2008). The Strain of Rhizobium used in this study is R.
leguminosarum ATCC 14479, it belongs to the trifolii biovar, it’s preferred plant symbiote is

Trifolium pretense also known as red clover (Wright et al. 2013.)

Heme iron uptake and the HmuPSTUYV operon

Heme and hemoproteins have been utilized by pathogenic bacteria as a source of iron during
infection to deal with the iron limited environment of their host (Contreras et al. 2014). Many
different heme uptake systems have been studied in various pathogenic organisms such as the
HmuR system in Y. pestis and the phuPSTUVW system in P. aeruginosa are a few examples. Heme
utilization systems work as a direct iron acquisition system to help bacteria meet iron demands.
They work by binding heme compounds to a specific surface receptor and transporting them into
the cells to be degraded to release the iron (Ochsner et al. 2000; Perkins-Balding et al. 2004;
Schwieosow et al. 2018). The reason so many pathogenic bacteria have developed heme utilization
systems 1is due to it being the most widespread source of available iron in mammals (Contreras et
al. 2014). While pathogenic bacteria have been widely studied for heme utilization systems, these
systems are not exclusively found in human pathogenic bacteria but also in plant pathogens and

plant symbiotic bacteria (Anzaldi and Skaar 2010).

Plant symbiotes have recently had their heme utilization systems investigated. These systems
need more investigation to fully understand their role in iron acquisition and in symbiosis.
Bradyrhizobium japonicum recently had a heme utilization system discovered, the system was
labeled as hmuRTUV. This system shares similarities to the human pathogen Y. enterocolitica

heme utilization system (Nienaber et al. 2001). It works by the heme surface receptor(HmuR)
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binding heme compounds. Once bound the ABC membrane transport system (HmuTUV) works to
internalize the heme compound for degradation and iron release (Nienaber et al. 2001). Rhizobium
leguminosarum 1is another plant symbiote that has recently had a heme utilization system
discovered, the system is the hmuPSTUYV operon (Wexler et al. 2001). This system (Figure 1) has
only had putative functions determined by sequence alignments with other known heme utilization
genes (Wexler et al. 2001). The predicted functions for the proteins coincide with other heme ABC
transport systems, HmuP is a predicted heme receptor/ transporter, while HmusS is predicted to be
a heme degradation protein (Wexler et al. 2001). HmuTUYV is the predicted ABC transporter
component responsible for transporting heme from the periplasm to inside the cell (Wexler et al.
2001). This predicted ABC transporter is composed of a putative periplasmic heme binding protein
(HmuT), a periplasmic heme permease (HmuU), and a heme ATPase component (HmuV) (Wexler
et al 2001). While the functions of this system is putative, R. leguminosarum species are shown to
be able to utilize heme compounds such as hemin and leghemoglobin as a sole source of iron
(Wexler et al. 2001). Previous work in our lab along with full genome sequencing has confirmed

the presence this predicted Heme uptake system in R. leguminosarum ATCC 14479

030760.1:1965797..1969960 Rhizobium leguminosarum strain ATCC 14479

‘ HmuT HigaV

Figure 1. Orientation and layout of R. leguminosarum ATCC 14479 HmuPSTUYV operon

TonB-ExbB-ExbD

Gram Negative bacteria have many outer membrane transporters, these transporters require
energy to facilitate transport into the bacteria’s inner membrane. The periplasm is the space

18



between the outer and inner membranes, this space resembles the pH and solute concentration of
the external environment of the bacteria and is completely devoid of adenosine tri-phosphate
(ATP) (Mogenesn and Otzen, 2005). Since the periplasm lacks the normal means of energy to
facilitate transport, bacteria have developed systems to overcome the lack of energy to allow for
transfer of molecules across the outer membrane and periplasm to the inner membrane. The
TonB-ExbB-ExbD system provides energy across the periplasmic space to help facilitate
transport of iron chelators, vitamin B2, nickel chelators, and carbohydrates (Schauer et al. 2008).
The energy produced for this transport is obtained by proton motive force (PMF) across the inner
membrane, then the energy is transduced through TonB to the TonB dependent transporters

(Noinaj et al. 2010).

The TonB complex is mostly studied in E. coli, where TonB is a 26kDa protein consisting
of three domains. These domains are a cytoplasmic N-terminal domain, a periplasmic C-terminal
domain, and a proline rich spacer separating the N- and C-terminal domains (Postle and Larsen,
2007). The N-terminal domain contains a 32-residue transmembrane helix, which anchors the
protein to the cytoplasmic membrane and also serves as the interaction site with ExbB/D
(Krewulak et al. 2007). The C-terminal domain of TonB interacts with a conserved region on
TonB dependent transporter’s N-terminal region called the TonB box and allows for energy
transfer from TonB to the receptor (Peacock et al. 2007). The Proline rich spacer is located in the
periplasmic space and contains a series of proline-glutamine and proline-lysine repeats (Kohler
et al. 2010) This series of repeats is believed to provide rigidity which supports the proteins as it
extends into the periplasmic space (Krewulak et al. 2007). ExbB and ExbD are in complex with
TonB, these cytoplasmic proteins are around 26 kDa for ExbB and 17 kDa for ExbD (Ollis and

Postle, 2012). ExbB and ExbD are located in the cytoplasmic membrane and work together using
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PMF to create energy that is then transduced to the TonB dependent via TonB to allow for

active transport (Ahmer et al. 1995).

Heme/ Hemin/ Hemeglobin and leghemoglobin

Heme (Fig. 2) is described as an iron protoporphyrin IX ring, and is one of the most
abundant and widely used metalloporphyrins in biological systems (Poulos 2014). Heme serves
many biological functions from electron shuttling, to storage and transport of oxygen when

coupled with globulin proteins (Poulos 2014).

HO,C COzH

Figure 2. Heme

Hemin is similar to heme but with a small change, Hemin (Fig. 3) is a porphyrin ring IX
containing a chloride molecule attached to a central ferric iron molecule (Hans 1941). Hemin is
prepared in a lyophilized form from defibrinated blood that is treated with glacial acetic acid and
sodium chloride at a temperature of 100 degrees Celsius (Hans 1941). Both heme and hemin are

useable sources or iron for bacteria when cells are under iron poor conditions (Noya et al. 1997)

20



Figure 3. Hemin

Hemoglobin (Fig. 4) is a globular protein in red blood cells of vertebrates that is
responsible for transport of oxygen throughout the body. Hemoglobin consists of four tightly
packed globular proteins with a combined size of 65 kDa (Anthea et al. 1993). Each globular
protein contains one heme molecule which intern contains iron, making the total of four iron
molecules in hemoglobin (Anthea et al. 1993). Hemoglobin is a primary target for pathogenic
bacteria to satisfy their iron requirements, this is due to hemoglobin being the most wide spread
source of iron in the human body (Contreras et al. 2014). Hemoglobin has also been shown to be

a source of iron for nonpathogenic bacteria such as Rhizobia bacteria

Figure 4. Hemoglobin
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Another iron source that is available for both plant pathogens and symbiotes is
leghemoglobin (Fig 5.), it is a myoglobin like protein with a size of 16 kilodaltons (kDa) (Becana
et. al, 1995). This heme containing protein is found at concentrations of around 3mM in root
nodules and plays a role in symbiotic nitrogen fixation by producing a low oxygen environment
(Bergersen and Appleby 1981; Becana et al. 1995; Brear et al. 2013). Leghemoglobin consists of
a globulin polypeptide produced by the plant and a heme group synthesized by the symbiotic
bacteroids (Becana et al. 1995). Once both the heme and globulin components are produced they
are assembled in the infected plant cells cytoplasm (Becana et al. 1995). Leghemoglobin is
crucial for maintaining the crucial balance of free oxygen levels in the root nodule to allow
bacteroid growth and nitrogenase function (Ott et al. 2005). Plant roots that are not infected with
symbiotic rhizobium species lack the presence of leghemoglobin, this is due to leghemoglobin is

needed for symbiotic nitrogen fixation and not normal plant growth (Ott et al. 2005).

Figure 5. Leghemoglobin

Present Work
Previous work in our lab on R. leguminosarum ATCC 14479 has shown that it contains

the heme/ hemin uptake system HmuPSTUV (Shushant 2017) . This system is believed to give
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the bacteria the ability to utilize hemin and heme containing compounds under iron limiting
conditions (Wexler et al. 2001). This system in other Rhizobium species has been shown to be a
TonB dependent transport system (Wexler et al. 2001). The system is an ABC transporter that is
composed of a predicted heme receptor (HmuP), Heme degrading enzyme (HmuS), periplasmic
heme binding protein (HmuT), periplasmic heme permease (HmuU), and a heme ATPase

(HmuV).

The goal of this work is to investigate the role of the role of the HmuPSTUV operon in
hemin mediated iron uptake using site directed mutagenesis and other biochemical methods. We
hypothesize the mutation of the HmuPSTUV operon will disrupt hemin mediated transport.
Previous and current work has shown that R. leguminosarum ATCC 14479 is capable of using
different types of heme compounds as a sole source of iron. The growth of the wild type was
found to increase as the concentration of hemin increased, with growth plateauing at 15uM to
30uM. In anerobic conditions The addition of hemin to the media was found to increase cell

survivability when compared to the iron free condition.

This Work also includes the investigation of the role of a predicted Two component
system role in the iron starvation response. We hypothesize that mutation of this predicted two
component system will result in diminished gene expression in iron scavenging systems. In silico
analysis revealed that this predicted sensor histidine kinase belongs to a HWE family of sensor

kinases that are believed to be involved with sensing a wide array of environmental changes.
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CHAPTER 2. MATERIALS AND METHODS

Bacterial Strains and Growth

The strains of bacteria used in this study are R. leguminosarum ATCC 14479 trifoli,

which was acquired from American Type Culture Collection; The E. coli strains used in this

study are NEBaS and PRK2013.

Table 1. Strains and Plasmids

Strain Characteristics Reference/ source

E. coli

NEBa5 Used for transformation of suicide vector New England Biolabs
containing knocked out gene of interest

DHa5 Used for triparental mating as a helper strain to
Kan®

R. leguminosarum

ATCC 14479 Wild-type strain ATCC

Plasmids

PRK2013 Helper plasmid used for tri parental conjugation | Ditta et al. 1980
Kan®

pEX18GM Suicide vector Gm® Hoang et al. 1998

pEX18 AHmuU

pEX18Gm plasmid carrying HmuU SOE product

with an in-frame deletion of HmuU gene

This work
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pEX18AHmuV pEX18Gm plasmid carrying HmuV SOE product | This work

with an in-frame deletion of HmuV gene

pEX18ASK pEX18Gm plasmid carrying senor histidine This work
kinase SOE product with an in-frame deletion of

the sensor kinase gene

Growth Conditions

A variety of media were used for culturing R. leguminosarum ATCC 14479 both
enriched and minimal, the enriched media used were Congo Red agar (CR) and Yeast Mannitol
Broth (YMB). The minimal medium used for iron limited Rhizobium culturing is Modified
Manhart and Wong broth (MMW) (Manhart and Wong 1979). Rhizobium was grown at 30°C
under either static conditions or at 250 rpm when grown in broth culture. The E. coli strains were

grown in LB medium at 37°C under static conditions or at 250 rpm in broth culture.

CR agar is used for culturing and identifying Rhizobium species, this is due to the
presence of Congo red dye. The dye is only absorbed by fast growing organisms resulting in a
red to pink colored colonies, while Rhizobia species grow too slow to absorb the dye and
colonies maintain a white color (Kneen and larue 1983). CR agar’s composition is (W/V) 1%
mannitol, 0.05% K>HPOys, 0.02% MgS04*7H20, 0.01% NacCl, 0.1% yeast extract, 2.5 X 107 %
Congo red dye. Once the ingredients were combined and water added to the medium, the pH was
adjusted to 6.8 by addition of an aqueous HCI solution. Once the pH was adjusted a 1% (W/V)

aqueous solution of Congo red dye was added prior to autoclaving.
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Yeast mannitol broth was used for culturing R. leguminosarum when iron concentration
was not of importance. YMB’s contains the following (W/V): 1% mannitol, 0.05% K>;HPOs,
0.02% MgS04*7TH>0, 0.01% NaCl, and 0.1% yeast extract. Once the ingredients were combined
and water added, the medium’s pH was adjusted to 6.8 by addition of an aqueous NaOH
solution. Once the correct pH was obtained and the ingredients were mixed the solution was

autoclaved.

Modified Manhart and Wong (MMW) medium was used for culturing R. leguminosarum
whenever iron limited conditions were required (Manhart Wong 1979). MMW media has two
parts to the media one being the basal media and the other a concentrated vitamin solution (See
appendix A). The vitamin solution consists of trace amounts of vitamins and metals it was
concentrated at 1000 times. Once the vitamin solution was mixed it was filter sterilized and
stored at 4°C and wrapped in aluminum foil to protect from light exposure. The basal media
composition is as follows (W/V): 0.0764% K>HPO4, 0.1% KH2POys, 0.15% Glutamate, 0.018%
MgSO4*7TH20, 0.013% CaSOs4, and 0.6% dextrose. Prior to mixing the ingredients all glassware
was washed with concentrated nitric acid for 1 hour in a fume hood to removed residual iron,
then the glassware was washed four times with Millipore water to remove residual nitric acid.
Once the ingredients were dissolved in water the pH was adjusted to 6.8 by adding an aqueous
solution of SM NaOH. After autoclaving the medium, it was allowed to cool to room

temperature before adding 0.001% (V/V) of the filter sterilized concentrated vitamin solution.

Chrome Azurol S is a medium used to test for the production of siderophores and iron
chelation. The media contained (W/V): 3.0% MOPS, 0.05% NaCl, 0.03% K,HPOQOu4, 0.015%

NH4Cl, 0.5% L-aspargine. The ingredients were mixed in Millipore H,O and 5SM NaOH was

26



added till the media’s pH was 6.8. The CAS indicator dye (Appendix A) and 50% sucrose

solution were added post autoclaving a mixed into solution.

The LB broth used for culturing E. coli species contained (W/V): 1% tryptone, 0.5%
yeast extract, 0.5% NaCl, and 1.5% agar for the plates. Once the ingredients were mixed with

water the pH was adjusted to 6.8 by the addition of an aqueous solution of HCI, then autoclaved.

The concentration of antibiotics used in media for both R. leguminosarum and E.coli

strains are as follows:

Table 2. Antibiotic concentrations

Antibiotic Concentration in media
Nalidixic acid (Nais) 15 pg/ml
Penicillin G (Penso) 50 pg/ml
Gentamycin (Gmao) 20 pg/ml
Kanamycin (Kanss) 35 ug/ml
Hemin supplied growth

As previously stated MMW media was used when iron concentration was being limited
and supplemented. The media was made iron free by the addition of the iron chelator 2,2’-
dipyridyl to a concentration of 200uM. The iron free media was supplemented with hemin at
varying concentrations: 0.0uM, 1.0uM, 1.5uM, 3.0uM, 10uM, 15uM, and 30uM. The hemin
supplemented MMW media was inoculated with 1.94*10” CFUs (colony forming units) from a
72 hour grown MMW iron starved culture. For aerobic conditions cultures were grown at 30°C

at 250 rpm. For anaerobic conditions the cultures were grown at 30°C under static conditions in
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and aerobic jar with a GasPak. Serial dilutions for both aerobic and anaerobic conditions were
taken at hours 24, 48, 72, and 96 hours. Dilutions were plated on CR plates and allowed to grow

for 72 hours before counting CFUs.

