
East Tennessee State University East Tennessee State University 

Digital Commons @ East Tennessee Digital Commons @ East Tennessee 

State University State University 

Electronic Theses and Dissertations Student Works 

5-2021 

Hemin Utilization in Rhizobium leguminosarum ATCC 14479 Hemin Utilization in Rhizobium leguminosarum ATCC 14479 

John Lusby 
East Tennessee State University 

Follow this and additional works at: https://dc.etsu.edu/etd 

 Part of the Bacteria Commons 

Recommended Citation Recommended Citation 

Lusby, John, "Hemin Utilization in Rhizobium leguminosarum ATCC 14479" (2021). Electronic Theses and 

Dissertations. Paper 3897. https://dc.etsu.edu/etd/3897 

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @ 
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an 
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please 
contact digilib@etsu.edu. 

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3897&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/985?utm_source=dc.etsu.edu%2Fetd%2F3897&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Hemin Utilization in Rhizobium leguminosarum ATCC 14479 

________________________ 

A thesis 

presented to  

the faculty of the Department of Biological Sciences   

East Tennessee State University 

 

In partial fulfillment 

of the requirements for the degree 

Master of Science in Biology, Concentration in Microbiology 

______________________ 

by 

John R. Lusby 

May 2021 

_____________________ 

Dr. Ranjan Chakraborty 

Dr. Sean Fox 

Dr. Bert Lampson 

 

 

 

Keywords: Rhizobium leguminosarum ATCC 14779, hemin, Hmu operon, iron uptake, HWE 

sensor kinase 



2 

 

ABSTRACT 

Hemin Utilization in Rhizobium leguminosarum ATCC 14479 

by 

John R. Lusby 

 

Rhizobium leguminosarum is a Gram negative, motile, nitrogen-fixing soil bacterium. Due to the 

scarcity of iron in the soil bacteria have developed a wide range of iron scavenging systems. The 

two types of iron scavenging systems used are indirect and direct. In-silico analysis of the 

genome identified a unique direct iron scavenging system the Hmu operon. This system has been 

identified in other closely related rhizobium species and is believed to be involved in utilizing 

heme compounds as a sole source of iron. We have attempted to characterize the role of the Hmu 

operon in iron utilization by monitoring the growth of R. leguminosarum ATCC 14479 in hemin 

supplemented media. Growth curves show that it is capable of using hemin as a sole source of 

iron. The outer membrane profiles were analyzed for the presence of hemin binding proteins.       
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CHAPTER 1. INTRODUCTION 

Iron and Its Importance  

 

 Iron is an essential micronutrient for living organisms including both eukaryotes and 

prokaryotes, It’s required at an intracellular concentration of 10-6 to 10-7 Molar (M) to maintain 

homeostasis in bacteria (Weinberg 1974).  Iron is required for many cellular functions as it 

serves as an important cofactor for many crucial enzymes required for a multitude of functions 

such as DNA synthesis, respiration, and gene regulation (Andrews et al. 2003). Iron deficiencies 

in bacteria can lead to: defects in DNA/ RNA biosynthesis, cellular morphology, reduced 

respiration activity, oxidative stress response, Nitrogen fixation, and oxidative phosphorylation 

(Messenger and Barclay 1983). Inversely an excess of iron in bacteria can lead to the buildup of 

reactive oxygen species (ROS) which can lead to cell death (Touati et al. 1995).  

In humans, excess iron also known as iron overload is mainly caused by 

hemochromatosis, a hereditary condition which causes an individual to absorb to much iron from 

their diet. The excess absorption of iron leads to deposition of the excess iron into various tissues 

and organs, the main regions it is deposited are: the liver, skin, heart, pancreases and joints 

(Hereditary hemochromatosis 2020).  Excess iron buildup in these organs can lead to a multitude 

of issues ranging from impaired organ function to organ failure due to the buildup of ROSs 

(Crownover & Covey 2013). Inversely, iron deficiency can cause a vast array of physiological 

problems as well, ranging from: impaired cognitive performance in children and elderly, 

pregnancy complications, chronic fatigue, impaired heart function, and increased risk of 

infections  (Camaschella 2015).    
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Iron Availability  

 

Iron is found in two oxidation states in the environment, the insoluble ferric (Fe III) and 

soluble ferrous (Fe II); soluble iron is a scarce resource that is found in most soil environments at 

a concentration from 10-9 to 10-18 M (Miethke and Marahiel 2007).  Most microorganisms require 

an intracellular iron concentration around 10-6M in order to maintain homeostasis (Miethke and 

Marahiel 2007).  Pathogenic bacteria are also faced with iron scarcity while inside their host. 

Iron is tightly regulated in eukaryotic cells, due to its homeostatic importance. Mammalian cells 

keep the free iron pool extremely low to prevent iron overload and to limit pathogen growth 

(Miethke and Marahiel 2007). Eukaryotic cells reduce the free iron pool by storing it in proteins 

such as heme compounds and ferritins, keeping free iron concentrations at 10-24M (Miethke and 

Marahiel 2007). Due to both soil dwelling and pathogenic bacteria being faced with 

environments in which iron is scarce, they have developed a multitude of complex iron 

acquisition systems.   

Iron Acquisition Systems 

 

Due to the important role iron plays in maintaining homeostasis and it’s scarcity in the 

environment bacteria have developed a wide array of iron scavenging systems to gather both free 

and complexed forms of iron from their environment. Bacteria can acquire iron from the 

environment via direct and indirect iron uptake systems (Krewulak and Vogel 2007). Direct 

systems require the bacteria to make physical contact with a source of iron such as heme, 

transferrin, lactoferrin, and hemoproteins (Miethke am Marahiel 2007). The drawback to direct 

uptake systems is each type of iron compound must have its own specific surface receptor and 

transport system for that compound to be utilized. This high specificity limits the range of 
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growth to areas where that iron source is available (Miethke and Marahiel 2007). Pathogenic 

bacteria contain a plethora of direct iron acquisition systems, an example would be Pseudomonas 

aeruginosa’s  phuSTUVW system. This system binds heme through PhuR a specific heme 

surface receptor. Once bound, the ATP-binding cassette (ABC) encoded by the phuSTUVW 

operon transports and breaks down the heme to release the iron to be used by the cell (Ochsner et 

al. 2000). Other pathogenic bacteria utilize similar approaches such as the hemoglobin utilization 

system hmuRPSTUV in Yersinia pestis, and Neisseria’s Transferrin-binding protein A and B 

(Perkins-Balding et al. 2004; Schwieosow et al. 2018). Due to the limitation of direct iron 

acquisition systems limiting bacterial growth to locations where the useable iron source is 

available, bacteria have also developed indirect iron acquisitions systems to help compensate for 

this limitation.  

Indirect iron acquisition systems are more diverse than direct iron acquisition systems, 

thus broadening the area of colonization. Indirect systems involve the secretion of compounds 

into the environment to capture free iron or iron containing compounds (Miethke and Marahiel 

2007). The HxuABC system in Haemophlis influenzae is an example of an indirect uptake 

system. HxuA is secreted into the extracellular environment through HxuB, once secreted HxuA 

binds a hemoprotein which results in the release of the heme component (Zambolin et al. 2015). 

Once the heme component is released it is bound by the TonB dependent 2 surface receptor 

(Zambolin et al. 2016). The other major type of indirect iron acquisition system is a low 

molecular weight compound known as siderophores. Siderophores are produced by both 

prokaryotic and eukaryotic cells and are classified into three major categories; which are 

catecholates, hydroxamates, and carboxylates (Miethke and Marahiel 2007). Siderophores have a 

high affinity for iron, and when secreted into the environment they bind ferric iron (Miethke 
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Marahiel 2007). Once the ferric siderophore complex is obtained bacteria are able to bind this 

complex through siderophore specific receptors (Wilson et al. 2017). Differences arise between 

Gram positive and Gram negative organisms once this complex is bound. Gram negative bacteria 

have to transport this complex across two membranes, requiring the help of a periplasmic 

binding protein to traffic the complex to the inner membrane permease (Wilson et al. 2017).  

This trafficking process of the ferric siderophore complex from extracellular to intracellular 

requires energy which is presumably provided by the TonB-ExbB/D complex (Miethke and 

Marahiel 2007). Gram positive organisms contain only one membrane to transport the ferric 

siderophore complex, requiring only the siderophore receptor and associated permease (Wilson 

et al. 2017). Once the ferric siderophore complex is inside the cell the bacteria must release the 

iron to make it available for use. The release of iron from the siderophore is done by breaking 

down the siderophore via esterases or reducing the ferric iron to ferrous iron via reductases 

(Miethke and Marahiel 2007). The combination of both direct and indirect iron acquisition 

systems give bacteria an evolutionary advantage by increasing the range of environments they 

can colonize; however, due to the high specificity of direct acquisition systems it is more 

beneficial for bacteria to utilize indirect acquisition systems.   

Genetic Regulation of Iron Acquisition Systems  

 

        Due to the importance iron plays in maintaining homeostasis in bacterial growth, they have 

developed a multitude of iron scavenging systems. These systems are only expressed in iron 

limited conditions due to the amount of energy they require to scavenge iron from the 

environment (Miethke and Marahiel 2007). These systems are also tightly regulated due to the 

buildup of deadly ROS when intracellular iron is in excess (Kadner 2005). One of the most 

common iron starvation gene regulation mechanisms is known as the ferric uptake regulator 
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(Fur). The Fur protein is an iron-dependent transcriptional repressor; the system was first found 

in Escherichia coli, but it is also common in other Gram negative bacteria (Kadner 2005).  Fur is 

a Fe-sulfur protein that is a global iron starvation response regulator which binds to a specific 

DNA sequence called the Fur box. This protein works by using either ferric iron or Manganese+2 

as a corepressor (Bagg and Neilands 1978; De Lorenzo et al. 1987). When ferric iron is abundant 

inside the cell it binds to Fur causing a conformational change, this allows for the protein to bind 

to the Fur box. Once the protein is bound to the Fur box it blocks DNA transcription of the 

downstream genes involved in iron scavenging systems (Miethke and Marahiel 2007). When 

bacteria are in iron limited conditions the ferric iron is released from the fur protein resulting a 

conformational change that leads to the disassociation between Fur and the Fur box, thus 

allowing for gene expression (Troxell and Hassan 2013).  

