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ABSTRACT 

Range-wide Prevalence and Impacts of Pseudocercosporella inconspicua on Lilium grayi and an 

Assessment of L. superbum and L. michauxii as Reservoirs 

by 

Cindy Lynn Barrett 

Lilium grayi (Gray’s Lily), a southern Appalachian endemic species, is threatened by a Lilium-

specific fungal pathogen, Pseudocercosporella inconspicua.  The disease is characterized by tan 

lesions that can cause early senescence, while also lowering seed production and viability.  This 

project tested for P. inconspicua conidia and accessed health at nine locations.  The disease was 

present and ubiquitous across the range of L. grayi.  Through identification of P. inconspicua 

conidia in the field, L. superbum (Turk’s Cap Lily) was identified as an additional host, while L. 

michauxii (Michaux’s Lily) was disease-free.  However, infection was inducible in both 

species.  With the disease widespread in L. superbum and this species represented by many large 

populations, L. superbum may act as disease reservoir, further complicating the outlook for L. 

grayi.  The disease should be considered an epidemic because of its impact on individual plants, 

its commonness within populations, and its ubiquity across the geographical range.  
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CHAPTER 1 

INTRODUCTION 

Gray’s Lily, Lilium grayi S. Watson, is a globally-rare lily that is restricted to a limited 

number of locations in the southeastern United States (Radford 1968; Weakley et al. 2012).  

Lilium grayi is a narrow, southern Appalachian endemic; its population structure varies greatly 

across its range from a small number of individuals (<10) to much larger occurrences (>100).  

The habitat is most commonly high elevation (>1000 m) seeps and grassy balds, but plants can 

also be found in boulder fields and lower elevation meadows, bogs, and wetlands (Radford 1968; 

Weakley et al. 2012). 

During the last two decades, studies performed throughout the L. grayi range have noted 

a trend of declining, in-season health, early senescence, and failure to seed (Bates 1998; 

Donaldson 2003; Powell 2011; Ingram 2013; Ulrey pers. comm.).  The pathogen responsible for 

these apparent disease symptoms was originally attributed to a species of Colletotrichum (Bates 

1998).  However, recent work has shown that Colletotrichum causes a secondary fungal 

infection, while the primary causal agent for lily leaf spot disease in L. grayi on Roan Mountain 

is the plant fungal pathogen, Pseudocercosporella inconspicua (G. Winter) U. Braun (Ingram 

2013).  This pathogen, a species in the division Ascomycota, is characterized by an ascus, a cup-

shaped sporangium on which form the sexually derived ascospores (Trigiano 2008).  Ascospores 

are resilient to degradation and are thought to form as a means to overwinter or when host 

resources are near exhaustion (Trigiano 2008). 

Pseudocercosporella inconspicua can also produce spores asexually; these spores are 

called conidia.  It is common in nature to observe conidia and the asexual life cycle in the 

absence of the sexual life cycle (Trigiano 2008).  It is thought that conidia infect their hosts by 
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entering the leaf via stoma after which hyphae form and colonize intercellular spaces (Daub 

2000).  As the P. inconspicua infection progresses, it damages photosynthetic host tissue until 

visible lesions form.  Damage to the host tissue may be caused by the release of cercosporin, a 

lipid-soluble toxin that is responsible for breaking down cell membranes to provide nutrition to 

the hyphae (Daub 2000).   

Although the underlying disease pathology is unclear, the impacts of the pathogen on 

Roan Mountain are apparent.  In a recent study, Ingram (2013) found that up to 94% of mature 

lilies had lily leaf spot disease by the end of the growing season.  Stem mortality rates can reach 

100% for non-reproducing lilies and up to 81% in reproductively mature lilies.  While these 

mortality rates include death due to disease and other factors, disease was seen on all plants.  The 

majority (68%) of reproductively mature lilies also had disease damage on developing seed 

capsules.  The leaf spot disease may be especially damaging to L. grayi because in favorable 

conditions, P. inconspicua can undergo several asexual life cycles per season (Ingram 2013). 

A 2017 study by Ingram et al. investigated the historic presence of P. inconspicua 

occurring on two lily species, L. canadense and L. grayi.  Their study examined the herbarium 

records of more than 500 specimens represented in 6 major herbaria.  Pseudocercosporella 

inconspicua lesions were present in only 3 of 526 herbarium sheets.  The earliest specimen with 

infection in North America was from 1916, despite many earlier collections dating from the 

1850’s.   In herbarium specimens, P. inconspicua appears regionally on Roan Mountain only as 

recently as 1947.  These results led the researchers to posit that P. inconspicua is an introduced, 

exotic pathogen (Ingram et al. 2017).  Their hypothesis is further supported by the knowledge 

that (i) P. inconspicua is host-specific to the genus Lilium and, (ii) of the eleven Lilium species 

listed as hosts, only four are found in North America (Braun 1995). 
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Introduced pathogens can have severe ecological and economic consequences on both a 

global and regional scale.  Mack et al. (2000) state in a recent review that the ramifications of 

exotic introductions of all pathogen types cannot be underestimated and the “global cost of 

virulent plant and animal diseases caused by parasites transported to new ranges and presented 

with susceptible new hosts is currently incalculable.”  Of all plant pathogens, fungal infections 

are responsible for the majority of plant damage to both native species and cultivars (Fletcher et 

al. 2010).   

There are several infamous examples of exotic fungal pathogens devastating host 

populations.  For example, the chestnut blight caused by Cryphonectria parasitica, an exotic 

introduction to North America, was especially detrimental because it rendered American 

chestnuts, Castanea dentata, “functionally extinct” (Ellison et al. 2005).  Loss of this foundation 

species has the potential to significantly alter forest ecology (Ellison et al. 2005).  Another 

example of an exotic fungal pathogen with catastrophic impact is the recent global spread of the 

Asian soybean rust, Phakopsora pachyrhizi.  This pathogen can be quite virulent and has the 

potential to decrease crop yields by up to 80% (Schnepf 2005).  By traveling on wind currents 

from South Africa in 2001 to South America in 2002, the pathogen spread to three continents in 

only three years.  It then spread to susceptible host species in the United States in 2004 (Fletcher 

et al. 2010).  This rapid spread can be attributed, in part, to its broad host range of legume 

species (Fletcher et al. 2010).   

