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ABSTRACT 

Characterization of SIP470, a Family 1 Lipid Transfer Protein and its Role in Plant Stress 
Signaling 

by 

Timothy Ndagi Audam 

 

SIP470, a putative tobacco lipid transfer protein, was identified in a yeast two-hybrid screen to 

interact with SABP2. SABP2 is a critical role in SA-mediated signaling in tobacco and other 

plants.  In vitro studies using purified recombinant SIP470 confirmed that it is a lipid binding 

protein. In an attempt to determine its role in mediating stress responses, Arabidopsis T-DNA 

insertion knockout lines lacking SIP470 homolog were used for the analysis. These mutant plants 

were defective in basal resistance against microbial pathogens. Expression of defense gene PR-1 

was also delayed in these mutant plants. Interestingly, these mutant plants were not defective in 

inducing systemic acquired resistance.  Besides biotic stress, these mutant plants also showed 

increased susceptibility to abiotic stresses. To directly study the role of SIP470 in tobacco plants, 

transgenic tobacco lines, with reduced levels of SIP470 expression, were generated using RNAi 

and transgenic lines overexpressing SIP470 were also generated.  
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CHAPTER 1 

INTRODUCTION 

Control of plant diseases is very important to the agriculture of the 21st century because 

of the steady increase in the world’s population (Alzadi et al. 2015). Different methods have 

been used to control plant diseases in the past although the principal and basic theme in plant 

control is similar in all organisms which include immunization, avoidance, exclusion, protection 

and immunization (Maloy 2005). The overall control of plant infection/infestation using 

pesticides has raised serious concerns about the food safety, environmental quality and pesticide 

resistance which have necessitated the need for an alternative pest/disease management system 

(Dordas 2009). Biological control has also been used and they offer a more environmentally 

friendly and safe alternative for controlling plant diseases but it has not been very effectively 

deployed on the fields (Emmert and Handelsman 1999). The most common practices of 

controlling plant diseases largely focus on genetic resistance of the host plants to pathogens and 

the effective management of plant and its environment. There is, however, a need for a new and 

effective solution to plant disease problems that provide effective control while minimizing 

negative consequences for human health and environment (Emmert and Handelsman 1999). 

It is, therefore, important to understand the mechanisms by which plants defend themselves 

from various biotic and abiotic stress in order to offer a possible solution to the rising concerns on 

food security globally. 

The Plant Immune System 

 

For plants to grow and reproduce, they must be able to overcome colonization by many 

plant microbes which are detrimental to their growth and survival. Plants generally use their 
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innate immune system to resist pathogens (Jones and Dangl 2006) which includes massive 

transcription of defense genes (Eulgem 2005). The first phase which is usually very quick and it 

is efficient in detecting microbial invaders is achieved indirectly by sensing wounds and injury 

related structures in the plants that signals danger (Matzinger 2002) or directly by detecting 

pathogen-associated molecular pattern (PAMPs) (Jones and Dangl 2006) such as flagellin and 

elicitins (Zipfel and Felix 2005). This process leads to the development of a PAMP-triggered 

immunity (PTI) (Jones and Dangl 2006). Through evolution, some pathogens have been able to 

suppress the PTI by producing several effector proteins (Block et al. 2008; Göhre and Robatzek 

2008) which lead to effector-triggered susceptibility (ETS) (Jones and Dangl 2006). Plants have 

evolved to protect themselves by recognizing these effectors by deploying the proteins like 

nucleotide binding-leucine rich repeat (NB-LRR)  proteins resulting in the second phase of plant 

immunity known as the effector-triggered immunity (Jones and Dangl 2006). Ultimately, the 

final outcome, whether the plants are susceptible to pathogens  dependent on a balance between 

the ability of plants to recognize and mount an effective response to the pathogen or the ability of 

the pathogen to suppress the host defense systems (Pieterse et al. 2009).  

Studies have revealed that both PTI and ETI stimulate various pathways in plants. 

Besides local defense signaling, ETI and PTI activate various long distance defense reactions 

such as systemic acquired resistance (SAR) and salicylic acid biosynthesis (Durrant and Dong 

2004), basal resistance (Jones and Dangl 2006), ethylene biosynthesis (Felix et al. 1999). 

Different pathways have been found to interact to bring about resistance against pathogens but 

not much is known about how PTI and ETI interact to bring about plant resistance. Recently, 

studies revealed that both PTI and ETI receptors reside in the same protein complex which 

makes it possible for the possible interaction of ETI and PTI signals at the very beginning (Qi et 
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al. 2011). However, global gene expression studies reveal that there is a temporal/quantitative 

difference between various players in plant immune system like PTI, ETI, basal resistance, or 

SAR rather than being qualitative (Katagiri 2004). This is highly suggestive of the fact that many 

pathogens trigger an interconnecting/common plant signaling network (Eulgem and Somssich 

2007). The importance of phytohormones such as salicylic acid (SA), jasmonic acid (JA), 

abscisic acid (ABA) and ethylene as crucial primary signals in local as well as systemic acquired 

resistance has been well documented (Van loon et al. 2006; Loake and Grant 2007). Changes in 

the hormone levels are induced by a variety of biotic and abiotic stress condition and they 

mediate a variety of adaptive plant response (Pieterse et al. 2009). 

Abiotic Stresses 

Plant response to different stresses is a very complex process and it involves changes 

from the transcriptome, cellular, and physiological levels (Atkinson and Urwin 2012). Recent 

studies have shown that plants respond differently to multiple stresses as compared to the way 

they would respond to individual stress, activating a specific cascade of gene expression which 

relates to the exact environmental conditions encountered (Atkinson and Urwin 2012; Kumar et 

al. 2014). Abiotic stresses are majorly controlled by the hormone abscisic acid (ABA) (Figure 1), 

while defense against different biotic stresses are controlled by an antagonistic mechanism 

between the salicylic acid (SA), jasmonic acid (JA) and ethylene signaling pathways creating a 

complex network of interacting pathways (Atkinson and Urwin 2012).  During vegetative growth 

of plants, conditions of water stress lead to an increase in the endogenous levels of ABA which 

helps to prevent water loss through transpiration by controlling the stomata aperture (Atkinson 

and Urwin 2012). ABA is also very crucial in triggering how plants respond to other adverse 

environmental stimuli (Zeevaart and Creelman 1988). The role of ABA in signaling abiotic stress 
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conditions using molecular approach have been extensively documented and it has been 

established that ABA-dependent mutants are affected in the regulation of various genes by cold, 

salt and drought (Zhu 2002). 

 

Figure 1: Chemical Structure of Abscisic Acid 

 

The biosynthesis of ABA is regulated by osmotic stress at multiple levels. ABA-

dependent and ABA–independent osmotic stress signaling first modify the vitally expressed 

transcriptional factors, which leads to the early expression of a transcriptional activator and this 

subsequently results in the activation of downstream stress tolerance gene (Zhu 2002). Salt and 

drought stress signal transduction consists of three pathways namely: ionic and osmotic 

homeostasis signaling pathways, detoxification (damage control and repair) response pathway, 

and pathways for growth and regulation. The ionic aspect of salt stress is signaled via the SOS 

(salt overly sensitive) genes (Zhu 2000) where a calcium-responsive SOS3-SOS2 protein kinase 

complex controls the expression and activity of ion transporters such as SOS1 (Zhu 2002). 

Osmotic stress then activates various protein kinases and phospholipid systems, generating an 

array of messenger molecules some which may function upstream of the activated osmotic stress 

protein kinase (Zhu 2002). 

There is also cross-talks between the different plant hormones (SA, ABA, and JA or 

ethylene). Studies have shown that ABA is a negative regulator of the salicylic acid-dependent 

defense transcript PR1 (Asselbergh et al. 2007), represses the systemic acquired resistance 
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(SAR) (Mohr and Cahill 2007) and prevents the accumulation of crucial defense compounds 

such as lignin and phenylpropanoids (Yasuda et al. 2008). Studies have also shown that SA can 

interfere with abiotic stress (Nemeth et al. 2002).  

Biotic Stresses 

Plant response to biotic stress starts from the point of recognizing pathogen-derived/ 

insect-derived proteins by activating some receptors, and this response leads to the synthesis and 

transport of three major defense hormones, salicylic acid (SA), jasmonic acid (JA) and ethylene 

(ET) (Howe and Jander 2008; Spoel and Dong 2008). While there are many other signaling 

molecules like calcium, which participate in defense signaling, these three hormones are the 

integral part of a coordinated defense against pathogens (Bilgin et al. 2010). SA helps mediate 

defense response to biotrophic pathogens while JA and ET generally help mediate defense 

against necrotrophic pathogens (Koornneef and Pieterse 2008). 

JA (figure 2A) and its methyl ester, methyl jasmonate (MeJA) (Figure 2B) are plant lipid 

derivatives that resemble mammalian eicosanoids in structure and biosynthesis. Jasmonic acid is 

distributed throughout higher plants and they are synthesized from linolenic acid via the 

octadecanoic pathway. Even though JAs are involved in diverse processes such as stomatal 

opening, root growth, tuber formation, fruit ripening and leaf senescence, they play very 

important roles plant defense against insects and microbial pathogens (Bari and Jones 2009). JA 

acts as a ‘’master switch’’ responsible for turning on a cascade on signals in response to 

pathogen attack (Wasternack and Parthier 1997). Studies involving mutants affected in JA 

transduction reveals that there are three main components of JA signaling: coronatine insensitive 

1 (COI1), jasmonate resistant 1 (JAR1) and jasmonate insensitive 1/MYC2 (JIN1/MYC2) (Bari 

and Jones 2009). The JIN1/MYC encodes a transcriptional factor that regulates some JA-
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responsive gene expression (Lorenzo et al. 2004), JAR1 encodes an enzyme called JA amino 

synthase that helps in the conjugation of isoleucine to JA; a bioactive molecule perceived by 

plants (Staswick and Tiryaki 2004; Thines et al. 2007) and COI encodes an F-box protein that is 

required for JA-mediated responses (Xie et al. 1998). With the recent discovery of jasmonate 

ZIM-domain (JAZ), our understanding of the molecular mechanism of JA signaling has been 

improving (Bari and Jones 2009). Studies have shown that COI1 complex acts as a receptor for 

JA-ile in Arabidopsis (Katsir et al. 2008). Studies have also revealed that JAZ protein acts as 

repressors of JA signaling which have been found  (JAZ1 and JAZ3) to interact with 

JIN1/MYC2 and inhibit the expression of JA-responsive genes (Bari and Jones 2009). JA 

signaling has also been implicated in the long-distance signaling leading to systemic immunity in 

Arabidopsis (Truman et al. 2007). It is, however, important to note that the mobile signal in SAR 

is not JA itself but most likely to be the jasmonates (Chaturvedi et al. 2008).  

 

 Figure 2: Chemical Structure of Jasmonates. A. Jasmonic Acid B. Methyl Jasmonate 

 

Ethylene (Figure 3) is an important modulator in the mechanism by which plants respond 

to pathogens. Ethylene biosynthesis is basically regulated by environmental and endogenous 

signals through the differential suppression of ACC synthase genes (Bleecker 2000; Lorenzo 

2004). Induced ethylene biosynthesis leads to activation of a signal transduction pathway which 
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consists of primary EIN3-like (Ethylene Insensitive 3) regulators and downstream ERF-like 

transcriptional factors (Broekaert et al. 2006). The ERF-like factor controls the expression of 

various effector genes involved in various aspect of plants ability to induce a systemic defense 

response (Broekaert et al. 2006). Studies have shown that there is a synergistic relationship 

between JA- and ET-signaling pathways to induce the effector genes of defense response (Ellis 

and Turner 2001). There are also reports that there is a significant cross-talk between the ET 

signaling and SA. This cross-talk which is majorly controlled by SA and jasmonate brings about 

a differentiated disease response.  

 

Figure 3: Chemical Structure of Plant Hormone Ethylene 

Salicylic acid (SA) (figure 4A) is a natural phenolic compound present in plants which 

induces the production of pathogen-related (PR) proteins. When plants are infected by a 

pathogen, the endogenous level of SA increases (Malamy et al. 1990). This is made possible by 

de novo synthesis of SA via the isochorismate pathway and/or the phenylpropanoid pathway 

(Halim et al. 2006). After synthesis, SA is subjected to various modifications such as amino acid 

conjugation, methylation, and glycosylation (Loake and Grant 2007; Kumar et al. 2015). All 

these modifications lead to an effective functional use of SA in plants. For instance, 

glycosylation inactivates SA but allows a high amount of SA to be stored in the vacuoles. 

Methylation of SA is very important for long distance signaling during pathogen infections and it 

also plays a role in systemic acquired resistance of plants (as well as signaling innate immunity 
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in plants (Kumar and Klessig 2003; Dempsey et al. 2011). Methylated SA (MeSA) (Figure 4B) 

is a volatile ester that is normally not present in plants but is surprisingly induced when plants 

are infected with a pathogen (Huang et al. 2003). MeSA is synthesized by SA carboxyl 

methyltransferase (SAMT) (Loake and Grant 2007). A study has shown that Arabidopsis plants 

that are overexpressing Oryza sativa OsBSMT1 accumulated MeSA and MeBA (methyl benzoic 

acid) and infecting this mutant with Pseudomonas syringae resulted in a reduced accumulation 

of SA, the inactive glycoside (SAG) (Koo et al. 2007). It is important to note that MeSA alone is 

ineffective in inducing a defense response but can function as a volatile signaling molecule 

during infections by pathogens (Loake and Grant 2007; Park et al. 2007). in tobacco plants, 

conversion of MeSA to SA acid appears to be catalyzed by a methylesterase enzyme with high 

affinity for salicylic acid known as SABP2 (salicylic acid binding protein 2). SABP2-silenced 

tobacco plants were compromised in inducing both local and systemic acquired resistance 

(Kumar and Klessig 2003). 

Figure 4: Chemical Structure of Salicylates. A. Salicylic Acid B. Methyl Salicylate 

Salicylic Acid Binding Protein (SABP2) 

In an attempt to identify the full function of how SA function in plants, several putative 

effectors were identified which including catalase (Chen et al. 1993), ascorbate peroxidases 

(Chen et al. 1993) and carbonic anhydrase which all binds to SA with relatively low affinity 
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(Durner and Klessig 1995; Slaymaker et al. 2002; Kumar and Klessig 2003). Recently, several 

other SA-binding proteins were have been identified through high-throughput screens, which are 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and high mobility group box 1 (HMGB1) 

(Klessig 2016). SABP2 (figure 5) is a very low abundance (10 fmol/mg) soluble protein of 29 

kDa (Kilo Daltons) that exhibit a high affinity for SA (KD=90 nM). The binding to SABP2 to 

SA is generally reversible and specific to SA and its SAR inducing analogs (Kumar and Klessig 

2003).  Crystal structures of SABP2 confirmed that it belongs is a member if the α/β hydrolase 

superfamily of enzymes (Forouhar et al. 2005). Being a member of the α/β be hydrolase 

superfamily, the active site of SABP2 (figure 5) is defined by the presence of a catalytic triad, 

Ser-81, His-238, and Asp-210 (Forouhar et al. 2005). A study showed that SABP2 silenced plant 

in tobacco disrupted the local as well as the SAR against tobacco mosaic virus (Kumar and 

Klessig 2003; Park et al. 2007).  

 

Figure 5: Structure of SABP2 in complex with SA. This figure shows the stereo view of SABP2 
monomer in complex with SA. The core and the CAP domains are labeled. The secondary 
structure elements, α helices, β strands and loops are colored in yellow, cyan and magenta 
respectively. SA (in green is located in the active site as well as another site on the surface of the 
enzyme (Adopted from Forouhar et al. 2005). 
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SABP2 Interacting Proteins (SIP) 

In order to learn more about the role of SABP2 in protecting plants against pathogens 

through its role in SAR, a yeast two-hybrid screening was performed using SABP2 as a bait and 

tobacco leaf proteins as preys. It was discovered that SABP2 interacts with several tobacco leaf 

proteins such as SIP470 (SABP2-Interacting Protein 470) (Figure 6) (Kumar et al. unpublished). 

Nucleotide analysis of SIP470 reveals that it belongs to a non-specific lipid transfer protein type 

1 (nsLTP1) subfamily (Chapagai 2014). 

 

Figure 6: Predicted protein structure of SIP470. SIP470 has 5 alpha helices. 