        The Fur Family of proteins also contains the iron-response regulator (Irr), while Irr is in the 

Fur family of proteins it uses a different mode of action to measure iron levels (Costa et al. 

2017). Fur operates by measuring intracellular iron levels, while Irr in Bradyrhizobium operates 

by sensing heme biosynthetic levels (O’Brian 2015). 

        Another iron gene regulator is the rhizobial iron regulator (RirA) which belongs to the Rrf2 

family of transcription regulators, mutations to RirA have shown to alter not only iron-response 

genes but also alter the expression of over 100 proteins (Chao et al. 2005). DNA and protein 

sequence homology searches of the RirA protein shows no homology to known iron-response 

regulators and is unique to Rhizobiales order (Chao et al. 2005). The RirA protein is a Fe-sulfur 

protein that’s exact mode of action is not fully understood, but an iron-responsive operator (IRO) 

motive has been described as a putative DNA binding site for RirA protein (Costa et al. 2017).  
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RirA is known to repress iron-response genes in iron rich environment, and allows for iron-

response gene expression in iron poor environments (Todd et al. 2002).  

        A newly investigated method of gene regulation in bacterial iron starvation response is the 

Two-Component Signaling system (TCS) also called histidine sensor kinase system. The TCS 

work by sensing changes in the environment around the bacteria, once a change is perceived a 

phosphorylation relay occurs that leads to a change in gene expression allowing the bacteria to 

adapt to the changing environment (Bijlsma and Groisman, 2003; Cheung and Hendrickson, 

2010). This system is comprised of two components, a sensor histidine kinase that is 

transmembrane, and a cytoplasmic response regulator (Bijlsma and Groisman, 2003; Cheung and 

Hendrickson, 2010). The sensor histidine kinase detects changes in the environment through the 

N-terminus  leading to autophosphorylation of a conserved histidine residue on the C-terminus 

(Tiwari et al. 2017). The phosphorylated C-terminus then interacts with the response regulator 

and the phosphate group is transferred to a conserved aspartate residue on the N-terminus of the 

regulator. This phosphate transfer causes a conformational change in the regulator’s C-terminus 

(Tiwari et al. 2017). Once the response regulator undergoes a conformational change it interacts 

with the bacterial DNA allowing for changes in gene regulation (Tiwari et al. 2017). A new TCS 

in Xanthomonas campestris has been shown to be involved with iron homeostasis (Wang et al. 

2016).  The sensor histidine kinase is called VgrS, while the response regulator is called VgrR. 

This system has been shown to not only detect extracellular iron scarcity but also intracellular; 

when VgrS/R was mutated the bacteria showed highly impaired growth compared to the wild 

type (Wang et al. 2016).    
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Rhizobium leguminosarum 

 

 Rhizobium leguminosarum ATCC 14479 is a Gram negative bacteria which is known for 

being a soil dwelling, aerobic, motile, nitrogen fixing bacteria that forms a symbiotic relationship 

with legume plant roots (LeRoux et al. 2016).  Rhizobia are present in a free-living form, and 

they infect legumes once they detect the flavonoids released by plant roots which triggers the 

infection of the root hairs. (Peters et al. 1986). Upon infecting the root hairs the bacteria express 

the nodulation factors and begin formation of root nodules (D’Haeze and Holsters 2002). Upon 

the completion of the root nodule, a portion of the bacterial population invades the nodule. Once 

intracellular the bacteria differentiate into bacteroides which are capable of converting 

atmospheric nitrogen into ammonia (Gage 2004). The root nodules provide bacteria with suitable 

environment to grow by providing protection and nutrients, while bacteria supply the plant with 

a nitrogen source (Postgate 1998.). The root nodule provides a low oxygen environment by the 

production of leghemoglobin, which binds molecular oxygen (Brear et al. 2013). The creation of 

this low oxygen environment is crucial in the nitrogen fixation process due to bacterial oxygen 

demands for growth and irreversible inactivation of bacterial nitrogenase by molecular oxygen 

(Postgate 1998). The resulting ammonia formed by a reduction of nitrogen by the bacteria is then 

assimilated into organic compounds used by the plant (Postgate 1998).  The organic-nitrogen 

from the dead plants is then dispersed in the surrounding soil increasing its fertility, in turn 

allowing other legumes and plants to thrive (Postgate 1998). 

 There are three biovars of R. leguminosarum each of which form nodules with different 

plants: biovar trifolii nodulates with clovers, biovar viciae nodulates with legumes, and biovar 

phasoli  specifically nodulates with kidney beans (Young et al. 2006). The three biovars share 

many similarities from infection process, nodule formation, nitrogen fixation, to genetic 
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similarities (Ramirez-Bahena 2008). The Strain of Rhizobium used in this study is R. 

leguminosarum ATCC 14479, it belongs to the trifolii biovar, it’s preferred plant symbiote is 

Trifolium pretense also known as red clover (Wright et al. 2013.)  

 

Heme iron uptake and the HmuPSTUV operon 

 

        Heme and hemoproteins have been utilized by pathogenic bacteria as a source of iron during 

infection to deal with the iron limited environment of their host (Contreras et al. 2014). Many 

different heme uptake systems have been studied in various pathogenic organisms such as the 

HmuR system in Y. pestis and the phuPSTUVW system in P. aeruginosa are a few examples. Heme 

utilization systems work as a direct iron acquisition system to help bacteria meet iron demands. 

They work by binding heme compounds to a specific surface receptor  and transporting them into 

the cells to be degraded to release the iron (Ochsner et al. 2000; Perkins-Balding et al. 2004; 

Schwieosow et al. 2018). The reason so many pathogenic bacteria have developed heme utilization 

systems is due to it being the most widespread source of available iron in mammals (Contreras et 

al. 2014). While pathogenic bacteria have been widely studied for heme utilization systems, these 

systems are not exclusively found in human pathogenic bacteria but also in plant pathogens and 

plant symbiotic bacteria (Anzaldi and Skaar 2010).  

        Plant symbiotes have recently had their heme utilization systems investigated. These systems 

need more investigation to fully understand their role in iron acquisition and in symbiosis. 

Bradyrhizobium japonicum recently had a heme utilization system discovered, the system was 

labeled as hmuRTUV. This system shares similarities to the human pathogen Y. enterocolitica 

heme utilization system (Nienaber et al. 2001). It works by the heme surface receptor(HmuR) 
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binding heme compounds. Once bound the ABC membrane transport system (HmuTUV) works to 

internalize the heme compound for degradation and iron release (Nienaber et al. 2001). Rhizobium 

leguminosarum is another plant symbiote that has recently had a heme utilization system 

discovered, the system is the hmuPSTUV operon (Wexler et al. 2001). This system (Figure 1) has 

only had putative functions determined by sequence alignments with other known heme utilization 

genes (Wexler et al. 2001). The predicted functions for the proteins coincide with other heme ABC 

transport systems, HmuP is a predicted heme receptor/ transporter, while HmuS is predicted to be 

a heme degradation protein (Wexler et al. 2001). HmuTUV is the predicted ABC transporter 

component responsible for transporting heme from the periplasm to inside the cell (Wexler et al. 

2001). This predicted ABC transporter is composed of a putative periplasmic heme binding protein 

(HmuT), a periplasmic heme permease (HmuU), and a heme ATPase component (HmuV) (Wexler 

et al 2001). While the functions of this system is putative, R. leguminosarum species are shown to 

be able to utilize heme compounds such as hemin and leghemoglobin as a sole source of iron 

(Wexler et al. 2001). Previous work in our lab along with full genome sequencing has confirmed 

the presence this predicted Heme uptake system in R. leguminosarum ATCC 14479 

 

Figure 1. Orientation and layout of R. leguminosarum ATCC 14479 HmuPSTUV operon 

 

TonB-ExbB-ExbD 

 

        Gram Negative bacteria have many outer membrane transporters, these transporters require 

energy to facilitate transport into the bacteria’s inner membrane. The periplasm is the  space 
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between the outer and inner membranes, this space resembles the pH and solute concentration of 

the external environment of the bacteria and is completely devoid of adenosine tri-phosphate 

(ATP) (Mogenesn and Otzen, 2005). Since the periplasm lacks the normal means of energy to 

facilitate transport, bacteria have developed systems to overcome the lack of energy to allow for 

transfer of molecules across the outer membrane and periplasm to the inner membrane. The 

TonB-ExbB-ExbD system provides energy across the periplasmic space to help facilitate 

transport of iron chelators, vitamin B12, nickel chelators, and carbohydrates (Schauer et al. 2008). 

The energy produced for this transport is obtained by proton motive force (PMF) across the inner 

membrane, then the energy is transduced through TonB to the TonB dependent transporters  

(Noinaj et al. 2010).  

        The TonB complex is mostly studied in E. coli, where TonB is a 26kDa protein consisting 

of three domains. These domains are a cytoplasmic N-terminal domain, a periplasmic C-terminal 

domain, and a proline rich spacer separating the N- and C-terminal domains (Postle and Larsen, 

2007). The N-terminal domain contains a 32-residue transmembrane helix, which anchors the 

protein to the cytoplasmic membrane and also serves as the interaction site with ExbB/D 

(Krewulak et al. 2007). The C-terminal domain of TonB interacts with a conserved region on 

TonB dependent transporter’s N-terminal region called the TonB box and allows for energy 

transfer from TonB to the receptor (Peacock et al. 2007). The Proline rich spacer is located in the 

periplasmic space and contains a series of proline-glutamine and proline-lysine repeats (Kohler 

et al. 2010) This series of repeats is believed to provide rigidity which supports the proteins as it 

extends into the periplasmic space (Krewulak et al. 2007). ExbB and ExbD are in complex with 

TonB, these cytoplasmic proteins are around 26 kDa for ExbB and 17 kDa for ExbD (Ollis and 

Postle, 2012). ExbB and ExbD are located in the cytoplasmic membrane and work together using 
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PMF to create energy that is then transduced to the TonB dependent  via TonB to allow for 

active transport (Ahmer et al. 1995).  