If P. inconspicua is indeed an exotic introduction, this poses a particularly concerning 

threat given that, as a southern Appalachian endemic, the range of L. grayi is very limited.  

Moreover, any detrimental effects could easily cause local extinction in small populations of L. 

grayi.  With potential damaging effects of exotic pathogens and the negative health impacts of P. 
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inconspicua of L. grayi on Roan Mountain, additional study of the geographic distribution of lily 

leaf spot disease and the host range of P. inconspicua was warranted.  This research project 

extended the epidemiological work completed on Roan Mountain with two main goals.   

The first goal was to assess the geographic occurrence and prevalence of P. inconspicua 

across the range of L. grayi.  Disease occurrence and population prevalence were assessed by a 

nested, systematic approach.  The first step was to determine if P. inconspicua occurs outside 

Roan Mountain.  This was accomplished by inspection of suspected fungal lesion samples for P. 

inconspicua conidia taken from populations throughout the range of L. grayi.  If P. inconspicua 

was present, demographic and health data were collected to determine the impacts of disease on 

plant health and reproduction.  These data were also used to compare impacts among L. grayi 

populations.  Environmental variables such as habitat type, canopy cover, and invertebrate 

browsing were investigated to determine whether their presence fostered an increased diseased 

state.    

The second goal was to examine the host range of P. inconspicua, i.e. to determine if P. 

inconspicua infection occurs naturally on other regional lily species, L. michauxii and L. 

superbum.  Each occurs within the range of L. grayi, but neither is a known host species of P. 

inconspicua (Braun 1988).  First, populations of both species were examined and those with 

disease symptoms were tested for P. inconspicua conidia.  Recovering P. inconspicua conidia 

from suspected fungal lesions would support the host species hypothesis.  Second, experimental 

inoculations were used to test if P. inconspicua infection can be induced.  Positive results in 

inoculation experiments would provide confirmation that either lily is a potential host species.  In 

the field, L. superbum often exhibits symptoms similar to infected L. grayi plants.  In contrast, 

only healthy L. michauxii plants have been observed by me and others.  These observations led 
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to the question of whether L. michauxii is susceptible or resistant to the disease.   To answer this 

question, L. michauxii were inoculated with P. inconspicua.   

Experimental inoculations had three potential outcomes, each suggesting a separate 

mechanism to explain the apparent disease resistance of the healthy L. michauxii in natural 

populations.  One, if no infection follows inoculation, this would suggest that L. michauxii is 

genetically resistant to the disease and that L. michauxii is not a host species.  Two, if a limited 

or restrained infection develops after inoculation, this would suggest a hypersensitive response.  

Three, if extensive fungal infection follows inoculation, this would support characterization of L. 

michauxii as a potential host species but one that fails to contract disease in nature, perhaps due 

to mechanical exclusion of the disease conidia.   

Thus, a prevalence study provides a glimpse into the range-wide disease burden of L. 

grayi as a species.  If disease is prevalent and significantly reduces lily health throughout the L. 

grayi range, conservationists when reevaluating species viability should consider these impacts.  

Moreover, if disease is found on L. superbum or L. michauxii, this will extend the known host 

range of P. inconspicua and also identify potential disease reservoirs of P. inconspicua.  

Surveying populations of known hosts of P. inconspicua, such as L. canadense, would also 

further categorize disease reservoirs.  Species deemed as disease reservoirs should be included in 

future disease management strategies of L. grayi.     
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CHAPTER 2 

METHODS 

 

Plant Identification 

This study included four native lily species indigenous to the southern Appalachians:  L. 

canadense, L. grayi, L. michauxii, and L. superbum.  Height, elevation, and leaf morphology 

were not sufficient characters for identification, as the ranges and elevations overlapped and/or a 

character state was not unique to a species.  For example, L. superbum individuals are on average 

the tallest of the four species studied.  However, in shaded habitats L. grayi, L. superbum, and L. 

canadense can all be similar in height.  Additionally, Lilium grayi, L. superbum, and L. 

canadense all have similar leaf morphology.  For these species, identification relied on 

previously marked plots or on flower morphology, specifically the degree of recurve of the 

perianth.  Lilium superbum and L. michauxii have nearly identical flower morphology, but leaf 

morphology differs.  Lilium michauxii has an unmistakable oblanceolate leaf shape and a waxy, 

thicker cuticle than other locally-native Lilium species, and it is the only flower of these four 

species that is fragrant (Skinner 2002).  Characteristics of the four species are summarized in 

Table 1.     

 

Table 1.  Characteristics of Lilium species included in the current study.  Characters unique to 
each species are in bold and underlined.  
 

 L. canadense L. grayi L. michauxii L. superbum 

Habitat 

Wet meadows, bogs, 
and balds; in 
mountains 

Balds, seeps, 
openings in 

mountains, boulder 
fields 

Drier habitats; less 
commonly in bogs, 
upland woods, and 

thickets 

Moist or wet 
meadows and 

coves; in mountains 
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Table 1.  Continued. 