 

SA, SABP2 and SAR 

As mentioned earlier, SA can be synthesized from both phenylalanine and chorismate 

pathways but the major pathway for de novo synthesis during an active pathogen infection is 

through the chorismate pathway that is catalyzed by the isochorismate synthase (ICS) 

(Wildermuth et al. 2001). Arabidopsis mutants lacking ICS are compromised in SAR when 

challenged with pathogens (Wildermuth et al. 2001). Studies suggest that an alternative and rapid 

way to generated SA is through the activity of SABP2 (Grant and Lamb 2006). Since SABP2 

converts MeSA back to SA in vitro (Figure 7), this suggests that SABP2 might generate SA from 

signal-competent MeSA during SAR (Kumar et al. 2006). 
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Figure 7: Plants systemic immune response. Development of SAR. SABP2 is an important 
component in SAR signal (Redrawn from Klessig: http://bti.cornell.edu/) 

 

Lipids as Signals in SAR 

 

Pathogen and host lipids, as well as lipid metabolites, have very important roles to play in 

pathogenesis as well as in the expression of defense genes in plants (Shah 2005). Lipid signals as 

well as Nitric Oxide (NO), SA, JA, and ethylene have all been implicated in SAR signaling 

(Grant and Lamb 2006). A possible role of lipid signaling in SAR is seen in a study in which 

mutants of the Arabidopsis stearoyl-acyl carrier protein desaturase (SSI2) suppressor of fatty 

acid desaturase 1 (sfd1) were compromised of SAR and had defective growth phenotype (Nandi 

et al. 2003). SFD1 encodes for an enzyme called dihydroxyacetone phosphate reductase that 

helps in forming the glycerol-3-phosphate backbone in glycerolipids (Grant and Lamb 2006). 

Even though SFD1 is required for the accumulation of SA locally and in distal parts of the 

plants, sfd1 mutant plants do not show compromise in basal resistance which suggests that they 

may be involved in the generation and translocation of SAR signals (Grant and Lamb 2006). 

This suggests the importance of lipid a signal transfer protein in plants defense. Plant lipid 

http://bti.cornell.edu/
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transfer proteins (LTPs) are potential candidates that are involved in transporting these lipid 

signal molecules. 

Plant Lipid Transfer Proteins (PLTP) 

Due to the hydrophobic nature of lipids or lipid derivatives involved in long-distance 

signaling of plants, they have to be transported by some soluble macromolecule structure 

(Moreau 1998). Lipid-protein complexes are an important component in many metabolic 

pathways but they can still function in different manners in cell signaling (Blein et al. 2002). An 

attempt to describe the role of these water-soluble complex in plants led to the discovery of non-

specific lipid transfer proteins (nsLTPs). Lipid transfer proteins (LTPs) are a group of small, 

basic, conserved, 9kDa proteins that are found in high amounts in higher plants (Kader 1996). 

LTPs have been characterized by their ability to bind to fatty acids in-vitro and in tier ability to 

transfer phospholipids between membranes (Garcia-Olmedo 1995). LTPs have been classified 

into two major families based on their biochemical properties. Despite the fact that both families 

of LTPs have several similarities like having a very high PI (approximately 9), conserved 8 

cysteine residues and a structure which consist of a hydrophobic cavity that is enclosed by four 

alpha helices, they differ generally in having a low sequence similarity and different molecular 

weight ranging from 9 kDa in family 1 LTP to 7 kDa in family 2 LTP (Yeats and Rose 2008).  

Family 1 lipid transfer proteins generally have three amphiphilic alpha helixes that are 

parallel to the hydrophobic lipid binding pocket (Yeats and Rose 2008). In addition to the 8 

conserved cysteine residues that is present in all LTPs, the family 1 LTPs have small 

hydrophobic amino acids such as Ile, Val, Leu and Ala that are predominant in the LTP sequence 

and functions in defining the hydrophobic binding tunnel (Yeats and Rose 2008). Family 1 LTP 

have a semi-conserved Tyr 79 that is responsible for an enhanced intrinsic fluorescence upon 
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lipid binding experimentally (Lullien-pellerin et al. 1999). Studies also show that this residue is 

responsible for forming hydrogen bonds with the polar heads of lipids (Charvolin et al. 1999; 

TassinMoindrot et al. 2000).  Studies using family 1 LTP isolated from rice (Oryza sativa) and 

wheat (Triticum aestivum) reveals that it binds to palmitic acid and L-a-phosphatidylcholine 

(Harvolin et al. 1999; Cheng et al. 2004). 

Family 2 lipid transfer proteins have four-alpha helix that is bound by four disulfide 

bonds that enclose a hydrophobic cavity that binds to lipids (Yeats and Rose 2008). One major 

difference between family 1 LTPs and family 2 LTPs is the nature of pairing between cysteines 5 

and 6 which makes the hydrophobic cavity of Family 2 LTPs smaller but more flexible, allowing 

for a variety of lipids including sterols to bind (Hoh et al. 2005). 

LTPs have been implicated in number biological roles like cell signaling, antimicrobial 

defense, cutin synthesis, and cell wall loosening but these functions have not been well 

correlated with their in-vitro activity or structure (Yeats and Rose 2008). 

Role of LTPs in Plants Defense 

In an attempt to identify novel proteins and genes responsible defense of plants against 

pathogens, the antimicrobial property of LTPs was discovered (Garcia-Olmmedo et al. 1995). In 

vitro screening of protein extracts from barley, Arabidopsis, spinach and onion suggested that it 

has a direct effect against fungal and bacterial pathogens (Cammue et al. 1995; Molina et al. 

1993; Segura et al. 1993). The mechanism of action of LTP that brings about its toxicity is not 

well understood, but it is most likely linked to the fact that LTPs promote membrane 

permeability in pathogens but not in the host cells (Regente et al. 2005). Analysis of the 

expression pattern of LTPs revealed that most isoforms are expressed upon pathogen challenge; 

this gave the first support for a defensive role for this group of proteins (Van Loon and Van 
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Strien 1999). Another evidence of the role of LTPs on defense has been using transgenic lines 

overexpressing LTPs (Yeats and Rose 2008). A study showing that a family 1 LTP from tobacco 

could act as a binding competitor and the strength of the binding was increased by LTP-jasmonic 

acid complex suggests an evidence for its role in defense signaling (Buhot et al. 2004).  

Role of LTPs in Plant Growth and Development 

LTPs are also implicated in vegetative growth and development of plants (Yeats and 

Rose 2008). Studies have shown that a family 1 LTP from lily styles along with pectin 

polysaccharides is necessary for pollen tube adhesion (Park et al. 2000; Park and Lord 2003). 

Family 1 LTP has also been shown to have an important role in cell expansion and growth by 

promoting cell wall loosening, but the mechanism of action is not well understood but it most 

likely depends on the presence of a hydrophobic cavity on LTPs (Nieuwlan et al. 2009). LTPs 

are also indicated in cutin synthesis by acting as a carrier of a lipid precursor required for cutin 

formation. While there is no direct evidence to support this, studies have shown the LTP 1 are 

expressed in the epidermis (Suh et al. 2005) and an increase in LTP expressing leads to the 

accumulation of wax (Hollenbach et al. 1997) supports the hypothesis that LTPs are involved in 

cutin synthesis. 

Role of LTPs in the Adaptation of Plants to Various Environmental Conditions 

LTPs could also play a role in helping the plant survive adverse conditions. Genes 

induced by cold treatment have been found to code for LTP-like proteins (Hughes et al. 1992). 

Other LTP genes have been found to respond to salt and drought stress (Kader 1996). Barley 

plants were found to express LTP gene in the roots and stems during drought stress (White et al. 

1994). A gene encoding for LTP-like protein in tomato is expressed in the stem when treated 
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with NaCl, mannitol, high temperature or ABA (Hughes et al. 1992). Just recently, a study 

involving overexpressed LTP 3 in Arabidopsis showed that the mutant had an increased 

tolerance to cold and drought (Guo et al. 2013). 

Arabidopsis LTP12  

LTP12 are members of the PR-14 family that are highly expressed in inflorescences 

while their expression in seedlings and leaves of plants are relatively low (Huang 2013). 

Microarray study on the Arabidopsis genome transcript expression revealed that LTP12 are 

induced upon pathogen challenge (Kilian et al. 2007). Arabidopsis mutant ltp12 with a seed 

stock number CS736658 was used in this research. It has a T-DNA insertion in the intron of the. 

LTP12 gene of wild-type Arabidopsis (Colombia-0). Binary vector (pAC161) that contains the 

sulfadiazine open reading frame was transformed into the plant by Agrobacterium-mediated 

transformation. The mutant is selected in the greenhouse by a sulfadiazine resistant marker 

(Rosso et al. 2013; Chapagai 2014). Not much is known about this mutant so far. 

Arabidopsis LTP2 

 Promoter analysis of LTP2 shows the presence of a box 3 and 10 base pair sequences 

TCATCTTCTT (Thoma et al. 1994). Box 3 is generally conserved in promoters of Arabidopsis 

phenylalanine ammonia lyase (PAL) and bean chalcone synthase (CHS) genes. PAL is involved 

in phenylpropanoid pathway which is found to be involved in defense (Bagal et al. 2012) while 

the CHS is involved in the accumulation of a stress metabolite called isoflavonoid phytoalexins 

and is also involved in the SA-mediated defense pathway (Dao et al. 2011). LTP2 is highly 

expressed in developing seeds, leaves and in flowering plants (Arondel et al. 2000). It also shows 

some expression in the epidermis and sub-epidermis of the flower and embryo organs (Clark and 
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Bohnert 1999). Microarray study on the Arabidopsis genome transcript expression revealed that 

LTP2 are also induced upon pathogen challenge (Kilian et al. 2007). Arabidopsis ltp2 mutant 

with a stock number CS736752 was used in this research. It has a T-DNA insertion in the intron 

of the LTP 2 gene of the wild-type Arabidopsis (Columbia-0). Binary vector (pAC161) that 

contains the sulfadiazine open reading frame was transformed into the plant by Agrobacterium-

mediated transformation. The mutant is selected in the greenhouse by a sulfadiazine resistant 

marker (Rosso et al. 2013; Chapagai 2014). Not much is known about this mutant so far. 

Previous Studies on SIP470 

Gene Expression of SIP470 upon Pathogen Infection 

 

The changes in expression of SIP470 in tobacco plants infected with various plant 

pathogens, for example, TMV, Pseudomonas syringae pv. tabaci (P.s. tabaci) (a host-pathogen), 

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Pseudomonas syringae pv. 

phaseolicola (P.s. pv. phaseolicola) was carried out (Simo and Kumar unpublished). Results 

revealed that SIP470 is induced upon exposure to both host and nonhost pathogens (Simo and 

Kumar unpublished). 

Growth Phenotype Analysis of ltp12 and ltp2 Mutants 

 

In order to study the putative role of SIP470 in plants, the closest homologs of SIP470 in 

Arabidopsis, T-DNA insertion mutants LTP12, and LTP2 were used. Both Arabidopsis LTP2 

and LTP12 show 53% and 46% similarity to SIP470 respectively (Chapagai 2014). Growth 

phenotype analysis of these mutants  revealed that both mutants had a defective growth 

phenotype when compared to the wild-type (Col-0) with ltp12 having the most significant 
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defective in height, the number of leaves, bolting time, inflorescence emergence time and silique 

formation time (Chapagai 2014). 

Cloning, Expression, Purification and Lipid Binding Assay of Recombinant SIP470 

 

SIP470 without its signal peptide was successfully cloned using gateway cloning system 

and expressed in E. coli. Recombinant SIP470 (recSIP470) was then purified using Ni-NTA 

affinity chromatography and ion exchange chromatography (Q-sepharose column) (Chapagai 

2014). Purified recSIP470 was then used to assay for lipid binding and transfer activity using the 

PIP Strip membrane and the PLTP transfer assay kit respectively. Results showed that recSIP470 

failed to transfer or bind to lipids under that experimental conditions (Chapagai 2004). 

Hypothesis 

 

Hypothesis 1: Tobacco SIP470 has a role in the stress signaling of plants (biotic and abiotic 
Stress) 

 

Based on the preliminary findings it is hypothesized that tobacco SIP470 has an 

important role to play during the biotic and abiotic stress of plants. The role of various lipid 

transfer protein in biotic and abiotic stress has been well studied. The first evidence of the role of 

LTPs in biotic stress was observed in the in vitro screening of protein extracts from barley, 

Arabidopsis, spinach, and onion. Results showed that the extracts from these plants had a direct 

effect on the growth of fungal and bacterial pathogens (Cammue et al. 1995; Molina et al. 1993; 

Segura et al. 1993). Several LTPs have also been implicated in abiotic stress signaling. 

Arabidopsis LTP3, when overexpressed, showed an increased tolerance to cold and drought in 

(Guo et al. 2013). Despite the evidence on the role LTPs in both biotic and abiotic stress 
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signaling, their mode of action in-vivo is still widely unknown. In order to study the functional 

role of SIP470 in tobacco plants, the following approach will be followed: 

1. Generating transgenic SIP470 tobacco plant using the RNA interference (RNAi) and 

Overexpression of SIP470 using an inducible plant expression system. 

2. Assess the Systemic Acquired Resistance (SAR) and Basal resistance response in SIP470 

transgenic plants.  

3. Study the resistance (both the basal and SAR) response and defense gene expression in 

SIP470 transgenic plants as well as the Arabidopsis mutant plant upon exposure to biotic 

(pathogen), and abiotic (drought and salinity) stress.  

Hypothesis 2: Tobacco SIP470 is a Lipid Transfer Protein 

 

Based on the nucleotide analysis of SIP470 sequences obtained from yeast-2-hybrid 

screening that predicted that SIP470 belongs to a non-specific lipid-transfer protein 1 (nsLTP1) 

subfamily (Chapagai 2014), we are hypothesizing the SIP470 binds and transfers lipids in-vivo. 
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CHAPTER 2 

MATERIALS AND METHODS 

Plant Material 

Two mutant Arabidopsis mutant lines, ltp12 and ltp2 in the Col-0 background were used 

for this study. The wild-type (Col-0) was used as a control. Various tobacco plants, a wild-type 

Nicotiana tabacum cv. Xanthi-nc NN (XNN) (Resistant to TMV), Nicotiana tabacum XS 

(Susceptible to TMV) and Nicotiana benthamiana were also used for this study. All Arabidopsis 

and tobacco plants were grown in a controlled environment.  Arabidopsis seeds were sown on 

autoclaved soil (Fafard F-15, Agawam, MA) in a 4 x 4-inch square pots and transferred to a 

growth chamber (PGW 36, Conviron, Canada) set at 22°C and a 16-hour light cycle and a light 

intensity of about 200 μmol m-2 sec-1. After 5 days, individual seedlings were transferred to a 4 

x 4-inch square pots and allowed to grow for 3 to 4 weeks under a 9-hour light cycle at 150 μmol 

m-2 sec-1 light intensity. Tobacco seeds were similarly grown in the growth chamber set at 22°C 

and a 16-hour light cycle and a light intensity of about 200 μmol m-2 sec-1. After 7-10 days, 1-2 

seedlings were transferred into 4 x 4-inch square pots and maintained for 3 weeks. Plants were 

then transferred to single 8-inch pots (1 plant per pot) and grown for ~2 weeks before they were 

used for the experiments. 

Chemicals and Reagents 

 

Sodium dodecyl sulfate (SDS), ß-mercaptoethanol (ß-ME), tetramethylethylenediamine 

(TEMED), ammonium persulfate (APS), coomassie brilliant blue R-250, ponceau-S, 

phenylmethylsulfonyl fluoride (PMSF), magnesium chloride (MgCl2), sodium chloride (NaCl), 

sodium phosphate monobasic (NaH2PO4), sodium phosphate dibasic (Na2HPO4), agar (Acros 



30 

 

organics), sucrose (Bioworld), immobilon-PSQ Membrane (0.2 µm) (Millipore), 30% acrylamide, 

imidazole, methanol, ethanol, ECL western blotting substrate (Thermo Scientific), ß-estradiol, 

Bleach, mouse monoclonal anti poly-Histidine antibody, mouse anti c-myc monoclonal antibody 

and Goat anti-Mouse conjugate for western (Sigma), Oligo dT-20, Taq DNA polymerase 

(Invitrogen, CA), Dithiothreitol (DTT), Low Molecular Weight (LMW) protein ladder (GE life 

Sciences), RNAse free DNAse (Promega), gel loading dye (Bio-Rad), QIAprep Spin Miniprep 

Kit, Qiagen Plasmid Midi Kit, and Gel extraction kit (Qiagen, CA), Gateway cloning kit with 

entry vector, pDONR221(Invitrogen). Entry vector for overexpression (pGEM-T) was purchased 

from Promega. Inducible overexpression vector (pER8) was obtained from Dr. Nam Hai Chua, 

Rockefeller University, NY. For RNAi silencing was done using gateway based cloning where 

pDONR221 was the entry vector used and pHELLSGATE8 was used as the destination vector 

(obtained from CSIRO, Australia). 