Heme/ Hemin/ Hemeglobin and leghemoglobin 

 

                Heme (Fig. 2) is described as an iron protoporphyrin IX ring, and is one of the most 

abundant and widely used metalloporphyrins in biological systems (Poulos 2014). Heme serves 

many biological functions from electron shuttling, to storage and transport of oxygen when 

coupled with globulin proteins (Poulos 2014).  

 

Figure 2. Heme 

 

Hemin is similar to heme but with a small change, Hemin (Fig. 3) is a porphyrin ring IX 

containing a chloride molecule attached to a central ferric iron molecule (Hans 1941).  Hemin is 

prepared in a lyophilized form from defibrinated blood that is treated with glacial acetic acid and 

sodium chloride at a temperature of 100 degrees Celsius (Hans 1941). Both heme and hemin are 

useable sources or iron for bacteria when cells are under iron poor conditions (Noya et al. 1997)  
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Hemoglobin (Fig. 4) is a globular protein in red blood cells of vertebrates that is 

responsible for transport of oxygen throughout the body. Hemoglobin consists of four tightly 

packed globular proteins with a combined size of 65 kDa (Anthea et al. 1993). Each globular 

protein contains one heme molecule which intern contains iron, making the total of four iron 

molecules in hemoglobin (Anthea et al. 1993). Hemoglobin is a primary target for pathogenic 

bacteria to satisfy their iron requirements, this is due to hemoglobin being the most wide spread 

source of iron in the human body (Contreras et al. 2014). Hemoglobin has also been shown to be 

a source of iron for nonpathogenic bacteria such as Rhizobia bacteria 

 

 

 

 

 

 

 

 

Figure 3. Hemin 

Figure 4. Hemoglobin 
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        Another iron source that is available for both plant pathogens and symbiotes is 

leghemoglobin (Fig 5.), it is a myoglobin like protein with a size of 16 kilodaltons (kDa) (Becana 

et. al, 1995). This heme containing protein is found at concentrations of around 3mM in root 

nodules and plays a role in symbiotic nitrogen fixation by producing a low oxygen environment 

(Bergersen and Appleby 1981; Becana et al. 1995; Brear et al. 2013). Leghemoglobin consists of 

a globulin polypeptide produced by the plant and a heme group synthesized by the symbiotic 

bacteroids (Becana et al. 1995). Once both the heme and globulin components are produced they 

are assembled in the infected plant cells cytoplasm (Becana et al. 1995). Leghemoglobin is 

crucial for maintaining the crucial balance of free oxygen levels in the root nodule to allow 

bacteroid growth and nitrogenase function (Ott et al. 2005). Plant roots that are not infected with 

symbiotic rhizobium species lack the presence of leghemoglobin, this is due to leghemoglobin is 

needed for symbiotic nitrogen fixation and not normal plant growth (Ott et al. 2005). 

 

 

 

 

 

 

 

 

 

 

Present Work  

 Previous work in our lab on R. leguminosarum ATCC 14479 has shown that it contains 

the heme/ hemin uptake system HmuPSTUV (Shushant 2017) . This system is believed to give 

Figure 5. Leghemoglobin 
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the bacteria the ability to utilize hemin and heme containing compounds under iron limiting 

conditions (Wexler et al. 2001). This system in other Rhizobium species has been shown to be a 

TonB dependent transport system (Wexler et al. 2001). The system is an ABC transporter that is 

composed of a predicted heme receptor (HmuP), Heme degrading enzyme (HmuS), periplasmic 

heme binding protein (HmuT), periplasmic heme permease (HmuU), and a heme ATPase 

(HmuV).  

 The goal of this work is to investigate the role of the role of the HmuPSTUV operon in 

hemin mediated iron uptake using site directed mutagenesis and other biochemical methods. We 

hypothesize the mutation of the HmuPSTUV operon will disrupt hemin mediated transport. 

Previous and current work has shown that R. leguminosarum ATCC 14479 is capable of using 

different types of heme compounds as a sole source of iron. The growth of the wild type was 

found to increase as the concentration of hemin increased, with growth plateauing at 15µM to 

30µM. In anerobic conditions The addition of hemin to the media was found to increase cell 

survivability when compared to the iron free condition. 

 This Work also includes the investigation of the role of a predicted Two component 

system role in the iron starvation response. We hypothesize that mutation of this predicted two 

component system will result in diminished gene expression in iron scavenging systems. In silico 

analysis revealed that this predicted sensor histidine kinase belongs to a HWE family of sensor 

kinases that are believed to be involved with sensing a wide array of environmental changes.     

 

 

  



24 

 

CHAPTER 2. MATERIALS AND METHODS 

Bacterial Strains and Growth 

 

 The strains of bacteria used in this study are R. leguminosarum ATCC 14479 trifoli, 

which was acquired from American Type Culture Collection; The E. coli strains used in this 

study are NEBα5 and PRK2013.  

Table 1. Strains and Plasmids  

Strain Characteristics  Reference/ source 

E. coli  

NEBα5 Used for transformation of suicide vector 

containing knocked out gene of interest 

New England Biolabs  

DHα5 Used for triparental mating as a helper strain to 

KanR 

 

R. leguminosarum  

ATCC 14479 Wild-type strain ATCC 

Plasmids  

PRK2013 Helper plasmid used for tri parental conjugation 

KanR 

Ditta et al. 1980 

pEX18GM Suicide vector GmR  Hoang et al. 1998 

pEX18 ΔHmuU pEX18Gm plasmid carrying HmuU SOE product 

with an in-frame deletion of HmuU gene 

This work 
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pEX18ΔHmuV pEX18Gm plasmid carrying HmuV SOE product 

with an in-frame deletion of HmuV gene  

This work  

 

pEX18ΔSK pEX18Gm plasmid carrying senor histidine 

kinase SOE product with an in-frame deletion of 

the sensor kinase gene 

This work 

 

Growth Conditions 

 

A variety of media were used for culturing R. leguminosarum ATCC 14479 both 

enriched and minimal, the enriched media used were Congo Red agar (CR) and Yeast Mannitol 

Broth (YMB). The minimal medium used for iron limited Rhizobium culturing is Modified 

Manhart and Wong broth (MMW) (Manhart and Wong 1979). Rhizobium was grown at 30°C 

under either static conditions or at 250 rpm when grown in broth culture. The E. coli strains were 

grown in LB medium at 37°C under static conditions or at 250 rpm in broth culture.  

 CR agar is used for culturing and identifying Rhizobium species, this is due to the 

presence of Congo red dye. The dye is only absorbed by fast growing organisms resulting in a 

red to pink colored colonies, while Rhizobia species grow too slow to absorb the dye and 

colonies maintain a white color (Kneen and larue 1983). CR agar’s composition is (W/V) 1% 

mannitol, 0.05% K2HPO4, 0.02% MgSO4*7H2O, 0.01% NaCl, 0.1% yeast extract, 2.5 x 10-5 %  

Congo red dye. Once the ingredients were combined and water added to the medium, the pH was 

adjusted to 6.8 by addition of an aqueous HCl solution. Once the pH was adjusted a 1% (W/V) 

aqueous solution of Congo red dye was added prior to autoclaving.  
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 Yeast mannitol broth was used for culturing R. leguminosarum when iron concentration 

was not of importance. YMB’s contains the following (W/V): 1% mannitol, 0.05% K2HPO4, 

0.02% MgSO4*7H2O, 0.01% NaCl, and 0.1% yeast extract. Once the ingredients were combined 

and water added, the medium’s pH was adjusted to 6.8 by addition of an aqueous NaOH 

solution. Once the correct pH was obtained and the ingredients were mixed the solution was 

autoclaved.  

 Modified Manhart and Wong (MMW) medium was used for culturing R. leguminosarum 

whenever iron limited conditions were required (Manhart Wong 1979). MMW media has two 

parts to the media one being the basal media and the other a concentrated vitamin solution (See 

appendix A). The vitamin solution consists of trace amounts of vitamins and metals it was 

concentrated at 1000 times. Once the vitamin solution was mixed it was filter sterilized and 

stored at 4°C and wrapped in aluminum foil to protect from light exposure. The basal media 

composition is as follows (W/V): 0.0764% K2HPO4, 0.1% KH2PO4, 0.15% Glutamate, 0.018% 

MgSO4*7H2O, 0.013% CaSO4, and 0.6% dextrose. Prior to mixing the ingredients all glassware 

was washed with concentrated nitric acid for 1 hour in a fume hood to removed residual iron, 

then the glassware was washed four times with Millipore water to remove residual nitric acid. 

Once the ingredients were dissolved in water the pH was adjusted to 6.8 by adding an aqueous 

solution of 5M NaOH. After autoclaving the medium, it was allowed to cool to room 

temperature before adding 0.001% (V/V) of the filter sterilized concentrated vitamin solution.  

 Chrome Azurol S is a medium used to test for the production of siderophores and iron 

chelation. The media contained (W/V): 3.0% MOPS, 0.05% NaCl, 0.03% K2HPO4, 0.015% 

NH4Cl, 0.5% L-aspargine. The ingredients were mixed in Millipore H2O and 5M NaOH was 
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added till the media’s pH was 6.8. The CAS indicator dye (Appendix A) and 50% sucrose 

solution were added post autoclaving a mixed into solution.  

 The LB broth used for culturing E. coli species contained (W/V): 1% tryptone, 0.5% 

yeast extract, 0.5% NaCl, and 1.5% agar for the plates. Once the ingredients were mixed with 

water the pH was adjusted to 6.8 by the addition of an aqueous solution of HCl, then autoclaved. 