 L. canadense L. grayi L. michauxii L. superbum 

Range 
ne Canada and US;    
s US in mountains 

Southern 
Appalachian 

endemic to sw VA, 
nw NC, and ne TN 

Appalachian species More widespread 

Population size 

Populations can be 
small (<10)  or large 

(>100) 

Populations can be 
small (<10)  or large 

(>100) 

Usually small 
populations (<10) 

Often very large 
populations (>100) 

Maximum height 

(meters) 
2 2 0.4–1.3 3 

Leaves 

Shape Elliptic to lanceolate Elliptic to lanceolate Oblanceolate Elliptic – lanceolate 

Cuticle Non-waxy Non-waxy Waxy Non-waxy 

Size (cm) 4–13 x 0.8–2.5 4–13 x 0.8–2.5 3.6–11.1 x 1.5–3.8  8–18 x 1–3 

# of whorls 5–11 5–11 4–15 
5–20 

Flowers 

 

Color 
Orange to red to 

yellow 
Red Orange to reddish Orange to reddish 

# of flowers 1–9 1–9 1–6 3–25 

Flowering 

time 
June–early August Late June–mid July July–mid August July-early August 
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Table 1.  Continued. 

 L. canadense L. grayi L. michauxii L. superbum 

Flowers 

Major 

pollinator 

Ruby-throated 
hummingbird 

Ruby-throated 
hummingbirds 

Swallowtail 
butterflies 

Swallowtail 
butterflies 

Fragrance None None Fragrant None 

Degree of 

perianth 

recurve 

Slightly recurved or 
spreading.  

 

Slight to none 

 

 

Strongly reflexed 

 

Strongly reflexed 

 

 

 

Sample Sites 

To assess prevalence of Pseudocercosporella inconspicua throughout the range of L. 

grayi, nine locations in three states were selected and in tandem, represent the extent of the L. 

grayi geographic range.  The Cloudland Hotel Site (Carter County and Mitchell County), the 

Rhododendron Gardens (Mitchell County), and Big Yellow Mountain (Avery County) all of 

which belong to the Roan Mountain massif were surveyed.  Outside the Roan Mountain massif, 

samples were taken from Bluff Mountain (Ashe County) in North Carolina.  In Virginia, 

Whitetop Mountain (Grayson and Washington County) was included in the study.  Four 
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additional subpopulations of a population complex, also in North Carolina, were surveyed along 

the Blue Ridge Parkway.  Specific sites of the latter area cannot be published due to the 

threatened status of the species (Finnegan 2014) and concerns for vandalism.  In fact, most L. 

grayi locations in this study are protected by state, federal, or non-governmental agencies, so 

only approximate geographic coordinates are provided.  Interested parties must contact the 

agencies that manage these areas for precise locations, access, and approval to conduct scientific 

research.   

Determining P. inconspicua Presence on Native Lily Species 

Observations of L. michauxii were made across the region (Table 2).  Lilium superbum 

lesion samples were tested for P. inconspicua at three sites:  Unaka Mountain (Unicoi County), 

Holston Mountain (Sullivan County), and Roan Mountain (Carter County), all in Tennessee 

(Table 3).  Lilium canadense observations were made at Shady Valley (Table 3; Figure 1).   

 

 

 
Table 2.  Observations of L. michauxii, all of which were disease-free. 

Location Date 
County, 

State 

Number of 

flowering 

individuals 

Number of 

nonflowering 

individuals 

Disease 

symptoms 
Observer* 

Unaka Mt. 25May2015 Unicoi, TN 0 1 No cb, fl 

Route 19E, 

Appalachian 

Trail 

19Jun2015 Carter, TN 2 7 No fl, ew 

Holston Mt., 

Trail 22 
3Jun2015 Sullivan, TN 0 1 No cb, fl 

Stone Mt. 29Jun2015 Carter, TN 5 5 No fl, ew 

Holston Mt., 

Flint 
29Jun2015 Sullivan, TN 4 0 No ms 
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Table 2. Continued. 

 

Location Date 
County, 

State 

Number of 

flowering 

individuals 

Number of 

nonflowering 

individuals 

Disease 

symptoms 
Observer* 

Pinnacle Trail 5Jul2015 Unicoi, TN 3 2 No fl, ew 

Little Mt. 7Jul2015 Unicoi, TN 1 1 No fl, ew 

Rocky Fork, 

Xerophyllum 

Bald 

15Jul2015 Greene, TN 4 0 No fl, ew 

Rocky Fork, 

Pine Ridge 
15Jul2015 Unicoi, TN 2 0 No** fl, ew 

Buck Mt. Road 29Jul2015 Avery, NC 1 0 No fl, ew 

Indian Grave 

Gap, 

Appalachian 

Trail South 

1Aug2015 Unicoi, TN 1 0 No fl, ew 

Scioto Road 2Aug2015 Unicoi, TN 7 0 No** fl, ew 

Bluff Mt. 4Aug2015 Ashe, NC 1 0 No cb 

Round Knob 

Mt. 
9June2015 Greene, TN 0 1 No fl, ew, am 

Totals: 15 sites 4 months 
6 counties 

2 NC/ 4 TN 
32 flowering 

18 

nonflowering 

0 disease 

symptoms 
5 observers 

 
*Observer Key:  am=Adam McCullough; cb=Cindy Barrett; ew=Elaine Walker; fl=Foster Levy; 
ms=Martin Silver. 
** Lesion was sampled as a precaution, but no P. inconspicua conidia were present. 
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Table 3.  Populations of L. grayi and L. superbum surveyed in the 2015 season. 

Sites 
Sub-

populations 

Species 

surveyed 

Date of 1st 

demographic 

survey 

Date of 2nd 

demographic 

survey 

County, state 

Approximate 

geographic 

coordinates 

Blue Ridge 
Parkway 

4 L. grayi 15Jun2015  Confidential Confidential 

Roan Mt. 2 L. grayi 22Jun2015 3Aug2015 
Mitchell, NC; 

Carter, TN 
36.1042800ºN 
-82.084500ºW 

Big Yellow 
Mt. 

2 L. grayi 29Jun2015 14Aug2015 Avery, NC 
36.1101200°N 
-82.027000°W 

Grassy Ridge 1 L. grayi 29Jun2015 ** Avery, NC 
36.1042800ºN 
-82.084500ºW 

Little Hump 
Mt. 