Genomic DNA Extraction

Rhizobium leguminosarum ATCC 14479 was first inoculated onto CR plate from a -80°C
stock and grown at 30°C for 72 hours. A single colony was used to inoculate a Sml YEM broth
supplemented with penicillin G to inhibit the growth of possible contaminants. This culture was
grown for 48 hours at 30°C on a shaker at 250 rpm. Two milliliters of the culture was spun at
10,000 x g, the supernatant was removed and the pellet was resuspended in 2ml of a sterile
0.85% NaCl solution to remove the exopolysaccharide. Then the genome was collected using the
Qiagen DNeasy UltraClean microbial kit, this kit works by lysing the cells by the bead-beating
method. The resulting lysate is treated to precipitate out the proteins while leaving the DNA
soluble, the proteins are pelleted via centrifugation at >10,000 x g. The resulting lysate is then
collected using a column which binds the genomic DNA, where it undergoes a series of ethanol
washes. The cleaned DNA is eluted using 10 mM Tris-HCI at a pH of 8.5. The DNA is stored at

-80°C for long term storage and -20°C for short term storage.

Splicing by Overlap Extension (SOE)

Knockout constructs for HmuU, HmuV, and the Sensor Histidine Kinase were created
using the splicing by overlap extension (SOE) method (Figure 6). This method involves the PCR
amplification of around 1000 base pairs of both the 3’ and 5’ flanking regions of the gene of
interest. Each of these flanking regions contain a portion of the gene of interest, while the central

portion of the gene of interest is removed. Each of these fragments are first amplified separately,
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then purified by gel extraction. Once purified the flanking regions are joined together through a
subsequent round of PCR due to complementary sequence attached to the primers, resulting in a

knockout construct that is indicated by the A symbol.

Primer A Primer C

Target Gene

e—

Primer B el

Gene Knockout

Figure 6. Illustration of SOE method, step one involves producing 5’ and 3’ fragments through
PCR. Step two joins these two fragments through another round of PCR, resulting in deleting the
interion portion of the gene.

The construction of the 5° fragment of the HmuU knockout used the primers SOEFA
(primer A) and SOERHU (Primer B), and SOEFHU (primer C) and SOERA (primer C) were
used to amplify the 3’ fragment. For the 5’ fragment of the HmuV knockout used the primers
SOEVF and SOEHmuVR and SOEHmuVF and SOEVR for the 3’ fragment. For the Sensor
Kinase knockout, the 5° fragment was amplified with the primers SOEFB and SOER2SK, and
for 3° fragment SOERB and SOEF2SK were used. The Primer sequences and their binding sites

are illustrated on a nucleotide map in appendix B.
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pEXI18 Suicide Vector

The knockout constructs created using SOE were digested by restriction enzymes and
ligated into the pEX18cmM suicide vector (Figure 7.). This suicide vector contains an origin of
replication, gentamycin resistance selectable marker, SacB counter selectable marker, and a
multiple cloning site (Hoang et al. 1998). The counter selectable SacB gene when expressed in
the presence of sucrose containing media is lethal to Gram negative cells. The plasmid also
contains the lacZa gene, allowing for quick blue-white screening of transformed mutant vectors.
Once the knockout constructs were ligated into the restriction digested multiple cloning site
(Figure 8), the pEX18 vector was then transformed into the NEBaS5 E. coli cell line via rubidium
chloride heat shock method. Once transformed the cells were plated onto LBgm agar that
contained X-gal (20pug/ml of media) to allow for blue white screening. The cells were allowed to
grow overnight at 37°C, white colonies were tested by colony PCR for the presence of the

mutant construct and SacB gene. The primers used to test for the mutant construct were designed
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to amplify the full SOE crossover product; the amplified products (~2500bp) were purified and

sent off for sequencing to confirm the presence of a mutant construct.
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(2598) Kpnl
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Figure 7. pEX18Gm suicide vector map
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Figure 8. pEX18cwm suicide vector with Sensor kinase crossover product

NEBa.5 Competent Cells

NEBaS E. coli cells were made competent using the rubidium chloride method. NEBa5
cells were grown in Sml of LB broth at 37°C at 250 rpm overnight, this fresh culture was used to
inoculate 2X YT broth. This culture was allowed to grow until it reached an ODgoo of 0.6, once
this optical density was achieved the cells were collected at 5000x at 4°C for 10 min.. The cells
were then resuspended in chilled TFB1 (appendix A) and let sit for Smin. in an ice bath, and
centrifuged using the same conditions. The supernatant was removed and the cells were
resuspended in chilled TFB2 (appendix A) and incubated for 15-60 min. on wet ice. Cells are

then aliquoted out and stored at -80°C until used for heat shock transformation.
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Heat Shock Transformation of NEBo.5

The rubidium chloride competent cells were used for heat shock transformation of the
suicide vector containing one of three SOE products. The competent cells were thawed out and
50ul of cells were mixed with 0.3ul of the SOE pEX18 ligated product. This mixture was
incubated on ice for 30 min., then they were placed in a 42°C water bath for 30 seconds. Cells
were then recovered in 1ml of room temperature LB broth for 1 hour at 37°C at 250rpm. After
recovery the cells were plated onto X-gal containing LBgm agar plates and incubated overnight.

White colonies were then used for colony PCR to confirm for presence of the SOE product.

Conjugation

NEBaS5 cell lines that were confirmed to contain the suicide vector with a SOE knockout
construct with one of the tree genes, were then used for triparental conjugation. Triparental
conjugation involves three cell lines, the first is the donor cells containing the plasmid of interest.
The second is the helper cells which contain the sex pilus and fra genes for plasmid transfer.
Third is the recipient cell line which receive the plasmid of interest. The donor cell line is the
NEBaS5 cells containing the suicide vector with one of three mentioned SOE knockout
constructs. The Helper strain E. coli PRK2013, is a cell line with the PRK2013 plasmid which
carries the sex pilus, tra genes, and kanamycin resistance (Ditta et al. 1980). The recipient cell
line used is R. leguminosarum ATCC 14479. The helper and donor strains were grown overnight
at 37°C on LB agar plates containing the required antibiotic to maintain plasmid selection. A
couple of colonies were scooped with a inoculating loop and placed into a microcentrifuge tube.
These cells were gently resuspended in 1 ml of a 0.85% NaCl solution and then spun at 5000xg,

this step was repeated twice to ensure residual antibiotics were removed. Once washed the cells
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were resuspended in 200ul of 0.85% NaCl solution. The R. leguminosarum cells were grown for
48 hours in YEM broth at 30°C. 2 ml of cells were spun at 10000xg then washed with 0.85%
NaCl and re-spun, this step was repeated twice to remove the exopolysaccharide. The washed
cells were then combined at a ratio of 1:5:1 (donor: recipient: helper), then spun at 5000xg and
resuspended in 50ul of 0.85% NaCl. The mix of cells was then pipetted onto nitrocellulose discs
on CR agar plates and incubated at 30°C. The discs containing the cells were taken at 12, 24, 48,
and 72 hours and resuspended in 1 ml of 0.85% NaCl solution by vortexing vigorously. Once
removed from the disc cells were serial diluted and plated onto CR agar plates containing
gentamycin and nalidixic acid and incubated at 30°C until cells appeared. The Gentamycin
selects for R. leguminosarum cells that acquired the suicide vector containing the SOE construct,
while the nalidixic acid selects against the E. coli strains. Once colonies appeared they were
tested by colony PCR to identify merodiploids. Once identified cells were grown in Sml of YEM
broth at 30°C at 250 rpm for 6 to 48 hours to allow for homologous recombination. Cells were
then serial diluted and plated on CR plates containing 5% sucrose (W/V) and incubated at 30°C
until colonies appeared. Homologous recombination allows for the cell to either incorporate the
mutant allele or expel it. Cells that have undergone homologous recombination contains either
the wild type or the mutant allele and no longer contain the pEX18 plasmid. This results in
homologous recombinants surviving on the CRsucs% media since they no longer contain the sacB
gene. The surviving colonies are tested by colony PCR to identify potential mutants. The
potential mutants then have their genome extracted to serve as a template for PCR using primers
that amplify the flanking regions of the gene of interest and undergo sequencing to confirm a

knockout of a respective gene.
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Bioinformatic Tools

NCBI/BLAST program was used to analyze and align DNA and protein sequences.
Sequencing data from SOE products were analyzed using Chromas software, once analyzed the
DNA sequence was aligned with R. leguminosarum ATCC 14479 genome using NCBI/BAST
program to confirm. The DNA sequence of the histidine sensor kinase was also analyzed through
NCBI/ BLAST to look for homologous sequences in other closely related species to identify

potential functions.

DNA sequences of the Hmu operon and sensor histidine kinase were analyzed through
the EXPASY translation tool to obtain protein sequences. Once the protein sequences were
obtained they were used to obtain protein models using SWISS-MODEL program. For the sensor
histidine kinase and response regulator models, DNA, and amino acid sequences were compared

to Xanthomonas campestris VgrRS system.

Outer membrane Protein Extraction

R. leguminosarum ATCC 14479 cells were grown in 1 liter MMW broth containing
200uM 2,2’-dipyridyl. The cells were incubated at 30°C at 250 rpm for 72 hours. Cells were
then collected by centrifuging cultures at 10000xg at 4°C, cells are then resuspended in 150ml of
chilled 0.85% NaCl solution to remove exopolysaccharide. This NaCl wash procedure is
repeated four times, once the exopolysaccharide is removed the cells are suspended in buffer A
and sonicated by a Branson digital sonicator at 1 minute pulse and 1 minute pause at a 80%
amplitude. Once sonicated the lysed cells were centrifuged for 10 minutes at 10000xg to collect
the supernatant. The supernatant was subjected to ultra-centrifugation at 30000xg for 90 minutes

at 4°C, the supernatant is removed and saved. The resulting outer membrane pellet is
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homogenized in buffer B and subjected to ultra-centrifugation again, this collection and
centrifugation process is repeated again for buffer D. The resulting pellet in the final
centrifugation step with buffer D is collected and homogenized in 2ml of buffer D and stored at

4°C until analysis of outer membrane proteins by SDS-PAGE.

SDS-PAGE

The outer membrane profiles are analyzed by using Sodium Dodecyl Sulfate-
Polyacrylamide Gel Electrophoresis (SDS-PAGE) (Laemmli 1970). Protein samples were mixed
with 2X loading dye and were kept at 95°C for 5 min. for the proteins to denature. Once
denatured 20ul of protein were loaded on the SDS-PAGE gel, the gel was ran for 75 min. at
30mA and 120V for one gel and 60mA and 120V for 2 gels. The gel was then stained with

Coomassie Brilliant Blue and de-stained with a de-staining solutions.
Hemin-Agarose affinity chromatography

The outer membrane proteins extracted in the 2,2°-dipyridyl condition were used in the
hemin-agarose linked chromatography described by Battistoni et al. (1992) and Lee (1992). This
is an affinity based chromatography which looks for hemin binding proteins. The outer
membranes extracted from 10!° cells were resuspended in 500ul of a 50mM Tris-HCL (pH 8.0)
and 1M NaCl solution and incubated for 1 hr. at 30°C with 250ul of the hemin-agarose
suspension. Nonadherent proteins were removed by incubation for 90 min. at 30°C with a
solution containing: 10mM Tris-HCL (pH 7.8), 150mM NaCl, 10mM EDTA, 1% N-
laurylsarcosine, (W/V) and 0.1% SDS (W/V). The suspension was then centrifuged for 5 min at
5000 xg, the supernatant is removed and used for SDS-PAGE analysis. The hemin linked

agarose beads are then washed three times with a 50mM Tris-HCL (pH 8.0), IM NaCl, 10mM
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EDTA,0.75% (W/V) N-laurylsarcosine, and 0.075% SDS (W/V) solution. The hemin linked
agarose was then washed once with a 50mM Tris-HCL (pH 8.0) and 1M NaCl solution. After
each wash the hemin agarose beads were centrifuged for 5 min. at 5000 xg, finally the washed
beads were suspended in 200ul of PBS and 200ul of the 2X Laemmeli buffer. This suspension
was heated at 100°C for 5 min, the suspension was placed on ice for 1 min. and the agarose was

pelleted by centrifugation for 5 min. at 750 xg. The supernatant was placed into a new collection

tube and 10-20ul was used for SDS-PAGE analysis.

Detection of Siderophores

During the hemin supplemented MMW media growth experiment, the supernatant of
select conditions were tested for siderophore production. The supernatants were tested for
siderophore production by incubating the supernatant in Chrome azurol S plates (CAS). These
plates contain a dye that is a blueish green when iron is bound, and have an orange color when
iron is unbound. If Vicibactin is present, it will strip the iron from the dye producing and
orangish/ brown halo. The conditions tested for siderophore production were: 200uM 2°2-
dipyridyl, 10uM, 15uM, and 30uM. The supernatants were collected at 24, 48, and 72 hours.
Each culture had 150ul collected, then centrifuged at 10,000 xg’s at 4°C for 5 min. Then 100ul
of the cell free supernatant was loaded into the well of a CAS plate, then this was allowed to

incubate at 30° for 48 hours. After incubation any resulting halos were measured.
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CHAPTER 3. RESULTS AND DISCUSSIONS

Based on the previous work in our lab and getting the genome of R. leguminosarum
ATCC 14479, we wanted to explore the effects of hemin as an alternate iron source. Studies in
Bradyrhizobium and other strains of R. leguminosarum have shown that they were capable of
utilizing different heme compounds in vitro (Nienaber et al. 2001 & Wexler et al. 2001). Due to
the availability of the chromosomal DNA for R. leguminosarum ATCC 14479, it was possible to
perform in silico analysis on genes predicted to be involved with hemin utilization. Once the
putative gene cluster was identified, an effort was made to investigate hemin dependent iron

utilization as well as the role these putative genes play in hemin uptake and utilization

Hemin Supplied Growth

To determine the effects of hemin as the sole iron source on the growth of R.
leguminosarum ATCC 14479, an iron depleted culture (containing 2’,2’-dipridyl) was used to
inoculate varying concentrations of hemin supplemented MMW broth. The growth of the
cultures was monitored over 96 hours by plating 10 fold dilutions onto CR agar plates, the
colony forming units were counted and log transformed to graph the growth curve (Figure 9).
The iron depleted media (containing 2°,2’-dipridyl) had the lowest growth as predicted, and a
concertation dependent increase in growth was observed in the case of hemin supplemented
media. The 1.0uM hemin (gray line) had the lowest growth for hemin supplied media, while
30uM hemin (red line) appeared to have the highest observed growth. The difference between
the 15uM and 30uM hemin conditions was minimal (Figure 9 & 10), indicating the cell’s iron
requirements are being met around these concentrations. There was a full logio difference

between the 2°,2’-dipridyl and 30uM hemin growth conditions, this difference in growth and
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concentration dependent growth increase shows R. leguminosarum is capable of using hemin as a

source of iron.