 The concentration of antibiotics used in media for both R. leguminosarum and E.coli 

strains are as follows: 

Table 2. Antibiotic concentrations  

Antibiotic  Concentration in media 

Nalidixic acid (Na15) 15 µg/ml  

Penicillin G (Pen50) 50 µg/ml  

Gentamycin (Gm20) 20 µg/ml  

Kanamycin  (Kan35) 35 µg/ml  

 

Hemin supplied growth 

 

 As previously stated MMW media was used when iron concentration was being limited 

and supplemented. The media was made iron free by the addition of the iron chelator 2,2’-

dipyridyl to a concentration of 200µM. The iron free media was supplemented with hemin at 

varying concentrations: 0.0µM, 1.0µM, 1.5µM, 3.0µM, 10µM, 15µM, and 30µM. The hemin 

supplemented MMW media was inoculated with 1.94*107 CFUs (colony forming units) from a 

72 hour grown MMW iron starved culture. For aerobic conditions cultures were grown at 30°C 

at 250 rpm. For anaerobic conditions the cultures were grown at 30°C under static conditions in 
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and aerobic jar with a GasPak. Serial dilutions for both aerobic and anaerobic conditions were 

taken at hours 24, 48, 72, and 96 hours. Dilutions were plated on CR plates and allowed to grow 

for 72 hours before counting CFUs.  

Genomic DNA Extraction 

 

Rhizobium leguminosarum ATCC 14479 was first inoculated onto CR plate from a -80°C 

stock and grown at 30°C  for 72 hours. A single colony was used to inoculate a 5ml YEM broth 

supplemented with penicillin G to inhibit the growth of possible contaminants. This culture was 

grown for 48 hours at 30°C on a shaker at 250 rpm. Two milliliters of the culture was spun at 

10,000 x g, the supernatant was removed and the pellet was resuspended in 2ml of a sterile 

0.85% NaCl solution to remove the exopolysaccharide. Then the genome was collected using the 

Qiagen DNeasy UltraClean microbial kit, this kit works by lysing the cells by the bead-beating 

method. The resulting lysate is treated to precipitate out the proteins while leaving the DNA 

soluble, the proteins are pelleted via centrifugation at >10,000 x g. The resulting lysate is then 

collected using a column which binds the genomic DNA, where it undergoes a series of ethanol 

washes. The cleaned DNA is eluted using 10 mM Tris-HCl at a pH of 8.5. The DNA is stored at 

-80°C for long term storage and -20°C for short term storage.  

Splicing by Overlap Extension (SOE) 

 

 Knockout constructs for HmuU, HmuV, and the Sensor Histidine Kinase were created 

using the splicing by overlap extension (SOE) method (Figure 6). This method involves the PCR 

amplification of around 1000 base pairs of both the 3’ and 5’ flanking regions of the gene of 

interest. Each of these flanking regions contain a portion of the gene of interest, while the central 

portion of the gene of interest is removed. Each of these fragments are first amplified separately, 
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then purified by gel extraction. Once purified the flanking regions are joined together through a 

subsequent round of PCR due to complementary sequence attached to the primers, resulting in a 

knockout construct that is indicated by the Δ symbol.  

 

Figure 6. Illustration of SOE method, step one involves producing 5’ and 3’ fragments through 
PCR. Step two joins these two fragments through another round of PCR, resulting in deleting the 

interion portion of the gene.  

 

 The construction of the 5’ fragment of the HmuU knockout used the primers SOEFA 

(primer A) and SOERHU (Primer B), and SOEFHU (primer C) and SOERA (primer C) were 

used to amplify the 3’ fragment. For the 5’ fragment of the HmuV knockout used the primers 

SOEVF and SOEHmuVR and SOEHmuVF and SOEVR for the 3’ fragment. For the Sensor 

Kinase knockout, the 5’ fragment was amplified with the primers SOEFB and SOER2SK, and 

for 3’ fragment SOERB and SOEF2SK were used. The Primer sequences and their binding sites 

are illustrated on a nucleotide map in appendix B.   
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pEX18 Suicide Vector 

 

The knockout constructs created using SOE were digested by restriction enzymes and 

ligated into the pEX18GM suicide vector (Figure 7.). This suicide vector contains an origin of 

replication, gentamycin resistance selectable marker, SacB counter selectable marker, and a 

multiple cloning site (Hoang et al. 1998).  The counter selectable SacB gene when expressed in 

the presence of sucrose containing media is lethal to Gram negative cells. The plasmid also 

contains the lacZα gene, allowing for quick blue-white screening of transformed mutant vectors. 

Once the knockout constructs were ligated into the restriction digested multiple cloning site 

(Figure 8), the pEX18 vector was then transformed into the NEBα5 E. coli cell line via rubidium 

chloride heat shock method. Once transformed the cells were plated onto LBGm agar that 

contained X-gal (20µg/ml of media) to allow for blue white screening. The cells were allowed to 

grow overnight at 37°C, white colonies were tested by colony PCR for the presence of the 

mutant construct and SacB gene. The primers used to test for the mutant construct were designed 
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to amplify the full SOE crossover product; the amplified products (~2500bp) were purified and 

sent off for sequencing to confirm the presence of a mutant construct.  

 

Figure 7. pEX18Gm suicide vector map 
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Figure 8. pEX18GM suicide vector with Sensor kinase crossover product  

 

 

NEBα5 Competent Cells 

 

 NEBα5 E. coli cells were made competent using the rubidium chloride method. NEBα5 

cells were grown in 5ml of LB broth at 37°C at 250 rpm overnight, this fresh culture was used to 

inoculate 2X YT broth. This culture was allowed to grow until it reached an OD600 of 0.6, once 

this optical density was achieved the cells were collected at 5000x at 4°C for 10 min.. The cells 

were then resuspended in chilled TFB1 (appendix A) and let sit for 5min. in an ice bath, and 

centrifuged using the same conditions. The supernatant was removed and the cells were 

resuspended in chilled TFB2 (appendix A) and incubated for 15-60 min. on wet ice. Cells are 

then aliquoted out and stored at -80°C until used for heat shock transformation.  
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Heat Shock Transformation of NEBα5 

 

 The rubidium chloride competent cells were used for heat shock transformation of the 

suicide vector containing one of three SOE products. The competent cells were thawed out and 

50µl of cells were mixed with 0.3µl of the SOE pEX18 ligated product. This mixture was 

incubated on ice for 30 min., then they were placed in a 42°C water bath for 30 seconds. Cells 

were then recovered in 1ml of room temperature LB broth for 1 hour at 37°C at 250rpm. After 

recovery the cells were plated onto X-gal containing LBGm agar plates and incubated overnight. 

White colonies were then used for colony PCR to confirm for presence of the SOE product.   

Conjugation 

 

 NEBα5 cell lines that were confirmed to contain the suicide vector with a SOE knockout 

construct with one of the tree genes, were then used for triparental conjugation. Triparental 

conjugation involves three cell lines, the first is the donor cells containing the plasmid of interest. 

The second is the helper cells which contain the sex pilus and tra genes for plasmid transfer. 

Third is the recipient cell line which receive the plasmid of interest. The donor cell line is the 

NEBα5 cells containing the suicide vector with one of three mentioned SOE knockout 

constructs. The Helper strain E. coli PRK2013, is a cell line with the PRK2013 plasmid which 

carries the sex pilus, tra genes, and kanamycin resistance (Ditta et al. 1980). The recipient cell 

line used is R. leguminosarum ATCC 14479. The helper and donor strains were grown overnight 

at 37°C on LB agar plates containing the required antibiotic to maintain plasmid selection. A 

couple of colonies were scooped with a inoculating loop and placed into a microcentrifuge tube. 

These cells were gently resuspended in 1 ml of a 0.85% NaCl solution and then spun at 5000xg, 

this step was repeated twice to ensure residual antibiotics were removed. Once washed the cells 
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were resuspended in 200µl of 0.85% NaCl solution. The R. leguminosarum cells were grown for 

48 hours in YEM broth at 30°C. 2 ml of cells were spun at 10000xg then washed with 0.85% 

NaCl and re-spun, this step was repeated twice to remove the exopolysaccharide. The washed 

cells were then combined at a ratio of 1:5:1 (donor: recipient: helper), then spun at 5000xg and 

resuspended in 50µl of 0.85% NaCl. The mix of cells was then pipetted onto nitrocellulose discs 

on CR agar plates and incubated at 30°C. The discs containing the cells were taken at 12, 24, 48, 

and 72 hours and resuspended in 1 ml of 0.85% NaCl solution by vortexing vigorously. Once 

removed from the disc cells were serial diluted and plated onto CR agar plates containing 

gentamycin and nalidixic acid and incubated at 30°C until cells appeared. The Gentamycin 

selects for R. leguminosarum cells that acquired the suicide vector containing the SOE construct, 

while the nalidixic acid selects against the E. coli strains. Once colonies appeared they were 

tested by colony PCR to identify merodiploids. Once identified cells were grown in 5ml of YEM 

broth at 30°C at 250 rpm for 6 to 48 hours to allow for homologous recombination. Cells were 

then serial diluted and plated on CR plates containing 5% sucrose (W/V) and incubated at 30°C 

until colonies appeared. Homologous recombination allows for the cell to either incorporate the 

mutant allele or expel it. Cells that have undergone homologous recombination contains either 

the wild type or the mutant allele and no longer contain the pEX18 plasmid. This results in 

homologous recombinants surviving on the CRsuc5% media since they no longer contain the sacB  

gene. The surviving colonies are tested by colony PCR to identify potential mutants. The 

potential mutants then have their genome extracted to serve as a template for PCR using primers 

that amplify the flanking regions of the gene of interest and undergo sequencing to confirm a 

knockout of a respective gene.  
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Bioinformatic Tools 

   

 NCBI/BLAST program was used to analyze and align DNA and protein sequences. 