Other Materials/Instruments 

 

SYNERGY HT multi-mode microplate reader (Biotek), Master cycler (Eppendorf, NY), 

spectrophotometer, Electroporator (Biorad), French press (Thermos scientific), ND-1000 

Nanodrop spectrophotometer (Thermo scientific), pH meter (Beckman), LI-COR C-DIGIT 

Western blot imager (LI-COR), UV imaging system (UVP Bioimaging Systems), centrifuge 

(Beckman, model J2-21 or Sorvall RC5B), microcentrifuge (Eppendorf), Agarose (Fisher 

Scientific) and Polyacrylamide gel electrophoresis apparatus (Biorad), Transblot (Biorad), 1 ml 

syringes (BD Syringes), ultrasonicator (Fisher Scientific) and every other regular laboratory 

accessories (e.g. pipettes, water bath, balances) were used for this research. 
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Oligonucleotides (Primers) 

 

All primers used for generating the transgenic lines were synthesized by Eurofins MWG 

(Huntsville, AL). Lyophilized primers were re-suspended to a final concentration of 10 µM by 

re-suspending and diluting it in nuclease free water. Primers used for RNAi silencing of SIP470 

and its homologs as well as overexpress SIP470 are listed in the table below: 

Table 1: List of primers used for this study  

SN Primer Sequence (5’     3’) Purpose 

1 DK670 (Gateway att 
B1 forward primer) 

GGGGACAAGTTTGTACAAAAAAGCAGG
CTATTGTGGCGGCGTTAAAGGT 

Silencing SIP470 

2 
DK671 (Gateway att 
B2 reverse primer) 

GGGGACCACTTTGTACAAGAAAGCTGGG
TATGCAGTCTTGCGGTCAGC 

Silencing SIP470 

3 
DK685 (Gateway att 
B1-24 forward primer) 

GGGGACAAGTTTGTACAAAAAAGCAGG
CTCGACTGCATGCACTTGCCTG 

Homolog silencing of 
SIP470 

4 
DK686 (Gateway att 
B2-24 reverse primer) 

GGGGACCACTTTGTACAAGAAAGCTGGG
TTACTGGACCTTGGAGCAGTCA 

Homolog silencing  
of SIP470 

5 
DK674(Forward primer 
with Avr II site) 

CCTAGGTATGGAAATGGTTGGCAAG 
Overexpressing 
SIP470 

6 
DK675 (Reverse 
primer with Spe 1 site) 

ACTAGTTCACTGGACCCTGGAGCA 
Overexpressing 
SIP470 

7 
DK672 (Forward 
primer) 

GGCCCTCTAGGGAGGTGT Screening/detection  

8 
DK673(Reverse 
primer) 

TCACTGGACCCTGGAGCA Screening/detection 
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Role of SIP470 in Plant Stress Signaling 

Generating Transgenic Tobacco Lines Silenced in SIP470 Expression 

Transgenic lines silenced in SIP470/ homologs expression were generated via RNA 

interference (RNAi). RNAi is a posttranscriptional gene silencing that involves the degradation 

of mRNA (Montgomery et al. 1998). The RNAi pathway is exploited in molecular biology to 

study the functions of genes (Bertile 2006). SABP2 was successfully silenced in tobacco plants 

using RNAi (Kumar and Klessig 2003). To generate transgenic lines using RNAi, primers were 

designed and synthesized with attB1 and attB2 flanking sites to amplify a region of SIP470 

coding sequence that is conserved in SIP470 gene (silencing fragment) and regions that are 

common to the homologs of SIP470 (homolog silencing fragment).  The template used for 

amplification was a previously sequenced clone, pDEST-17-SIP-470-25. The amplified fragment 

was then gel purified and cloned into the entry vector (pDNOR221) using BP clonase enzyme 

following manufacturer’s instructions (Invitrogen). The reaction product was transformed into 

competent E. coli (DH5). The plasmid DNA was prepared and DNA sequenced. The SIP470 

was then subcloned into the destination vector (pHELLSGATE 8) using LR clonase following 

manufacturer’s instructions (Invitrogen). The destination vector containing SIP470 construct was 

then transformed into electrocompetent Agrobacterium tumefaciens LBA4404 which was then 

used to transform wild-type tobacco plants. Expression of the destination vector in the plants 

genome produces an intron-spliced hairpin RNA. Transformed cells were then selected using 

appropriate antibiotics that will be discussed later in the thesis. 
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Design of Primers Used for SIP470 Silencing 

SIP470 nucleotide sequence was used in the BLAST tool of Sol genomics 

(https://solgenomics.net/ ) to query the Nicotiana tabacum database and identify nucleotide 

sequences conserved in SIP470 gene when compared to its homologs (see appendix C). A 

sequence of 60 base pair (bp) was identified and primers were designed to incorporate the attB1 

and attB2 sites in primer sequence flanking the SIP470 nucleotide sequence for cloning into the 

entry vector. A similar approach was followed to search for conserved sequence present in 

SIP470 gene and its homolog, a sequence of 139 bp was identified and was used cloning (see 

appendix C). 

PCR Amplification of SIP470  Silencing and Homolog Silencing Fragment 

PCR amplification of silencing and homolog silencing fragments with the attB1 and 

attB2 flanking sides was done using PCR separately. Full-length SIP470 verified clone was used 

as a template (pDONR221+470 clone number P2, box 4). A 30 µl PCR reaction mixture was 

made which consisted 22.2 µl of sterilized water, 3 µl of PCR buffer (10 x), 0.6 µl of dNTP (50 

x), and 3 µl of template (1ng-1pg / 50ml reaction), 0.6 µl of Advantage HF polymerase (50 x) 

and 0.6 µl of forward and reverse primer.  The PCR reaction was done for 30 cycles with the 

denaturation temperature set at 94 °C for 30 seconds, the annealing temperature of 55 °C for 30 

seconds, an extension temperature of 72 °C for 30 seconds and a final extension temperature of 

72 °C for 7 minutes after 30 cycles. The amplified product was stored on ice at 4 °C and was 

used for further experiments. 

 

https://solgenomics.net/
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Agarose Gel Electrophoresis 

The PCR amplified product was run and detected on a 1.5 % EtBr (ethidium bromide) 

stained agarose gel. The gel was then used for extraction and purification of the expected 

fragment. 

Gel Extraction and Purification 

The expected amplified fragments based on the sizes for silencing and homolog silencing 

were excised from the gel using a clean blade and the DNA extracted using the Qiagen gel 

extraction kit according to manufacturer’s instructions. The bound DNA from the columns were 

eluted using 50 µl of warm (50 °C) TE buffer and quantified using a Nanodrop. 

Cloning of SIP470 Silencing Fragments into Gateway Entry Plasmid pDONR221  

 The gel purified SIP470 DNA was then used for cloning into pDONR221 via gateway 

technology following manufacturer’s instructions. The reaction mixture consisted of 1 µl of the 

entry plasmid (pDNOR221), 1 µl of BP clonase enzyme, 1 µl of the purified fragment (50 fmol) 

and 7 µl of TE buffer to make a final volume of 10 µl. The reaction was then incubated at 37 °C 

for two hours after which it was terminated by adding 1 µl proteinase K (provided in the kit). 

The reaction was then maintained on the ice at 4 °C and was used for transformation into 

competent top10 cells. 

Transformation of Recombinant pDONR221-SIP470 Constructs into Top10 Cells 

One µl of the product from the BP reaction (pDONR221-SIP470) was added to 200 µl of 

competent Top10 E. coli cells. The resulting mixture was incubated on ice for 30 minutes. 

Following incubation, the mixture was incubated for 45 seconds by placing it in a 42 °C water 

bath and immediately transferred to ice for 2 minutes. To the mixture 800 µl LB broth (room 
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temperature) was later added to the mixture and incubated in a 37°C shaker (250 rpm) for 1 hour. 

After one hour, transformed cells were selected by plating the mixture on an LB agar plate 

containing ampicillin (100 µg/ml) and incubated at 37°C overnight. 

Screening of Transformed Colonies Using Colony PCR 

Bacterial colonies from the plates were screened for the presence of pDONR221-SIP470 

entry clone using colony PCR. Single colonies were picked using a sterile toothpick or yellow 

tip, streaked on a fresh LB plate containing the appropriate antibiotics as mentioned earlier and 

the tip washed in 40 ul of sterile water.  The tip was washed thoroughly to release traces of the 

bacterial colony in the water by pipetting up/down 5-10 times.  Ten µl of the water was used as a 

template for PCR amplifications. The colony PCR mix contained of transformed bacterial cell 

dissolved in sterile water (10 µl), 2 µl of PCR buffer (10 x), 2 µl of dNTP, 0.2 µl of Taq DNA 

polymerase, 0.2 µl of M13 forward primer (vector specific), 0.2 µl of gene specific reverse 

primer and 4.2 µl of sterile water to make a final volume of 20 µl. The PCR reaction was done 

for 30 cycles in a thermocycler using the settings, 94 °C for 30 seconds, the annealing 

temperature of 62 °C for 30 seconds, an extension temperature of 72 °C for 80 seconds and a 

final extension temperature of 72 °C for 7 minutes after 30 cycles. The PCR amplified products 

were analyzed on 1.5% agarose gel electrophoresis as described earlier. 

Isolation of Recombinant pDONR221-SIP470 Plasmid DNA 

Five positive clones for silencing and homolog silencing respectively that were verified 

by PCR analysis were inoculated into a 5ml LB broth containing the appropriate antibiotic and 

incubated in a 37 °C shaker (250 rpm) overnight. The recombinant pDONR221-SIP470 plasmid 

DNA was purified using QIAprep Spin MiniPrep Kit (Qiagen) according to the manufacturers’ 
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instruction. The resulting plasmid was quantified using a Nanodrop spectrophotometer and 

stored at -20 °C. 

Sequencing of Recombinant Plasmid 

Eight µl of the purified plasmid DNA (~800ng) was transferred to a PCR tube containing 

2 µl of M13 forward primer. The mixture was sent for DNA sequencing to the DNA analysis 

facility at Yale University. Sanger method of sequencing was used. 

Cloning of SIP470 Silencing Construct into pHELLSGATE 8 

The verified pDONR221_SIP470 construct was used for subcloning SIP470 into the 

destination vector pHELLSGATE 8. The reaction mixture consisted of 1 µl of destination vector, 

1 µl of LR clonase enzyme, 1 µl of recombinant plasmid DNA of pDONR221 and 7 µl of TE 

buffer (pH 8.0) to make a final volume of 10 µl reactions. The reaction was then incubated at 37 

°C for two hours after which it was terminated by adding 1 µl proteinase K. The reaction was 

then maintained on the ice at 4 °C and was used for transformation into competent Top10 cells. 

One µl of the product from the LR reaction (pHELLSGATE8-SIP470) was transformed into 

competent E. coli as described earlier. The transformed cells were selected on LB agar plates 

containing spectinomycin (50 µg/ml) and incubated at 37 °C. Bacterial cells from the 

transformation were screened for the presence of pDONR221-SIP470 entry clone using colony 

PCR as earlier described. The PCR amplified products were analyzed on 1.5% agarose gel 

electrophoresis as described earlier. Five positive clones for silencing and homolog silencing 

respectively that were verified from the colony PCR analysis was inoculated into a 5ml fresh LB 

broth containing the appropriate antibiotic and incubated in a 37 °C shaker (250 rpm) overnight. 

The recombinant pHELLSGATE8-470 plasmid was isolated and purified using QIAprep Spin 
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MiniPrep Kit (Qiagen) according to the manufacturers instruction. The resulting plasmid was 

quantified using a Nanodrop spectrophotometer and stored at -20 °C. 

Transforming Agrobacterium tumefaciens LBA 4404 cells with pHELLSGATE-SIP470 

Silencing Construct 

To revive the LBA 4404 strain of Agrobacterium, it was streaked from -80 °C glycerol 

stocks onto an LB plate containing streptomycin and spectinomycin antibiotics (100 µg/ml) and 

incubated for 2 days at 28 °C. A single colony was then added to 5 ml tube of LB with the 

appropriate antibiotics and grown overnight on a 28 °C rotating shaker. The overnight culture 

was then diluted (1:100) in 100ml LB and incubated at 28 °C with shaking until an OD600= 1.0 

was reached. The cells were then centrifuged at 4000rpm for 10 minutes at 4 °C. The supernatant 

was then discarded and the pellet was resuspended in 5ml of ice-cold 20mM sterile calcium 

chloride. The cells were again centrifuged at 4000rpm for 5 minutes at 4 °C. Resulting pellets 

were resuspended in 1ml of ice-cold 20mM calcium chloride and 100 µl were aliquoted into 2 ml 

Eppendorf tubes containing 100 µl 50% glycerol and snap frozen in liquid nitrogen. For 

electroporation, 1 µl of plasmid DNA for silencing construct (247ng/l) and homolog silencing 

construct (150 ng/l) was added to 20 µl each of electrocompetent LBA 4404 cells respectively. 

This mixture was then transferred to ice chilled 0.2 cm electroporation cuvette (Biorad). The 

cells were electroporated using a pulse of 2.20 kV (kilovolts) for 5.4 milliseconds and 1 ml of 

SOC media (appendix B) was added to the electroporated cells. The cells were then transferred 

into a sterile Eppendorf tube and incubated at 28 °C for 3 hours.  Cells (50 µl) were plated on an 

LB agar containing appropriate antibiotics and incubated at 28 °C for 1-2 days for colonies to 

develop.  Transformed Agrobacterium colonies were screened for the presence of 

pHELLSGATE8-SIP470 clone using colony PCR as earlier described. Gene specific primers 
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were used to verify the presence of an insert of interest. Verified clones were used for plant 

transformations (both transient and stable). 

Cloning SIP470 to Generate Overexpression Clone 

To overexpress SIP470 in transgenic tobacco plants, the full-length SIP470 cDNA was 

cloned into pER8 plasmid. pER8 is an estradiol-inducible plant expression vector. Using an 

inducible system allows flexibility for studying the functions of genes whose expression is 

developmental or regulated to a specific tissue (Zuo et al. 2000). pER8 is an estrogen receptor-

based chemical inducible system that comprises of a chimeric transcriptional activator XVE 

which was assembled by fusion with a DNA binding domain of the bacterial repressor LexA (X), 

transactivating domain and human estrogen receptor (E; ER) regulatory region. Estrogen highly 

regulates the transactivating activity of the chimeric XVE factor whose expression is controlled 

by the strong constitutive promoter G10-90 (Zuo et al. 2000).  

Primers were designed to incorporate restriction sites Avr II and Spe I at the 3’and 5’ end 

of SIP470 gene respectively. Full-length SIP470 gene was amplified from (pDONR221+470 

clone#P2). A 30 µl PCR reaction mixture was made which consisted 22.2 µl of sterile water, 3 µl 

of PCR buffer (10 x), 0.6 µl of dNTP (50 x), and 3 µl of template (1ng-1pg / 50ml reaction), 0.6 

µl of Advantage HF polymerase (50 x) and 0.6 µl of forward and reverse primer. The PCR 

reaction was done for 30 cycles with the denaturation temperature set at 94 °C for 30 seconds, 

the annealing temperature of 55 °C for 30 seconds, an extension temperature of 72 °C for 30 

seconds and a final extension temperature of 72 °C for 7 minutes after 30 cycles. The PCR 

amplified products were analyzed on 1.5% agarose and the SIP470 amplified DNA band was 

excised from the gel. The DNA was purified using the Qiagen gel extraction kit according to 
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manufacturer’s instructions. The purified product was eluted using 50 µl of 50 °C TE buffer and 

quantified using a Nanodrop spectrophotometer. 

Cloning SIP470 Overexpressing PCR Amplified cDNA into the pGEMT   

The ligation reaction was done following the manufacturer's instruction (Promega). The 

ligation reaction mixture consisted of incubating pGEMT vector (50 ng/µl) with 5 µl of purified 

SIP470, 1 µl of T4 DNA ligase (3 Weiss units/ µl) and 2 µl of buffer (1x). The mixture was 

incubated at 28 °C for 1 hour and the resulting product was used for further experiments. Two µl 

of the ligation mixture (pGEMT-SIP470) was added and mixed gently to 200 µl of chemically 

competent E.coli Top10 cells. The transformation was then done according to the method 

described earlier. Transformed cells were plated on LB plates containing Ampicillin (50µg/ml). 

Bacterial colonies were screened for the presence of SIP470 using colony PCR as earlier 

described earlier. The primers used were T7 forward primer (plasmid specific) and a gene 

specific primer. The PCR product was analyzed by agarose gel electrophoresis. Five positive 

colonies were used for plasmid DNA isolation as described earlier. The resulting plasmid was 

quantified sequenced. 

Cloning of SIP470 into pER8. 

Verified clone (pGEMT-SIP470-4) (210.5 ng/µl) was used for cloning into pER8. First, 

SIP470 was excised out of pGEMT by restriction digestion. A total 20 µl digestion mix was 

prepared that consisted of 10 µl pGEMT-SIP470-4, 2 µl of the NEB cutsmart buffer, 7 µl sterile 

water, 0.5 µl Avr II and 0.5 µl of Spe I. The mixture was incubated for 3 hours at 37 °C. 