R. leguminosarum ATCC 14479 Hemin supplied Growth (aerobic)
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Figure 9. R. leguminosarum ATCC 14479 aerobic growth curve of iron free and hemin supplied
MMW media, error bars represent standard deviation. (n=3)

This growth study was then repeated but at the start of the 24 hour period the CFUs were
measured every four hours up until the 48 hour period. This region was of interest because in the
initial aerobic growth study it showed the best dose dependent relationship. The results of this
24-48 hour growth period shows a dose dependent relationship that remains constant over the 24
hour period (Figure 10.). This time point also maintains a full log deference in CFUs when
comparing the hemin supplemented to the iron deplete (2°,2’-dipridyl) media. Since the
difference between the 15uM and 30uM hemin supplemented media growth was minimal, we

believe the cells are reaching sufficient intracellular iron levels. The means by which the hemin
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is being used could be by the predicted Hmu operon or by the siderophore vicibactin striping the
iron from hemin. Another potential increase in growth could be due to the natural degradation of
the hemin over time releasing the complexed iron, allowing the many indirect iron acquisition

systems to uptake the freed iron.

R. leguminsarum ATCC 14479 hemin supplied growth (aerobic)
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Figure 10. R. leguminosarum ATCC 14479 aerobic growth curve of iron free and hemin
supplemented MMW media, error bars represent standard deviation. (N=3)

Since R. leguminosarum encounters heme compounds in the low oxygen environment of
the root nodule, the effects of hemin supplied media on R. leguminosarum survival in an
anaerobic environment were measured. The survival of the R. leguminosarum was tracked over
96 hours in an anaerobic environment, only the higher concentrations of hemin were tested due
to their increased effect on growth in aerobic conditions. The survival was measured in CFUs
then log transformed to graph the survival curve (Figure 11). The 2°,2’-dipridyl supplemented

media (yellow line) had the least impact on maintaining survival of the cell culture, while the
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addition of hemin to the media results in drastic increase in cell survival. The highest increase in
cell survival is observed at the 72-96 hour mark, at 72 hours all the hemin supplemented media
had over a 1.5 logioincrease in cell survival compared to the 2°,2’-dipridyl supplemented MMW
media. The largest margin of cell survival is when comparing the hemin and 2°,2’-dipyridyl
supplemented media at the 96 hour point. There is a 2 logjo increase in survival in all the hemin
supplemented media, compared to the 2°,2’-dipridyl supplemented media. Since R.
leguminosarum is an aerobic bacteria the cells should fail to grow in an anaerobic environment,
this is supported by observing no growth trend in the anerobic environment. The reason for the
prolonged cell survival in the hemin supplied media, is most likely due to the ferric iron in hemin
being reduced to its ferrous form. This reduction of iron occurs due to the anaerobic environment
(Perez-Guzman et al. 2010). The ferrous iron is then released from the hemin molecule, in turn

making the iron readily available for cell use.

R. Leguminosarum ATCC 14476 Hemin Suplied Growth (anaerobic)

7.5
7 [
— ————

_ T
E 6 I
T
o 55
g T
[eTo]
S 5 1

45 [
“ |

3.5
24 48 72 96

Time (hr)
«=@=—10uM Hemin 15uM Hemin 30pM Hemin 200uM 2,2-dipridyl

Figure 11. R. leguminosarum ATCC 14479 anaerobic survival curve of iron free and hemin
supplied MMW media, error bars represent standard deviation (n=3).
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Identification of Potential Mutants

After looking at the effects of hemin supplemented media had on the growth of R.
leguminosarum ATCC 14479, we wanted to determine if the HmuPSTUV operon was
responsible for hemin utilization. Splicing by Overlap Extension (SOE) was used to generate
knockout genes for HmuU, HmuV, and a sensor histidine kinase. Both HmuU and HmuV were
chosen for mutation due to their predicted function as an ABC transporter for heme compounds,
but also due to their close proximity to each other in the operon. The sensor kinase was chosen
due to recent research on TCS involvement in sensing iron both intracellularly and
extracellularly (Wang et al. 2016). Once SOE knockouts were obtained, the plasmids containing
the knockout gene constructs were confirmed by blue-white screening (appendix B), PCR
analysis, and finally DNA sequencing. Blue-white screening was used on NEBa5 cells that had

been transformed with the ligated pEX18 and SOE Product.

The HmuU SOE PCR fragments were first checked on an agarose gel (figure 12), to
determine if the fragments matched up with their predicted sizes. The fragments were then
sequenced to confirm data was obtained for the crossover product, the sequences were aligned
with the genome of R. leguminosarum ATCC 14479 to confirm the crossover product was
indeed the gene of interest. The 5° fragment was sequenced using SOEFA as the primer. The
sequence showed a 98% nucleotide identity when aligned to the R. leguminosarum ATCC 14479
Hmu operon. The 3’ fragment for the HmuU was sequenced using SOERA as the primer. The
sequence showed a 99% nucleotide identity when aligned with R. leguminosarum ATCC 14479
Hmu operon. The SOE product was then restriction digested and ligated into the pEX18 suicide
vector. This ligation product was then transformed into competent NEBa5 cells, the resulting

transformant were then screened by blue-white screening on X-gal containing LBgm media.
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White colonies were then used for colony PCR to check for the SOE product, if the SOE product

was found these cells were then used for triparental mating.

Figure 12. Gel of HmuU SOE PCR products, Lanes: 1. 1kb ladder, 2. 5° fragment, 3. 3’
fragment, 4. SOE crossover product. Sequence data for fragments in APPENDIX B
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The PCR products for HmuV were checked on an agarose gel (Figure 13), then the
products were sequenced. the sequence alignment was repeated for the HmuV construct, only the
3’ sequence was obtained (appendix B). This could be due to DNA sequencing issues, impurities
in plasmid sample or primers. The primer used for the 3’ sequence was SOEVR (appendix B),
the sequence alignment with R. leguminosarum ATCC 14479 Hmu operon was a 97% nucleotide
identity. The SOE product was then restriction digested and ligated into pEX18 suicide vector,
the ligation product was transformed into competent NEBa5 cells. The resulting transformants
underwent the same blue-white screening as the HmuU construct, and white colonies were

confirmed to contain the HmuV SOE construct via colony PCR.

Figure 13. Gel of HmuV SOE PCR products, Lanes: 1. 1kb ladder, 2. 5’ fragment, 3. 3’
fragment, 4. SOE crossover product. Sequence data for fragments in APPENDIX B

44



The SOE PCR products for the sensor kinase were first confirmed on an agarose gel
(figure 14), then fragments were sequenced (appendix B) to determine if the SOE construct was
the intended product. The 5’ product was sequenced using the primer SOEF2SK, and SOER2SK
for the 3’ fragment. The 5° and 3’(appendix B) fragments sequence were aligned with R.
leguminosarum ATCC 14479 genome. The SOE product underwent the same restriction
digestion and ligation as the Hmu SOE products. The blue-white screening was repeated, with
white colonies undergoing colony PCR to look for the presence of the senor kinase SOE product.

Confirmed cell lines were then used for triparental mating.

Figure 14. Gel of senor kinase SOE PCR products, Lanes: 1. 1kb ladder, 2. 5’
fragment, 3. 3” fragment, 4. SOE crossover product. Sequence data for fragments
in APPENDIX B

These confirmed NEBa5 cell lines were used for tri parental mating to obtain a R.
leguminosarum merodiploids. Only one merodiploid was obtained for the three constructs, The

sensor kinase was the only merodiploid obtained. The reason for unsuccessful conjugation could
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be due to F pilus being damaged during the mixing stage. Another potential reason could be
exopolysaccharide preventing the formation of the sex pilus. One potential merodiploid for the
HmuU gene was found out to be a PRK2013 E. coli helper strain that had integrated the AHmuU
pEX18 plasmid into its genome. This was determined by amplifying and sequencing the
potential HmuU mutant’s 16s gene sequence (Appendix B). The Sensor kinase merodiploid had
its flanking regions analyzed, upon PCR analysis of the merodiploids flanking regions (Figure
15) showed the SOE product under went illegitimate recombination during the first crossover
event. This result from the gel was further supported by having these fragments sequenced and
seeing no integration in the genome with the deleted construct. Both the sequences of the -5 and
3’ fragments showed no signs of a crossover event occurring in these regions (appendix B). This
illegitimate recombination event in the sensor kinase merodiploid is most likely due to another
region of homology between the SOE product flanking regions and the genome. The exact site of
this recombination is unknown; however, Inverse PCR could be used to determine the integration

site.

Lanes: gel 1&2

1kb ladder
R.leg ATCC
A SK plasmid
SKR. leg
merodiploid

el it o

Figure 15. Left gel is a PCR of the 3’ flanking region, the right
gel is of the 5” flanking regions. 3’ primers: SOEFB &
SOERSK. 5’ primers: SOERB & SOEF2SK
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Sensor Histidine Kinase In silico Analysis

During sequencing analysis of the Hmu operon and the flanking regions both upstream
and downstream, it was found that these flanking regions showed conserved genes. Upstream of
the Hmu operon is a conserved TonB and downstream is a Two-component system (TCS) (figure
16.) Since this region of DNA had these conserved genes a Blast analysis (Appendix B) was

performed on this region to compare sequence identity to related species.

TonB Hmul] Response regulator
= I | Sensor Kinase
HmuS
= HuT .
—_—

Figure 16. TonB and TCS near Hmu operon in R. leguminosarum ATCC 14479 genome. NCBI
ref. seq. NZ_CP030760.1 (1,963,826-1,974,106). Unmarked proteins are hypothetical proteins
with no assigned function

The Blast analyses showed high similarity to gene sequences in 26 other R.
leguminosarum strains with high nucleotide identity (>90%). TonB has been shown to be
involved in heme utilization, but the involvement of this two component system has not been
investigated (Wexler et al. 2001). A newly described TCS in Xanthomonas campestris called the
VgrR/S system, which was shown to be involved in sensing both intracellular and extracellular
iron levels (Wang et al. 2016). Since this system was shown to be involved in the iron stress
response, we compare the VgrS DNA and protein sequences to our uncharacterized sensor
kinase. Aligning these protein sequences (Figure 17) shows very little homology except in one

location, this location in the VgrS gene is the known phosphorylation site. The phosphorylation
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site in VgrS is the histidine in the 186 amino acid position, and the predicted phosphorylation site
in R. leguminosarum ATCC 14479 is the histidine in the 134 amino acid position. This region
could be confirmed in future studies by site directed mutagenesis targeting this predicted

phosphorylation site.
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Figure 17. Alignment of R. leguminosarum sensor kinase (query) and Xanthomonas campestris
(subject), the red lines indicate the phosphorylation site

Since the alignment with VgrS shows very little homology in the protein alignment, DNA
and protein sequences of the sensor kinase was analyzed by NCBI BLAST and compared to
other rhizobium species. This sensor kinase was found to belong to a new family of sensor kinase
called the HWE/ HisKA2 sensor kinases. This family of sensor kinases differs from other sensor
kinases because it lacks the F box rather, HWE kinases contain a H-box, N-box and a G1-box.
Analysis of the protein sequence showed the R. leguminosarum sensor kinase contains these

regions that defines the HWE family (figure 18 and appendix B) of the sensor kinases.
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H box

Query

Lyl
HRxxN

Figure 18. H box in HWE sensor kinase, query sequence is R. leguminosarum ATCC14479
sensor kinase (N and alignments in APPENDIX B)

The HWE family of sensor kinases is a newly described family of kinases that has not
been studied in-depth. The main mode of study has been in silico looking for conserved motifs,
These conserved motifs differ from other sensor kinases. The H box (figure 18) contains a
conserved histidine residue, this H-box is in R. leguminosarum’s sensor kinase. This H-box also
matches up with the phosphorylation site predicted by the VgrS alignment. Upon further protein
sequence alignments shows the R. leguminosarum sensor kinase contains the N-box (appendix
B), which is defined by a conserved asparagine residue flanked by an unusual consensus
HELATNAXKYGALS (Karniol and Vierstra 2004). The protein sequence alignment also
confirmed the presence of the G-box (figure 19), this region is defined by a rich glycine region
on the C-terminus of the protein. Since this R. leguminosarum sensor kinase contains these
motifs it is confirmed to belong to the HWE family of senor kinases, this family has been shown
to be active in phosphorelays in a- and y-proteobacteria (Karniol and Vierstra 2004). This family
is believed to be involved in multiple roles of environmental signaling due to the presence of

methyltransferase domains (Karniol and Vierstra 2004).
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Figure 19. G1-3 box alignment of the R. leguminosarum’s sensor kinase with other HWE sensor
kinases

The final in silico analysis performed was protein modeling, the protein sequence was
analyzed through the SWISS-MODEL program. The protein model (figure 20) shows a structure
consistent with a sensor kinase. The protein model shows a hydrophobic transmembrane region,
a cytoplasmic domain containing a-helices, and sensor domain. With all the available data it is
concluded the R. leguminosarum’s sensor kinase belongs to the HWE family of sensor kinases,
however the exact function could not be confirmed. Future studies involving mutations in the
predicted phosphorylation region will be able to elucidate the function of this sensor kinase.
Based on the putative role of HWE sensor kinases in sensing a potential wide range of
environmental changes, such as iron and flavonoids concentration in the environment. So
mutants should be tested for their ability to sense flavonoids for root nodulation and the ability to

sense changes in intracellular and extracellular iron levels.
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Side view

Predicted phosphorylation site

Sensor domain

Figure 20. SWISS-MODEL of R. leguminosarum’s HWE sensor kinase with top and side views,
bottom picture is the X. campestris VgrS sensor kinase

Hemin Binding Proteins

Since the growth data support that R. leguminosarum ATCC 14479 is capable of utilizing
heme compounds as a source of iron we wanted to investigate for any heme binding proteins. In
silico analysis performed to check for the presence of heme binding proteins. This analysis
showed that R. leguminosarum ATCC 14479 contains a putative heme binding protein that is
homologous to Sinorhizobium meliloti 242°s ShmR protein (Amarelle et al. 2008, and Battistoni
et al. 2002). This protein was shown to be a TonB dependent heme binding protein, and in S.
meliloti ShmR expression is directly related to the presence of exogenous heme. A nucleotide and

protein blast alignment was performed (Figure 24 and 25) for R. leguminosarum’s ShmR
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homologue. The nucleotide alignment showed a 70% match when aligned with S. meliloti’s

ShmR gene (appendix B). while the Amino acid alignment showed a 65% match (Figure 21).
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Figure 21. Amino acid alignment of R. leguminosarum ATCC 14479 TonB dependent Heme
receptor

The final heme receptor in silico analysis performed was protein modeling. The amino
acid sequence for both R. leguminosarum’s putative TonB dependent heme receptor (figure 22),
and S. meliloti ShmR receptor were modeled using SWISS-EXPASY. The models were built
using the crystalized heme receptor ShuA from S. dysinteriea, the models were then aligned for

comparison (figure 23), the green represents similar residues while red is dissimilar residues
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Figure 22. R. leguminosarum ATCC 14479 putative TonB dependent heme receptor. Grey rings
represent membrane annotation

Figure 23. R. leguminosarum ATCC 14479 putative TonB dependent heme receptor and S.
meliloti model alignment. Green = similar residues, red= dissimilar residues, white= extra
residues
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Detection of Siderophores

While investigating the growth of R. leguminosarum ATCC 14479 in hemin
supplemented MMW media we also looked for siderophore production. The main siderophore R.
leguminosarum ATCC 14479 produces is vicibactin (Wright et al. 2013). Vicibactin is a
hydroximate siderophore, it is a cyclic siderophore that binds ferric iron by using three
hydroximate groups (Wright et al. 2013). We tested for vicibactin production by collecting the
supernatants of MMW supplemented with hemin as the sole source. The conditions tested were:
200uM 2°,2°-dipyridyl, 10uM hemin, 15uM hemin, and 30uM hemin. The supernatants were
collected at 24, 48, and 72 hours and loaded into wells on CAS media. CAS media was used due
to the color change when iron is striped from the iron-dye complex. When iron is bound to the
dye it has a blue-green color, and when iron is stripped from the dye it produces an orange to
brown color. The supernatants of the tested conditions failed to produce halos on CAS media
(Appendix B). No siderophore was detected in the conditions tested. This is due to the biphasic
relationship between iron concentration and siderophore production (Wright 2010). This biphasic
relationship shows that a certain minimum of iron in the media is needed to stimulate
siderophore production. Then when the intracellular iron concentration reaches a certain level it
represses genes involved in siderophore production (Wright 2010). The reason for no halos being
observed indicates that the cells already reached optimum intracellular iron levels in the hemin
supplemented media. In the 200uM 2°,2°-dipyridyl supplemented media the iron concentration

was too low to stimulate siderophore production.