Sequencing data from SOE products were analyzed using Chromas software, once analyzed the 

DNA sequence was aligned with R. leguminosarum ATCC 14479 genome using NCBI/BAST 

program to confirm. The DNA sequence of the histidine sensor kinase was also analyzed through 

NCBI/ BLAST to look for homologous sequences in other closely related species to identify 

potential functions.  

DNA sequences of the Hmu operon and sensor histidine kinase were analyzed through 

the EXPASY translation tool to obtain protein sequences. Once the protein sequences were 

obtained they were used to obtain protein models using SWISS-MODEL program. For the sensor 

histidine kinase and response regulator models, DNA, and amino acid sequences were compared 

to Xanthomonas campestris VgrRS system.      

Outer membrane Protein Extraction 

 

 R. leguminosarum ATCC 14479 cells were grown in 1 liter MMW broth containing 

200µM 2,2’-dipyridyl.  The cells were incubated at 30°C at 250 rpm for 72 hours. Cells were 

then collected by centrifuging cultures at 10000xg at 4°C, cells are then resuspended in 150ml of 

chilled 0.85% NaCl solution to remove exopolysaccharide. This NaCl wash procedure is 

repeated four times, once the exopolysaccharide is removed the cells are suspended in buffer A 

and sonicated by a Branson digital sonicator at 1 minute pulse and 1 minute pause at a 80% 

amplitude. Once sonicated the lysed cells were centrifuged for 10 minutes at 10000xg to collect 

the supernatant. The supernatant was subjected to ultra-centrifugation at 30000xg for 90 minutes 

at 4°C, the supernatant is removed and saved. The resulting outer membrane pellet is 



36 

 

homogenized in buffer B and subjected to ultra-centrifugation again, this collection and 

centrifugation process is repeated again for buffer D. The resulting pellet in the final 

centrifugation step with buffer D is collected and homogenized in 2ml of buffer D and stored at 

4°C until analysis of outer membrane proteins by SDS-PAGE.  

SDS-PAGE 

 

 The outer membrane profiles are analyzed by using Sodium Dodecyl Sulfate-

Polyacrylamide Gel Electrophoresis (SDS-PAGE) (Laemmli 1970). Protein samples were mixed 

with 2X loading dye and were kept at 95°C for 5 min. for the proteins to denature. Once 

denatured 20µl of protein were loaded on the SDS-PAGE gel, the gel was ran for 75 min. at 

30mA and 120V for one gel and 60mA and 120V for 2 gels. The gel was then stained with 

Coomassie Brilliant Blue and de-stained with a de-staining solutions.  

Hemin-Agarose affinity chromatography 

 

 The outer membrane proteins extracted in the 2,2’-dipyridyl condition were used in the 

hemin-agarose linked chromatography described by Battistoni et al. (1992) and Lee (1992). This 

is an affinity based chromatography which looks for hemin binding proteins. The outer 

membranes extracted from 1010 cells were resuspended in 500µl of a 50mM Tris-HCL (pH 8.0) 

and 1M NaCl solution and incubated  for 1 hr. at 30°C with 250µl of the hemin-agarose 

suspension. Nonadherent proteins were removed by incubation for 90 min. at 30°C with a 

solution containing: 10mM Tris-HCL (pH 7.8), 150mM NaCl, 10mM EDTA, 1% N-

laurylsarcosine, (W/V) and 0.1% SDS (W/V). The suspension was then centrifuged for 5 min at 

5000 xg, the supernatant is removed and used for SDS-PAGE analysis. The hemin linked 

agarose beads are then washed three times with a 50mM Tris-HCL (pH 8.0), 1M NaCl, 10mM 
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EDTA,0.75% (W/V) N-laurylsarcosine, and 0.075% SDS (W/V) solution. The hemin linked 

agarose was then washed once with a 50mM Tris-HCL (pH 8.0) and 1M NaCl solution. After 

each wash the hemin agarose beads were centrifuged for 5 min. at 5000 xg, finally the washed 

beads were suspended in 200µl of PBS and 200µl of the 2X Laemmeli buffer. This suspension 

was heated at 100°C for 5 min, the suspension was placed on ice for 1 min. and the agarose was 

pelleted by centrifugation for 5 min. at 750 xg. The supernatant was placed into a new collection 

tube and 10-20µl was used for SDS-PAGE analysis.  

Detection of Siderophores 

 

 During the hemin supplemented MMW media growth experiment, the supernatant of 

select conditions were tested for siderophore production. The supernatants were tested for 

siderophore production by incubating the supernatant in Chrome azurol S plates (CAS). These 

plates contain a dye that is a blueish green when iron is bound, and have an orange color when 

iron is unbound. If Vicibactin is present, it will strip the iron from the dye producing and 

orangish/ brown halo. The conditions tested for siderophore production were: 200µM 2’2-

dipyridyl, 10µM, 15µM, and 30µM. The supernatants were collected at 24, 48, and 72 hours. 

Each culture  had 150µl collected, then centrifuged at 10,000 xg’s at 4°C for 5 min. Then 100µl 

of the cell free supernatant was loaded into the well of a CAS plate, then this was allowed to 

incubate at 30° for 48 hours. After incubation any resulting halos were measured.  
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CHAPTER 3. RESULTS AND DISCUSSIONS  

Based on the previous work in our lab and getting the genome of R. leguminosarum 

ATCC 14479, we wanted to explore the effects of hemin as an alternate iron source. Studies in 

Bradyrhizobium and other strains of R. leguminosarum have shown that they were capable of 

utilizing different heme compounds in vitro (Nienaber et al. 2001 & Wexler et al. 2001). Due to 

the availability of the chromosomal DNA for R. leguminosarum ATCC 14479, it was possible to 

perform in silico analysis on genes predicted to be involved with hemin utilization. Once the 

putative gene cluster was identified, an effort was made to investigate hemin dependent iron 

utilization as well as  the role these putative genes play in hemin uptake and utilization 

Hemin Supplied Growth 

 

To determine the effects of hemin as the sole iron source on the growth of R. 

leguminosarum ATCC 14479, an iron depleted culture (containing  2’,2’-dipridyl)  was used to 

inoculate varying concentrations of hemin supplemented MMW broth. The growth of the 

cultures was monitored over 96 hours by plating 10 fold dilutions onto CR agar plates, the 

colony forming units were counted and log transformed to graph the growth curve (Figure 9). 

The iron depleted media (containing 2’,2’-dipridyl) had the lowest growth as predicted, and a 

concertation dependent increase in growth was observed in the case of hemin supplemented 

media. The 1.0µM hemin (gray line) had the lowest growth for hemin supplied media, while 

30µM hemin (red line) appeared to have the highest observed growth. The difference between 

the 15µM and 30µM hemin conditions was minimal (Figure 9 & 10), indicating the cell’s iron 

requirements are being met around these concentrations. There was a full log10 difference 

between the 2’,2’-dipridyl and 30µM hemin growth conditions, this difference in growth and 
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concentration dependent growth increase shows R. leguminosarum is capable of using hemin as a 

source of iron.  

 

Figure 9. R. leguminosarum ATCC 14479 aerobic growth curve of iron free and hemin supplied 

MMW media, error bars represent standard deviation. (n=3) 

 

 This growth study was then repeated but at the start of the 24 hour period the CFUs were 

measured every four hours up until the 48 hour period. This region was of interest because in the 

initial aerobic growth study it showed the best dose dependent relationship. The results of this 

24-48 hour growth period shows a dose dependent relationship that remains constant over the 24 

hour period (Figure 10.). This time point also maintains a full log deference in CFUs when 

comparing the hemin supplemented to the iron deplete (2’,2’-dipridyl) media. Since the 

difference between the 15µM and 30µM hemin supplemented media growth was minimal, we 

believe the cells are reaching sufficient intracellular iron levels. The means by which the hemin 
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is being used could be by the predicted Hmu operon or by the siderophore vicibactin striping the 

iron from hemin. Another potential increase in growth could be due to the natural degradation of 

the hemin over time releasing the complexed iron, allowing the many indirect iron acquisition 

systems to uptake the freed iron.   

 

Figure 10. R. leguminosarum ATCC 14479 aerobic growth curve of iron free and hemin 

supplemented MMW media, error bars represent standard deviation. (N=3) 

 

Since R. leguminosarum encounters heme compounds in the low oxygen environment of 

the root nodule, the effects of hemin supplied media on R. leguminosarum survival in an 

anaerobic environment were measured. The survival of the R. leguminosarum was tracked over 

96 hours in an anaerobic environment, only the higher concentrations of hemin were tested due 

to their increased effect on growth in aerobic conditions. The survival was measured in CFUs 

then log transformed to graph the survival curve (Figure 11). The 2’,2’-dipridyl supplemented 

media (yellow line) had the least impact on maintaining survival of the cell culture, while the 
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addition of hemin to the media results in drastic increase in cell survival. The highest increase in 

cell survival is observed at the 72-96 hour mark, at 72 hours all the hemin supplemented media 

had over a 1.5 log10 increase in cell survival compared to the 2’,2’-dipridyl supplemented MMW 

media. The largest margin of cell survival is when comparing the hemin and 2’,2’-dipyridyl 

supplemented media at the 96 hour point. There is a 2 log10 increase in survival in all the hemin 

supplemented media, compared to the 2’,2’-dipridyl supplemented media. Since R. 

leguminosarum is an aerobic bacteria the cells should fail to grow in an anaerobic environment, 

this is supported by observing no growth trend in the anerobic environment. The reason for the 

prolonged cell survival in the hemin supplied media, is most likely due to the ferric iron in hemin 

being reduced to its ferrous form. This reduction of iron occurs due to the anaerobic environment 

(Perez-Guzman et al. 2010). The ferrous iron is then released from the hemin molecule, in turn 

making the iron readily available for cell use. 