Similarly, the pER8 vector was also digested. The digestion mixture consisted of 3 µl of the 

pER8 vector, 1 µl of cut smart buffer (2), 5 µl of sterile water, 0.5 µl Avr II and 0.5 µl of Spe I. 
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The mixture was incubated for 15 minutes at 37 °C and 1 µl was added to the reaction mix. Both 

the SIP470 fragment and the pER8 were excised out and used for gel extraction as described 

earlier. The purified product was eluted and quantified. For overexpressing SIP470, the pER8 

vector and pGEMT-SIP470 were ligated. The ligation mixture consisted of 1.5 µl of digested 

pER8 vector (45ng/ml), 0.5 µl of digested pGEMT-470-4 (14.4ng/ml), 3 µl of sterile distilled 

water and 5 µl buffer and T4-DNA ligase enzyme. The mixture was incubated at 25 °C for 1 

hour. Two µl of the ligation mixture (pER8-SIP470) was added to 200 µl of chemically 

competent E. coli Top10 cells. The transformation was done as described earlier and the 

transformed cells plated on LB plates containing spectinomycin (50 µg/ml) and incubated at 

37°C overnight. Bacterial colonies were screened for the presence of pER8-SIP470 using colony 

PCR as earlier described. pER8 vector forward primer and the reverse primer was used for 

detection of expected band. The PCR product was run on a 1.5% EtBr stained agarose gel 

electrophoresis for verification of inserts. The recombinant pER8-SIP470-Overexpression 

plasmid was purified using the boiling method. Five positive colonies were inoculated into a 5 

ml fresh LB broth containing the appropriate antibiotic and incubated in a 37 °C shaker (250 

rpm) overnight. The overnight grown culture (1.5 ml) was then transferred to a microcentrifuge 

tube, and centrifuged for 60 seconds at 12,000rpm at 4°C. The pellets were resuspended in 500 

µl of ice cold STE (appendix B) buffer and centrifuged 60 seconds at 12,000rpm in 4°C. 

Resulting pellets were again resuspended 350 µl of ice cold STET solution (appendix B) and 25 

µl of lysozyme was added to the suspension and boiled for 50 seconds. After boiling, the 

solution was then centrifuged for 10 minutes at 14000 rpm at 4 °C. The supernatant was 

transferred into a new microcentrifuge tube and precipitated with equal volume of isopropanol. 

The solutions were mixed by inverting the tubes and centrifuged for 30 minutes at 14000 rpm at 
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4 °C. The supernatant was discarded and the pellet was washed using 70% ethanol by inverting 

the tubes and centrifuging it for 10 minutes at 14000rpm at 25°C. The resulting pellet was 

resuspended in 25 µl of TE buffer, quantified and DNA sequenced as described earlier. 

Transformation of pER8-SIP470 to LBA 4404 Competent Cells 

To transform the electro-competent LBA 4404 Agrobacterium tumefaciens cells, 1 µl of 

pER8-SIP470 plasmid DNA (142ng/ml) was added to 20 µl of cells pre-thawed on the ice. The 

mixture was then transferred to 0.2 cm electroporation cuvette (Biorad). The cells were 

electroporated and 1 ml of SOC media (Appendix B) was added to the electroporated cells. The 

cells were then transferred into a sterile Eppendorf tube and incubated at 28 °C for 3 hours. Fifty 

µl of the cells were plated on LB plates containing spectinomycin and streptomycin  (50 µg/ml). 

The plates were incubated at 28 °C overnight.  

Transient Expression of pER8-SIP470 in Nicotiana benthamiana 

To check if the verified clone is expressing correctly upon induction, a transient 

expression was done in N. benthamiana. The verified pER8-SIP470 clone was inoculated into a 

5ml LB broth containing the appropriate antibiotics and incubated in a 28 °C shaker overnight. 

The overnight culture was sub-cultured in a 20 ml LB with appropriate antibiotics, containing 20 

µM acetosyringone (3’5’-dimethoxy-4’hydroxyacetophenine, Aldrich) and 500 µl of 10 mM 

MES (pH 5.5). The culture was incubated in a 28 °C shaker overnight. The overnight grown cells 

were then harvested by centrifugation. The cells were resuspended in 10mM (MES) and 10mM 

MgCl2. The process was repeated. The cells were then suspended in buffer containing 10mM 

MES pH 5.5, 10mM MgCl2 and 150 µM acetosyringone. The concentration of cells was adjusted 

to OD600=0.5 and incubated at room temperature on a shaker overnight. Next day the bacterial 
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suspension was infiltrated in N. benthamiana leaves using a needleless 1 ml syringe. The plants 

were returned to the growth chamber and left overnight. The next day, the infiltrated leaves were 

spray treated with 50 µM -estradiol in 0.01% tween 20 and left in the growth chamber 

overnight. Leaf disc samples were then collected, snap frozen in liquid nitrogen and processed 

for protein extraction, SDS-PAGE and western blot analysis. 

SDS-PAGE 

The leaf disc samples were homogenized using a mechanical homogenizer in 100 µl of 

2X SDS sample buffer containing β-Mercaptoethanol (β-ME) was added to the sample and 

boiled for 4 minutes. The sample was then centrifuged at 13,000 rpm for 10 minutes. The SDS 

gel was then run at 30 mA constant current for 1 hour in a running buffer (as Appendix B). 

Western Blot Analysis 

The separated proteins from the gel were transferred to PSQ membrane (0.2 µM). The 

PSQ membranes were prepared by soaking it in 100% methanol for 15 seconds and immediately 

rinsed with distilled water twice before incubating it in 1x transfer buffer (Appendix B) for 15 

minutes. The SDS gel with the PSQ membrane was then sandwiched between a sponge and 3mm 

Whatman filter paper. Transfer of protein from the gel to the membrane was then carried out at 

94 volts for 1 hour at 4 °C in a Biorad Transblot cell. After the transfer, the membrane was 

soaked in methanol for 10 seconds and allowed to dry. After drying, the membrane was soaked 

in methanol for 10 seconds. The membrane was later stained with ponceau-S (0.1% ponceau-S 

and 5% acetic acid) for 2 minutes to verify the protein transfer. The ponceau-S stain was later 

rinsed off completely using 1xPBS (Appendix B). The blot was then incubated with the 

monoclonal anti-C-myc antibody (primary antibody) in 5 ml blocking buffer (1% dry milk, 3% 
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BSA in 1X PBS) and incubated overnight (~16h) at 4°C on a shaker. The next day, primary 

antibody was removed and the membrane was washed for 3 times (5 min each) using 1x PBS 

first, followed by 1x PBS containing 3% tween 20, and finally rinsed with 1x PBS. The 

membrane was then incubated with anti-mouse IgG peroxidase conjugate (1:10,000 in 5 ml of 

blocking buffer) at room temperature for 1 hour on a shaker. The membrane was subjected to 

washing as described above. Following washing, the membrane was incubated in the ECL 

substrate (1:1) for 5 minutes and scanned using the C-DiGiT blot scanner (LiCOR) as described 

by the manufacturer. The blot was later stained with coomassie blue to visualize total loaded 

proteins. 

Transformation of Tobacco with Agrobacterium LBA 4404 containing pER8-SIP470 and 

pHELLSGATE8-SIP470 

Verified Agrobacterium clones for silencing and overexpression were grown in LB media 

with the appropriate antibiotics at 28 °C for 2 days to until stationary phase was reached. The 

culture was then diluted using an equal volume of LB and 20 ml of the diluted culture was 

transferred to a sterile 50 ml tube. Whole leaves from wild-type tobacco plant (XNN) was 

collected and surfaced sterilized by treated it with 20% (v/v) commercial bleach containing 0.1% 

tween-80. The leaves were later rinsed about 3 times using sterilized water to remove beach. 

Leaf disc was punched from the sterilized leafs using a sterile cork borer and about 50 leaf disc 

were incubated with the Agrobacterium cultures respectively. The bacteria cultures were left on 

the shaker at room temperature for 30 minutes before plating the leaf disc inverted on the shoot 

inducing media (SIM) (Appendix B) with no antibiotics. The plates were later incubated at 23 °C 

in the dark for 2 days. After incubation for 2 days, the leaf disc was incubated in 20 ml of LB 

media containing carbenicillin (100 µg/ml) and 3% sucrose and kept on the shaker for 2 hours. 
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The leaf discs were taken out, gently blotted between autoclaved filter papers and then 

transferred to the SIM media plates. The media contained carbenicillin (100 µg/ml) and 

hygromycin (20 µg/ml) for pER8 constructs and carbenicillin (100 µg/ml) and Kanamycin for 

pHELLSGATE 8 constructs selection. The plates were incubated at 23 °C /16hrs light until calli 

development which later gave rise to shoots. When the young shoots that were large enough (~1 

inch tall) was transferred into an RIM (Root-inducing media) media containing antibiotics 

(Appendix B). Rooted plants were transferred to the soil. 

 

 

 

 

 

 

Figure 8: Various steps involved in making transgenic tobacco RNAi lines through 

Agrobacterium-mediated transformation 

Screening of Transgenic lines for SIP470 silencing  

Transgenic lines were screened for silencing and homolog silencing using RT-PCR 

(Reverse Transcriptase PCR). This method involved isolation of mRNA from various selected 

transgenic lines and checking for expression of SIP470. 
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Total RNA Isolation and cDNA Synthesis 

A total 3 to 4 leaf discs were frozen in liquid nitrogen and homogenized to a fine powder 

using a blue pestle and a mechanical grinder. To the homogenized leaf powder, 0.5 ml Trizol 

was added and mixed by vortexing. An additional 500 µl of trizol was added to the sample and 

then transferred into a 2 ml screw-cap tubes containing ~0.2ml of 2 mm autoclaved zirconia 

beads. Samples were immediately homogenized for 45 seconds at 4.5 power setting using 

FastPrep 24. To the homogenized sample, 200 µl of chloroform was added and mixed by 

inverting the tubes vigorously for 15 seconds before incubating the samples at room temperature 

for 10 minutes. After incubation, the samples were centrifuged at 12000 x g for 15 minutes at 4 

°C and the upper aqueous phase was transferred to new 1.5 ml tube. 500 µl of isopropanol was 

immediately added to the tube and the tube was incubated for 10 minutes at 30 °C. Samples were 

then centrifuged at 12000 x g for 10 minutes at 4 °C and the supernatant was discarded. To the 

resulting pellet, 75% cold ethanol was added and the samples were mixed by vortexing. Samples 

were then centrifuged at 7500 x g for 5 minutes at 4°C and the supernatant was air dried for 10 

minutes. Air dried pellets were resuspended in 40 µl of DEPC treated water 

(diethylpyrocarbonate) (appendix B), vortexed few times and incubated at 55 °C for 10 min. To 

the fully resuspended RNA, 10 µl of RNAse free DNase-buffer mix (2 µl DNase + 5 µl DNase 

buffer + 3 µl DEPC treated water) was added and incubated at 37 °C for 20 minutes. To remove 

the DNase, the sample was treated again with trizol reagent, chloroform, isopropanol, and 

chloroform using half the volume described above. The resulting pellet was then collected and 

then air dried for 10 minutes. The air dried sample were then resuspended using 20 µl of DEPC 

water and incubated for 5-10 minutes at 55 °C to ensure that the pellets were dissolved. RNA 
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concentration (ng/µl) was measured using Nanodrop spectrophotometer (Nanodrop Technologies 

ND-1000). Samples were stored at -80ºC until ready for cDNA synthesis. 

First Strand cDNA Synthesis 

Reverse transcriptase enzyme was used to synthesize first-strand complementary DNA 

(cDNA) from the isolated total RNA. A two-step process was used for this experiment. In the 

first step, 2 µl of oligo-dT (0.5 µg/ml) was added to 1 µg of total RNA (diluted to a total volume 

of 8 µl with depc treated water) and the mixture was incubated at 75ºC for 10 min followed by 

immediate cooling to 4 ºC in the thermocycler (Eppendorf). The samples were the cooled to 4 ºC. 

10 µl mixture that consisted of 1 µl reverse transcriptase (RT) (MMLV), 4 µl 5X RT buffer, 1 µl 

RNAsin (RNAase inhibitor), 1 µl 10 mM dNTPs mix, and 3 µl DEPC treated water was added to 

the sample. The samples were then immediately vortexed and incubated for 60 minutes at 42 ºC 

and then at 70 ºC for 10 minutes in the thermocycler. The newly synthesized cDNA samples 

were then stored at -20 ºC until further experiments. 

Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)  

The synthesized cDNA were used to screening for the expression of SIP470 in the 

silenced and homolog silenced transgenic lines. A 10 µl PCR reaction mixture that contained 6 

µl of DEPC water, 1 µl 10 X dNTP, 1 µl 10X Taq polymerase buffer, 0.2 µl Taq DNA 

polymerase, 0.4 µl of 10 µM forward primer, 0.4 µl of 10 µM reverse primers and 1 µl of cDNA 

sample. 

Screening of SIP470 Overexpressor Transgenic lines 

Overexpressor transgenic lines were screened for successful expression of SIP470 protein 

in the plants by inducing leaf disc samples using β- estradiol (50µM) and detecting the 
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overexpressed SIP470 using western blot and SDS-PAGE. Leaf disc samples were collected 

using a cork borer (#6). Each leaf disc was placed in a 24 well cell culture cluster plate 

containing 50 µM -estradiol in 0.01% tween 20 and left overnight. The samples were then 

homogenized in liquid nitrogen. 100µl of SDS buffer was added to the samples and analyzed 

using western blot as earlier described.  

Role of SIP470 in Biotic Stress 

Role of SIP470 in systemic acquired resistance (SAR) 

To assess the role of SIP470 in the induction of SAR, Arabidopsis mutants (ltp 12 and ltp 

2) were used.  Bacterial growth was measured in the leaves by homogenizing the leaves, diluting 

the extract and plating it on selective antibiotic media (LB) and counting the bacterial colonies to 

determine the colony forming units (cfu/ml) (Kiefer and Slusarenko 2003). SAR was 

investigated based on a modified protocol from Kiefer and Slusarenko (2003). To induce SAR, 

the two lower leaves of control (A.t. col 0) and mutant Arabidopsis plants were the first syringe 

infiltrated with avirulent pathogen (OD=0.002) (P.S tomato DC3000 AvrRPT2) or 10 mM MgCl2 

(control). After 2 days post infection (2 DPI), three upper leafs were challenged with a virulent 

pathogen (OD=0.0002) Pseudomonas syringe pv. maculicola. Leaf discs (5mm) were collected 

from the treated upper leaves using a cork borer and homogenized in 1ml distilled water using 

FastPrep 24 for 5 seconds at least twice. A 10-fold serial dilutions was prepared in sterile water, 

and an aliquot of 20 µl was spotted on an LB agar containing rifampicin 100 µg/ml. Plates were 

incubated at 28 ºC until the bacterial colonies developed and were large enough to be counted.  

All the bacterial colonies were counted, multiplied by the dilution factor to get cfu/ml. The 

experiments were done in triplicates. 
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Role of SIP470 homologs in Basal Resistance 

To assess the role of SIP470 in basal resistance, the bacteria growth was quantified from 

an infected leaf. Arabidopsis mutant and control plants were infiltrated with virulent pathogen 

(OD=0.0002) Pseudomonas syringe Pv. maculicola. At 3 days post inoculations (DPI), Leaf 

discs (5mm) were collected and processed for plating as described for SAR experiment. 

Experiments were done in triplicates. 

Role of SIP470 Homolog in Abiotic Stress 

To assess the role of SIP470 in abiotic stress, ltp12, and Col 0 seeds surfaced sterilized by 

incubating it in 70% ethanol for 5 minutes. The seeds were then incubated in 20% (v/v) 

commercial bleach containing 0.1% Tween 20. After surface sterilization, the seeds were then 

washed with sterile distilled water at least 4 times and plated on half strength MS media 

containing Gamborg vitamins. Plated seeds were then kept at 4ºC for 2 days before transferring 

to the lighted racks. Seedlings (~5-7 days old) were then transferred to MS media plates 

containing various concentrations of stress-inducing chemicals (NaCl, Hydrogen Peroxide, and 

Abscisic Acid) (See appendix for media composition). 

Gene Expression Studies  

 To understand at the molecular level the possible function of Arabidopsis LTP12, a gene 

expression study was conducted. Arabidopsis wild-type plant (Col 0) and mutant plants were 

infiltrated with virulent pathogen (OD=0.001) Pseudomonas syringe Pv. maculicola. 2 Leaf disc 

samples were collected at 0, 3, 6, 9, 12, 24 and 48 hours post-infection from mutant and wild-

type plants using a cork borer of size 2. Leaf disc samples were then homogenized in liquid 
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nitrogen and RNA was extracted, resulting cDNA was synthesized and RT-PCR was carried out 

as described earlier. 

Tobacco SIP470 is a Lipid Transfer Protein (Hypothesis 2) 

Expression of Recombinant SIP470 in E.coli 

 The SIP470 clone, pDEST17-SIP-470-25 was used for recombinant protein expression. 