54



CHAPTER 4. CONCLUSIONS

The Present work was carried out to further confirm the work previously done in the lab
reporting the genetic presence of the HmuPSTUYV operon and the ability of R. leguminosarum
ATCC 14497 to utilize heme compounds as a sole source of iron (Shushant 2017). The presence
of this operon was confirmed once the whole genome for R. leguminosarum ATCC 14479 was
sequenced. The HmuPSTUV operon showed high similarity too operons from other Rhizobium

species that are shown to be involved in hemoglobin and leghemoglobin utilization.

Attempts were made to mutate select genes in the Hmu operon. The genes selected for
mutation were HmuU/V along with the putative sensor kinase. The plasmids containing the SOE
products were confirmed to contain the correct DNA sequence for the desired SOE product. The
issues occurred in the conjugation stage, this could be due shearing of the F pilus or

exopolysaccharide blocking the formation of the F pilus.

The growth data for R. leguminosarum ATCC 14479 in media supplemented with hemin
as the sole source of iron show that it is capable of utilizing hemin. In the aerobic condition a
dose dependent relationship was observed, the more hemin supplied the more growth was
observed. These aerobic growth data support the hypothesis that R. leguminosarum ATCC 14479
is capable of utilizing the iron in hemin, but the means by which the iron is being utilized is
unconfirmed. R. leguminosarum’s hemin supplied growth plateaued between 15uM to 30uM,
this plateauing is most likely due to the cells reaching optimum intracellular iron levels. This
potential reason for this plateauing is further supported by work done on a homologous system in
S. meloti. They found that HmuS (hemin degrading factor) is involved with hemin utilization

when heme is present at a concentration of 0.5uM-50uM (Amarelle et al. 2016).
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Since Rhizobium species encounter leghemoglobin in a reduced oxygen environment the
growth of R. leguminosarum supplemented with hemin in an anerobic environment was
investigated. The growth data for anaerobic supplied hemin media show that R. leguminosarum
ATCC 14479 is incapable of growing in an anaerobic environment. The addition of hemin to the
media results in prolonged cell survival, this survival is most likely due to the iron in hemin to be
reduced to Fe*?. This reduction of iron results in its release from the hemin molecule, making the

iron readily available for uptake by direct iron acquisition systems.

Due to an unavailability of Hmu mutants to investigate how the hemin bound iron is
being utilized, we looked for the presence of heme binding proteins. In silico analysis was
performed looking for the presence of heme binding proteins in R. leguminosarum ATCC 14479.
The results showed a putative TonB dependent heme binding protein, further analysis showed it
was homologous to the heme receptor ShmR in S. meliloti. This receptor was found to be TonB
dependent and vital for heme utilization (Amarelle et al. 2008). The R. leguminosarum ShmR
homolog has a 70% nucleotide and 65% amino acid match compared to ShmR. The outer
membranes of iron starved R. leguminosarum cells were extracted and analyzed for heme
binding proteins. Attempts to detect any heme binding proteins in the outer membrane extracts

failed, this was most likely due to procedural errors in the outer membrane extraction.

The culture supernatants from the hemin utilization experiment were tested for
siderophore production. The hemin supplemented media tested failed to produce siderophores,
most likely due to the cells already reaching the level of iron which would repress siderophore

production.

Since genomic analysis showed the presence of a conserved sensor kinase in close

proximity to the HmuPSTUV operon, the senor kinase was investigated via in silico analysis. The
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sensor kinase had homologous amino acid sequence to Xanthomonas campestris sensor kinase
VgrS, which senses intra- and extracellular iron levels. The protein sequence alignment shows
very little homology, but the alignment had some homology around the VgrS phosphorylation
site. The protein sequence was aligned with sensor kinases in the Rhizobium family. These
alignments showed the sensor kinase belongs to the newly investigated HWE sensor kinase. This
family of proteins is believed to be involved with sensing environmental changes. Future work
with mutating the predicted phosphorylation site could elucidate potential functions of this senor
kinase in sensing environmental changes. The mutant of this sensor kinase should be tested for
its involvement in iron sensing and flavonoid detection since these are two of the major

environmental changes that Rhizobium species must sense.
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APPENDICES

Appendix A: Media and Buffers

Luria Broth (LLB)
Tryptone 10.0g
Yeast Extract 5.0¢g
NaCl 10.0g
ddH,O 1L

Dissolve ingredients, pH to 7.0 and autoclave
For LB agar plates:
agar: 15.0g

Yeast Extract Mannitol Broth (YEM)/ Congo Red agar (CR)
Mannitol 4.0g
K2HPO4 0.2g




MgSOq4 0.08¢g

NaCl 0.04¢g

Yeast Extract  0.4g

ddH>O 400ml

dissolve ingredients, adjust pH to 6.8 and autoclave
For CR agar plates:

Agar 12.0g

1.0% Congo Red dye solution 1ml
dissolve ingredients, adjust pH to 6.8 and autoclave

Modified Manhart and Wong (MMW)

Dextrose 6.0g
Glutamate 1.5¢
KH2PO4 1.0g
K>HPO4 0.764¢g
MgSOq4 0.18¢g
CaSos4*2H,O  0.13g
ddH»,O to 1L

Dissolve ingredients, adjust pH to 6.8, and autoclave, post autoclave add 1ml of concentrated
vitamin and trace minerals solution per 1L of basal media

Vitamins and Trace Mineral solution (MMW)

H3BO;3 145.0mg
CuS0O4*5H,0 4.37.0mg
MnCl,*4H,0 4.3.0mg
ZnSO4*7TH>0 108.0mg
Na;Mo0O4*2H,0 250.0mg
CoCL*6H20 10.0mg
Na;EDTA*2H>0 250.0mg
Riboflavin 10.0mg
P-aminobenzoic acid 10.0mg
Nicotinic acid 10.0mg
Biotin 12.0mg
Thiamine HCl 40.0mg
Pyridoxine HCl 10.0mg
Calcium Panthenate 50.0mg
Inositol 50.0mg
Vitamin B12 10.0mg
ddH,O to 100ml

Mix ingredients, filter sterilize, wrap in aluminum foil and store at 4°C

Chrome Azurol S (CAS)

MOPS 15¢g
NaCl 0.25¢g
K2HPO4 0.15g
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NH,CI 0.05g

L-asparagine 2.5g
Agar 7.5g
ddH20 500ml

pH media to 6.8 with SM NaOH and autoclave. Then warm 50% sucrose solution and CAS
indicator solution in water bath. Add 10 ml of sucrose solution per 500ml of media and add 50ml
of CAS indicator solution to basal media and mix while avoiding bubbles.

CAS indicator solution

Iron III solution

Fe3Cl * 6H,0 27.0mg
12M HCl 83.3ul
ddH,O 100ul
Solution A

Chrome azurol S dye 60.5mg
ddH»O 50ml

Dissolve CAS dye is water then add 10ml of iron III Solution

Solution B
HDTMA 72.9mg
ddH,O 40ml

Dissolve HDTMA in water then add solution B to a mixing solution A. Once added autoclave
the CAS indicator dye and store in dark area. Before adding to basal CAS media warm dye
and 50% sucrose solution in 50°C water bath

2X YT broth

Bacto Tryptone 16.0g
Yeast Extract 10.0g
NaCl 5.0g
H,O 1.0L

pH to 7.0 with NaOH and autoclave

Transformation Buffer 1 (100ml)

Rubidium Chloride 1.209¢g
Manganese Chloride 989.5mg
Potassium Acetate 294mg

Calcium Chloride 147mg

Glycerol 15ml (15% V/V)
ddH,O 85ml

Adjust pH to 5.8 with 1M acetic acid (do not overshoot) then autoclave and store room
temperature
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Transformation Buffer 2 (100ml)

MOPS 209.3mg
Rubidium Chloride 120.9mg
Calcium chloride 1.103¢g

Glycerol 15ml (15% V/V)
ddH»O 85ml

Adjust pH to 6.5 with KOH (do not overshoot) autoclave and store room temperature

0.025M Hemin Solution

Lyophilized hemin 815.0mg

1.4 M Ammonium hydroxide 50ml

Mix ingredients, heat in 95°C water bath for less than 5 minutes, mix until solution cools
down to room temp the filter sterilize and store at 4°C

SDS-PAGE Solutions

Stacking Gel Buffer (pH 6.8)
0.5M Tris
ddH.O

Resolving Gel buffer (pH 8.8)
1.5M Tris
ddH>O

Tris-Glycine SDS Buffer (10X)

Tris 0.25M
Glycine 1.92M
Sodium Dodecyl Sulfate (SDS) 1.0% (W/V)
ddH-,O 1.0L

SDS-PAGE gel

Stacking Resolving (12%)

30% Bis-arylamide 0.66ml 3.0ml
Stacking gel buffer 1.26ml -

Running gel buffer - 1.88ml
ddH>0 3ml 2.52ml
10% SDS 50ul 75ul

10% APS 25ul 37.5ul
TEMED Sul 3.75ul
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Coomassie Blue Staining solution

Coomassie R-250 0.1% (V/IV)
Methanol 50% (V/IV)
Glacial acetic acid 10% (V/V)
ddH>O 40% (V/IV)
2X Laemmli Buffer

SDS 4% (WIV)
Glycerol 20% (V/V)
IM Tris pH 6.8 120mM
Bromophenol Blue 0.02 (W/V)
ddH>O

SDS-PAGE Destaining solution

Methanol 50% (v/Iv)
Glacial acetic acid 10% (v/v)
ddH>O 40% (v/v)

Appendix B: Supplemental Data

Primers for HmuU SOE, underlined portions bind to R. leguminosarum’s genome

Primer name Primer sequence (5°-3’)
SOERHU CGTGACGTTAGCGTACGAGGACTAAGAATACGCTGGACGGCATGTTGCTGATGACGTCGAGG
SOEFHU CCGTCCAGCGTATTCTTAGTCCTCGTACGCTAACGTCACGTGATCTTCGCGGATGTCCTGG
SOEFA CGATGGTACCGACGCATGGCGCGAGATCATGG
SOERA GCTATCTAGATGGCTCATGGCTGTCTCCATTGG

Primers for HmuU full gene amplification

Primer Name Primer sequence (5°-3”)
HmuUF CGTCTACCTGCTCGGCTTCG
HmuUR GATCATCTAAATGTCACTCACGG
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Internal HmuU primer, works with SOEFHU to amplify if internal gene sequence is present

Primer Name

Primer sequence (5°-3’)

HmuUIntF

ATCCTGCGTATGGCGATCGG

Primers for HmuV SOE, underlined portions bind to R. leguminosarum’s genome

Primer name Primer sequence (5°-3’)
SOEHmMuVF CCGTCCAGCGTATTCTTAGTCCTCGTACGCTAACGTCACGCATCGTTGAGGTGCTGACG
SOEHmuVR CCGTCCAGCGTATTCTTAGTCCTCGTACGCTAACGTCACGCATCGTTGAGGTGCTGACG
SOEVR GCTATCTAGATGCGAGTGCGCATAGAGCGA
SOEVF CGATGGTACCGAGGATGCCTCGATCCTCG

Primers for HmuV full gene amplification

Primer name

Primer sequence (5°-3’)

HmuVF

GGATCCTGCTGAGACAGCG

HmuVR

CGGTTACCTCTGTCGGTACT

Internal HmuV primer, Works with SOEVR to give amplification if internal gene portion is

present.
Primer name Primer sequence (5°-3’)
HmuVintF GCACGATCTCAATCTGACG

Primers for Sensor kinase SOE, underlined portions bind to R. leguminosarum’s genome

Primer name

Primer sequence (5°-3")

SEOF2SK CCGTCCAGCGTATTCTTAGTCCTCGTACGCTAACGTCACGATATCGTCTGACCATTCCG
SOER2SK CGTGACGTTAGCGTACGAGGACTAAGAATACGCTGGACGGGCGTAGAAGATCGACAGC
SOEFB CGATGGTACCGATTAACCGCTCATTGAAGCC

SOERB GCTATCTAGATGGTGGCGATGCCGTATTCG

Primers for Sensor kinase full gene amplification

Primer name

Primer sequence (5°-3")

SKF

GTCAACGACATCCTCAAGACG

SKR

GATGGTGATCGCATCGACC

Internal Sensor kinase primer, works with SOERB to amplify if internal gene portion is present.
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Primer name Primer sequence (5°-3")

SKIntF GTTCTGCATGATCAGTCGG

Primers for RT-PCR, Primers designed by IDT PrimerQuest tool.