Big Hump Mt. 
1 N/A ** ** Avery, NC 

36.1384500ºN 
-81.990300ºW 

Whitetop Mt. 5 
L. grayi  

* 
9Jul2015 17Aug2015 

Grayson, VA; 
Washington, 

VA 

36.6387200ºN 
-81.605300ºW 

Bluff Mt. 2 * * * Ashe, NC 
35.841200ºN 

-82.906500ºW 

Roan Mt. State 
Park 

3 L. superbum 20May2015 7Sep2015 Carter, TN 
36.1042800ºN 
-82.084500ºW 

Unaka Mt. 3 L. superbum 25May2015 *** Unicoi, TN 
36.1334400ºN 
-82.2965200W 

Holston Mt. 3 L. superbum 3Jun2015 *** Carter, TN 
36.457600ºN 

-82.077300ºW 

 
*Several attempts were made to locate an inflorescence or infructescence of L. grayi at Whitetop 
Mountain (25Jun2015; 9Jul2015; and 31Jul2015) and Bluff Mountain (7Jul2015; 1Aug2015; and 
5Aug2015).  The emerging individuals at both Whitetop and Bluff Mountains were discovered to 
be L. superbum lilies not L. grayi.  Other data gathered from Whitetop Mountain was from 
known L. grayi individuals. 
**Three attempts were made to locate L. grayi lilies at Little Hump Mountain (30Jun2015; 
13Jul2015; 14Jul2015), but access was unattainable because of the strenuous nature of the trail 
and inclement weather that made the trail dangerous.  Inclement weather (13Jul2015 and 
14Jul2015) prevented the second demographic data collection at the Grassy Ridge site.   
***Focus was placed on L. grayi monitoring because depletion of funds prevented a second 
demographic census trip to these L. superbum sites. 
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Figure 1.  Healthy L. canadense at Shady Valley, TN.  Photograph on left was taken on July 1, 
2015 and the photograph on right was taken August 9, 2015. 

 
 

 
Aseptic Protocol 

To minimize the chance that the researchers would become vectors for fungal spore 

transmission, the following aseptic protocols were followed:  only one site was visited per day, 

clean clothes were worn to each site, shoes were sanitized with a 10% aqueous solution of bleach 

or washed between trips, latex gloves were worn while handling plants, and tools were 

disinfected with a 10% bleach solution between interplant contacts. 

Site Characteristics and Plant Demographic Data 

Demographic data was collected for each population.  Because Ingram (2013) found a 

correlation between disease and proximity of individuals to trail transects on Roan Mountain, 

only Lilium plants that were one meter or farther away from transects were included in the 

present study.  Two site characteristics were recorded for each population, type of habitat (open 

bald, forest, seep, bog), and elevation.  Invertebrate herbivory was noted.  If possible, twenty-

five plants were censused per subpopulation and three subpopulations were surveyed per site.  
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To be considered a different subpopulation, plant clusters were at least 25 meters or farther away 

from other lily clusters.  Plant height, number of leaf whorls, number of flowers and capsules, 

and a health scale score were recorded for each plant.  A visual health assessment was scored on 

a ten-point scale based on a rating of one to five with half point increments.  A healthy plant was 

scored as a 5, a score of 2.5 corresponded to a plant with 50% of the total plant area with 

symptoms of disease, and a dead plant received a score of 1.  The remainder of the scale 

corresponded to similar incremental differences.  To measure the effects of the fungal pathogen 

on in-season health, each population was re-censused near the end of the growing season, i.e. 

usually in September.  All sites were visited twice during the 2015 growing season (Table 3), 

between late May and September.  Select sites were visited in the 2016 growing season (Table 

4).  

 
 
Table 4.  Populations of L. canadense, L. grayi, and L. superbum surveyed in the 2016 season.   

Site 
Sub-

populations 

Species 

surveyed 

Date of 1st 

demographic 

Survey 

Date of 2nd 

demographic 

survey 

County, state 

Approximate 

geographic 

coordinates 

Whitetop 
Mt. 

1 L. grayi 31May2016 11Sep2016 
Grayson, VA; 
Washington, 

VA 

36.6387200ºN 
-81.605300ºW 

BRP1 1 L. grayi 21Jun2016 10Sep2016 Confidential Confidential 

Roan Mt. 1 L. grayi 30Jun2016 2Sep2016 
Mitchell, NC; 

Carter, TN 
36.1042800ºN 
-82.084500ºW 

Elk Hollow 
Preserve 

1 L. grayi 28Jun2016 18Jul2016 Avery, NC 
36.063700ºN 

-82.012600ºW 

Shady 
Valley 

1 L. canadense 1Jul2016 9Aug2016 Johnson, TN 
36.519300ºN 

-81.927900ºW 

Roan Mt. 
State Park 

3 L. superbum 8June2016  8Sep2016 Carter, TN 
36.1042800ºN 
-82.084500ºW 
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Conidia Collection 

Pseudocercosporella inconspicua infection manifests as characteristic elliptical, tan 

lesions approximately 3–20 mm in diameter, which can elongate to up to 4 cm in length.  The 

lesions exhibit a slightly textured gray center encircled by a brown halo (Braun 1988).  As the 

season progressed, the health of the entire plant was detrimentally affected, showing chlorotic 

leaves that lead to tissue wilt and withering, often leading to early senescence of all the 

aboveground structures of the plant (Ingram 2013).     

A visual diagnosis of the fungal lesion was made prior to sample collection.  Samples 

were examined for visual evidence of P. inconspicua conidia.  This process was non-invasive to 

the lily plants.  In the field, a leaf containing a fungal lesion matching the above description was 

touched to a microscope slide.  A small drop of acid fuchsin stain was applied to the microscope 

slide followed by a cover slip.  To preserve the slide, clear nail polish was applied around the 

cover slip.  Four methods of collecting conidia were evaluated (touch sampling, wet mount, tape 

collection, and staining the conidia sample) before deciding that staining the conidia with acid 

fuchsin was the preferred method.  This sampling method incorporates the advantages of all 

other collection techniques because; (i) the liquid stain disperses the spores from the initial touch 

sample, (ii) the stain is toxic to P. inconspicua thereby preventing germination of the fungal 

conidia (Ingram pers. comm.), (iii) the stain colors the hyaline conidia allowing for easier 

viewing, discovery, and measurement, and (iv) sealing the slide prevents distortion of the conidia 

through desiccation.  