The chemically competent BL21 (DE3) pLysE cells (100 µl) were transformed with the 

pDEST17-SIP-470-25 construct and selected on antibiotics plate as described earlier. Expression 

of recombinant SIP470 was done according to the method described by Chapagai (2014).  

 In order to determine the appropriate temperature that resulted in a more soluble form of 

recombinant SIP470, an overnight culture from a single colony was grown in LB media 

containing 100 µg/ml ampicillin and 10 µg/ml kanamycin at 17 ºC and 37 ºC respectively. The 

overnight culture was diluted 100 times into fresh LB media containing the appropriate 

antibiotics and then incubated at 37 ºC until OD600= 0.6. Protein expression was induced by 

adding 10 µM IPTG (Isopropyl β-D-1-Thiogalactopyranoside (IPTG) to the bacteria culture and 

incubating it at 37 ºC for 3 hours and 17 ºC overnight respectively in a shaker. The bacterial 

pellet was collected by centrifugation at 13,000 rpm for 3 minutes at room temperature. The 

pellet was suspended in 1X Ni-NTA binding buffer (50 mM sodium phosphate monobasic, 300 

mM sodium chloride, 10 mM imidazole, pH 8.0) and cells were broken by sonication with 20% 

amplitude for 15 seconds. The process was repeated 3 times. The supernatant (soluble) and pellet 

(insoluble) were separated by centrifugation at 13,000 rpm for 15 minutes in 4C. The pellet was 

resuspended in 1X Ni-NTA binding buffer. Proteins from both soluble and insoluble fractions 
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were run on SDS gel and western blotting was performed to determine the solubility of 

recombinant SIP470.  

Purification of Recombinant SIP470 by Ni-NTA Column Affinity Chromatography  

An overnight culture from a single colony was grown at 37C in 5 ml LB media 

containing 100 µg/ml ampicillin and 10 µg/ml kanamycin. Then, the overnight culture was 

diluted 100 times into fresh LB media containing 100 µg/ml ampicillin and 10 µg/ml kanamycin 

and then incubated at 37C until the OD600 = 0.6. The bacterial culture was induced with 10 µM 

IPTG as a final concentration and then incubated at 37ºC overnight in a shaker. The bacterial 

pellet was collected by centrifugation at 8,000 rpm for 15 minutes at 4ºC and 42 then 

resuspended in 1X Ni-NTA buffer. Protease Inhibitor (PI) (10 µl/ml) was added to the suspended 

bacterial pellet. Bacterial cells were lysed in a French press (Thermo Electron Corporation; cell 

type 20 K) and the soluble fraction (supernatant) was collected by centrifugation at 13, 000 rpm 

for 15 minutes at 4ºC. The soluble fraction was then incubated overnight with 1x Ni-NTA resin 

(Qiagen) at 4ºC. The unbound proteins were removed by washing with washing buffer 

containing 10 mM Imidazole in 1x Ni-NTA buffer. The bound recSIP470 was then eluted with 

elution buffer containing 250 mM Imidazole in 1x Ni-NTA buffer at room temperature. The 

presence of recSIP470 was confirmed by western blotting using monoclonal anti-polyHistidine 

antibody. SDS-PAGE analysis and Western Blot analysis was performed a described earlier.  

The primary antibody used was an anti-polyHistidine antibody (1:3000). 
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In vitro Lipid Binding Assay 

In order to test if SIP470 is a lipid transfer protein, an in vitro lipid binding assay was 

performed using soluble NI-NTA purified SIP470 and TNS (p-toluidinonaphthalene-6-

sulfonate), a fluorescent lipid binding substrate (Debono et al. 2009). TNS fluoresces intensely 

when bound in a hydrophobic environment but weakly in aqueous solution (Debono et al. 2009). 

TNS binding assay was performed from a protocol adopted from Debono et al. (2009) with slight 

modifications. 250 nM of recSIP470 (final concentration) and assay buffer (175 mM mannitol, 

0.5 mM K2SO4 0.5 mM CaCl2, and 5 mM MES, pH 7.0) was incubated in a 96 well plate to a 

final assay volume of 100 µl. To the mixture, 250 µM of TNS solution was then added 

incrementally (1-20 µM) and fluorescence was read using a Synergy HT microplate reader at an 

excitation and emission wavelength of 320 and 437 nm respectively. Fluorescence was then read 

by subtracting the fluorescence values from the control which contained no protein but contains 

the elution buffer (see appendix) used for purifying the recombinant protein. 

Effect of SABP2 on Lipid Binding Activity of SIP470 

 To investigate the possible effect of SABP2 on the binding activity of a lipid-binding 

assay in the presence of SABP2 was carried out. The purified recombinant SIP470 (250 nM, 

final concentration) and 500 nM of SABP2 were incubated together for 10 minutes. The mixture 

was then mixed with assay buffer (175 mM mannitol, 0.5 mM K2SO4, 0.5 mM CaCl2, and 5 mM 

MES, pH 7.0) to a final volume of 100 µl in a microplate. To the mixture, TNS solution (250 

µM) was then added incrementally (1-20 µM). The fluorescence was read using a Synergy HT 

microplate reader at an excitation and emission wavelength of 320 and 437 nm respectively. 
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CHAPTER 3 

RESULTS 

Role of SIP470 in Plant Stress Signaling (Hypothesis 1) 

Generating SIP470 RNAi Silenced Transgenic Tobacco Lines 

In order to investigate the possible roles of SIP470 in biotic as well as abiotic plant stress 

signaling, there was a need to generate transgenic lines in tobacco that are silenced in the 

expression of SIP470. Similar, we speculated that there was also a need to equally silence the 

homologs of SIP470 in other to avoid a functional complementation using one of SIP470 

homologs in silenced plants. Transgenic lines that are silenced in SIP470 were generated as 

explained in the methods section. A gateway based plasmid, pDONRR221 was used to generate 

an entry clone which facilitated recombination with the destination vector pHELLSGATE 8 

(Figure 9). The destination vector was transformed into competent Agrobacterium tumefaciens 

LBA4404 cells which were used for the plant transformation.  
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Figure 9: Vector Map of pHELLSGATE 8 used in generating SIP470 transgenic lines. 

 

PCR Amplification of SIP470 Silencing Fragment 

To generate silencing and homolog silencing construct, selected fragments in SIP470 

coding sequences for silencing (Figure 10) and homolog silencing (Figure 11) was amplified 

from a verified template (pDONR221+470 clone number P2) using a primer that has flanking 

attB1 and attB2 flanking sites. PCR was then performed as earlier described in the methods 

section. Results show a successful amplification of silencing fragment (Figure 12A) and 

homolog silencing fragment (figure 12B). The resulting fragments were used for subsequent 

clonings. 
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ATGGAAATGGTTGGCAAGATTGCGTGCTTTGTGTTACTTTGCATGGTGGTGGTTGCACCCCA

TGCAGAGGCACTGAGCTGCGGCCAGGTTCAGTCTGGCCTGGCTCTTTGCCTCCCTTATCTGC
AGAGTCGCGGCCCTCTAGGGAGGTGTTGTGGCGGCGTTAAAGGTGTGTTGGGTGCTGCCCGG
ACCCCAGCTGACCGCAAGACTGCATGCACTTGCCTGAAATCAGCTGCTTATGCTATTAAGGG
TATTAATATGGGCAAAGCCGCTGGACTTCCTAGTGCTTGTGGCGTTAACATTCCCTACAAGA

TCAGTCCCTCTACTGACTGCTCCAGGGTCCAGTGA 

Figure 10: Verified Sequence of SIP470 showing 60bp long sequence selected for silencing 

(underlined). 

 

ATGGAAATGGTTGGCAAGATTGCGTGCTTTGTGTTACTTTGCATGGTGGTGGTTGCACCCCAT

GCAGAGGCACTGAGCTGCGGCCAGGTTCAGTCTGGCCTGGCTCTTTGCCTCCCTTATCTGCAG
AGTCGCGGCCCTCTAGGGAGGTGTTGTGGCGGCGTTAAAGGTGTGTTGGGTGCTGCCCGGACC
CCAGCTGACCGCAAGACTGCATGCACTTGCCTGAAATCAGCTGCTTATGCTATTAAGGGTATT
AATATGGGCAAAGCCGCTGGACTTCCTAGTGCTTGTGGCGTTAACATTCCCTACAAGATCAGT
CCCTCTACTGACTGCTCCAGGGTCCAGTGA 

Figure 11: Verified Sequence of SIP470 showing 141bp long sequence selected for homolog 

silencing (Underlined). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Agarose gel electrophoresis of the amplified silencing construct. A. PCR amplified 
fragment for the silencing fragment. B. PCR amplified fragment for homolog silencing. Asterisk 
shows the expected size of the band expected. 
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Purification of Resulting PCR Product  

 The amplified fragments were gel extracted and purified as described in the methods 

section. Results show the purified fragment for silencing (Figure 13A) and homolog silencing 

(Figure 13B) used for BP recombination reaction. 

 

Figure 13: Agarose gel electrophoresis of the purified fragment. A. PCR purified fragment for 
silencing. B. PCR purified fragment for homolog silencing. Asterisk shows the expected size of 
the fragment expected. 

 

BP Recombination Reaction 

 The DNA fragment obtained from gel extraction and purification was then used for the 

BP reaction. The BP reaction allows for the transfer of DNA fragments with attB1 and attB2 site 

into the entry clone (pDONR221) which contains attP1 and attP2 sites. The reaction was carried 

out as described in the methods section. After BP reaction, 1 µl of the product was then used to 

transform competent E .coli cells as described in the methods. 
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Screening of Transformed Cells Using Colony PCR 

Transformed colonies were selected and screened for the presence of SIP470 silence 

fragment in the entry clone (pDNOR221) before further cloning steps. Results show the presence 

of SIP470 fragment in the entry clone for silencing (Figure 14A) and homolog silencing (Figure 

14B) respectively. 

 

Figure 14 : 1.5% EtBr stained agarose gel of colony PCR. A. Shows the presence of entry vector 
and silencing fragment for SIP470. B. shows the presence of entry vector and homolog silencing 
fragment for SIP470  
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Sequencing of Recombinant Plasmid 

Plasmids from Five bacterial clones that were positive from colony PCR each from 

silencing and homolog silencing was isolated (as described in the methods section) and sent for 

sequencing. Results show a 100 percent match of the silencing fragment in the vector when 

aligned with a verified template (Figure 15). 

 

Figure 15: Sequence Alignment of the silencing fragment in entry clone pDONR221 with the 

selected 60bp sequence for silencing. Perfectly matching sequences are indicated with a star 
below the sequence. The M13 forward primer was used for DNA sequencing. 

 

LR Recombination Reaction 

The verified sequence in the entry clone was then ligated into the destination vector 

pHELLSGATE 8. The LR reaction allows the transfer of DNA sequences of interest flanked by 

attL1 and attL2 in the entry vector into the destination vector pHELLSGATE 8 with attR1 and 

attR2. The reaction was carried out as described in the methods section. After LR reaction, 1 µl 

of the product was then used to transform competent E.coli cells as described in the methods. 

 

SBIP470                            -------TGTGGCGGCGTTAAAGGTGTGTTGGGTGCTGCCCGGACCCCAG 43 

SILENCING1PDONOR221FORWARDM13      AGGCTATTGTGGCGGCGTTAAAGGTGTGTTGGGTGCTGCCCGGACCCCAG 50 

                                          ******************************************* 

 

SBIP470                            CTGACCGCAAGACTGCA--------------------------------- 60 

SILENCING1PDONOR221FORWARDM13      CTGACCGCAAGACTGCAGGGAAGAGCTTCTTCCGCTGCCTAGAATCTGCA 100 

                                   *****************                                  

 

SBIP470                            -- 

SILENCING1PDONOR221FORWARDM13      TT 102 
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Screening of Transformed Cells Using Colony PCR 

Transformed colonies were selected and screened for the presence of SIP470 silencing 

fragment in the destination vector (pHELLSGATE 8). Results show the presence of SIP470 

fragment in the destination clone for silencing (Figure 16). The same procedure as followed for 

homolog silencing but gel pictures were not taken because the results from silencing experiments 

validated the process.  

 

 

 

 

 

 

Figure 16: 1.5% EtBr stain agarose gel of colony PCR. Figure showing the presence of 

destination vector and silencing fragment for SIP470. 

 

Recombinant pHELLSGATE 8-SIP470 Plasmid DNA Isolation 

Colony # 4 (Figure 16) was subcultured in LB media with the appropriate antibiotics 

overnight and the plasmid was extracted (as described in the methods section). To further verify 

the presence of silencing fragment in the destination vector (pHELLSGATE 8), a PCR 

amplification was done using the extracted plasmid as a template and result shows the presence 

of the silencing fragment of interest (Figure 17). One µl of plasmid DNA for silencing 

(247ng/ml) and homolog silencing (150 ng/ml) was later used to transform electrocompetent 

LBA 4404 cells respectively.  
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Figure 17: 1.5% EtBr stained Agarose Gel. Figure showing the PCR silencing fragment for 

SIP470. DNA fragment of interest. 

 

Transformation of pHELLSGATE8-SIP470 into LBA 4404 

Transformed LBA4404 was screened for the presence of pHELLSGATE8-SIP470 using 

colony PCR as earlier described. The result shows the presence of pHELLSGATE8-SIP470 in 

Agrobacterium (Figure 18). 

 

 

 

 

 

 

 

Figure 18: Agarose gel showing the presence of pHELLSGATE8-SIP470 in Agrobacterium. 
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Generating SIP470 Overexpression Transgenic Tobacco Lines 

In order to characterize the functional role of SIP470 in plants in biotic and abiotic 

stresses, there was a need to generate a transgenic line that overexpresses SIP470 protein of 

interest in order to study the possibility of a reversed and even enhanced role in the silenced 

plants (complementation). Overexpressed lines of SIP470 were generated using an inducible 

system as explained in the material and methods section. We used pGEMT as the entry vector 

and pER8 (Figure 19) as the destination vector. Verified clone in the destination vector was 

transformed into competent Agrobacterium tumefaciens LBA4404 cells which were used for the 

plant transformation. 

 

 

 

 

 

 

 

 

 

Figure 19: Vector Map of pER8 used in generating overexpressed SIP470 transgenic lines. 
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PCR amplification of SIP470 Coding Sequence  

To generate the overexpression transgenic lines, SIP470 coding sequences (Figure 20) 

was amplified from a verified template (pDONR221+470 clone number P2, box 4) using a 

primer designed to incorporate an Avr II and Spe I enzyme site at the C and N terminal of 

SIP470 gene respectively. PCR amplification was then performed as earlier described in the 

methods section. Results show a successful amplification of SIP470 coding sequence (Figure 

21). 

 

 

 

Figure 20: Verified Sequence of SIP470 showing 345bp long coding sequence selected for 

overexpression (underlined). 

 

 

 

 

 

 

 

Figure 21:Agarose gel showing the PCR amplified fragment for SIP470 overexpression. 

 

ATGGAAATGGTTGGCAAGATTGCGTGCTTTGTGTTACTTTGCATGGTGGTGGTTGCA

CCCCATGCAGAGGCACTGAGCTGCGGCCAGGTTCAGTCTGGCCTGGCTCTTTGCCTC
CCTTATCTGCAGAGTCGCGGCCCTCTAGGGAGGTGTTGTGGCGGCGTTAAAGGTGTG
TTGGGTGCTGCCCGGACCCCAGCTGACCGCAAGACTGCATGCACTTGCCTGAAATCA

GCTGCTTATGCTATTAAGGGTATTAATATGGGCAAAGCCGCTGGACTTCCTAGTGCT

TGTGGCGTTAACATTCCCTACAAGATCAGTCCCTCTACTGACTGCTCCAGGGTCCAG
TGA 
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Screening of Transformed Cells in pGEMT Using Colony PCR 

The amplified fragment was purified as described in the methods section. The purified 

fragment was then ligated into pGEMT entry vector as described in the materials section. The 

ligation mixture was then used to transform competent E.coli Top10 cells. Transformed colonies 

were selected and screened for the presence of SIP470 coding sequence and the result shows the 

presence of SIP470 coding sequence in the pGEMT vector (Figure 22). 

 

 

 

 

 

 

Figure 22: 1.5% EtBr stain agarose gel. Figure showing the presence SIP470 in pGEMT 
 

Sequencing of Recombinant pGEMT-SIP470 Plasmid  

Plasmids from three bacterial clones that were positive from colony PCR each for 

overexpression was isolated (as described in the methods section) and sent for sequencing. 

Results show a 100 % match of the silencing fragment in the vector when aligned with a verified 

template (Figure 23). 
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Figure 23: Sequence Alignment of SIP470 overexpression clone  in pGEMT (TM1-pGEMT). 
Perfectly matching nucleotides are indicated with a star below the sequence. 