Primer Name Primer sequence (5°-3")
HmuURTF CGGACATCCGCGAAATCA
HmuURTR GCCTGTCGTCACCGAAA
HmuPRTF CGAAAGCGCGGATCTCTT
HmuPRTR AGAATGAGCTTGCCCTGAC
VbsSRTF CTTCGAGAGCTTTCCACTGA
VbsSRTR CGGGAAAGACCGTGTAGTT
16sRTF TCGGAATTACTGGGCGTAAAG
16sRTR CTCCAGATCGACAGTATCAAAGG

Blue White Screening of pEX18 NEBa5 transformants
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Blue white screening of NEBoa5 cells grown of X-gal containing LB agar. left
picture is white colonies that contain the pEX18 and HmuU SOE product. Right
picture NEBaS5 cells transformed with a undigested pEX18gm plasmid (blue
positive control)

Blast of R. leguminosarum ATCC 14479 regions flanking the Hmu operon (bp 1,963,826-
1,974,106 compared to other Rhizobium taxid)
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Max Total Quary E Per.

festyidon Scora Stors | Cover|vatue| Ident | ©Ccoson
Rhizobium fequminosarum strain ATCC 14479 chromesome, complete genume 18986 18986 100% 00 100.00% CPO30OTED1
Rhizabium leguminosarum by, viclae strain UPM791 chiromosome. complets genome 18207 18207 100% 00 SBE5% CPO25609.1
Rhilzobium lsguninosarim by, Wifoll strain 238 chiomosome . complels denome 18201 18201 100% 0.0  98.60% CPOS0DA51
Rhizoblum lsguminosarum by, vicias sirain BIHE 1217, complate oanoma 18201 18201 100% 0.0 9864% CPO22665.1
Bhizobium leguminossrum tond gene. hmu gperon (muPY genes| and rpof gens 18092 18092 100% 0.0 98.45% AJ3197231
Ahigobium ieguminosarum by, vicias strain RCAMO610 chromosome, complete genome 17773 17773 100% 0.0 S7.81% CPO5054%1
Rhizobium lequmi um by trifolil strain 4B chromesnme._complste gename 16284 16284 B9% 00 58.47% CP0OS01011
Rhizobium lsquminosanim by, trifolll strain 38 chiomesome _compiels genoime 16284 16263 B9% 00 98.47% CPOS01081
Bhizabium lequminosarum strain Yal10, complate genome 14026 14026 90% 0.0 9398% LCPO1628E 1
Rhizobium lequminosarum by, viciae sirain BIHE 1148, complate ganome 13845 13815 B9% 0.0 9367% CPO225E41
Rhizobium lagumi e trifoill WSM1639 o650 14563 B9% 00 9113% CPOGTD451
Rhizobium izgumingsarum strain A1 chromosome. complsle gEnome 9481 14649 B8% 0.0  9529% CPOASTI0I
Rhigobium indicum strain JKLM 1242 chromesams, complele genoms 9485 14520 B8% 0.0 9§516% CPR)54021.1
Rhizobium | i by triflii TA1 ch e._complete genome 8417 14662 B8% 0.0 55.08% CPOSI2052
Rhizobiim indicum strain JKUW 13E chiomosome complats 6371 14479 BE% 00  9490% CP0540I11Y
Rhizabium lsguminosanim stisin Notway chromosoms . camplets genoma 9234 14966 B7T% 00 96.31% CPI250121
Rhizoblum leouminosarum by, yicias chiomesome somplele asnome. shialn 3841 G086 14042 BE% 00  9397% AMZIS0801
Bhizobium lequmingsarum by, ifolil sirain 228 chromosome. complate ggnome S0B2 14025 BE% 00  9308% CPOGDOG] Y
Bhizoblum laguminozarum by, viclas strain RCAMZE02 chromosoms. complete 0anoma 8981 14578 B7% 0.0  95.44% CROG0SR2
Rhizghiym leguminosarum by trifofi strain 318 chromosome complete genoms B9G1 14718 B&8% 00 9537% GCPISODE01
Rhizobium leguminossrum by viclas strain RCAMI626 chrombsems, complets gsname 8907 14626 BE% 0.0 9520% CPOS05551
Rhizobium lequminosarum by, irifniil strain RCAM1365 chromosome _complets genome B804 14216 BS% oo 54 56% 514
Rhizobhim lequminosarim by, irifoll WSM1335 ¢l compléets genoms BTGT 14412 BE% 0.0 5472% CPO01E3ZD 1
Rhizobium leguminosarum by, Wrifolil strain CC275e chromesome; complate genome B733 14299 B8% 00 94 67% CPUS34301
Bhizablum lenuminosarum by irifoll straln 35 chiomasome. _somplele oenome 8722 14282 B7% 0.0 9464% CPOS00ST 1
Bhizolium i i um by, vicige 248 chr i 8672 14083 B8% [ G4.44% CPO4B280.1
Bhizobiym lzquminosarum strain Vaf-108 _complate ganome 8663 14109 B3% 0.0 94 41% CPOIE2IE1N

N-box alignment of R. leguminosarum ATCC 14479 sensor kinase compared to other known
HWE sensor kinases. N box consensus HELATNAXKYGALS in HWE sensor kinases
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query 213 (3] LTPHAAVHLOLALSEL IVNAASIGATS. | 3] ARS. [ 31 NCREAY. [5].JEV. [1] WARVLNOQSE.| . 282

13388437 574 [ 3] AFPHLALSFALALMELTTNATAYGALS. [ 3] KGR, [ 3] . SWlLWN . [ 7] NLE WAETGGPAVG. | 4], #31 Mesorhizotdum lotd
15889276 230 (4] LKADMAVALGVIITELLTMALEVAYPD, [1].TaV, 3] NLSEEN, (4] LW EDDGWEVQPE.| 5], 3 Agrobacterium tumefaci...
17935877 223 . [4).VSPKSALALGMILMEL ATMAQUVASLS. [ 2] MAK. [3].AuKKIL. [8].0LR WQESOCPPVS. | 4]. 232 Agrotecterium tusefaci...
19590614 263 [T ASPEALGNSCLVWMEL TINSINYSALS [ 2], POK. TS SUKALE [ 7] MLy MYETOSPPAT.! 2]. %3¢ Agrobectzrium tumefaci...
15890815 223 [ 7] ANPNGALYIGLAFMELVWNTVERSGIL . [ 3] WP, [1].QCRQOG. [ )] . IVE WERMIPSKE.| ], 396 Agrobacterium tusefaci...
18119318° 237 .[3).VSROASTTIALCVMEL TTIMINVAALS, [2) €GN, [ 3] . IWEVTD.[6] .Sv WIERGGPPAV,| 4], 303 Agrobacterium tusefaci...
17238659 IS1 . [3] . ISAERVISLALLFFEVATIAMCYSALS. (2] DGR [J].TLTPGP. (1] E2A WLESNARTTAL| 6]. 316 Agrobscterium tumefocl,..
15119603 368 (2] APNONTIPLALVINECLTHAAYHGEDD . [ 2] . K20, [ 5] . TLS0. [4] . LTV ROEGSEYNFE.| 4], 427 Agrofacterioe tumefoci...
17436650 136 L [2] ANARDVTTIGIVLGEL ITHATNNASPG. [ 3] .QGR. [ 1] . SLPOM, [8] . LLY FCOGVUNQRK. [13], 207 grucella melitensis
17886657 224 .[)] \FPGAALHIGLALMELVWNATSFGOLS, [J] . YoR. [ ) | RAHVLP [ 8] . MFC WYETNPAWD. | 5], 203 Prucells melitensis
16123538 347 2], IPAMAAPLALVWNELLINALAHGFPE, [ 2| .GER. [ 3] .GLSRLN, {4 | . TET TOUGVUQORE.! 3], 402 Caulobacter crescentus. ..
16124882 225 .[3], FSAETAVEVWAIHELTANAAIMGALS, [21.QGR. [ ] . BaHvIX, [7].TLT MREQGSPALS.| S|, 393 Caulobecter crescentus...
16125088 GAR L [)] ASPKTALSLOMALMELATRAVEYGALS, [2]. 84V, [ 1] WWOMaP, [ 7]1.0LT NTERGEPPYT. [ 2], 715 Caulobacter crescentus...
16125920 238 [ 1) CAPNARVALAMIUMELATHASAVOALS . [ 2] ABR, [ 3] suTmes. {4 |.aLL WRERGSPPVI.| 4]. 312 Caulobacter crescentus...
18126753 228 [ 3] VSPCPAVVMALAFMELATHALOVEALS, [2].06H, [ 3] HuSVEDP. (4] .L1¢E WAERGGPTVR.| 4], 235 Canlotiacter Crescentus...
16127139 S84 {3 ] LAPHTAVGLSMVFHELATNSANYGALS. {21 .GGR. (3] TURROP, [5 | FFT WROVGSPQYT.| 4], S0 Caulobacter crescentus..,
18127278 471 .[1] VEPGAALALALAAMELGTHARCYUALS, [2) MOR. [ 4] AUSLRG. [4].LVH WSESOGPEVQ | 4], 335 Chulshacter crescentus...
16127288 228 _[31]. IDAQASQALALVAMLLATIASKYAALS. [2). LUK, [ 4] . 5EGFED._[4].MLT UREDAGASVA.| 2]. 285 Csulobacter crescentus...
16127704 23% .[5) JOPDRLAPIALFAVEATTNAQEHARGP.[3].GTL, [ 7] .GFHVRG. (4] 451 SDOGPGAVES.| 1), S92 Caulchacter crescentus...
15842807 390 .[1] . LDSORATALIIWITELVONATEHAFDP, [ 1].AAE. [3].TIRAER.[5], VWV WOOGLELPQG. | ], 435 Mycobecterium tubercul...
15679271 53 (2] MNGLOLAVPLGITLSELLENSFHENAFTE. [2).DCR. (2] . AviFE. (5] . LEV HOMGRGFPEG.| 6)]. 318 Methanothermobacter th...
15678447 S84 [ 2] TNLETSLPIGUMVNELVENSLOTSLAD HET, (3] CLRSLN,{41.LTV SOOGIGLESP. | &)1, 207 Methanathermobacter th...
15610356 190 . [1].ADSORATALTMVITELVONATENARDP. [ 1) AAE. (1] . TIRAER (6] . VWV MOOGLELPQE. | &]. 455 NMycobacterium tubercul...
16362530 7AR L[] CRPKMALALSMAFRELCTNAZCVOALT, [ 2] GEL. [ 1] NaHvsh. [ 7].00LQ nﬁms;rsw.{ 2], 615 Sicorhizobium meliloti
16262952 360 . [ .CGEQSVNOLALVFRELATNAAXYGSLC. [ 2) . LOT, [J].WQIDG, | 3] .6IT WREDGGAQAT.| 6]. 425 Sinorhiroblus melliloti
16263384 202 [ 3].COEQAVINOLALVPAELATHAANYGALC. [ 2] NOR. [ 31.LMQR06. 1 3] 527 WSEDRETQIS.| 5], 358 Sinorhizobium meliloti
16263580 235 .[1] ARPOAATTLALCLMELATHALEYGALS. [ 2] EON. 1] .QuSVSE. [5].5LE WVESGEPSVS.[ 4], 3 Sinarhizobium meliloti
35255244 1652 ()] A PPOLATPFGLVLMELATMARKNGAFS, [3].H0Q. [ 1 ). S=KLan. (5] .6V1 VGERGGPPVE. | 4], 1117 Sinorhizobium meliloti
16384884 798 [ 1] L PPRHALTUGRAAMELATIAALNGALS. [ 2] .5GK. [ 1] . 6oV, [5 | .RIT WSETGGPAVWY.| 4], 833 Sinorhizobius selilotr]
15563235 45F . [3 ). DAQMAQTLGMALHELATIATAAGALAL [T] . TAM, [ 7] . BMSVGE. [3|.0IR MRESGADIVA.| 7], 524 Sicorhizobium melliloti
16880206 376 .[3].LDSORTVALALVMSELLOUSYOMAFNP, [2].SGE. [ 1] . QTKEEX, [4], ARV SONGMUFNVR.| 4], 430 |Listeria innccua
13572330 238 (2] VKSOISISLOALIVIELVINALEMAZPQ. [2) . SGK. [ 4] .OVRSMG. {4 ] L8V NOOGIOMGDS.| 2], 300 Mesachlizobium lotd
13473192 332 [ 3].COETTTQALGLTRHELATNELAVGERG. [ 2] . ANS (9] . EuSVEG. [ 7] .ALN WREAGHNXVE.] 41, %07 resarhizobiue lotl
13471688 247 [ 2] JOSQUAVSLGLIVTELLIMATOVAFPE. [ 3] \DGA. [ 2] .QYSYET.|6|.LTV SOUGVERVIN. [ 4], 311 Mesorhizobiue loti
13473173 401 (1) . ASPOQAVGLALTLMELASNALOMOSLS, [ 2] .S6K. [ 3].DUKTQG. [ 7] .WT WRESGGPEVA.| 4], 468 Meaorhizobium lot{
13478775 242 _[3}.LGIDATINUGVIVIELVINARKYAYPD. [1]).S60.[1].LLREDS. {S].LTV LOGOVGHAGN. | 4]. 308 Mesorhizobius lotd
13475641 471 [ 7). VPSGVAESS AMILSEL TINEVEMGALG. [2].QGK, [ )] . KWQFAS. [ 7].VFD WYESGRRENS. [ 2], 535 Mesorhizoblom loti
134766%3 153 VSINVAWPTALVYNELLTHALYSPKG, [2].6G6T. [ 3] . M5VV0G. [4]. 37T ADDGYELPQG. | @), 318 Mesorhizobiue loti
13488441 230 [3) . VGESSATILALTISELATNSLAVAALS, [2) . AGT. (4] 52880, |3).T1T WTESOEPLVE.| 5], 293 MHesarhizobium loti

16s DNA sequence aligenment of E. coli cell that incorporated pEX184HmuU plasmid.
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Escherichia coli strain 191-a pink 165 ribosomal RNA gene, partial sequence
Sequence ID: MN208066.1 Length: 1444 Number of Matches: 1

Range 1: 35 to 8327 GenBank Grsphics

Score Expsct Identities Gaps Strand
1371 bits{743) 0.0 F77/784(98%:) 10/794({1%) Plus/Plus

Query 1  AGGAAGCAAGCTTGCTTGCTTTCGCTGACGAGTGGCGGACGAGTGAGTAATGTCTGHGAL 68
IIIIIIIIIIIIII[IIFIIII |I|IIHILIIHIHIIII[IIIIIII[IIIIIIII

sbict 35  AGGAAGCAAGCTTGCTTGCTTT-GCTGACGA GGATEAGTAATGTCTG g3

Query 61 ACTGCCTGATGGAGEGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAS 120
) |IIII[III|IFIJ[IIFI||I||I|IIHHIIHIFIIIIIIIIIIIIIIIIIIIIII

sbict 94  ACTGCCTGATGGAGEEGGATAACTACTGEAAACGETAGCTAATACCGLATAACETC 153

Query 121 GACCAAAGAGGOGRACCTTCOGECCTCTTAGCCATCGRATEGTGLCCAGATGOGATTAGLTA 138

; ||l||E||||Ill|[|IEI||||||||||||'|IH|t||l||l|||||||l||l||l||
sbict 154 GACCAAAGAGEGGGACCTTCGAGCCTCTTGCCATCGGATGTGLCCAGATGEEATTAGCTA 213

Query 181 GTAGGTGGGGTAACGECTCACCTAGOCCACGATCCCTAGCTGGRTCTGAGAGGATOACCAG 248

ELELLRETELLELLELTRL L PR LR LR L L R ELEELEEREEL L]

Shict 214 GTAGGTGGGGTAACGECTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATRACCAG 273

Query 241 CCACACTGGAACTGAGACACGGETCCAGACTCCTAL GCAGCAGTEOOGAATATT 328

: |II|I[IIllI[II[IIFI||I||I|I||-IIHIHIHIIIIIIIIIIIIIIIIIIIII
sbict 274 CCACACTGRAACTGAGACACGETCCAGACTCCTACGGGAGGLAGCAGTGGEGAATATTGE 333

Query 381 AATOOGCGCAAGCCTEATGCAGCCATECCOCGTATATGAAGAAGECCTTCGRATT! 388

|II|IIIIIIIEIJ[I|FI||I||IIIHIHIIlI|t|||||l|||||||[|||||l||

Shbjct 334 ACAATGGGCGLAAGCCTGATGCAGCLATGCCOCGTGTATGAAGRAGRLCTTCGAGTTETA 393

Query 381 AAGTACTTTCAGCGOGGAGGRAAGOGAGTARAGTTAATACCTTTGCTCATTGACGTTACCC 428

COELLERTELLRELEL LI R e EEYE T ELLE L RLEELTEEEELT LT

Shict 394 AAGTACTTTCAGCGGEGGAGGAAGGGAGTAAAGTTAATACCTTTGCTCATTGACGTTACCC 453

Query 421 GCAGAAGAAGCACCGECTAACTCCGTGCCAGCAGCCGCOGTAATACGOAGOGTGCAAGCS 458

COELLELLELLEELELTEL LR EE LR e L R EELTEREELEELL ]