In the 2015 season, L. grayi and L. superbum lesions were inspected for P. inconspicua 

conidia.  In 2016, sampling was expanded to include L. canadense.  No L. michauxii were 

examined for conidia because all 50 L. michauxii individuals surveyed in both 2015 and 2016 
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appeared healthy and disease-free, so there were no characteristic P. inconspicua fungal lesions 

to sample (Table 2; Figure 2).  One minimally suspect lesion was sampled as a precaution, but no 

P. inconspicua conidia were present (Table 2). 

 

       

Figure 2.  Late season photographs taken of a senesced L. grayi (left) and healthy L. michauxii 

(right) on Bluff Mountain on August 4, 2015. 
 

Conidia Identification 

In the laboratory, a definitive diagnosis of P. inconspicua was accomplished through 

identification of characteristic, microscopic, conidial morphology as described by Braun (1988).  

The conidia are smooth and hyaline, 1–7 septate and slender, measuring 30–110 µm in length 

and 2–6 µm in width.  The base of each conidium appears blunt or truncated, and the apex is 

tapered.  A conidial scar is also present where the spore was released from the conidiophore, but 

the scar is not thickened as in related species.  The conidiophore grows internally through the 

leaf and emerges through the cuticle.  The conidiophores are arranged singly or in loose groups; 

they are smooth, aseptate, and measure 5–25 x 2.5–8 µm (Braun 1998).   
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Fungal Inoculations:  Experimental Design and Inoculum 

To experimentally examine the host range of P. inconspicua, two regional lily species, L. 

michauxii and L. superbum, were inoculated with P. inconspicua in the laboratory.  Lilium grayi 

served as a control in this experiment because it is a known host for P. inconspicua and similar 

inoculation trials have proven successful (Ingram 2013).  While L. superbum showed disease 

symptoms in the field, plants of this species were inoculated because a positive result would 

provide confirmation that L. superbum is a host species for P. inconspicua.  Lilium michauxii 

was included in the inoculation experiments, as its geographical range overlaps that of L. 

canadense, L. gray, and L. superbum.  Most importantly, however, L. michauxii was included 

because it presents disease-free in the field (Figure 2).  Inoculation experiments were included to 

determine whether this species has the potential to act as a host for P. inconspicua.  If found to 

be a host, then inoculations can help elucidate the underlying mechanism of the observed 

absence of disease in the field.  A positive result in the inoculation experiment would suggest 

mechanical exclusion, by the thick cuticle.  A negative result would point to genetic resistance. 

Lesion development was assessed in each fungal inoculation experiment to determine if 

varying degrees of susceptibility were present among the three lily species.  In addition to this, 

two inoculum sources were utilized to determine if inoculum from L. grayi acted differentially to 

P. inconspicua inoculum from L. superbum on the three native lily species.  Varying degrees of 

virulence or differing disease pathology among inoculum from differing hosts would suggest 

putative species-specific strains of P. inconspicua.  Consequently, two sources of inoculum were 

used.  The first was from a pure hyphal P. inconspicua culture derived from a collection on an 

individual of L. grayi on Roan Mountain, kindly provided by Russell Ingram.  The second was P. 

inconspicua conidial lesions gathered from L. superbum individuals in the field.  This inoculum 
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choice was made because pure hyphal culture of P. inconspicua from L. superbum was not 

available, as isolation of the P. inconspicua samples to pure culture was not possible while the 

test plants were still viable.  It is acknowledged that inoculum type and source host species are 

conflated in this design. 

Before lesions were used as inoculum, the presence of conidia and their identification as 

P. inconspicua was confirmed through visualization of microscopic conidial morphology as 

previously described.  To confirm identity and yet preserve enough conidia for inoculum, each 

lesion was held above a microscope slide and the lesions were lightly scraped with a pointed, 

sterile razor blade.  Only lesions which produced positive identification of P. inconspicua were 

used as inoculum.  Lesions that did not yield P. inconspicua conidia or produced slight amounts 

of conidia were discarded.   

Host Plant Collection 

To acquire plant material for inoculation trials, bulbs of each species were gathered in the 

fall of 2015.  Appropriate permits were secured from the appropriate agencies.  Three L. grayi 

bulbs were gathered on 11Nov2015 at Roan Mountain.  Three bulbs of L. superbum and one L. 

michauxii bulb were collected on 21Oct2015 in the Cherokee National Forest.   

All plants were transferred to new potting soil to minimize exposure to conidia residing 

in native soil.  Pine bark mulch was added to the bottom of the pots for drainage.  All plants and 

bulbs were kept at 4 ˚C from the time of collection to simulate winter dormancy.  After five 

months, the plants were grown at room temperature until leaves expanded.  Approximately four 

weeks were needed to grow full-sized plants from bulbs.   

For adequate sample size of each fungal inoculation experiment, the following additional 

plants were collected in the spring of 2016:  5 L. grayi, 3 L. michauxii, and 12 L. superbum.  
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Appropriate permits were secured or expressed permission was obtained to collect these plant 

specimens from the Cherokee and Pisgah National Forests. 