 

Ligation of Digested pGEMT-470-4 and pER8 

Sequence verified clone (pGEMT-SIP470-4) and pER8 plasmid were then restricted 

digested as described in the methods section. The ligated mixture was then transformed into E. 

coli and incubated overnight. Plasmid from transformed bacteria was isolated and analyzed on a 

1.5% EtBr agarose gel. The result shows successful ligation of SIP470-pER8 (Figure 24). 
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Figure 24: 1.5% EtBr stain agarose gel. Figure showing the presence of ligated SIP470-pER8 
having a higher size approximately 800bp than the pER8 empty vector. 

 

Sequencing of Recombinant SIP470-pER8 Plasmid  

SIP470-pER8 clone from the above was then sent for sequencing. Analysis of the 

sequence obtained shows that the translated protein of SIP470 is in the right frame of the pER8 

vector as seen in Figure 25. 
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Figure 25: Figure shows a translated protein sequence of SIP470 (in red) in the frame as 

indicated by the translated sequence upstream (in black). 

 

Transient Expression of SIP470-pER8 in Nicotiana benthamiana 

The verified SIP470-pER8 clone was transformed into competent Agrobacterium cells as 

described in the methods section. In order to verify whether SIP470-pER8 clone was able to 

express SIP470 protein when induced, transient expression was carried out as described in the 

methods section. Figure 26 shows a western blot detection of SIP470 transiently expressed in the 

leaves of the tobacco plant. This process was important to determine the successful expression of 

the protein of interest after plant transformation. 
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Figure 26:  Western blot analysis. This shows SIP470 protein from transient expression in 
Nicotiana benthamiana. Protein was detected by using myc tag antibody. 

 

Screening of Transgenic Line for Silencing and Homolog Silencing  

Plant transformation was carried out as described in the materials and methods section. 

Leaf tissues were collected from transformed plants to check the relative expression of SIP470 in 

the transgenic silenced and homolog silenced lines respectively when compared to the wild type 

plant. mRNA was extracted from the leaf tissues collected from silenced as well as homolog 

silenced lines as described in the methods section. The corresponding cDNA was synthesized 

from the resulting mRNA and an RT-PCR was done using the screening primer. Results from 

RT-PCR shows a successfully silenced SIP470 (Figure 27A) as well as its homologs (Figure 

27B) as seen by the inability to detect the screening sequence in the transgenic lines. 
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Figure 27: 1.5% EtBr stain agarose gel. A. shows RT-PCR results for silenced plants and their 
relative level of expression of SIP470 with XNN having a relatively higher expression level 
when compared to the silenced lines. B. shows RT-PCR results for homolog silenced plants and 
their relative level of expression of SIP470 
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Plant transformation was done as earlier described. Successfully transformed plants for 

overexpression were subjected to screening by inducing leaf disc samples to express SIP470 

using β estradiol solution.  Overexpression of SIP470 was not detected using this method of 

screening as shown by the inability to detect SIP470 protein from the western blot analysis using 

C-myc tag (Figure 28A and Figure 28B) 

 

Figure 28: SDS-PAGE and western blot analysis. A. Coomassie stained blot showing various 
leaf disc samples screened for SIP470 overexpression B. Western blot analysis various leaf disc 
samples screened for SIP470 overexpression.  

 

Homologs of SIP470 in Arabidopsis are not Defective in Systemic Acquired Resistance (SAR) 

In order to investigate the role of SIP470 in inducing SAR in plants, Tobacco SIP470 

translated protein sequence was used to search for similar proteins in Arabidopsis species. 

Arabidopsis ltp2 has the highest similarity with SIP470 with a 53% match while ltp12 has a 46% 

similarity with SIP470 (Chapagai, 2014). Knockout mutants for ltp12 and ltp2 were obtained 

from the Biological Resource Center, OH, USA, screened (Chapagai, 2014) and was used for 

investigating the possible role of ltp12 and ltp2 in inducing SAR. SAR experiments were carried 

out as described in the materials and methods section. Results show that both ltp12 (Figure 29A) 

and ltp2 (Figure 29B) were capable of inducing acquired resistance to pathogens.  
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Figure 29: SAR is not affected in ltp2 and ltp12 mutants of Arabidopsis thaliana plants. A. SAR 
was not affected in ltp12 mutant Arabidopsis thaliana plants. B. SAR was not affected in ltp2 
mutant Arabidops thaliana plants. A significant difference was observed between mock and 
avirulent treated samples (t-test, P <0.05). 2 lower leaves of mutant Arabidops plants were first 
treated with avirulent pathogen (OD=0.002) (P.S tomato DC3000 AvrRPT2). After 2 days post 
infection (2 DPI), three upper leafs were challenged with a virulent pathogen (OD=0.0002) 
Pseudomonas syringe pv. maculicola. Control plants were infiltrated using 10mM MgCl2.  
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Homologs of SIP470 in Arabidopsis are Defective in Basal Resistance. 

The role of SIP470 homologs was also investigated for the basal resistance to pathogens 

in comparison to the wild type plant col-0 as described in the materials and methods section. 

Results show that ltp12 mutant plants are significantly more susceptible to bacteria pathogen 

(Figure 30A and 30B) allowing more growth of bacteria at 3 dpi while ltp2 didn’t show a 

significant difference in susceptibility to the pathogen (Figure 29C). 

Figure 30: Basal Resistance in Arabidopsis wild-type col 0, ltp12 and ltp2. A. shows the serial 
dilution of leaf extract of P.s. maculicolia infected plants at 3 days post infection for ltp12 and 
Col 0. B Growth of P.s. maculicola in ltp12 and Col 0 at 3 days post infection. A significant 
difference was observed between the growth of bacteria in ltp12 and Col 0 (t-test, P <0.05). C. 
The growth of Ps maculicola in ltp2 and Col 0 at 3 days post infection. No significant difference 
was observed. 
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Role of SIP470 in Abiotic Stress 

Ltp12 mutant in Arabidopsis is Susceptible to Salt Stress (NaCl) 

To determine if SIP470 could play a role in abiotic stress, a ltp12 mutant that was 

defective in basal resistance was grown in the presence of varying concentration of NaCl as 

described in the materials and method section. Results show that ltp12 mutants are more 

susceptible to salt stress at 150mM concentration when compared to the control (Col 0) as seen 

by the bleaching leaves (Figure 31C). No leave bleaching effect was observed at 50mM NaCl 

concentration (Figure 31B) but the plants appeared to be growth retarded when comparing the 

growth with the control plates (Figure 31A) while the 200mM concentration affected both ltp12 

mutant and Col 0 with both plant type showing a lot of leave bleaching but ltp12 being more 

affected by salt stress (Figure 31C). 
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Figure 31: Effect of NaCl on 15 days old seedlings from ltp12 mutant and Col 0. 10-day old 
seedlings of Arabidopsis ltp12 mutant and Col 0 were transferred into a half strength MS plate 
containing A. no NaCl incorporated in half MS. B. Plates containing 50mM NaCl. C. plates 
containing 150mM NaCl. D. plates containing 200mM NaCl. 

 

Ltp12 Mutant in Arabidopsis Susceptible to Oxidative Stress (H2O2) 

The effect of oxidative stress on the ltp12 mutant plant was also investigated using 

hydrogen peroxide H2O2 incorporated in the MS media. The experiment was carried out as 

described in the materials and methods section. Results show that ltp12 mutant was affected by 

3mM hydrogen peroxide as seen by the bleaching in the leafs when compared to the control 

(Figure 32). 
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Figure 32: Effect of 3mM H2O2 on 15 days old seedling of ltp12 mutant and Col 0. 10-day old 
seedlings of Arabidopsis ltp12 mutant and Col 0 were transferred into a half strength MS plate 
containing 3mM hydrogen peroxide. 

 

Ltp12 Mutant in Arabidopsis is Susceptible to Abscisic Acid (ABA)  

The effect of ABA incorporated in the growth media was also investigated. The 

experiment was carried out as describe in the methods section. Results show that ltp12 mutants 

are hypersensitive to 20 µM ABA as seen by the bleaching of its leaves when compared to Col 0 

with no visible bleaching on the leaves (Figure 33). 
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Figure 33: Effect of 20 µM ABA on 15 days old seedling of ltp12 mutant and Col 0. 10-day old 
seedlings of Arabidopsis ltp12 mutant and Col 0 were transferred into a half strength MS plate 
containing 3mM hydrogen peroxide. 

 

Ltp12 Mutant in Arabidopsis is Susceptible to Drought  

The effect of drought on the survival of SIP470 homologs (ltp12 and ltp2) were also 

investigated as described in the methods section. Figure 34C shows that ltp12 mutants are 

susceptible to drought stress when compared to wild type Col 0 as ltp12 mutant plants were not 

able to survive drought even after subsequent exposure to water. Col 0 and ltp2 mutants were 

able to survive drought stress. 
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Figure 34: Effect of drought on seedlings of ltp12 mutant and Col 0. Seedlings of Arabidopsis 
ltp12 mutants were subjected to drought and then later watered. 

 

Expression of PR1 Defense Gene on Exposure to Virulent pathogen  

In order to understand at the molecular level what potential role ltp12 plays in basal 

defense signaling, gene expression studies of a defense gene (PR1 ) was carried out as outlined 

in the materials and methods section to determine if pathogenesis-related protein 1 (PR1) is up-

regulated or down-regulated in ltp12 mutant Col 0 plants. Figure 35 shows the expression level 

of PR1 was delayed in ltp12 mutant plants but not in wild type (col 0) Plants on exposure to the 

virulent pathogen. 
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Figure 35: PR1 Gene Expression upon P.s. maculicola exposure. Expression of PR1 on exposure 
to P.s maculicola. 0, 3, 6, 12, 24 and 48 represents the different time points of sample collection. 
cDNA was made from total RNA and used as a template to amplify PR1 and ubiquitin (internal 
control). 

 

Tobacco SIP470 is a Lipid Transfer Protein (Hypothesis 2) 

Expression of Recombinant SIP470 in E. coli 

In order to determine if SIP470 is a lipid transfer protein as predicted from bioinformatics 

analysis, recombinant SIP470 was expressed in E. coli as described in the materials and methods 

section. Expression of recombinant SIP470 was detected by SDS-PAGE and western blot 

analysis using monoclonal Anti-polyhistidine antibody. There was a higher expression of 

recombinant SIP470 in pDest17-470 transformed in pLysE cells (Figure 36A and 36B). This 

clone was chosen for further experiments. 
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Figure 36: Expression of recombinant SIP4670. A. SDS page analysis of different clones of 
SIP470 in different protein expression cell lines. B Western blot analysis of recombinant SIP470 
detected using poly-Histidine antibody. Lanes 1, 3 and 5 are un-induced, lanes 2, 4 and 6 are 
induced using 10 µM IPTG. Asterisk represent the expected position of SIP470 protein on the 
blot   

 

Solubility Test 

In order to get soluble fractions of recombinant SIP470 for biochemical assay, a 

solubility test was done as described in the methods section. Resulting pellet collected from a 

1ml overnight culture grown at different temperatures (17oC and 37oC) were re-suspended in 1X 

Ni-NTA binding buffer and the cells were broken by centrifugation. Both the soluble 

(supernatant) and insoluble (pellet) fractions were collected and analyzed using SDS page and 

western blot. From the result, it was clear that recombinant SIP470 was more expressed at 37oC 

in its insoluble and soluble form compared to 17oC (Figure 37). 
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Figure 37: Expression of recombinant SIP470. A. SDS page analysis of SIP470 in pLysE cell 
line at a different temperature of expression. B. Western blot analysis of recombinant SIP470 
detected using poly-Histidine antibody. ‘UI’ in this figure stands for un-induced, ‘TP’ for total 
protein, ‘IP’ for induced pellet, IS for induced supernatant and the asterisk represent the expected 
position of SIP470 protein on the blot   

 

Purification of Recombinant SIP470 using Ni-NTA Column Affinity Chromatography 

Expressed recombinant SIP470 was purified using Ni-NTA affinity chromatography as 

described in the materials and methods section. Samples were eluted with 250mM imidazole. 

Eluted fractions were mixed with 6X SDS loading dye, boiled for 6 minutes and centrifuged. 

Resulting supernatant from the centrifugation was analyzed using SDS page and western blot. 

Result shows the successful detection of recombinant SIP470 using western blot (Figure 38) 
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Figure 38: Purification of recombinant SIP470 using NI-NTA affinity chromatography. A. SDS 
page analysis of purified recombinant SIP470 with eluted fractions E1-E11. B Western blot 
analysis of recombinant SIP470 detected using poly-Histidine antibody. The asterisk represents 
the expected position of SIP470 on the blot, E1-E11 represents each eluted fractions. 

 

Biochemical Characterization 

Lipid Binding Assay 

In order to test if SIP470 is a lipid transfer protein, an in vitro lipid binding assay was 

performed using soluble Ni-NTA purified SIP470 and a fluorescent lipid binding substrate called 

TNS (p-toluidinonaphthalene-6-sulfonate) as described in the material and method section. 

Under experimental conditions, recombinant SIP470 binds to TNS lipophilic probe as indicated 

by the increasing fluorescence with an increasing concentration of TNS (Figure 39). 

Fluorescence data was measured by subtracting from the control. 
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Figure 39: Recombinant purified SIP470 binds the Lipophilic Probe TNS. Recombinant SIP470 
was expressed without the signal peptide and then purified in E. coli using NI-NTA affinity 
chromatography. Purified SIP470 incubated with increasing concertation of TNS shows an 
increasing fluorescence activity 

 

Effect of SABP2 on Binding Affinity 

The effect of SABP2 on lipid binding activity of SIP470 was also carried out as described 

in the materials and methods section. A 100µl reaction which was composed of a fix 

concentration of SIP470 and varying concentrations of SABP2 was made. Results show a 

reduction in the binding affinity of SIP470 in the presence of SABP2 (Figure 39) 
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Figure 40: Effect of SABP2 on the binding affinity of SIP470 to TNS. Recombinant SABP2 and 
SIP470 were incubated together and used for TNS assay. Presence of SABP2 leads to a reduction 
in TNS fluorescence in the presence of SIP470 
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CHAPTER 4 

DISCUSSION 

 

Salicylic acid (SA) plays an important role in mediating plant defense responses to both 

biotic and abiotic stress. Plants respond to pathogen attack by producing high amounts of SA 

which is converted to methyl salicylate; an important lipid mobile signal in plant resistance (Park 

et al. 2007). Methyl salicylate is converted back to SA by the methylesterase activity of salicylic 

acid-binding protein 2 (SABP2) to trigger the systemic acquired response (SAR) in plants by 

increasing the endogenous level of SA in distal plant tissues (Forouhar et al. 2005). This whole 

process leads to the activation of signaling network through the non-expression of pathogenesis 

related 1 (NPR1) proteins (Spoel et al. 2003). SA is required for both basal and induced 

resistance (SAR) response in plants. RNAi-mediated silencing of tobacco SABP2 renders plants 

defective in inducing SAR (Kumar and Klessig 2003). To learn more about this network 

involving SABP2, a yeast two-hybrid screening using SABP2 as bait resulted in the 

identification of several putative SABP2-interacting proteins (SIPs). SIP470 (SABP2 Interacting 

Protein 470) is one of such protein. Bioinformatics analysis of the nucleotide sequence of SIP470 

obtained from the yeast-two hybrid screening predicted it to belong to a non-specific Lipid 

Transfer Protein 1 subfamily (nsLTP1) (Chapagai 2014). Plant lipid transfer proteins (PLTPs) 

are a group of small, soluble, basic and highly conserved proteins primarily responsible for the 

shuttling of phospholipids and other fatty acids between cell membranes. A number of studies 

reveal that PLTPs play a very important role in the defense against phytopathogens (Maldonado 

et al. 2002; Jung et al. 2009), cell signaling, antimicrobial defense, cutin synthesis, and cell wall 
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loosening but these functions have not been well correlated with their in-vitro activity or 

structure (Yeats and Rose 2008). 

 In an attempt to determine if SIP470 also plays a significant role in mediating stress 

responses in plants, Arabidopsis T-DNA insertion knockout plants lacking SIP-470 homolog 

(LTP12 and LTP2) was identified and used for analysis. Arabidopsis LTP2 and LTP12 are the 

most similar proteins to SIP470. Preliminary studies involving these two mutants indicated that 

they are both defective in growth phenotype as well as susceptible to pathogens (Chapagai 

2014). These preliminary findings ignited further interest towards understanding the following 

questions: 1) what role does SIP470 play in the SA-mediated defense pathway? 2) What role 

does SIP470 play in biotic and abiotic response in plants? 3) Biochemical characterization of 

lipid binding activity of SIP470?. To answer these question, we hypothesized that SIP470 is a 

lipid transfer protein that facilitates the transfer of lipid-like signals during biotic and abiotic 

stress and thus has a role to play in the biotic and abiotic stress of plants. An attempt to 

characterize SIP470 based on its lipid transfer activity was not successful in previous studies 

(Chapagai 2014). The main aim of this study was to determine the possible role of SIP470 and its 

homolog in Arabidopsis during the abiotic and biotic stress as well as its role in the SA-mediated 

response of plants and also characterize SIP470 in its ability to bind to lipids.  