Shict 454 GCAGAAGAAGCACCGECTAACTCCGTGCCAGCAGCCGCOGTAATACGGAGGRTAGCARGCG 513

Query 481 TTAATCGGAATTACTGGOCGTAAAGLGCACGLAGECGATTTATTAAGTCAGATATGAAAT 548

ELECERLLELLEEL R R R L R ELEELEELEET ]

Sbjct 514 TTAATCOGAATTACTAGECGTAAAGCGCACGCAGGCGGTTTATTAAGTCAGATATGAART 573

Query 541 CCCCOGACTCAACCTROEAACTACATCTGATACTGACAAGCTTGAGTCTCATAGAGGRGEE 68

EOELORLLELLRELELRL LR EE L R LR L LTE e e

Sbjct 574 CCCCGROCTCAACCTAGGAACTGCATCTGATACTGOCAAGCTTGAGTCTCATAGAGARRE 633
Query 681 GTAGAATTCCAGGTGTAGCOGTGAAATECATARAGATCTGEAGGAATACCEGTOGCGARG 668

ELELORETELLEELELIRLE LRt tieLl IHIFIIIIIIIIIIIIIIIIIIIIII

Sbict 634 GTAGAATTCCAGGTGTAGCOGTGAAATGCGTAGAGATCTGRAGRAATACCGRT 693

Query 661 GCOGCCCCCTGGACGAAGACTOACGLTCAGOTRCGAAAGCGTGOOGAGIAAN-ANGAATA 719

|Il|IFIIIlIIII[I|FI||I||I|I||IlllllIIFIIIIIIIIIIIII | 1] 11

Sbjct 694 GCEGCCCCCTGGACEAS GAGCAAACAGGATTA 753

Query 728 OATACCCTGGTANTC-ACGLCGTAA-CAATGTC-ACTTG-AGGETAEGT-CCCT-GAGRCGT 773

N O U e e S N B NS S N L A S AR N

Sbjct 754 GATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGEAGETTGTELCCTTGAGRCGT 813
Query 774 G-CTTCCG-AGCTA - 785

[ LLELEL HLEE
Sbjct 814 GGCTTCCGGAGCTA 827
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Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence ID: NZ_CPO30760.1 Length: 4883137 Number of Matches: 105

Range 1: 1967027 to 1067358 GenBank Graphes ¥ Next Match
Score Expect Identities Gaps Strand
564 bits(293) 3e-161  329/337(98%) 4/337(1%) Plus/Plus
Query 1 AGCAAGCGTGGCCGCATAAGGATC AMMTGA( ATGCGTAACAATCTGC 60
lll |||||||l||||||[|||||||||| ||||||||||||||||||||||||||
Sbjct 1957027 GCGLAGCAAGLET GTAACAATCTGC 1967086
Query 81 "GGGN\CT CCTGACGLCGELCGTCRTEELGCTECLETTEETCC 120

lllllillllll IIIIIIIIHII! Il|ll|lllllllllllllllllll
TGECCCTGACGG

Sbict 1967087 CETCRTGECOLTECCRTTERTCLC 1967146

Query 121 ccmsccwcccmmm CTTCGTCCECGECGCCCACGCTRACGACAAGAAG 188
(LTI | I llllllllllllllllllllllllll (11

Sbjct 1967147 CGECAGCGCCAATCGAA a; CCGCGCCGCCCACGCTOACGAMAGAAG 1967205

Query 181 CTCGAC ACCGAGATCGTCTATGCGCTT 240
LI l l I l IllIIIIIIIIIIII Illlllllllllll JULITLTELL]

Sbjct 1967206 CTCGACACCTCGC CGTCTATGCGCTT 1967265

Query 241 GGCGAAGARAGCCGEC cncmmcmcccmcc,cc 300

6é(llllIIIIHIIHIIIHIIIIIIIIIIIII IIHIIIIHIHIIIHII

Sbjct 1967266 1967325

Query 381 GAAGCCTGCCCAACGTCGGTAACATGCCGLGCGLTCT 337

LU LECEEEEEREELELE LEEALEE CXLELRELE
Sbjct 1967326  -AAG-CTGCCCAACGTCGGTTACATGC-GCGCGLTCT 1967359

| 5" DNA sequence alignment for the HmuU knockout construct, query line is the Plasmid
product and subject line is R. leguminosarum genome.
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Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence 10: NZ_CP030760.1 Length: 4883137 Number of Matches: 54

Ronge 1: 1969571 to 19700061 Senfiank  Graphics waedMaich « o
Score EBxpect  ldentiies Gaps Strand

902 bits{469) 0.0 485/492(99%) 1/492(0%) Plus/Minus

Query 1 CGCGLAAGCCEGCCTGTTTCGCACGAGGGTCACCACCGTCCGTTGCATGAATGATATIGLE &€
M 11111 z&wam&“&&a@zzzzz,uzﬁucuauwu'Jx .
Query &1 CGG(ATI'GACCCAE&TCAY CAMAGTTCCOGCCGRAGCA 129
e .-
Query 121 CGTCGGLCGOCA  18@
Sbjct 1969941 ] licllm&a[mé‘uui ] l ! q(il" l ll(liui A(lGMiﬁé\(l & ‘l’(&((&ﬁlA 1969882
Query 181 TTGATGCGLAG 242
B 1111 e
Query 241 CTGCCGLCCECCOCEAS ACGATGCGOTCCGCAA 309
O 11111 vy e
Query 301 AGAGCGLCETCAGATTGAGATCGTGCATGALGEC TGMAC(GCCGC(GCGT!CE(A&A 36¢
e T .
Query 361 GCGCG&GCGKATGA?GGTCAG TGEGTGGLTGATGTCGAL GAGACCGGTT 420
BN 1111 Tt e
Query 421 4ge
I 1 i e .
Query 451

432
lIIIIIIIIII
Sbjct 1969582 ATGCGGELAAGC 1959571

B’ DNA sequence alignment for the HmuU knockout construct, query line is the Plasmid
product and subject line is R. leguminosarum genome.
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Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequance 10: NZ_CPO30760,1 Length: 4883137 Number of Matches: 1

Wange 1! 1970236 to 1970040 Cenlls  Grastes
Scary et Jdantities Gagn Strand

1046 bies(566) 0.0 60/619(ITW) wsxs( 1) Plus/Minus
MO 1 1 i i) I’Iw T Y
v 1oreres ST TSN IO s

121 180
e it

Sbict 1970722 ll&éudéh(u&ckw&uhtct é%% 4”' ””Iua 1976665
e sweses: MR e

Query 241 GTAGALGCCGLCRAGT m 00
shice 1970608 wuwwuzuuuuwmw T T
Quary 301 GCTATTELGCTTGEC 350
sbjee 1970588 m&u&ummuwummwuuwuuu..wu 197048
Query 163 am
sbce 1970488 &%MM&HHMMHMWH&MMM% 1970425
Query 421 GCCHLGCGAGGAMIGE GATGGCAMGGLCOARMGCGGE TACGRUGECOATGGTTGETAGCG 488
- IIIIlIIMuIIIIIIIlllwclllIIIIIIIIlIIII&_IrIIIIu‘II -
Query 481 ATCGLGCATTTCC A‘IM( GIGCTGCAATT 540
IIIIIIIlIIIIIIIIIIlIIIIIIIIIIIIII I LILELLRLRRETITnEn] II
Sbict 1970388 GATGCTTGLGTACGGTATCGLGCATTTCC GCCGLGCTCATAGCLGTGCT 1970305
Query S41 <«“mmrc(tcac1«osccumm c n((m:c CGECTIGECTGE 600
IIIllIIlIlIIlIIlIIlIIIII‘I:uﬁléu“I I I ]GJ;( IIIIIIIIIIIII
Sbjct 1970308 CGCGCAGCAGATCCTCGETELGEL GCCECCTTGECTGE 1970245
Query 681 GGATTT.CTC.CCTAGEIG 616
|11 I;I [N
Sbjct 1076238 GGATTTTCTCGICTIGETG 1970226

3’ DNA sequence alignment for the HmuV knockout construct, query line is the Plasmid
product and subject line is R. leguminosarum genome.

77



Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence ID: NZ_CP030760.1 Length: 4883137 Mumber of Matches: 54

Range 1: 1969571 to 1970061 Genfank  Graphics ¥ Next Mateh o

Score Epect Identities Gaps Strand
902 bits{469) 0.0 485/492(99%) 1/492{09%) Plus/Minus

Query 1 CGCOCAAGCCCGCCTGTTTIGE .T(ﬂ((l(CGT(CGTTG(AYGMTGﬂTAT GC &0
_ il IIIIIIIIIIIln_lIIIlIIIIIIIIII ik
Sbict 1978061 CGCGCAAGCCCGLLTG GGGTCACCACCGTCCOTTGCATGAATGATATCGC 1579002
AN nnnhnnm |||||| |||||||||n| ||||| s
Sbjct 1978001 CTGOCATTI ((UA Gﬁiﬁ(lj 1969942
i R T T
Sbjct 1969541 GTG(TCLG&G«MJLCMAGTGMCGMCMGLAGG(J’TGC(GTCGGCCG&A 1569882
Query 181 CCTGGT‘GAT GT((GTCAG(A 240
T uuun | T |||||u||||m||n|| (111
Sbict 1969881 GTTGATGCLGCAGCG TCGTTTCGTCCGT! 1969822
Query 241 CAACGATGCTGLCGELOGCCGLCAGCCGECCGRAATTCATCAGCACCATGLGGTCOGLAA 309
LTV LTI
Sbjct 1969821 CAACGATGCTECCGELGELC C CGGRATTCAT CGATGLCETCGG 1969762
Query 301 GATYG&GA?CG"GC ATGACGGL ACCCCCGCCGLEGTTICGLAGA 368
nuunn (T i ! B
Shjecr 1969761 TT TCGY TEACGEC 1969702
ooy ||||||||||||||| ottt .
Sbjct 1969701 TIGCGLLCGAGCE TCATGA EA(J GéTGG(T 'G‘l'i GGCT(AALA( LH’Y 1969642
foony st ?ﬂ“m““mﬁ ? llun"??'ﬁmﬁm“ T
Sbjct 1989641 lc&l&!ﬂlu )GC‘LT “& é«ﬁl‘é 1965583
Query 431 4
]
Sbjct 1969582 ATOLGGGEC 1969571

3 DNA sequence alignment for the HmuU knockout construct, query line is the Plasmid
product and subject line is R. leguminosarum genome.
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Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence 1D: NZ_CP030760.1 Length: 4883137 Number of Matches: 1

Range 1: 1972107 to 1972442 Genflank Graphics

Score Expect Identities Gaps Strand

560 bits{303) 4e-160 334/347(96%) 11/347(3%) Plus/Plus

Query 1 TATGCAGGAGCCATGAATGACACTTTACTACTCGGATTGCGCCGCACCTTCCTTATCTGC 6@
IIIlIIlIIIIIIIIIIIIIIIIIII IIIIIIIIIIIHIIIIIIIIIIIIIIIIIIII

Sbjct 1972107 TATGCAGGAGCCATGAATGACACTTT-CTACTCGGATTGCGCCGCACCTTCCTTATCTGC 1972165

Query 61 GCCGCTATTCCCGCGCCCTTACCGGCACTCAGACTTCGGGCGACGCTTACGTCGCCGCCG 120
COLLUEEDEECERL LD L L E L LG LR LR LLL

Sbjct 1972166 GCCGCTATTCCCGCGCCCTTACCGGCACTCAGACTTCGGGCGACGLTTACGTCGLCGLCG 1972225

Query 121 TTCTCGAAGCCATCATCGCCGATCTGTCGATTTTCCCGGATACGGCGAATGACCGGGTCG 180
[T IIIlIlIJfHIIIIII\UIIIIIIIIIlIIllIIIlIIIIIIlIIlIIIIII

Sbjct 1972226 TTCTCGAAGCCATCATCGCCGATCTGTCGATTTTCCCGGATACGGCGAATGACCGGGTCG 1972285

Query 181 CACTCTACAAACTGTTCACGCAACTGTTTGGTTCCACCGCAGTCCAGATTCCAGAGCCGA 249
[NNARY IIIIlllllIIIIIIIIIIIIIIllIlIIlIIIIlIIIIIIIIIIIIIIII

Shjct 1972286 CACTCTACAAACTGTTCACGCAACTGTTTGGTTCCACCGCAGTCCAGATTCCAGAGLL 1972345

Query 241 CCTCGCCCTATGCCTGGGAGCAACGCGCCCACGCTGAACCTTGCCAAGGTTCCCCGCCGC 309
CLLRULIVEERERLCLEEEE Rt e LR LR LR L eEL LELEL

Shjct 1972346 CCTCGCCCTATGCCTGGGAGCAACGCG-CCACGCTGAACCTTGCCAAGGTTT--CGCCGC 1972402

Query 301 GCGCCCGTCAGGCCCTTTCCTGCTTCGCCCTCCCGTTANAGGAATTT 347

LOCLCCLELEEEEE L0 beneed TOe LeE ir 1 ikt
Sbjct 1972403 GCGCCCGTCAGECC-TT-CCTGCT-CGCC-TCC-GT-AGAG-AATTT 1972442

5" DNA sequence alignment for the sensor histidine kinase knockout construct, query line is the
Plasmid product and subject line is R. leguminosarum genome. Primer used for sequencing is

SOEF2SK

Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence ID: NZ_CP030760.1 Length: 4883137 Number of Matches: 1

Range 1: 1974788 to 1975038 GenBank Graphics

Score Expect [dentities Gaps Strand
327 bits(177) 3e-90 239/266(90%) 16/266(6%) Plus/Minus
Query 3 GGATATTTCCCTGGCATCATATGATAGTGACGGAATGGCCCTTGACGGCCAGGLGATGEG 62

LLCL LRCEEERECERCEr LEELEL L LEC L ELCEE L EEEELLEL LT

Sbjct 1975@38 GGATTTTTCCCTGGCATCATA-GATAGTGACGGAATGGCCCTTGACGGCCAGGCGATGGG 1974980

Query 63 CGGCGG(MGGC(GG(TGGGC(TGCG((GACAACGG(GATCGTCTTTC(GGTCGGTTCCG 122
IllllllllllllllllllllllIIIIIIIIlIlIllIIIIIIIIIllIIIIlIIIIl

Sbjct 1974979 CTGGGCCTGCRCCGACAACGGCGATCGTCTTTCCOETCEGTTC-G 1974921

Query 123 GCCCCGGGCATAGM(TGCTTGCC(CGGCCTGCCATGGCGGC(AUCCGGGTCCGCATTA 182

N RN A A

Sbjct 1974928 G-CCCGGGCATAGAACTECTTGCC--GGCCTEC-ATGGCEGC-AT-C-G6-TC-GCAT-A 1974871

II LU LELEEL CELCRLERRLER et tetrert 11ty

Query 183 ACCGCCTGCAGGCCGACCGATCTCEACGGGLLGL e ?s' cc ? | 7
Sbjct 197487@ AC-GC-TGCAGG-CGACCGATCTCGACGEELCGCTCCTCEGLCGTE

Tt
i
116G
RN

Query 243 c- Utrccra tecteccgtggac 267
N LTI
cTe -TTCGCAGAGTTCTTCGGTGGGAC 1974788