 

Figure 11. R. leguminosarum ATCC 14479 anaerobic survival curve of iron free and hemin 

supplied MMW media, error bars represent standard deviation (n=3). 
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Identification of Potential Mutants 

 

 After looking at the effects of hemin supplemented media had on the growth of R. 

leguminosarum ATCC 14479, we wanted to determine if the HmuPSTUV operon was 

responsible for hemin utilization. Splicing by Overlap Extension (SOE) was used to generate 

knockout genes for HmuU, HmuV, and a sensor histidine kinase. Both HmuU and HmuV were 

chosen for mutation due to their predicted function as an ABC transporter for heme compounds, 

but also due to their close proximity to each other in the operon. The sensor kinase was chosen 

due to recent research on TCS involvement in sensing iron both intracellularly and 

extracellularly (Wang et al. 2016). Once SOE knockouts were obtained, the plasmids containing 

the knockout gene constructs were confirmed by blue-white screening (appendix B), PCR 

analysis, and finally DNA sequencing. Blue-white screening was used on NEBα5 cells that had 

been transformed with the ligated pEX18 and SOE Product.  

The HmuU SOE PCR fragments were first checked on an agarose gel (figure 12), to 

determine if the fragments matched up with their predicted sizes. The fragments were then 

sequenced to confirm data was obtained for the crossover product, the sequences were aligned 

with the genome of R. leguminosarum ATCC 14479 to confirm the crossover product was 

indeed the gene of interest. The 5’ fragment was sequenced using SOEFA as the primer. The 

sequence showed a 98% nucleotide identity when aligned to the R. leguminosarum ATCC 14479 

Hmu operon. The 3’ fragment for the HmuU was sequenced using SOERA as the primer. The 

sequence showed a 99% nucleotide identity when aligned with R. leguminosarum ATCC 14479 

Hmu operon. The SOE product was then restriction digested and ligated into the pEX18 suicide 

vector. This ligation product was then transformed into competent NEBα5 cells, the resulting 

transformant were then screened by blue-white screening on X-gal containing LBGM media. 
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White colonies were then used for colony PCR to check for the SOE product, if the SOE product 

was found these cells were then used for triparental mating.  

 

Figure 12. Gel of HmuU SOE PCR products, Lanes: 1. 1kb ladder, 2. 5’ fragment, 3. 3’ 
fragment, 4. SOE crossover product. Sequence data for fragments in APPENDIX B  

 

 

1.    2.        3.        4. 

3.0kb 

1.2kb 



44 

 

The PCR products for HmuV were checked on an agarose gel (Figure 13), then the 

products were sequenced. the sequence alignment was repeated for the HmuV construct, only the 

3’ sequence was obtained (appendix B). This could be due to DNA sequencing issues, impurities 

in plasmid sample or primers. The primer used for the 3’ sequence was SOEVR (appendix B), 

the sequence alignment with R. leguminosarum ATCC 14479 Hmu operon was a 97% nucleotide 

identity. The SOE product was then restriction digested and ligated into pEX18 suicide vector,  

the ligation product was transformed into competent NEBα5 cells. The resulting transformants 

underwent the same blue-white screening as the HmuU construct, and white colonies were 

confirmed to contain the HmuV SOE construct via colony PCR. 

 

Figure 13. Gel of HmuV SOE PCR products, Lanes: 1. 1kb ladder, 2. 5’ fragment, 3. 3’ 
fragment, 4. SOE crossover product. Sequence data for fragments in APPENDIX B   

1.     2.     3.    4. 

3.0kb 

1.2kb 
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The SOE PCR products for the sensor kinase were first confirmed on an agarose gel 

(figure 14), then fragments were sequenced (appendix B) to determine if the SOE construct was 

the intended product. The 5’ product was sequenced using the primer SOEF2SK, and SOER2SK 

for the 3’ fragment. The 5’ and 3’(appendix B) fragments sequence were aligned with R. 

leguminosarum ATCC 14479 genome. The SOE product underwent the same restriction 

digestion and ligation as the Hmu SOE products. The blue-white screening was repeated, with 

white colonies undergoing colony PCR to look for the presence of the senor kinase SOE product. 

Confirmed cell lines were then used for triparental mating.  

 These confirmed NEBα5 cell lines were used for tri parental mating to obtain a R. 

leguminosarum merodiploids. Only one merodiploid was obtained for the three constructs, The 

sensor kinase was the only merodiploid obtained. The reason for unsuccessful conjugation could 

 1.    2.     3.    4. 

3.0kb 

1.2kb 

Figure 14. Gel of senor kinase SOE PCR products, Lanes: 1. 1kb ladder, 2. 5’ 
fragment, 3. 3’ fragment, 4. SOE crossover product. Sequence data for fragments 
in APPENDIX B  
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be due to F pilus being damaged during the mixing stage. Another potential reason could be 

exopolysaccharide preventing the formation of the sex pilus. One potential merodiploid for the 

HmuU gene was found out to be a PRK2013 E. coli helper strain that had integrated the ΔHmuU 

pEX18 plasmid into its genome. This was determined by amplifying and sequencing the 

potential HmuU mutant’s 16s gene sequence (Appendix B). The Sensor kinase merodiploid had 

its flanking regions analyzed, upon PCR analysis of the merodiploids flanking regions (Figure 

15) showed the SOE product under went illegitimate recombination during the first crossover 

event. This result from the gel was further supported by having these fragments sequenced and 

seeing no integration in the genome with the deleted construct. Both the sequences of the  -5’ and 

3’ fragments showed no signs of a crossover event occurring in these regions (appendix B). This 

illegitimate recombination event in the sensor kinase merodiploid is most likely due to another 

region of homology between the SOE product flanking regions and the genome. The exact site of 

this recombination is unknown; however, Inverse PCR could be used to determine the integration 

site.     

 

Figure 15. Left gel is a PCR of the 3’ flanking region, the right 
gel is of the 5’ flanking regions.  3’ primers: SOEFB & 
SOERSK. 5’ primers: SOERB & SOEF2SK 
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Sensor Histidine Kinase In silico Analysis  

 

 During sequencing analysis of the Hmu operon and the flanking regions both upstream 

and downstream, it was found that these flanking regions showed conserved genes. Upstream of 

the Hmu operon is a conserved TonB and downstream is a Two-component system (TCS) (figure 

16.) Since this region of DNA had these conserved genes a Blast analysis (Appendix B) was 

performed on this region to compare sequence identity to related species.  

 

Figure 16. TonB and TCS near Hmu operon in R. leguminosarum ATCC 14479 genome. NCBI 

ref. seq. NZ_CP030760.1 (1,963,826-1,974,106). Unmarked proteins are hypothetical proteins 

with no assigned function 

 The Blast analyses showed high similarity to gene sequences in 26 other R. 

leguminosarum strains with high nucleotide identity (>90%). TonB has been shown to be 

involved in heme utilization, but the involvement of this two component system has not been 

investigated (Wexler et al. 2001). A newly described TCS in Xanthomonas campestris called the 

VgrR/S system, which was shown to be involved in sensing both intracellular and extracellular 

iron levels (Wang et al. 2016). Since this system was shown to be involved in the iron stress 

response, we compare the VgrS DNA and protein sequences to our uncharacterized sensor 

kinase. Aligning these protein sequences (Figure 17) shows very little homology except in one 

location, this location in the VgrS gene is the known phosphorylation site. The phosphorylation 
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site in VgrS is the histidine in the 186 amino acid position, and the predicted phosphorylation site 

in R. leguminosarum ATCC 14479 is the histidine in the 134 amino acid  position. This region 

could be confirmed in future studies by site directed mutagenesis targeting this predicted 

phosphorylation site.   

 

Figure 17. Alignment of R. leguminosarum sensor kinase (query) and Xanthomonas campestris 

(subject), the red lines indicate the phosphorylation site 

 

Since the alignment with VgrS shows very little homology in the protein alignment, DNA 

and protein sequences of the sensor kinase was analyzed by NCBI BLAST and compared to 

other rhizobium species. This sensor kinase was found to belong to a new family of sensor kinase 

called the HWE/ HisKA2 sensor kinases. This family of sensor kinases differs from other sensor 

kinases because it lacks the F box rather, HWE kinases contain a H-box, N-box and a G1-box. 

Analysis of the protein sequence showed the R. leguminosarum sensor kinase contains these 

regions that defines the HWE family (figure 18 and appendix B) of the sensor kinases.     
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Figure 18. H box in HWE sensor kinase, query sequence is R. leguminosarum ATCC14479 

sensor kinase (N and alignments in APPENDIX B) 

 

 The HWE family of sensor kinases is a newly described family of kinases that has not 

been studied in-depth. The main mode of study has been in silico looking for conserved motifs, 

These conserved motifs differ from other sensor kinases. The H box (figure 18) contains a 

conserved histidine residue, this H-box is in R. leguminosarum’s sensor kinase. This H-box also 

matches up with the phosphorylation site predicted by the VgrS alignment. Upon further protein 

sequence alignments shows the R. leguminosarum sensor kinase contains the N-box (appendix 

B), which is defined by a conserved asparagine residue flanked  by an unusual consensus 

HELATNAXKYGALS (Karniol and Vierstra 2004). The protein sequence alignment also 

confirmed the presence of the G-box (figure 19), this region is defined by a rich glycine region 

on the C-terminus of the protein. Since this R. leguminosarum sensor kinase contains these 

motifs it is confirmed to belong to the HWE family of senor kinases, this family has been shown 

to be active in phosphorelays in α- and γ-proteobacteria (Karniol and Vierstra 2004). This family 

is believed to be involved in multiple roles of environmental signaling due to the presence of 

methyltransferase domains (Karniol and Vierstra 2004).  

HRxxN 
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Figure 19. G1-3 box alignment of the R. leguminosarum’s sensor kinase with other HWE sensor 
kinases 

  

 The final in silico analysis performed was protein modeling, the protein sequence was 

analyzed through the SWISS-MODEL program. The protein model (figure 20) shows a structure 

consistent with a sensor kinase. The protein model shows a hydrophobic transmembrane region, 

a cytoplasmic domain containing α-helices, and sensor domain. With all the available data it is 

concluded the R. leguminosarum’s sensor kinase belongs to the HWE family of sensor kinases, 

however the exact function could not be confirmed. Future studies involving  mutations in the 

predicted phosphorylation region will be able to elucidate the function of this sensor kinase. 