In order to characterize SIP470 as a lipid transfer protein as predicted by the 

bioinformatics analysis of its coding sequence, a lipid binding assay with minor modifications 

using a lipophilic probe 2-p-toluidinonaphthalene-6-sulfonate (TNS) was performed (Buhot et al 

2004). Generally, proteins are annotated as a lipid transfer protein by the presence of 8 conserved 

cysteine amino acids which is also present in SIP470 but this does not predict its lipid binding 

activity because the conserved 8 cysteine motif is not unique to only LTPs and can be found in 
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several other plant proteins like the proteases and amylase inhibitor as well as in other proteins 

whose functions are not known (Jose´-Estanyol et al. 2004; Debono et al 2009). To perform the 

lipid binding assay, soluble recombinant SIP470 without the signal peptide was overexpressed in 

E. coli at 37oC. The recombinant SIP470 protein was then purified using NI-NTA affinity 

chromatography which removed a number of unwanted proteins. Purified SIP470 was then 

incubated with TNS (see materials and methods). Under experimental conditions, SIP470 binds 

to TNS as indicated by the increasing fluorescence as shown in Figure 39. To validate the lipid 

binding assay, various concentration of SIP470 (250-1250 nM) were used in an assay with a 

fixed concentration of TNS. Increased fluorescence was observed (data not shown) suggesting 

that it is the soluble SIP470 that is responsible for the observed fluorescence. This finding 

confirms that SIP470 is an LTP. This finding is in line with previous findings which suggests 

that family 1 LTPs have a conserved Tyr79 amino acid that is responsible for intrinsic 

fluorescence that is observed experimentally and it is normally enhanced upon lipid binding 

(Lullien-Pellerin et al. 1999). This finding provides evidence which suggests that SIP470 is a 

lipid binding protein.  

To examine the relationship between SABP2 and SIP470, we performed a lipid binding 

assay in the presence of SABP2. The result from the experiment showed a decrease in the 

fluorescence of SIP470 in the presence of SABP2 (Figure 40). SABP2 alone showed no 

fluorescence in the presence of TNS. This finding suggests a possible interaction between 

SABP2 and SIP470 which affects the ability of SIP470 to bind to TNS. This could provide 

another evidence that SIP470 is an SABP2 interacting protein.  

To test the possible role of SIP470 in biotic stress, T-DNA insertional knockout mutants 

for LTP12 and LTP2 (SIP470 closest homologs in Arabidopsis) were obtained from the 
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Biological Resource Center, OH, USA, and screened (Chapagai 2014). Pathogen growth assay 

was performed using these mutants (see methods section). The ltp12 mutants were more 

susceptible to virulent pathogens (DC3000) compared to the wild-type Col 0 (figure 30A and 

Figure 30B) suggesting that they are defective in basal resistance to pathogens. There wasn’t a 

significant difference in the susceptibility of ltp2 mutants to the virulent pathogen (DC3000) 

when compared to Col 0 (figure 30C). Collectively, this result suggests that Arabidopsis ltp12 

mutant is a positive regulator of basal resistance or plays a role in protecting the plants from 

pathogens. To investigate at the molecular level what gene/s might be affected in the knockout 

ltp12 mutant plant, we conducted a gene expression studies of plant defense gene (PR1) in the 

presence of both virulent pathogens (see methods section). Results showed that the expression of 

PR1 genes was delayed in the ltp12 mutant plants but not in the wild-type plants on exposure to 

the virulent pathogen (figure 35). This delay in the induction of PR1 gene in ltp12 mutant plants 

could be the reason they are more susceptible to the virulent pathogen as compared to the wild-

type plants. To test if SIP470 has a role to play in the systemic acquired resistance (SAR) of 

plants, we conducted a study using both ltp12 and ltp2 mutants. Results showed that ltp12 and 

ltp2 mutants were not affected in induced resistance (figure 29). Plant defense system is very 

complex and does not follow a linear pattern (Katagiri 2004), it involves many players such as 

plants hormones such as SA and JA as well as transcriptional factors (Chen 2002). Studies on 

Arabidopsis revealed that ltp12 gene is induced upon pathogen attack (Kilian et al. 2007). 

Similarly, studies on the gene expression studies of SIP470 shows that it is also expressed upon 

viral and bacterial pathogens (Simo and Kumar unpublished). These various data collectively 

suggests that SIP470 and its ltp12 homolog are involved in biotic stress signaling involving 

innate immunity in plants. This finding has raised the question on what the exact function of 
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ltp12 in plants? Evidence that a lipid-based signal is necessary for plants to adequately fight 

against pathogens was revealed through the characterization of several defective lipase-like 

proteins (EDS1 and PAD4). Eds1 mutants are compromised in basal resistance which is 

mediated by resistance (R) genes. Interestingly, the weakened local resistance of pad4 is also 

mediated by same R genes. These genes encode the TIR-NB-LRR-type proteins (Durant 2004). 

SABP2 was identified as a lipase whose lipase activity is modulated by salicylic acid (Kumar 

and Klessig 2003). Maybe SIP470 and its Arabidopsis homolog ltp12 function in a similar 

manner to transfer some lipid signals generated by the lipase activity of SABP2 since they are 

interacting proteins. 

In order to fully delineate the full functional potential of SIP470, we subjected its 

Arabidopsis homolog mutant, ltp12 to abiotic stress. Abiotic stresses in general leads to 

excessive production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) which 

caused extensive tissue damage and also affects photosynthesis (Ciarmiello et al. 2011). Plants 

normally respond to these stress by antioxidant mechanisms but the response to these stress can 

be impaired by stresses themselves (Allan and Fluhr 2007). Plants use a complex defense system 

which involves quite a number of antioxidant stress-related genes that causes a biochemical 

change in response to such stress (Ciarmiello et al. 2011). Studies also suggest that ROS requires 

additional molecules along this pathway to amplify and transduce defense signals (Ciarmiello et 

al. 2011). The ability of plants to respond to abiotic stresses does not follow a linear pathway but 

involves a very complex integrated circuits involving many other pathways to coordinate a 

specific response to a given stimulus (Dombrowski 2009). Studies also suggest that there is a 

similar mechanism by which plants of response to various abiotic stressors (Ciarmiello et al. 

2011) because many drought-inducible genes are also induced by exposure to salt stress and cold 
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stress. Exposure of plants to high salinity (NaCl) creates an ionic stress in addition of disturbing 

the water balance. Accumulation of salt can affect plasma membrane lipids in the plant cell (Fujii 

and Zhu 2009). Since various abiotic stressors lead to the induction of a common signaling 

pathway for abiotic stress, we used different abiotic stressors to study the possible role of 

Arabidopsis LTP12 gene in abiotic stress response using ltp12 mutants. Germinated seedlings 

(on MS media) were transferred to a half strength MS media with various concentration of NaCl, 

ABA, and H2O2. At 50mM NaCl, both wild type and ltp12 mutant did not show much effect 

(figure 31B). At 150mM NaCl, both ltp12 mutants were affected, but clearly, ltp12 mutant 

showing a more extensive bleaching of its leaves (figure 31C). At 300mM, both ltp12 and col 0 

showed similar bleaching effect (figure 31D).  

In the presence of 3mM H2O2, several ltp12 mutant plants showed bleaching of their 

leaves but no bleaching effect was noticed in Col 0 plants (figure 32).  

Similarly, 20µM ABA had almost the same effect observed in 3mM H2O2 (figure 33). 

There is, however, a need to repeat this experiment with varying concentration of ABA and H2O2 

in order to possibly observe a clear phenotypic effect. We also tested the effect of drought on the 

survival of ltp12 mutants. Results revealed that ltp12 mutants failed to recover after prolong 

drought but col 0 plants were able to survive (figure 34). Together, this result correlates with 

several findings that suggest that LTPs are involved in plants response to drought, salt stress and 

low temperature (Hughes tor-Toro 1992; Molina and Garcia-Olmedo 1993; Trevino and 

O’ onnell 1998). Arabidopsis ltp3 has been reported to be induced during abiotic stress (Seo et 

al. 2011). The ability of LTPs to be involved in abiotic stress could be linked to their 

involvement in epicuticular wax layer and cuticle biosynthesis (Clark and Bohnert 1999). 
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 The other aspect of this research was focused on generating transgenic tobacco lines that 

are silenced in SIP470 expression and overexpressor lines that overexpress SIP470. The 

generated transgenic lines will be used for complementation studies. Complementation studies 

using Arabidopsis mutant with functional tobacco SIP470 is necessary to determine if the 

defective phenotype and the susceptibility to pathogens and abiotic stress could be 

complemented. This complementation assay would be another way to characterize SIP470. 

RNAi method was employed in generating our transgenic line that is silenced in the expression 

of SIP470. Analysis of various independent transgenic lines shows a successful silencing of 

SIP470 (Figure 27).  

Transgenic lines that are overexpressing SIP470 were generated using an inducible 

system. Generating overexpressor lines was accomplished by cloning the full-length SIP470 into 

the pER8 vector. Successful clones in pER8 were transiently expressed in Nicotiana 

benthamiana plant (figure 26).  Plants normally tend to suppress the expression of foreign lethal 

proteins, HcPro is a silencing suppressor that helps for successful expression of foreign proteins 

in plants. From our results (figure 26) it is clear that expression of SIP470 wasn’t suppressed in 

the absence of HcPro. However, transgenic lines for overexpression needs to be screened for an 

initial trial to screen plants wasn’t successful (figure 28) 
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Future Directions 

A significant effort has been put to understand the functional role of SIP470 in plants by 

using its closest homologs (ltp12 and ltp2) in Arabidopsis. So far, we have established that 

SIP470 homolog, ltp12 mutants are defective in growth phenotype (Chapagai 2014), defective in 

basal resistance and affected by abiotic stress. We have also established that SIP470 is a lipid 

transfer protein by its ability to bind to TNS in vitro. We also successfully generated transgenic 

tobacco plants that are silenced in SIP470 and homologs of SIP470 as well as an inducible 

overexpression line.  

To further study the function of SIP470 in plants defense signaling, the generated 

transgenic plants (silenced and overexpression) should be used for complementation studies to 

determine if the defect in growth phenotype, as well as susceptibility to pathogens, can be 

complimented. Similarly, the nature of SABP2 and SIP470 interaction should be pursued to 

determine they work antagonistically or synergistically in terms of their gene regulation during 

biotic or abiotic stress. Results from the aforementioned experiments will help enhance our 

understanding of the functional role of SIP470 in plants. 
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APPENDICES 

 

APPENDIX A- Abbreviations 

ABA- Abscisic Acid  

APS – Ammonium Persulfate 

COI1- Coronatine Insensitive 1 

Col-0 – Columbia 0 

EIN3 - Ethylene Insensitive 3 

ET – Ethylene  

EtBr – Ethidium Bromide  

ETI – Effector Triggered Susceptibility 

ETS – Effector Triggered Susceptibility  

ICS – Isochorismate Synthase 

IPTG - Isopropyl β-D-1-Thiogalactopyranoside  

JA- Jasmonic Acid 

JAR1 – Jasmonate Resistance 1 

KDa – Kilo Dalton 

LMW – Low Molecular Weight  

LTP12 – Lipid Transfer Protein 12 

LTP2 – Lipid Transfer Protein 2 
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MeJA- Methyl Jasmonate  

MeSA – Methyl Salicylate 

NB-LRR – Nucleotide Binding Leucine Rich Repeat 

Ni-NTA – Nickel-Nitrilotriacetic Acid  

nsLTP1 – Non-Specific Lipid Transfer Protein 1 

PAL – Phenylalanine Ammonia-Lyase 

PAMPS – Pathogen Associated Molecular Pattern 

PCR – Polymerase Chain Reaction 

PLTP – Plant Lipid Transfer Protein 

PR- Pathogenesis-Related  

PR1- Pathogenesis-Related Protein 1 

PTI – PAMP-Triggered Immunity  

RecSIP470 – Recombinant SABP2 Interacting Protein 470 

RNAi – RNA Interference  

SA – Salicylic Acid  

SABP2 - Salicylic Acid Binding Protein 2 

SAG – Salicylic Acid beta-Glucoside 

SAMT –Salicylic Acid Methyl Transferase  
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SAR – Systemic Acquired Resistance  

SDS – Sodium Dodecyl Sulfate   

SDS-PAGE - Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SFD – Suppressor of Fatty Acid Desaturase LTPs 

SIP – SABP2 Interacting Protein 

SIP470 - SABP2 Interacting Protein-470 

SOS – Salt Overly Sensitive gene 

 ß-ME - βeta mercaptoethanol 

T-DNA - Transfer DNA 

TNS - 2-p-toluidino naphthalene-6-sulfonate 

μg – Microgram 

μl – Microlitre 

ng/l – Nanogram/Microliter  
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APPENDIX B – Buffers and Reagents 

 

1.5 % Agarose Gel  

0.75 g of Agarose  

50 ml of 1x TAE Buffer 

Add the agarose in TAE buffer and heat in the microwave for 60 seconds to dissolve.  

Cool the mixture by placing it in a 50oC water bath 

Add 2.5 μl (10 mg/mL) ethidium bromide before pouring in gel casting tray. 

0.1% DEPC (Diethyl Pyrocarbonate) Treated Water (0.1 L) 

0.1 ml of Diethyl pyrocarbonate was added to 100ml of milli-Q water 

Mixture was incubated at 37°C for ~12 hours 

Then autoclave at 121°C and 15 psi atmospheric pressure for 20 minutes 

20% APS (Ammonium Persulfate) (0.5ml)  

0.1 g of Ammonium persulfate 

0.5 ml of water 

Ni-NTA Binding Buffer (1 L)  

6.89g of sodium phosphate monobasic (M.W: 137.99 g/mol), final concentration 50 mM  

17.53g of Sodium chloride (M.W: 58.44 g/mol), final concentration 300 mM  

0.6808g of Imidazole (M.W: 68.08), final concentration10 mM  
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Ni-NTA Elution Buffer (1 L)  

6.896g sodium phosphate monobasic (M.W: 137.99 g/mol), final concentration 50mM  

17.53g sodium chloride (M.W: 58.44 g/mol), final concentration 300 mM  

17.02g imidazole (M.W: 68.08), final concentration 250 mM 

Western Blotting Blocking Buffer (100 ml)  

100 ml 1X PBS buffer  

1g Fat-free Milk Powder  

 3g BSA  

10x Western Blotting Transfer Buffer 1L 

30.3g tris base (M.W: 121.1 g/mol), final concentration 125 mM  

72.06g glycine (M.W: 75.07 g/mol), final concentration 960 mM  

Dissolve in 500 ml distilled water and adjust to 1000 ml.  

1x Western Blotting Transfer Buffer 1L 

100 ml 10x western blotting transfer buffer  

100 ml 100% methanol  

800 ml cold distilled water  

TE Buffer 1L 

1.576g tris-HCl (M.W: 157.60 g/mol), final concentration 10 mM/L 

Adjust pH to 8 

Adjust volume to 1 liter with water 

2x SDS-PAGE Loading Dye (100 mL) 

10 mL of 1M Tris-Cl, pH 6.8, final concentration 100mM 

0.4g SDS, final concentration 0.4% (v/v) 
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20 ml of glycerol, final concentration 20% (v/v) 

0.2 g bromophenol blue, final concentration 0.2% (v/v) 

Add 5 mL of βME before use 

10 mM Magnesium Chloride (1 L) 

Magnesium Chloride = 0.952 g 

Adjust the volume to 1 liter with distilled water 

Ni-NTA Binding Buffer (1 L) 

6.89 g sodium phosphate monobasic (M.W: 137.99 g/mol), final concentration 50mM/L 

17.53 g sodium chloride (M.W: 58.44 g/mol), final concentration 300 mM/L 

Imidazole (M.W: 68.08) = 0.6808, final concentration 10 mM/L 

Ni-NTA Elution Buffer (1 L) 

6.896g sodium phosphate monobasic (M.W: 137.99 g/mol), final concentration 50 mM/L 

17.53g sodium chloride (M.W: 58.44 g/mol), final concentration 300 mM/L 

17.02 g imidazole (M.W: 68.08), final concentration 250 mM/L 

LB Medium (1 L)  

25g LB Broth  

Make up to 1000 ml with distilled water  

Sterilize by autoclaving for 15 minutes on liquid cycle  

Store at 4oC temperature 

Lipid Binding Assay Buffer 100ml 

175 mM mannitol 

 0.5 mM K2SO4 

 0.5 mM CaCl2,  



105 

 

5 mM MES,  

Adjust pH to 7.0 

SOC MEDIA 100ml 

80ml LB media 

Add 20ml of 1M glucose 

Autoclave and store at 4oC 

STE Buffer 50ml 

100mM NaCl 

10mM Tris-HCl,  

Adjust to pH 8 

1mM EDTA 

STET solution 50ml 

10mM Tris-HCl 

1mM EDTA 

100mM NaCl 

5% Triton X-100 

Half Strength MS media 

2.155g/L of MS salt  

Add 1% sucrose 

Adjust pH to 5.9 using 1M KOH 

Add 0.9% Agar. 