Sbjct 1974813

3’ DNA sequence alignment for the sensor histidine kinase knockout construct, query line is the
Plasmid product and subject line is R. leguminosarum genome. Primer used for sequencing is

SOERB
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Potential Sensor Kinase Merodiploid 3’ fragment DNA BLAST alienment (Primer SOEF2SK)

Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence ID: NZ_CP030760.1 Length: 4883137 Number of Matches: 1

Range 1: 1974087 to 1974678 GenBank Graphics

Score Expect Identities Gaps Strand
1046 bits(566) 0.0 585/594(98%) 4/594{0%) Plus/Plus
Query 1 AGATCTTCAAGCGAGTGTGAAAGCCCTGGAGACAATCGAGAACGAAARACAGCCGGTGCG 68

LELULCERELE VLR L LR L LT

Sbjct 1974887 AGATCTTCAAGCGAGTGTGAAAGCCCTGGAGACAATCGAGAACGAAAAACAGLCGGTGCG 1974146

Query 61 AGGGCGGECGCACCGGCTGTCTTCACT CACCGRRAGGGGACCGTGAGTACGTCACGGATAG 126

LLLCLLELELELERLL L LR L L LELEL LT ]
Sbjct 1974147 AGGGCGGCGCACCGGCTGTCTTCACTCACCGGGAGGGGACCGTGAGTACGTC -CGGATAG 1974285

Query 121 TGGGTTGGGEEGCGCGCATGTTGGGTCGATGCGATCACCATCCGGATATCGCAATAACGAC 188
LELEEL DL DL LR L R LR L L EEL L]

Sbjct 1974288 TGGGTTGGGGGCGCGCATGTTGGGTCGATGCGATCACCATCCGGATATCGCAATAACGAC 1974265

Query 181 GACATCAAACTTTGGTTCCCTGCCATCCGa2aaaaaT TCGACTTTTTTGAATCTTTTTTC 248
|JI|II|II|II|I]|II|I]|IIIIIIIIIIIIIIJII]II1I|]I|]I|II|II|I]|

Sbjct 1974266 GACATCAAACTTTGGTTCCCTGCCAT TCGACTTTTTTGAATCTTTTTTC 1974325

Query 241 GGATGCCCTTCCCTCETCGCGCGTTCAGCCGTTTTACCGATGCAGGCCGAATAAATTCTT 308

LELELLLEEREE RV LR LR LT

Sbhjct 1974326 GGATGCCCTTCCCTCGTCGLGCGTTCAGCCGTTTTACCGATGCAGGCCGAATAAATTCTT 1974385

Query 381 CCAGCAAARACAGCGGATTACTGGCGTGACGGLAAGAGAARATCGTCAARATTTTACCGT 368

|JI|II|II|IIII]IIIIIIIII|IIIIIIII]IIJII]IHII]IIlIIIIIIIIIII

Sbjct 1974386 CCAGCAAAAACAGCGGATTACTGGCGTGACGGCAAGAGAAAATCGTCAAAATTTTACCGT 1974445

Query 361 TTGATAAATTTTTAAACCTRAGTTACGCTTTCCCTCACAGGCCGTTTACCAATAATGAGG 428

LECLEL LR LR L L L]
Sbjct 1974446 TTGATAAATTTTTAAACCTGAGTTACGCTTTCCCTCACAGGCCGTTTACCAATAATGAGG 1974585

Query 421 GAACTTCAATGGAACGACTGGAAACTGGGATTCATGCCGGCCGGLTTTCGCCCGCCGAGT 486

LELLLLEELLLEERUL LU L L LR DL L LEL L LT

Sbjct 1974506 GAACTTCAATGGAACGACTGGAAACTGGGATTCATGCCGGCCGGCTTTCGCCCGLCGAGT 1974565

Query 431 ATGAGGCTAATTTTTCCGATCTTCATCCGCGCCTCGACAATCACGAGGCGCTGGTCCCCG 548

LCLELLLEE LR R R LR L LR L EER] T
Sbjct 1974566 ATGAGGCTAATTTTTCCGATCTTCATCCGCGCCTCGACAATCACGAGGCGCTGGTCGCCG 1974625

Query 541 CCGACCGCTG-TATTCCTGTTATGACCCCCC-TGCATGACCGGCCNGTCCCACC 592
LLLELLEEDL L FEELELEnt) UL LELEEEL LEEEE LLLLT |

Sbjct 1974626 CCGACCGCTGTTATTTCTGTTATGACGCGLCGTGCATGA-CGGCCTGTCCCACC 1974678
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Potential Sensor Kinase Merodiploid 3’ fragment DNA BLAST alignment (Primer SOERB)

Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence ID: NZ CP030760.1 Length: 4883137 Number of Matches: 1

Range 1: 1974454 to 1975039 GenBank Graphics

Score Expect Identities Gaps Strand
957 bits(518) 0.0 583/610({56%) 24/610(3%) Plus/Minus
Query 1 CGGATTTATCCCTGGCATCATAGTATAGTGACGGAATGGCCCTTGTACGGCTAGGLGATG 6@

III|I|| LLEELERT LS TELEELE R R L L LELEEE L] ]
Sbjct 1975039 CGGATTTTTCCCTGGCATCATAG-ATAGTGACGGAATGGCCCTTG-ACGECCAGGCGATG 1974982

Query &1 GGECLEGCEGGCAAGGLCGGLTREGCCTGUGCCLACAACGGCGATCGTCTTTCCGGTCGGTTC 126

LELLELELLERLLELCL LR LU LR L ELEEE L LR L LT L

S5bjct 1974981 GGCGGCGGCAAGGCCGGLTGEGCCTGCGCCGACAACGGCRATCGTCTTTCCGGTCGGTTC 1974522

Query 121 GECCCAGGCATAGAACTGCTTGCCGRCCTGCATGRCGECATCGGTCGCATAACGCTGLAG 186

LELLELEELERLEERE LA L L L EL L R LT LT
Sbjct 1974921 GGCCCGGGCATAGAACTGCTTGCCGGCCTGCATGGCGGCATCGGTCGCATAACGCTGCAG 1974862

Query 181 GCGACCGATCTCGACGGRGCCGCTCCTCGRCCATGTTGCGCACACAGGCCTGTTCGLAGAG 246

LELRELELCERLEELELE L LR L LT L P LR L L LEL L ELE LT ]
Sbjct 1974861 GCGACCGATCTCGACGGGCCGCTCCTCGGCCGTGTTGCGCACACAGGCCTGTTCGCAGAG 1974882

Query 241 TTCTTCGGTGRRACAGACGCGGGCGCACATGCCGCCGAGGATGTTCTGGTCGAAGATCGT 388

LELLELEECERCEER L ELLEE LR EELEEEE LR LT L TELET
Shjct 1974801 TTCTTCGGTGGGACAGACGCGEGCGCACATGCCGCCGAGGATGTTCTGGTCGAAGATCGT 1974742

Query 381 CTTTGCCGAGCCGATCGGATTGCCGATCGAAATCTGGCGGATGAACAGCGGAATGTCGAT  36@

LELLETELLERL LR L LU L EL L L L LR L EELEL LT EE
Sbjct 1974741 CTTTGCCGAGCCGATCGGATTGCCGGTCGAAATCTGGCGGATGAACAGCGGAATGTCGAT 1974682

Query 361 CGAGGTGGGACAGGCCGTCATGCACGGCECGTCATAACAGAAATAACAGCGGTCGGCGGE 428
LELEELELLERLEERE UL LEEEL e EEL LR LT EL LT

S5bjct 1974681 CGAGGTGGEGACAGGCCGTCATGCACGGCGLGTCATAACAGAAATAACAGLCGGTCGLIGLGE 1974622

Query 421 GACCAGCGCCTCGTGATTGTCGAGGCGCGLATGAAGATCGGAAAAATTAGCCTCATACTC 488

LELLDLRLLERLERL L LU EE L LI LR L R L L LET L LT

Sbjct 1974621 GACCAGCGCCTCGTGATTGTCGAGGCGCGGATGAAGATCGGAAAAATTAGCCTCATACTC 1974562

Query 481 GGCGGGCGAAAGCCCGGCCGGCATGAATCCCCAGTTTCCAGTTCGTNCCATTTGAAATTC 548
||||I|||||I1|| LLELERLEREEETEED PRREELERt e DEE LELn 1 |||

Shjct 1974561 GGCGAAAGCC -GGCCGGCATGAATCCC-AGTTTCCAGT-CGTTCCATT-GAAGTTC 1974586

Query 541 CCCCTCATTTATTGGGGTAAACCGGCCCCTGETGAGGGGGARAAGCCGTTAAACTTCAAG 608

S0 1 R A R S e R WA N II 1L 11 ]
Sbjct 1974505 CC--TCATT-ATTGG--TARAC-GGCC--TG- TGAGGG--AAA-GC-GT-AA-CT-CA-G 1974463

Query BEL GGTTTaaaza 618

Sbjct 1974462 G-TTTAAAAA 1974454
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Potential Sensor Kinase Merodiploid 5’ fragment DNA BLAST alignment (Primer SOEFB)

Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence ID: NZ CP030760.1 Length: 4883137 Number of Matches: 1

Range 1: 1974087 to 1974678 GenBank Graphics

Score Expect Tdentities Gaps Strand
1046 bits(566) 0.0 585f594(QBQQ) 4{5?ﬂ{&@6} Plus/Plus
Query 1 AGATCTTCAAGCGAGTGTGAAAGCCC TEGAGACAATCGAGAACGAAAAACAGCCGGTGEG 68

LELLELELLERLEEE DL L EL L L EEL AL EEL L LD L LR EEED L] ]
Sbict 1974887 AGATCTTCAAGCGAGTGTGAAAGCCCTGGAGACAATCGAGAACGAAAMACAGCCGETGCG 1974146

Query 61 AGGGCGGCGCACCGGCTGTCTTCACTCACCGERAGGGGACCGTGAGTACGTCACGGATAG 128

LELLELELLERCEEEL LR L CEE LR EEEEELLELL LR E L e TEELEL ]
Shjct 1974147 AGGGCGGCGCACCGGCTGTCTTCACTCACCGGGAGGGEACCGTGAGTACGTC-CGGATAG 1974205

e it ol
Sbjct 1974206 TGGGTTOGGEEGCGCGCATGTTGGGTCGATGCGATCACCATCCRGATATCGCAATARCGAC 1974265
Query 181 GACATCAAACTTTGGTTCCCTGCCATCCGaaaaaaal TCGACTTTTTTGAATCTTTTTTC 248

LELEELELLERL LR L LR EEL R L L L L L L L L]
Sbjct 1974266 GACATCAAACTTTGGTTCCCTGCCATCCGAAAAAAATTCGACTTTTTTGAATCTTTTTTC 1974325

Query 241 GEATGCCCTTCCCTCGTCGCGCGTTCAGCCGTTTTACCGATGCAGGCCGAATARATTCTT 308

LELLELRLLELLEEEL L LR L DL EER L L LT ]
Sbjct 1974326 GGATGCCCTTCCCTCGTCGCGCGTTCAGCCGTTTTACCGATGCAGGCCGAATARATTCTT 1974385

Query 381 CCAGCAAAAACAGCGGATTACTGGCGTGACGGCAAGAGAAAATCGTCAAMATTTTACCGT  36@
I1I|I||IIII||I1II|II1|I1II1||I|III|H|I1IH||1|I|I|I|IIIIH|

Sbjct 1974386 GCAAAAACAGCGGATTACTGGCGTGACGGCAAGAGAAAATCGTCAAAATTTTAC 1974445

Query 361 TTGATAAATTTTTAAACCTGAGTTACGCTTTCCCTCACAGGCCGTTTACCAATAATGAGG 428

LELELLELLERLEEE L LT LR L L L LR L L LT EL L] ]
Sbjct 1974446 TTGATAAATTTTTAAACCTGAGTTACGCTTTCCCTCACAGGCCGTTTACCAATAATGAGG 1974505

Query 421 GAACTTCAATGLRAACGACTGGAAACTGERATTCATGCCGRCCGRCTTTCGCCCGLCGAGT 480

LELLELELLEREE R LU LR LR L L L LR L] ]
Sbjct 1974506 GAACTTCAATGGAACGACTGGAAACTGGGATTCATGCCGGCCGGCTTTCGCCCGLCGAGT 1974565

Query 481 ATGAGGCTAATTTTTCCGATCTTCATCCGCGCCTCGACAATCACGAGGCGCTGETCCCCG 548
LOLELLELLLRLELERL L LA LLE LR L L L LR L EEL L L LI LT D] ]

Sbjct 1974566 ATGAGGCTAATTTTTCCGATCTTCATCCGEGCCTCGACAATCACGAGGCGCTGGTCGLCG 1974625
Query 541 CCGACCGCTG-TATTCCTGTTATGACCCCCC-TGCATGACCGGCCNGTCCCACC 592

LELLELLLLE L DR e b FE LEELLEE LEEEL LLLETT

Sbjct 1974626 CCGACCGCTGTTATTTCTGTTATGACGCGCCGTGCATGA-CGGCCTGTCCCACC 1974678
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Potential Sensor Kinase Merodiploid full sensor kinase gene amplification (primer SKF)

Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence ID: NZ_CP030760.1 Length: 4883137 Number of Matches: 1

Range 1: 1972765 to 1973158 GenBank Graphics

Score Expect Identities Gaps Strand
640 bits{346) 0.0 383/399(96%) 9{%99(2%@} Plus/Plus
Query 1@ GTGATCTAGCATCACCGCATATCCCGGAACGGCTTCTGACCGGCGAGCGLCCGGAACCGA &9

LELLELE LR L R LR R L LT EEL]
Sbjct 1972765 GTGATCT-TCATCACCGC-TTTCCCGGAACEGCT TCTGACCGGCGAGCGCCCGGAACCGA 1972822

Query 78 CTTTCCTTGTCACCAAGCCCTTCAATCCCGACATGGTCAAGGCACTGATCAGCCAAGCGE 129
|1I|I||I||I|IHIHII1|||II1||IIII1|IIIH|I|II1|||III||II|I1|

Sbict 1972823 CTTTCCTTGTCACCAAGCCCTTCAATCCCGACATGGTCAAGGCACTGATCAGCCAAGCGC 1972882

Query 130 TTTTCTTCAATGAATCGACCAGAGTAGCCGCCTGAGACGCAATTTTCCGGCCTTCGGAAC 189

LOLLLELCLEEEEL LR LR DL EOL LR L PRV LEREEET L ]
Sbjct 1972883 TTTTCTTCAATGAATCGACCAGAGTAGCCGCCTGAGACGCAATTTTCCGGCCTTCGGAAC 1972942

Query 190 CAAATCGCCAAAGCAGGCGTTCCGETGCTACCGEGACGCTCCGGTGGCTTTAACGGTTTT 249
LELLLEELEEELEEEL L L L LR LR PR L L EEE L]