Inoculation Protocol 

In the first inoculation experiment L. grayi, L. michauxii, and L. superbum leaves were 

abraded and inoculated with pure P. inconspicua hyphal culture derived from L. grayi.  On each 

plant, two leaves were inoculated with two abrasions per leaf (Figure 3).  Abrasions were made 

with either sterile lancets or sterile razor blades as the smallest cork borer was too wide for the 

narrow Lilium leaves.  A small piece of inoculum comprised of hyphae on potato dextrose agar 

(PDA), approximately 3 mm x 3 mm, was excised and placed on the abraded area.  There were 

no observable conidia in the inocula.  There were two control leaves per plant with two abrasions 

per leaf.  On the control leaves, a small amount of sterile PDA media, approximately 3 mm x 3 

mm, was placed on the abrasions.  Plants in the first inoculation experiment were placed at room 

temperature in a sunny windowsill.  The Lilium species included in this study require high light 

and cool temperatures, so after wilting was observed on the windowsill, the plants were removed 

to a more sheltered location.   
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Figure 3.  Experimental L. superbum plant in fungal inoculation trial three depicting the two 
experimental leaves with two inoculated abrasions and two controls leaves that were not 
inoculated.  This experimental setup was used on all experimental plants in the fungal 
inoculation trials.  

 

 

The second inoculation experiment was identical to the first except plants were placed in 

a growth chamber after inoculation.  This allowed the plants to receive adequate light without 

intense heat.  The growth chamber was set for 12 hours of light at 15 ºC followed by 12 hours of 

darkness at 10 ºC.  Test plants were monitored every two to three days for fungal lesion 

development.   

The third inoculation experiment used P. inconspicua conidial inoculum from L. 

superbum individuals to inoculate L. grayi, L. michauxii, and L. superbum species.  After the test 

plant leaves were abraded, a leaf lesion was touched to the injury.  Two control leaves were 

included per plant with two abrasions per leaf.  One control leaf was abraded and an 

asymptomatic L. superbum leaf was touched to the injury.  The other control leaf was only 
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abraded.  Leaves were abraded in the same manner and number as the previous inoculation 

experiments.   

Unless noted otherwise (Table 5), intact plants were used in the experiment.  In each 

experiment, lesion size was recorded at the longest and widest points and after symptoms 

appeared, photographs were taken to document plant health, degree of chlorosis, and fungal 

lesion progression.  The information for all inoculation experiments is summarized in Table 5. 

 

Table 5.  Fungal Inoculation Experiment Summary.  Reproductive maturity defined as greater 

than four leaf whorls. 

Experiment 
Inoculum 

type 

Inoculum 

source 

Plants 

inoculated 

Reproductive 

maturity 

Experimental 

leaves / 

abrasions per 

leaf 

Control 

leaves / 

abrasions 

per leaf 

Conditions 

after 

inoculation 

Fungal Ex. 

1 
Hyphae 

Pure culture 
from L. 

grayi 

2 L. superbum 
1 L. michauxii 

(cut stem) 
1 L. superbum 2/2 2/2 

Indoor 
Conditions* 

Fungal Ex. 

2 
Hyphae 

Pure culture 
from L. 

grayi 

2 L. grayi 
(one cut stem) 
1 L. michauxii 
2 L. superbum 

1 L. superbum 2/2 2/2 

Growth 
Chamber;*** 

 
1 mature L. 

superbum at 
Indoor 

Conditions* 

Fungal Ex. 

3 
Conidia 

Field 
collected 
from L. 

superum 

1 L. grayi 

1 L. michauxii 

2 L. superbum 

1 L. grayi 

1 L. michauxii 

1 L. superbum 
2/2 2/2 

Growth 
Chamber*** 

Field Ex. 1 Conidia 

Field 
collected 
from L. 

superum 

6 L. superbum 3 L. superbum 2/1 2/1 
Outdoor 

Conditions** 

 
*Indoor conditions:  approximately 14 hours day and 10 hours night at approximately 21 ºC. 
**Outdoor conditions:  approximately 14 hours day and 10 hours night at ambient temperatures. 
***Growth chamber:  12 hours light at 15 ºC and 12 hours dark at 10 ºC. 
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Field Inoculation Experiment 

Field inoculation experiments were conducted to further clarify the host range of P. 

inconspicua.  Field inoculation has two benefits over laboratory experimentation.  One, the host 

plants were not disturbed and experienced no transplant shock.  Two, field experiments were 

carried out under environmental conditions (humidity, rain, UVB light, and fluctuating 

temperatures, etc.) the pathogen naturally experiences.  

A field inoculation trial was conducted at the Unaka Mountain site.  Due to concerns for 

releasing a non-native, phytopathogen genotype into the field, the pure P. inconspicua culture 

(from L. grayi) was not used.  Instead, local inoculum was collected.  Lilium michauxii 

individuals were excluded from this component of the study.  Although L. michauxii individuals 

appear unaffected in the field (even in the apparent presence of P. inconspicua conidia), a 

conservative approach was followed due to concerns for infecting a naïve plant species.  

Moreover, since similar experiments were already conducted on L. grayi (Ingram 2013), only L. 

superbum individuals were included in field experimentation.  For inoculum, several infected L. 

superbum leaves bearing characteristic lesions were collected.  Healthy L. superbum plants were 

identified and two experimental and two control leaves were abraded.  A lesion matching the 

above description was touched to the abrasion on the experimental leaves.  The control leaves 

were only abraded.  If possible, leaves on upper whorls were chosen, as this would limit potential 

contamination via rain-splash from spores in the leaf litter.  A sample of the inoculum used was 

taken to the laboratory to confirm the fungal lesion was infected with P. inconspicua.  The lab 

inspections confirmed that each inoculum sample was infected with P. inconspicua.   

Unfortunately, data integrity could not be maintained due to human vandalism and the 

first field experiment conducted at Unaka Mountain on 20Jun2016 was abandoned.  
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It should be noted for future researchers that when lesions on L. grayi and L. superbum 

do not test positive for the presence of P. inconspicua conidia, it is premature to conclude these 

lesions were caused by another pathogen because light rain can wash the adaxial and abaxial 

lesion surfaces completely clean of conidia.  Conidia may not reform for several days.  For 

example, sampling on 2June2016, 13Jun2016, and 14Jun2016 in Roan Mountain State Park 

yielded no conidia in a previously positive area.  Without the mass of conidia, the P. inconspicua 

lesions also appear darker.   