Based on the putative role of HWE sensor kinases in sensing a potential wide range of 

environmental changes, such as iron and flavonoids concentration in the environment. So 

mutants should be tested for their ability to sense flavonoids for root nodulation and the ability to 

sense changes in intracellular and extracellular iron levels. 
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Figure 20. SWISS-MODEL of R. leguminosarum’s HWE sensor kinase with top and side views, 

bottom picture is the X. campestris VgrS sensor kinase 

 

Hemin Binding Proteins  

 

 Since the growth data support that R. leguminosarum ATCC 14479 is capable of utilizing 

heme compounds as a source of iron we wanted to investigate for any heme binding proteins. In 

silico analysis performed to check for the presence of heme binding proteins. This analysis 

showed that R. leguminosarum ATCC 14479 contains a putative heme binding protein that is 

homologous to Sinorhizobium meliloti 242’s ShmR protein (Amarelle et al. 2008, and Battistoni 

et al. 2002). This protein was shown to be a TonB dependent heme binding protein, and in S. 

meliloti ShmR expression is directly related to the presence of exogenous heme. A nucleotide and 

protein blast alignment was performed (Figure 24 and 25) for R. leguminosarum’s ShmR 
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homologue. The nucleotide alignment showed a 70% match when aligned with S. meliloti’s 

ShmR gene (appendix B). while the Amino acid alignment showed a 65% match (Figure 21).  

 

 

Figure 21. Amino acid alignment of R. leguminosarum ATCC 14479 TonB dependent Heme 

receptor 

 The final heme receptor in silico analysis performed was protein modeling. The amino 

acid sequence for both R. leguminosarum’s putative TonB dependent heme receptor (figure 22), 

and S. meliloti ShmR receptor were modeled using SWISS-EXPASY. The models were built 

using the crystalized heme receptor ShuA from S. dysinteriea, the models were then aligned for 

comparison (figure 23), the green represents similar residues while red is dissimilar residues 
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Figure 22. R. leguminosarum ATCC 14479 putative TonB dependent heme receptor. Grey rings 

represent membrane annotation 

 

 

Figure 23. R. leguminosarum ATCC 14479 putative TonB dependent heme receptor and S. 

meliloti model alignment. Green = similar residues, red= dissimilar residues, white= extra 

residues 
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Detection of Siderophores 

 

While investigating the growth of R. leguminosarum ATCC 14479 in hemin 

supplemented MMW media we also looked for siderophore production. The main siderophore R. 

leguminosarum ATCC 14479 produces is vicibactin (Wright et al. 2013). Vicibactin is a 

hydroximate siderophore, it is a cyclic siderophore that binds ferric iron by using three 

hydroximate groups (Wright et al. 2013). We tested for vicibactin production by collecting the 

supernatants of MMW supplemented with hemin as the sole source. The conditions tested were: 

200µM 2’,2’-dipyridyl, 10µM hemin, 15µM hemin, and 30µM hemin. The supernatants were 

collected at 24, 48, and 72 hours and loaded into wells on CAS media. CAS media was used due 

to the color change when iron is striped from the iron-dye complex. When iron is bound to the 

dye it has a blue-green color, and when iron is stripped from the dye it produces an orange to 

brown color. The supernatants of the tested conditions failed to produce halos on CAS media 

(Appendix B). No siderophore was detected in the conditions tested. This is due to the biphasic 

relationship between iron concentration and siderophore production (Wright 2010). This biphasic 

relationship shows that a certain minimum of iron in the media is needed to stimulate 

siderophore production. Then when the intracellular iron concentration reaches a certain level it 

represses genes involved in siderophore production (Wright 2010). The reason for no halos being 

observed indicates that the cells already reached optimum intracellular iron levels in the hemin 

supplemented media. In the 200µM 2’,2’-dipyridyl supplemented media the iron concentration 

was too low to stimulate siderophore production.          
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CHAPTER 4. CONCLUSIONS 

The Present work was carried out to further confirm the work previously done in the lab 

reporting the genetic presence of the HmuPSTUV operon and the ability of R. leguminosarum 

ATCC 14497 to utilize heme compounds as a sole source of iron (Shushant 2017). The presence 

of this operon was confirmed once the whole genome for R. leguminosarum ATCC 14479 was 

sequenced. The HmuPSTUV operon showed high similarity too operons from other Rhizobium 

species that are shown to be involved in hemoglobin and leghemoglobin utilization.  

Attempts were made to mutate select genes in the Hmu operon. The genes selected for 

mutation were HmuU/V along with the putative sensor kinase. The plasmids containing the SOE 

products were confirmed to contain the correct DNA sequence for the desired SOE product. The 

issues occurred in the conjugation stage, this could be due shearing of the F pilus or 

exopolysaccharide blocking the formation of the F pilus.    

 The growth data for R. leguminosarum ATCC 14479 in media supplemented with hemin 

as the sole source of iron show that it is capable of utilizing hemin. In the aerobic condition a 

dose dependent relationship was observed, the more hemin supplied the more growth was 

observed. These aerobic growth data support the hypothesis that R. leguminosarum ATCC 14479  

is capable of utilizing the iron in hemin, but the means by which the iron is being utilized is 

unconfirmed. R. leguminosarum’s hemin supplied growth plateaued between 15µM to 30µM, 

this plateauing is most likely due to the cells reaching optimum intracellular iron levels. This 

potential reason for this plateauing is further supported by work done on a homologous system in 

S. meloti. They found that HmuS (hemin degrading factor) is involved with hemin utilization 

when heme is present at a concentration of 0.5µM-50µM (Amarelle et al. 2016).    
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 Since Rhizobium species encounter leghemoglobin in a reduced oxygen environment the 

growth of R. leguminosarum supplemented with hemin in an anerobic environment was 

investigated. The growth data for anaerobic supplied hemin media show that R. leguminosarum 

ATCC 14479 is incapable of growing in an anaerobic environment. The addition of hemin to the 

media results in prolonged cell survival, this survival is most likely due to the iron in hemin to be 

reduced to Fe+2. This reduction of iron results in its release from the hemin molecule, making the 

iron readily available for uptake by direct iron acquisition systems.  

 Due to an unavailability of Hmu mutants to investigate how the hemin bound iron is 

being utilized, we looked for the presence of heme binding proteins. In silico analysis was 

performed looking for the presence of heme binding proteins in R. leguminosarum ATCC 14479. 

The results showed a putative TonB dependent heme binding protein, further analysis showed it 

was homologous to the heme receptor ShmR in S. meliloti. This receptor was found to be TonB 

dependent and vital for heme utilization (Amarelle et al. 2008). The R. leguminosarum ShmR 

homolog has a 70% nucleotide and 65% amino acid match compared to ShmR. The outer 

membranes of iron starved R. leguminosarum cells were extracted and analyzed for heme 

binding proteins. Attempts to detect any heme binding proteins in the outer membrane extracts  

failed, this was most likely due to procedural errors in the outer membrane extraction.  

 The culture supernatants from the hemin utilization experiment were tested for 

siderophore production. The hemin supplemented media tested failed to produce siderophores, 

most likely due to the cells already reaching the level of iron which would repress siderophore 

production.  

 Since genomic analysis showed the presence of a conserved sensor kinase in close 

proximity to the HmuPSTUV operon, the senor kinase was investigated via in silico analysis. The 
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sensor kinase had homologous amino acid sequence to Xanthomonas campestris sensor kinase 

VgrS, which senses intra- and extracellular iron levels. The protein sequence alignment shows 

very little homology, but the alignment had some homology around the VgrS phosphorylation 

site. The protein sequence was aligned with sensor kinases in the Rhizobium family. These 

alignments showed the sensor kinase belongs to the newly investigated HWE sensor kinase. This 

family of proteins is believed to be involved with sensing environmental changes. Future work 

with mutating the predicted phosphorylation site could elucidate potential functions of this senor 

kinase in sensing environmental changes. The mutant of this sensor kinase should be tested for 

its involvement in iron sensing and flavonoid detection since these are two of the major 

environmental changes that Rhizobium species must sense.     
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APPENDICES 

Appendix A: Media and Buffers 

 

Luria Broth (LB) 

Tryptone             10.0g 

Yeast Extract      5.0 g 

NaCl                   10.0g 

ddH2O                1L        

Dissolve ingredients, pH to 7.0 and autoclave 

For LB agar plates: 

agar:                   15.0g   

                             

Yeast Extract Mannitol Broth (YEM)/ Congo Red agar (CR)   

Mannitol            4.0g 

K2HPO4             0.2g 
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MgSO4               0.08g 

NaCl                   0.04g 

Yeast Extract      0.4g 

ddH2O                 400ml   

dissolve ingredients, adjust pH to 6.8 and autoclave  

For CR agar plates: 

Agar                    12.0g 

1.0% Congo Red dye solution 1ml  

dissolve ingredients, adjust pH to 6.8 and autoclave                            

                                              

Modified Manhart and Wong (MMW) 

Dextrose              6.0g 

Glutamate            1.5g 

KH2PO4               1.0g  

K2HPO4               0.764g    

MgSO4                 0.18g    

CaSo4*2H2O       0.13g   

ddH2O                 to 1L  

Dissolve ingredients, adjust pH to 6.8, and autoclave, post autoclave add 1ml of concentrated 

vitamin and trace minerals solution per 1L of basal media  

 

Vitamins and Trace Mineral solution (MMW) 

H3BO3                                 145.0mg 

CuSO4*5H2O                     4.37.0mg  

MnCl2*4H2O                     4.3.0mg  

ZnSO4*7H2O                     108.0mg  

Na2MoO4*2H2O                250.0mg   

CoCl2*6H2O                      10.0mg  

Na2EDTA*2H2O               250.0mg     

Riboflavin                          10.0mg  

Ρ-aminobenzoic acid          10.0mg    

Nicotinic acid                     10.0mg  

Biotin                                  12.0mg     

Thiamine HCl                     40.0mg  

Pyridoxine HCl                   10.0mg   

Calcium Panthenate            50.0mg    

Inositol                                50.0mg    

Vitamin B12                       10.0mg 

ddH2O                                 to 100ml 

Mix ingredients, filter sterilize, wrap in aluminum foil and store at 4°C  

 

Chrome Azurol S (CAS) 

MOPS                                 15g    

NaCl                                    0.25g 

K2HPO4                                              0.15g     
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NH4Cl                                 0.05g           

L-asparagine                       2.5g              

Agar                                    7.5g                  

ddH2O                                500ml                  

pH media to 6.8 with 5M NaOH and autoclave. Then warm 50% sucrose solution and CAS 

indicator solution in water bath. Add 10 ml of sucrose solution per 500ml of media and add 50ml 

of CAS indicator solution to basal media and mix while avoiding bubbles. 