Sbict 1972943 CAAATCGCCAAAGCAGGCGTTCCGGTGCTACCGGGACGETCCGGTGRCTTTAACGGTTTT 1973882

Query 250 TTGCAGCGCTTTGTTCTAAAGTTGGCAGGCGGTGTCTGTAAGGGCGCTCCCTTCAGCGAC 309
LOLLLLELLLER LT L E LR EELCEL L EL L PR LR EEEL L

Sbjct 1973883 TTGCAGCGCTTTGTTCTAAAGTTGGCAGGCGGTGTCTGTAAGGGCGCTCCCTTCAGCGAC 1973262
Query 2180 GTTAAAGATGTCACAAGGAAAGGLGGGCCGLGTGAATACGACTGAACCATTGTTCGGCTT 369
Sojcr 1973063 CHCAMGATETAUMAAMALL S LSTEAMAAU AN A TCtetdat 1573121
Query 378 TGTTCTTTCACCTTT-AAGGCAA-GC-G-AATGATGRAA 484

[ FLEREEEEEE  FERREEE AL L FEEL LT
Sbjct 1973122 -GC-CTTTCACCTTCGAAGGCAAAGCCGCAATGATGGAA 1973158

Potential Sensor Kinase Merodiploid full sensor kinase gene amplification (primer SKR)

Rhizobium leguminosarum strain ATCC 14479 chromosome, complete genome
Sequence |ID: NZ CP030760.1 Length: 4883137 Number of Matches: 1

Range 1: 1974107 to 1974231 GenBank Graphics

Score Expect Identities Gaps Strand
122 bits(e6) 8e-29 112/131(85%) 15/131(11%) Plus/Minus
Query 13 GA(,&C.L‘«ATA—GCGTCG—C(ECAACCCAG(TAT&CACGGMCGTA(TCACGGTACCCCTCC Je

Iy O O B N R A e A RN |I||I||
Sbjct 1974231 GACCCAACATGCG-CGCCCCCAACCCA-CTAT-C-CGG-ACGTACTCACGET-CCCCTCC 1974178

AR i i e e e
[T | 111 |

Sbjct 1974177 TGAGTGAAGACAGCCEGTGCGCCGCCC TCGCACCGGCTGTTTTTCGTTCTCGATTGT 1974118

Query 126 -TC-AGGGCTT 134

111
Sbjct 1974117 CTCCAGGGCTT 1974107
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R. leguminosarum ATCC 14479 ShmR homolog nucleotide alienment with S. meliloti’s ShmR
gene
Seguence ID: Query_59059 Length: 2232 MNumber of Matches: 1

Range 1: 13 to 2106 Graphics

SCore Expect Identities Gaps Strand
881 bits(576) 0.0 1476/2115(70%:) 51/2115(2%) Plus/Plus

Query 1786821 COACACCTTGAACGTACGECCCGRUTCCGAATACCACTCCTOCGECTGIGACGLCGTCAL 17B6EER

190 0 0 0 I e O B 0 ot

Shict 19 CoAGACTTTEAACGTECOTCCOGAT TCEEAATAGAAGTCGCGCGECTEGAGCGGACGAT-- 76

Query 1786881 CEAGGTCAGGTTGACGTCGCOCALGECGAGCGCATTGTAATGCTCCTGATCGAAGATETT 1786548

. 90 8 O 8 U O 0 0 e N M AR RN
shict 77 -GAGECEARGTCGACGCCACGTACGCCGAGCGLGT TEAAATACTTCTTGTCGAAGATETT 135

Query 1780941 GTAGACACCTCCCTOGATCCOCAGACCCTTCAACTOTTCCOGOLGTCCACCATGLCGTCAG 17e7age

60 P o 1 1 U e 0 ot o Y

Shijct 136 ATAGACCCCGECCTCTACCCTCAATCCCTTGAAGCTTTCGOGCGTCCACCACCCGGTCAT 195

Query 1787281 ATCGACGACACCATAACTGOOCGCATCGRAATOTEETCGCAA-CATCGTCGT CAGGCATGG 1787859

I .S L1 0 O B ot e I N
Sbict 196 ATCCACGAGACCETAGCCEGAGGECAT CGAAGGTT-TCGCTGTCGTTATCGTCCGRCATGE 254

Query 1787268 C(TGLCGAAAGCOTCEAGGARAGATIGAAACCOTAGTTGTCGTTGCTOCAACCGLCGCCGA 1787119

IIIILII N N O Y O O O S A MR

Shjct 255 TECCEAGACCOTCOTCRAGACATCGACACCGAAGET TTCCTGECTEGTAGCCGICGICEA 314

Query 1787128 TEATCGLCTTGAAGGGAGCAACCEATCGCAAATATTTGCCTGTATCCTCGT TGCGGCCAT 1787179

IlIIlIIlIIlII L L L 111 [LILLTL IlIII

Shict 315 COCCTTEAATGGCOCGACCOT CCGCAGCCGOGTECCCTCRTCCTCGT TCT TG 374

Query 1787188 AGGCATAGGCAAGCGACGLATGCAGOTTOATGLCG TTGTTGAAEGTCTTEACGGCATTEG 1787239

. 8.0 0 I 1 P
Sbict 373 LGGEAGTAGECAAGCGACGCATGEAGGTTGAAGCCGTTGTCGAAGGT TTTCAACGEGCTCA 434

Query 1787248 CTTCAACACCCGARATCGTOOLGRCAGACACGTTGOTATAATTARATGTCGTGAAGCCGG 17B72029

[ B I3 W o N A M A

Shict 435 ACTCEATACCCGAGATTCGEACCTTAGTTGACGT TGRCATATTTGAATTCCOTGATOCCGG 494

Query 1787388 TCGC?TCG#C?CTC?——TCACEG TCTEEATAAAGTTCTEETAGCGOETOTAGAAAGCCG 1787355

LN 1 Y U Y 1 Y A LLLLLEL LLLI

Shjct 485 TOTCECTOTTeATEEAATCGCCGRT TTCAATEGAAATTETCATAGATATTAGTEGAACGCLG 554

Query 1787357 CAATCCGACCOGOTAARAATCGCCCOTOTCGAAATTGOUGLCGATTTCOACGCCGLGRCCGA 1787418

0 A 0 U e e 9 0 0 0 e

Shict 555 CeACCCOOCCGCTCAGCTCACCOATOTCGAAATTARCACCGATCTCGRAATCCTTTGCCGG 514
Query 1787417 TTTCCGGTTECAGTTC#GG#TTGE[AAGCTCEGCAT#AEEACCEGTCGGGTTGTTE# 1787476
o ittt e T e
Query 1787477 GGCTGTAE#GCTEGTCCAEGrTGGETGCALCGAhA{EGACTGCCAGCTGTECGTAATT 1787536
coscs a5 O L e Tl ekl carP L aLclalt 726

Query 1787537 GCACGTCAGGTGTCAGCTCGTATOTCGCAAGAATCTTCGGCGACAGGICGGCTTCCGTCC 1787596

| A 0 [ ' O O O 0 O

|l
Shict T35 CoACATCCAGCOTAACGTCATAGOTCOCAAGGAGCTTCEGEOGACAGEIGRACCCCATCCC 794

Query 1787397 GATTETT$T?GTTfTT?TTACG?GTAAGT___TTG?TTWTG{TTGT?TTATTTCTGCC?G 1787653

Shjct 785 TeECCTTCAGATLCCOGAR---CATTCCOGATCCTOTATTCGACTCGAARCCTGCATTEA 851
DR Wy S i s e Ny e
Shijct 852 GCTEAGEG-TCATATTGEAACCAGT CEAAGCGLAACCCCEECGTEAGCGLALACGLGCTG 918
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Query
Sbict
Query
Shict
Query
Sbict
Query
Sbict
Query
Sbict
Query
Sbict
Query
shict
Query
Sbict
Query
Shict
Query
Sbict
Query
Sbict
Query
Sbict
Query
Sbict
Query
shict
Query
Sbict
Query
Shict
Query
Sbict
Query
Sbict
Query
Sbict

1787713
911
1787773
571
1787833
1831
17687892
1898
1787951
1149
1788889
1209
1788869
1267
1788129
1327
1788189
1375
1788249
1435
1785389
1494
1788366
1552
1788426
1612
1788486
1672
1788546
1732
1788686
1782
1788666
1852
1788726
1912
1788786
1972

i sy v

TCGCCGACCEAAATRCaGETCT TCCAATATGECOCCEACCOTCATGCTCCTCACGTLGOEE

ACCTCCGCCTGETTGTTCAGCGCCGGGCACGTTGTGGGCGT CGEECAAMGEGCCCAGLTA
LE WL L AL EEEEE L ] LELEEL LR L L

ACTTCGRACTGET TETTEAGCGCCEGhCATETCGCCGRIGTLaEaCAAACCGLCGAGGTA

TACTGEGLTCCAGCTCARACGICC- ACGTCaAGAC CAACGLGAACEGAATEGCTGAGACT

oS O O R I O R e [ M 01
TACTGGCTCCA-CTCGGAACGEGCGACATCGAGECCGAAGETTAGCGAATGATCGAAACC

AEAATATTCEAAATCCT TCaTCOC-CaTaC el ToAAGCCCCAGRTTTCGT TTTCTATLT

I 0 R R0 ) O O 5 1 e O 1 e 0
GCCAGTTTCGARATCCTTECCTGLGCGT -CCGTTGARACCCACGCTCTCATTGCTGATCG

QaTTETTACGECCATAAGCCACATTGRCAGT CATACGRCCTCTGETACCGaCTT--CCTT

R R R AR R RS !
AATTGTCGCGCCCGTAGGGCACATCAGCGATCGTCCGECCATTCGAGCCARAGGAGCETT

CTTCARATCCAALCAGTAAARCOTEECT CRCGCACTGCTEAAGAATECGTCGEAMGACTG

ool LREE PR R R L L1

C--CAGATCCTECCAGT AGAGLEATGCCCTEEIGAAGCTOAAGAAGTCGTCCGACGAGET
COCCTCATAATCATAATCEAGAGAAACT CRETCGLGRTCGCGCAAT TCaCaGCCGTCATA

L O O O O OO0 S .01 OO 1 e 1 O 1 1|

AeCCTCRAAATCATAGT CCAGCOAGACGCACTTECGaTCECGETCT TCAAAACCOATATA

ATTGTCG&TEAEGAAETTGCGEEECGTRGTGC??TETT?GAGCTEGCGC?TGTTGGE[TT

0 B .
GTCECCGATCTTETACCGGCGCCCCT--GTTCCGCTCTE--~----= -~ AGATCATTGTC

GAGATCGCECCGGAAGCGTTCEECCaTCAGGCLGATGLGATGACCACCTTCGAGCTCCTG

Lo HERE R B AL L LR L L
GGCATCECGECEGAAGCTTTCCGLCATCAGECCGATTCTGTGACCGLCTTCGAGTTCATG

GCGCAGCTTOAAGAGCAGGT TATACTOaTCaAAAT COGLGaGATCCOCCTCGET ALGAGE

O 0 O g 1 G
CCGAAACT TGAAGAGCAAGT TGT TCTGGETCGAAAT CGETAGGGT TEEGCTCCATGLEER-

ACEE--CCATAGCTETC-ATTATCACCCATATTGTCGCGT TCATGECCCTTEGETAGCC

5 S 0 ey o O e O O B O A R R S GS QR
~CGGATCCGTAGCCACCGACCGTC-COCTCGTTATCCCGTTCATTCCCCTTGCGGTAGCT

CCCTEAAACAGGATCEACGTAT TGCCGATCTTCT TEGCARCCGLCaCCOAGTCGRARAT

IIIIlIIlI bt B BN oL -1 ) BER Lot ]
GCCCTGAAAGAGAACGGAGGTCTGGCCGAATCTGTGGECTCCAGCAACCGAGCCCGCAAT

GETECEaTCTTCGCTGTCaTATATEGAC TTRACGATCACACCCCAATCCCGRLCTTOGRG

L 1 O O e S M RS PR AN S e SR
GLTETCGTCTTCGLTGTCATAGATGEACCTGAAGATCGCGCCCCAATCCTTTCCGTCGEA

AATAAGATCCTCCGGCTCGAGCGTATTGAGTACGATGECGCCGCCGAGCATTCCCGAGLC
1 O B e o I S G A O SRR SRR RN

TATGACATCCTCGEECTCGAGCOTGCACAGCACCACGRIGCCCCCGAGCATRICGEAACT

ACCCTTECTLGAATCCGCGCCTCaCACAATATCGAGCGAGRAAAGCGAATCGARATCGAA

e O R L L O O O B e S R RS AR
GCCACGGCTCEAATCCGCCCCRCGCACTATGTCGACCACGEAGAGCGAATTGARATCGAA

QETaTCECCGCCGCCAT TAGCET TeElCoaCaaARAGLGLCTTAGLGCGAACTATTCGA

3 LG O e O e S e e e 0
CATGTCCCCGCCGCCET TCECATTEATCGAGGCAAAGGCACCCTGACGGECGCTGTTCGA

AATATACGOGAT COGAATGCCATCEATGATGETCAGRATGLGAGCGLCGEAAAGELCGLG

ELLEL RELRRLREEL LEERREREE PERRERD BEL LAEL LRELELEED JELE
GATATAGGGGAT CGEAACGCCATCGATCGTGETCACGATACGAGGACCGEAAAGACCELG

CAGET TEAAGCCOECATCaCCACGT GAATAGT TCACACCTGCATCOACGCTELGGLCGAT

LI O 0 3 OO I I S A RS M SRR g Re R QR
AAGATTGATACCGAAGT CGGCACGCGATGCATTTATCCCTGLGTCGACGCTGCGGLCGAG

ATCATCAARATTGETGACCTALT TTTCT TCCAGCATCT TERCGETRAT CTCGET CaCAAG

e L R R R R RN NN R SRR YA RAY
ATCGTCGAGATCCGTGACCTGCT TCTCCTCCAGGETCT TTECGTCGATCTCGETCOCAAG
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1787772
S7a
1787832
i1a3e
1787851
1388
1787958
1143
17aaaes
12498
1798863
1266
1798128
1326
1798188
1374
1798248
1434
1798398
1453
1798365
1551
1738425
1611
1738485
1671
1798545
173
1798085
1751
17d8665
1851
1788725
1811
1798785
1871
1798845
2831



Query
sajct
Query
sajct

1765846
2832
176E897
2892

CEGCaTaTCaECGACACTACCi6aC -~ - -- - -~ -GCCACGCGT T TGLCCT TRACGACGAT 17985896

PEPES B L] L 1) SAEEm R e A RRARI
CGGCGTATCLGCGATGCCGCCACGCTGCGCACCTGCCAGGCGETCGLCTTTCGCGACGAT 2091

CTTCTaCAGRACGET 17es911

LEEEL LEE L
CTTCTTCAGCACGGT 2186

R. leguminosarum Siderophore production CAS media assay 24 hour (From left to right: 200uM

2°2’-dipyridyl, 10uM hemin, 15uM hemin, 30uM hemin.

R. leguminosarum Siderophore production CAS media assay 48 hour (From left to right: 200uM

2°2’-dipyridyl, 10uM hemin, 15uM hemin, 30uM hemin.

R. leguminosarum Siderophore production CAS media assay 72 hour (From left to right: 200uM

2°2’-dipyridyl, 10uM hemin, 15uM hemin, 30uM hemin.
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CAS media indicator dye control (.SM EDTA)
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