Pure Culture Isolation 

Attempts to obtain a pure P. inconspicua culture from L. superbum were successful, 

however pure culture was gained after the inoculation experiments had concluded.  For future 

researchers a description of the successful protocol follows.  A lesion bearing conidia was 

touched to a prepared plate of PDA media and a three phase plate streak was immediately 

preformed, as done in bacteria isolation (Hertsenberg & Noori 2010).  To obtain a pure culture 

this way, one must anticipate which colonies are P. inconspicua.  Pseudocercosporella 

inconspicua grows slowly in culture; so, after three days, the slowest growing colonies were 

transferred to fresh media plates.  Waiting longer allowed the more aggressive, secondary 

pathogens to overtake and occlude the P. inconspicua colonies.  If fungal growth was seen the 

day after plating or if colonies were large after three days, these colonies were discarded.  

Promising cultures were continued at 20 ºC–24 ºC and monitored for 8–12 weeks after plating.  

In six days, the colonies have grown to their full size and were a light tan color; later, the 

colonies of P. inconspicua turned black and developed a white fluffy center.  All cultures, 

whether isolated from leaf samples or conidial streak, were maintained until colony color 

developed.  Colonies with a color that was not tan or black were discarded. 
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Data Analysis:  Demographic Data 

IBM SPSS version 23 was used to analyze demographic data.  First, data were viewed by 

the Descriptives procedure to corroborate sample size and review for input errors.  The 

Descriptives procedure was also used to generate the descriptive statistics including the mean 

and variance for height, health, and number of whorls for each species at each site.   

A correlation analysis was performed to test for an association between the variables 

height, whorls, habitat, and health in L. grayi and L. superbum using the Bivariate Correlation 

procedure.  

To determine if the health of L. grayi differed significantly among several explanatory 

variables (including:  population, plant height, elevation, habitat, light condition, and browsing), 

a series of Kruskal-Wallis tests were performed.  To determine if the health of L. grayi differed 

significantly between survey years a Kruskal-Wallis test was performed.  To access effects of 

disease on reproduction, a Kruskal-Wallis test was utilized to determine if a significant 

difference was found between the number of flowers in the first survey and the number of 

capsules in the second survey.  A Kruskal-Wallis test is the non-parametric version of the one-

way ANOVA, and is the most appropriate test to utilize, as the dependent variable, health and 

flowers, was measured on an ordinal scale and the distribution of health was not normally 

distributed among the variables (Lund 2015).  The same statistical analyses mentioned above 

were used to analyze data from L. superbum.  

Data Analysis:  Fungal Inoculation Experiments Lesion and Area of Chlorotic Zone 

To determine if a difference in lesion size area was seen through time, among the three 

species, and between inoculum over the course of approximately 30 days post infection with P. 

inconspicua, a two-way repeated measures ANOVA was conducted. Outliers were identified 
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through boxplot visualization.  The Shapiro-Wilk test was used to test the assumption of 

normality.  The assumption of sphericity was tested using the Mauchly's sphericity test.  If the 

sphericity assumption was violated, a Greenhouse-Geisser correction was used (Lund 2015).  

Area of chlorotic zone was analyzed in a similar manner. 

Data Analysis:  Lesion Development after Inoculation 

A 2x2 Fisher’s exact test was utilized to determine if the abrasion had an equal chance of 

developing a lesion between each inoculum type used—P. inconspicua hyphae from L. grayi or 

P. inconspicua conidia from L. superbum.  A 2x3 Fischer’s exact test was utilized to determine if 

the abrasion had an equal chance of developing a lesion between each species inoculated—L. 

grayi, L. michauxii, and L. superbum. 

Data Analysis:  Incubation Period, Days until Leaf Senescence, and Plant Senescence 

To determine if there was a difference in incubation period, days until leaf senescence, 

or days until plant senescence, each measurement was analyzed separately with a two-way 

ANOVA.  Boxplot visualization was used to identify outliers.  Normality was assessed using 

the Shapiro-Wilk’s test.  The equality of variance was assessed using the Levene’s test (Lund 

2015). 

https://en.wikipedia.org/wiki/Mauchly's_sphericity_test
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CHAPTER 3 

RESULTS 

Demography and Health 

Demography and Health of L. grayi 

In 2015, nine L. grayi populations were monitored.  Sample sites included:  Bluff 

Mountain, Roan Mountain massif (Big Yellow Mountain, Rhododendron Gardens, Cloudland 

Hotel, and Grassy Ridge), Whitetop Mountain, and four sites along the Blue Ridge Parkway) 

with a total of 148 total individuals censused among the populations at one to three 

subpopulations per population (Table 3).  Pseudocercosporella inconspicua conidia was 

identified at all the L. grayi locations sampled (Table 3; Table 4; Figure 4).  The average L. grayi 

had three leaf whorls, was 64.5 cm tall, and had a health scale score of 2.9 (Table 6).  The 

majority of plants did not flower (Table 6).  The Grassy Ridge population had L. grayi 

individuals with the highest health score (x̄ = 4.8).  Other populations with high health scores 

were Roan Mountain (x̄ = 4.1) and Big Yellow Mountain (x̄ = 4.0).  Whitetop Mountain had the 

lowest mean health score (x̄ = 1.4).  The Grassy Ridge and Big Yellow Mountain populations 

had the tallest plants (x̄ = 89.0 cm and x̄ = 88 cm, respectively), while Whitetop Mountain had 

the shortest plants (x̄ = 37.2 cm).  Table 7 shows a summary of data for height, number of 

whorls, and health score by population for L. grayi. 
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Figure 4.  Examples of P. inconspicua conidia taken from across the range of L. grayi in 2015.  
Photographs were taken at varying levels of magnification.  Hyaline conidia appear colored, as 
acid fuchsin stain was used to aid in conidia visualization.  