CAS indicator solution  

Iron III solution  

Fe3Cl * 6H2O                    27.0mg  

12M HCl                           83.3µl 

ddH2O                               100µl 

 

Solution A 

Chrome azurol S dye        60.5mg  

ddH2O                               50ml   

Dissolve CAS dye is water then add 10ml of iron III Solution 

 

Solution B 

HDTMA                           72.9mg       

ddH2O                               40ml  

Dissolve HDTMA in water then add solution B to a mixing solution A. Once added autoclave 

the CAS indicator dye and store in dark area. Before adding to basal CAS media warm dye 

and 50% sucrose solution in 50°C water bath  

 

2X YT broth 

Bacto Tryptone                           16.0g 

Yeast Extract                              10.0g 

NaCl                                            5.0g 

H2O                                             1.0L  

pH to 7.0 with NaOH and autoclave  

 

Transformation Buffer 1 (100ml)            

Rubidium Chloride                     1.209g 

Manganese Chloride                   989.5mg 

Potassium Acetate                       294mg      

Calcium Chloride                        147mg 

Glycerol                                       15ml (15% V/V)  

ddH2O                                          85ml 

Adjust pH to 5.8 with 1M acetic acid (do not overshoot) then autoclave and store room 

temperature                                         
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Transformation Buffer 2 (100ml)                     

MOPS                                          209.3mg   

Rubidium Chloride                      120.9mg 

Calcium chloride                         1.103g 

Glycerol                                       15ml (15% V/V)          

ddH2O                                          85ml    

Adjust pH to 6.5 with KOH (do not overshoot) autoclave and store room temperature 

 

0.025M Hemin Solution  

Lyophilized hemin                        815.0mg 

1.4 M Ammonium hydroxide       50ml 

Mix ingredients, heat in 95°C water bath for less than 5 minutes, mix until solution cools 

down to room temp the filter sterilize and store at 4°C  

 

 

SDS-PAGE Solutions  

Stacking Gel Buffer (pH 6.8) 

0.5M Tris 

ddH2O 

 

Resolving Gel buffer (pH 8.8) 

1.5M Tris 

ddH2O 

 

 

Tris-Glycine SDS Buffer (10X) 

Tris                                                   0.25M 

Glycine                                             1.92M  

Sodium Dodecyl Sulfate (SDS)        1.0% (W/V) 

ddH2O                                               1.0 L   

                                                               

SDS-PAGE gel       

     Stacking  Resolving (12%)                                    

30% Bis-arylamide                             0.66ml                                 3.0ml 

Stacking gel buffer                             1.26ml                                    - 

Running gel buffer                                -                                         1.88ml 

ddH2O                                                 3ml                                       2.52ml 

10% SDS                                            50µl                                      75µl      

10% APS                                            25µl                                      37.5µl         

  TEMED                                               5µl                                       3.75µl   
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Coomassie Blue Staining solution    

Coomassie R-250                                  0.1% (V/V) 

Methanol                                               50% (V/V) 

Glacial acetic acid                                 10% (V/V) 

ddH2O                                                    40% (V/V) 

  

              

2X Laemmli Buffer  

SDS                                                         4% (W/V) 

Glycerol                                                  20% (V/V) 

1M Tris pH 6.8                                       120mM 

Bromophenol Blue                                  0.02 (W/V) 

ddH2O                                     

 

SDS-PAGE Destaining solution 

Methanol                                      50% (v/v) 

Glacial acetic acid                        10% (v/v) 

ddH2O                                           40% (v/v)       

 

 

 

 

 

 

Appendix  B: Supplemental Data  

 

Primers for HmuU SOE, underlined portions bind to R. leguminosarum’s genome   

Primer name  Primer sequence (5’-3’) 
SOERHU CGTGACGTTAGCGTACGAGGACTAAGAATACGCTGGACGGCATGTTGCTGATGACGTCGAGG 

SOEFHU CCGTCCAGCGTATTCTTAGTCCTCGTACGCTAACGTCACGTGATCTTCGCGGATGTCCTGG     

SOEFA CGATGGTACCGACGCATGGCGCGAGATCATGG  

SOERA GCTATCTAGATGGCTCATGGCTGTCTCCATTGG  

 

Primers for HmuU full gene amplification  

Primer Name Primer sequence (5’-3’) 
HmuUF CGTCTACCTGCTCGGCTTCG 

HmuUR GATCATCTAAATGTCACTCACGG 
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Internal HmuU primer, works with SOEFHU to amplify if internal gene sequence is present   

Primer Name  Primer sequence (5’-3’) 
HmuUIntF ATCCTGCGTATGGCGATCGG 

 

Primers for HmuV SOE, underlined portions bind to R. leguminosarum’s genome  

Primer name  Primer sequence (5’-3’) 
SOEHmuVF CCGTCCAGCGTATTCTTAGTCCTCGTACGCTAACGTCACGCATCGTTGAGGTGCTGACG 

 

SOEHmuVR CCGTCCAGCGTATTCTTAGTCCTCGTACGCTAACGTCACGCATCGTTGAGGTGCTGACG 

 

SOEVR GCTATCTAGATGCGAGTGCGCATAGAGCGA 

SOEVF CGATGGTACCGAGGATGCCTCGATCCTCG 

  

Primers for HmuV full gene amplification  

Primer name  Primer sequence (5’-3’) 
HmuVF GGATCCTGCTGAGACAGCG 

HmuVR CGGTTACCTCTGTCGGTACT 

 

Internal HmuV primer, Works with SOEVR to give amplification if internal gene portion is 

present. 

Primer name Primer sequence (5’-3’) 
HmuVintF GCACGATCTCAATCTGACG 

 

Primers for Sensor kinase SOE, underlined portions bind to R. leguminosarum’s genome  

Primer name Primer sequence (5’-3’) 
SEOF2SK CCGTCCAGCGTATTCTTAGTCCTCGTACGCTAACGTCACGATATCGTCTGACCATTCCG 

SOER2SK CGTGACGTTAGCGTACGAGGACTAAGAATACGCTGGACGGGCGTAGAAGATCGACAGC 

SOEFB CGATGGTACCGATTAACCGCTCATTGAAGCC 

SOERB GCTATCTAGATGGTGGCGATGCCGTATTCG 

 

 

Primers for Sensor kinase full gene amplification  

Primer name  Primer sequence (5’-3’) 
SKF GTCAACGACATCCTCAAGACG 

SKR GATGGTGATCGCATCGACC 

 

Internal Sensor kinase primer, works with SOERB to amplify if internal gene portion is present. 
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Primer name Primer sequence (5’-3’) 
SKIntF GTTCTGCATGATCAGTCGG 

 

Primers for RT-PCR, Primers designed by IDT PrimerQuest tool.  

Primer Name  Primer sequence (5’-3’) 
HmuURTF CGGACATCCGCGAAATCA 

HmuURTR GCCTGTCGTCACCGAAA 

HmuPRTF CGAAAGCGCGGATCTCTT 

HmuPRTR AGAATGAGCTTGCCCTGAC 

VbsSRTF CTTCGAGAGCTTTCCACTGA 

VbsSRTR CGGGAAAGACCGTGTAGTT 

16sRTF TCGGAATTACTGGGCGTAAAG 

16sRTR CTCCAGATCGACAGTATCAAAGG 

 

 

 

 

 

 

 

 

 

Blue White Screening of pEX18 NEBα5 transformants 
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Blast of R. leguminosarum ATCC 14479 regions flanking the Hmu operon (bp 1,963,826-

1,974,106 compared to other Rhizobium taxid) 
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N-box alignment of R. leguminosarum ATCC 14479 sensor kinase compared to other known 

HWE sensor kinases. N box consensus HELATNAXKYGALS in HWE sensor kinases  
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16s DNA sequence alignment of E. coli cell that incorporated pEX18ΔHmuU plasmid. 
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Potential Sensor Kinase Merodiploid 3’ fragment DNA BLAST alignment (Primer SOEF2SK) 
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Potential Sensor Kinase Merodiploid 3’ fragment DNA BLAST alignment (Primer SOERB) 
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Potential Sensor Kinase Merodiploid 5’ fragment DNA BLAST alignment (Primer SOEFB) 
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Potential Sensor Kinase Merodiploid full sensor kinase gene amplification (primer SKF) 

 

  

 

Potential Sensor Kinase Merodiploid full sensor kinase gene amplification (primer SKR) 
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R. leguminosarum ATCC 14479 ShmR homolog nucleotide alignment with S. meliloti’s ShmR 

gene  
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R. leguminosarum Siderophore production CAS media assay 24 hour (From left to right: 200µM 

2’2’-dipyridyl, 10µM hemin, 15µM hemin, 30µM hemin. 

 

R. leguminosarum Siderophore production CAS media assay 48 hour (From left to right: 200µM 

2’2’-dipyridyl, 10µM hemin, 15µM hemin, 30µM hemin. 

 

R. leguminosarum Siderophore production CAS media assay 72 hour (From left to right: 200µM 

2’2’-dipyridyl, 10µM hemin, 15µM hemin, 30µM hemin. 
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CAS media indicator dye control (.5M EDTA) 
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