Autoclave 
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1X PBS (1 L) 

100 ml 10X PBS  

900 ml distilled water  

1X PBS Plus 3% Tween Twenty (1 L) 

100 ml 10X PBS  

870 ml distilled water  

30 ml tween 20 

Shoot Inducing Media (SIM) 1L 

4.31g of MS salts  

Add 3% Sucrose 

Adjust pH to 5.9 with 1M KOH 

Add 0.9% Agar 

Add Vitamins 

  +0.1mg/litre alpha NAA 

+1mg/litre BAP 

+1ml 1000X vitamin solution 

SIM with antibiotics 

To SIM media, add: 

Carbenicillin 250mg/litre 

Kanamycin 300mg/litre  

Cefatoxim 100mg/ml  
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Root Inducing Media (RIM) 

4.31g of MS salts  

Add 1% Sucrose 

Adjust pH to 5.9 with 1M KOH 

Add 0.9% Agar 

Add Vitamins 

  +0.1mg/litre alpha NAA 

+1mg/litre BAP 

+1ml 1000X vitamin solution 
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APPENDIX C – Sequence Analysis for Silencing and Homolog Silencing  

 

Sequence Analysis for Silencing SIP470 

 

 

 

 

 

 

 



109 

 

>mRNA_102807 

ATGGAAATGGTAGGCAAGATTGCATGTTTCGTGGTTTTGTGCATGGTGGTGGTTGCACCTCATGCAGAGGCACT

AAGCTGCGGCCAGGTTCAGTCTGGCCTGGCTCCTTGCCTCCCTTATCTACAGGGCCGTGGCCCTCTCGGAGGCT

GTTGTGGTGGTGTTAAAGGTCTGTTAGGTGCAGCCAAGTCCCCAGCTGACCGCAAGACTGCATGCACTTGCCTG

AAATCGGCCGCTAATGCTATTAAGGGTATTGACATGGGCAAAGCCGCTGGACTCCCTAGTGCTTGTGGCGTTAA

CATTCCATACAAGATCAGTCCCTCCACTGATTGCTCCAAGGTCCAGTGA 

>mRNA_87105 

ATGGAAATGGTAGGTAAGATTGCATGCTTTGTGGTTTTGTGCATGGTGGTGGTTGCACCCCATGCAGAGGCACT

GAGCTGCGGCCAAGTTCAGTCCGGCTTGGCTCCTTGTCTCCCTTATTTGCAGGGCCGCGGCCCTTTGGGGAGCT

GTTGTGGTGGTGTTAAAGGTCTGTTGGGTGCAGCCAAGTCCCCATCTGACCGGAAGACTGCATGCACTTGCCTG

AAATCGGCTGCTAATGCTATTAAGGGTATTGATATGGGCAAAGCCGCTGGTCTCCCTGGTGCTTGTGGTGTCAA

CATTCCTTACAAGATCAGCCCCTCCACAGACTGCTCTAAGGTCCAGTAA 

>mRNA_30771 

ATGGAAATGGTTGGCAAGATTGCATATTTCTTGGTTTTGTGCGTGGTGGTGATTGCACCCCATGCCGAGGCACT

GAGTTGTGGCCAGGTTCAGTCTGGCCTGGCTCCTTGCCTCCCTTATCTACAAGGCCGTGGCCCTCTCGGAGGCT

GTTGTGGTGGTGTTAAAGGTCTGTTGGGTGCAGCCAAGTCCCCAGCTGACCGCAAGACTGCATGCACTTGCCTA

AAATCAGCCGCTAATGCTATTAAGGGCATTGATATGGGCAAAGCTGCTGGACTTCCTAGTGCTTGTGGCGTTAA

CATTCCGTACAAGATCAGTCCCTCCACTGACTGCTCTAAGGTCCAGTAA 

>mRNA_37999 

ATGTCCAATAATTCTCTCTCTATAAAAAACCCTAAGGTCTCACTAGCTTTTGTACACAACACTCAAGGCAATAA

CATTTGTAGTACTATCCCCCTCTACTTTGTCCAAACTACTCTCTATTGTTCTCTAATTTTTCTTTTAAGAATGG

AAATGGTAAGCAAGATTGCATGTTTCGTGGTTTTGTGCATGGTGGTGGTTGCACCCCATGCAGAGGCACTGACC

TGCGGCCAGGTTCAGTCTAGCCTGGCTCCTTGCGTCCCTTATTTGCTGGGCCGCGGCCCTTTGGGGGGTTGTTG

TGGCGGCGTTAAACGTCTGTTGGGTGCTGCTCGCACCCCAGCGGACCGAAAGACTGCATGCAATTGCCTGAAAT

CAGCCGCTAATACTTTTAAGGGCATTGATATGGGCAACGCCGCTCGTCTCCCTGGTACTTGTGGCGTTAACATT

CCCTACAAGATCAGTCCCTCCACTGACTGCTCCAAGGTCCAGTGA 

>SIP470 

ATGGAAATGGTTGGCAAGATTGCGTGCTTTGTGTTACTTTGCATGGTGGTGGTTGCACCCCATGCAGAGG

CACTGAGCTGCGGCCAGGTTCAGTCTGGCCTGGCTCTTTGCCTCCCTTATCTGCAGAGTCGCGGCCCTCT

AGGGAGGTGTTGTGGCGGCGTTAAAGGTGTGTTGGGTGCTGCCCGGACCCCAGCTGACCGCAAGACTGCA

TGCACTTGCCTGAAATCAGCTGCTTATGCTATTAAGGGTATTAATATGGGCAAAGCCGCTGGACTTCCTA

GTGCTTGTGGCGTTAACATTCCCTACAAGATCAGTCCCTCTACTGACTGCTCCAGGGTCCAGTGA 
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CLUSTAL O(1.2.2) multiple sequence alignment 
 

 

mRNA_30771_cds       CTTTTAAGAATGGAAATGGTAAGCAAGATTGCATGTTTCGTGGTTTTGTGCATGGTGGTG 

SIP470               ---------ATGGAAATGGTTGGCAAGATTGCGTGCTTTGTGTTACTTTGCATGGTGGTG 

mRNA_37999_cds       CTTTTAAGAATGGAAATGGTAAGCAAGATTGCATGTTTCGTGGTTTTGTGCATGGTGGTG 

mRNA_102807_cds      ---------ATGGAAATGGTAGGCAAGATTGCATGTTTCGTGGTTTTGTGCATGGTGGTG 

mRNA_87105_cds       ---------ATGGAAATGGTAGGTAAGATTGCATGCTTTGTGGTTTTGTGCATGGTGGTG 

                              ***********:.* ********.** ** *** *: * ************ 

 

mRNA_30771_cds       GTTGCACCCCATGCAGAGGCACTGACCTGCGGCCAGGTTCAGTCTAGCCTGGCTCCTTGC 

SIP470               GTTGCACCCCATGCAGAGGCACTGAGCTGCGGCCAGGTTCAGTCTGGCCTGGCTCTTTGC 

mRNA_37999_cds       GTTGCACCCCATGCAGAGGCACTGACCTGCGGCCAGGTTCAGTCTAGCCTGGCTCCTTGC 

mRNA_102807_cds      GTTGCACCTCATGCAGAGGCACTAAGCTGCGGCCAGGTTCAGTCTGGCCTGGCTCCTTGC 

mRNA_87105_cds       GTTGCACCCCATGCAGAGGCACTGAGCTGCGGCCAAGTTCAGTCCGGCTTGGCTCCTTGT 

                     ******** **************.* *********.******** .** ****** ***  

 

mRNA_30771_cds       GTCCCTTATTTGCTGGGCCGCGGCCCTTTGGGGGGTTGTTGTGGCGGCGTTAAACGTCTG 
SIP470               CTCCCTTATCTGCAGAGTCGCGGCCCTCTAGGGAGGTGTTGTGGCGGCGTTAAAGGTGTG 
mRNA_37999_cds       GTCCCTTATTTGCTGGGCCGCGGCCCTTTGGGGGGTTGTTGTGGCGGCGTTAAACGTCTG 

mRNA_102807_cds      CTCCCTTATCTACAGGGCCGTGGCCCTCTCGGAGGCTGTTGTGGTGGTGTTAAAGGTCTG 
mRNA_87105_cds       CTCCCTTATTTGCAGGGCCGCGGCCCTTTGGGGAGCTGTTGTGGTGGTGTTAAAGGTCTG 

                      ******** *.*:*.* ** ****** * **..* ******** ** ****** ** ** 

 

mRNA_30771_cds       TTGGGTGCTGCTCGCACCCCAGCGGACCGAAAGACTGCATGCAATTGCCTGAAATCAGCC 
SIP470               TTGGGTGCTGCCCGGACCCCAGCTGACCGCAAGACTGCATGCACTTGCCTGAAATCAGCT 
mRNA_37999_cds       TTGGGTGCTGCTCGCACCCCAGCGGACCGAAAGACTGCATGCAATTGCCTGAAATCAGCC 

mRNA_102807_cds      TTAGGTGCAGCCAAGTCCCCAGCTGACCGCAAGACTGCATGCACTTGCCTGAAATCGGCC 

mRNA_87105_cds       TTGGGTGCAGCCAAGTCCCCATCTGACCGGAAGACTGCATGCACTTGCCTGAAATCGGCT 

                     **.*****:** .. :***** * ***** *************.************.**  

 

mRNA_30771_cds       GCTAATACTTTTAAGGGCATTGATATGGGCAACGCCGCTCGTCTCCCTGGTACTTGTGGC 

SIP470               GCTTATGCTATTAAGGGTATTAATATGGGCAAAGCCGCTGGACTTCCTAGTGCTTGTGGC 

mRNA_37999_cds       GCTAATACTTTTAAGGGCATTGATATGGGCAACGCCGCTCGTCTCCCTGGTACTTGTGGC 

mRNA_102807_cds      GCTAATGCTATTAAGGGTATTGACATGGGCAAAGCCGCTGGACTCCCTAGTGCTTGTGGC 

mRNA_87105_cds       GCTAATGCTATTAAGGGTATTGATATGGGCAAAGCCGCTGGTCTCCCTGGTGCTTGTGGT 

                     ***:**.**:******* ***.* ********.****** *:** ***.**.*******  

 

mRNA_30771_cds       GTTAACATTCCCTACAAGATCAGTCCCTCCACTGACTGCTCCAAGGTCCAGTGA 

SIP470               GTTAACATTCCCTACAAGATCAGTCCCTCTACTGACTGCTCCAGGGTCCAGTGA 

mRNA_37999_cds       GTTAACATTCCCTACAAGATCAGTCCCTCCACTGACTGCTCCAAGGTCCAGTGA 

mRNA_102807_cds      GTTAACATTCCATACAAGATCAGTCCCTCCACTGATTGCTCCAAGGTCCAGTGA 

mRNA_87105_cds       GTCAACATTCCTTACAAGATCAGCCCCTCCACAGACTGCTCTAAGGTCCAGTAA 

                     ** ******** *********** ***** **:** ***** *.********.* 

 

The sequence in red is the unique 60bp sequence used for gene silencing. 
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mRNA_30771_cds       CTTTTAAGAATGGAAATGGTAAGCAAGATTGCATGTTTCGTGGTTTTGTGCATGGTGGTG 

SIP470               ---------ATGGAAATGGTTGGCAAGATTGCGTGCTTTGTGTTACTTTGCATGGTGGTG 

mRNA_37999_cds       CTTTTAAGAATGGAAATGGTAAGCAAGATTGCATGTTTCGTGGTTTTGTGCATGGTGGTG 

mRNA_102807_cds      ---------ATGGAAATGGTAGGCAAGATTGCATGTTTCGTGGTTTTGTGCATGGTGGTG 

mRNA_87105_cds       ---------ATGGAAATGGTAGGTAAGATTGCATGCTTTGTGGTTTTGTGCATGGTGGTG 

                              ***********:.* ********.** ** *** *: * ************ 

 

mRNA_30771_cds       GTTGCACCCCATGCAGAGGCACTGACCTGCGGCCAGGTTCAGTCTAGCCTGGCTCCTTGC 

SIP470               GTTGCACCCCATGCAGAGGCACTGAGCTGCGGCCAGGTTCAGTCTGGCCTGGCTCTTTGC 

mRNA_37999_cds       GTTGCACCCCATGCAGAGGCACTGACCTGCGGCCAGGTTCAGTCTAGCCTGGCTCCTTGC 

mRNA_102807_cds      GTTGCACCTCATGCAGAGGCACTAAGCTGCGGCCAGGTTCAGTCTGGCCTGGCTCCTTGC 

mRNA_87105_cds       GTTGCACCCCATGCAGAGGCACTGAGCTGCGGCCAAGTTCAGTCCGGCTTGGCTCCTTGT 

                     ******** **************.* *********.******** .** ****** ***  
 

mRNA_30771_cds       GTCCCTTATTTGCTGGGCCGCGGCCCTTTGGGGGGTTGTTGTGGCGGCGTTAAACGTCTG 

SIP470               CTCCCTTATCTGCAGAGTCGCGGCCCTCTAGGGAGGTGTTGTGGCGGCGTTAAAGGTGTG 

mRNA_37999_cds       GTCCCTTATTTGCTGGGCCGCGGCCCTTTGGGGGGTTGTTGTGGCGGCGTTAAACGTCTG 

mRNA_102807_cds      CTCCCTTATCTACAGGGCCGTGGCCCTCTCGGAGGCTGTTGTGGTGGTGTTAAAGGTCTG 

mRNA_87105_cds       CTCCCTTATTTGCAGGGCCGCGGCCCTTTGGGGAGCTGTTGTGGTGGTGTTAAAGGTCTG 

                      ******** *.*:*.* ** ****** * **..* ******** ** ****** ** ** 

 

mRNA_30771_cds       TTGGGTGCTGCTCGCACCCCAGCGGACCGAAAGACTGCATGCAATTGCCTGAAATCAGCC 
SIP470               TTGGGTGCTGCCCGGACCCCAGCTGACCGCAAGACTGCATGCACTTGCCTGAAATCAGCT 
mRNA_37999_cds       TTGGGTGCTGCTCGCACCCCAGCGGACCGAAAGACTGCATGCAATTGCCTGAAATCAGCC 

mRNA_102807_cds      TTAGGTGCAGCCAAGTCCCCAGCTGACCGCAAGACTGCATGCACTTGCCTGAAATCGGCC 

mRNA_87105_cds       TTGGGTGCAGCCAAGTCCCCATCTGACCGGAAGACTGCATGCACTTGCCTGAAATCGGCT 

                     **.*****:** .. :***** * ***** *************.************.**  

 

mRNA_30771_cds       GCTAATACTTTTAAGGGCATTGATATGGGCAACGCCGCTCGTCTCCCTGGTACTTGTGGC 

SIP470               GCTTATGCTATTAAGGGTATTAATATGGGCAAAGCCGCTGGACTTCCTAGTGCTTGTGGC 

mRNA_37999_cds       GCTAATACTTTTAAGGGCATTGATATGGGCAACGCCGCTCGTCTCCCTGGTACTTGTGGC 

mRNA_102807_cds      GCTAATGCTATTAAGGGTATTGACATGGGCAAAGCCGCTGGACTCCCTAGTGCTTGTGGC 

mRNA_87105_cds       GCTAATGCTATTAAGGGTATTGATATGGGCAAAGCCGCTGGTCTCCCTGGTGCTTGTGGT 

                     ***:**.**:******* ***.* ********.****** *:** ***.**.*******  

 

mRNA_30771_cds       GTTAACATTCCCTACAAGATCAGTCCCTCCACTGACTGCTCCAAGGTCCAGTGA 

SIP470               GTTAACATTCCCTACAAGATCAGTCCCTCTACTGACTGCTCCAGGGTCCAGTGA 

mRNA_37999_cds       GTTAACATTCCCTACAAGATCAGTCCCTCCACTGACTGCTCCAAGGTCCAGTGA 

mRNA_102807_cds      GTTAACATTCCATACAAGATCAGTCCCTCCACTGATTGCTCCAAGGTCCAGTGA 
mRNA_87105_cds       GTCAACATTCCTTACAAGATCAGCCCCTCCACAGACTGCTCTAAGGTCCAGTAA 

                     ** ******** *********** ***** **:** ***** *.********.* 

 

The sequence in red is the unique 141bp sequence used for Homolog  silencing. 
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