 

 

Table 6:  Summary descriptive statistics summary for height, number of whorls, and health score 
of L. grayi and L. superbum in 2015.  N = 148 for L. grayi; N = 225 L. superbum.   

 Species Range Mean 
Standard 

Deviation 

Height (cm) 
L. grayi 10–130 64.5 26.7 

L. superbum 7–139 14.8 29.9 

Number of Whorls 

L. grayi 1–7 3.7 1.4 

L. superbum 1–10 2.8 2.2 

Health Score 
L. grayi 1–5 2.9 1.4 

L. superbum 1–5 3.2 1.5 

Flowers L. grayi 0–4 0.5 0.6 
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Table 7.  Lilium grayi population summary of health score, height, and number of whorls.  

Standard deviation represented as s.d. and sample size as N. 

 

Population 

Sub-

population 

Number 

N 

Health Score (1.0–5.0) Height (cm) Number of Whorls 

Mean Range s.d. Mean Range s.d. Mean Range s.d. 

Big Yellow 

Mt. 
1 1 4.0 4.0–4.0 0.0 88.0 88–88 0.0 5.0 5–5 0.0 

Blue Ridge 

Parkway 1 
1 25 2.5 1.0–4.5 1.3 56.1 27–120 27.1 3.4 2–5 0.9 

Blue Ridge 

Parkway 2 
1 24 2.0 1.0–4.5 1.4 57.3 17–109 27.3 3.1 1–6 1.3 

Blue Ridge 

Parkway 3 
1 27 2.8 1.0–5.0 1.6 60.0 10–111 25.1 3.2 1–6 1.0 

Blue Ridge 

Parkway 4 
1 44 2.9 1.0–5.0 1.2 72.1 18–130 27.5 4.0 2–6 1.2 

Roan Mt. 3 18 4.1 2.5–5.0 0.8 72.0 39–103 14.5 4.9 3–7 1.2 

Grassy 

Ridge 
1 5 4.8 4.5–5.0 0.3 89.0 58–119 22.6 6.0 4–7 1.4 

Whitetop 

Mt. 
1 4 1.5 1.0–2.0 0.6 37.2 18–58 21.7 2.2 1–4 1.5 

 

 

Demography and Health of L. superbum 

In 2015, three L. superbum populations were monitored (Roan Mountain State Park, 

Unaka Mountain, and Holston Mountain) with a total of 228 individuals censused among the 

three populations with three subpopulations per population.  Each population had approximately 

the same number of observations (n ~75) with each subpopulation having approximately 25 

observations.  The average L. superbum had three leaf whorls, was 41.8 cm tall, and had a health 

scale score of 3.2 (Table 6).  Holston Mountain had individuals with the highest health score (x̄ = 

3.8) and the tallest plants (x̄ = 53.0 cm).  Roan Mountain State Park had the lowest mean health 
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(x̄ = 2.8).  The shortest plants on average were from the Unaka population (x̄ = 32.7 cm).  Table 

8 shows summary data for health, height, and number of whorls by population for L. superbum. 

 

Table 8.  Lilium superbum population summary of health score, height, and number of whorls in 

2015.  Standard deviation represented as s.d. and sample size as N. 

 

Population 

Sub-

population 

Number 

N 
Health Score (1.0–5.0) Height (cm) Number of Whorls 

Mean Range s.d. Mean Range s.d. Mean Range s.d. 

Holston 
Mt. 

3 76 3.8 1.0–5.0 1.3 52.6 7–139 35.3 3.7 1–10 2.4 

Roan Mt. 
State Park 

3 75 2.8 1.0–5.0 1.5 40.0 10–115 21.9 2.7 1–9 1.8 

Unaka Mt. 3 74 3.0 1.0–5.0 1.5 32.7 10–138 27.7 2.0 1–9 1.8 

 

Variables Correlated with Health in L. grayi and L. superbum 

For L. grayi, height, number of whorls, elevation, habitat, and light condition were all 

correlated with health.  A similar result was found for L. superbum, with the exception that 

habitat was not correlated with health.  Only L. superbum growing in forests were censused, 

creating a uniform variable that could not be analyzed.  Table 9 and 10 show correlation 

summaries for L. grayi and L. superbum, respectively. 
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Table 9.  Correlations of L. grayi for height, number of whorls, health, elevation, habitat, and 
light conditions.  Bold indicates a correlation that was significant at the 0.01 level (2-tailed). 
Pearson’s correlation coefficient (two-tailed) represented by R.  N = 148 for L. grayi.  Bold 
indicates a significant correlation, where p < 0.05. 
  

 Height 
Number 

of Whorls 
Health Elevation Habitat 

Light 

Conditions 

Height 
R - 0.76 0.59 0.04 0.10 -0.12 

p-value - <0.001 <0.001 0.632 0.239 0.15 

Number of 

Whorls 

R 0.76 - 0.60 0.27 0.34 -0.34 

p-value <0.001 - <0.001 0.001 <0.001 <0.001 

Health 
R 0.59 0.60 - 0.24 0.32 -0.32 

p-value <0.001 <0.001 - 0.004 <0.001 <0.001 

Elevation 
R 0.04 0.27 0.24 - 0.84 -0.57 

p-value 0.632 0.001 0.004 - <0.001 <0.001 

Habitat 
R 0.10 0.34 0.32 0.84 - -0.92 

p-value 0.239 <0.001 <0.001 <0.001 - <0.001 

Light 

Conditions 

R -0.12 -0.34 -0.32 -0.57 -0.92 - 

p-value 0.146 <0.001 <0.001 <0.001 <0.001 - 

 

Table 10.  Correlations of L. superbum for height, number of whorls, health, elevation, and light 
conditions.  Bold indicates a correlation that was significant at the 0.01 level.  Pearson’s 
correlation coefficient (two-tailed) represented by R.  Tests that could not be computed because 
the variable is constant are represented by a B.  N = 225 for L. superbum.  Bold indicates a 
significant correlation, where p < 0.05. 
 

 Height 
Number of 

Whorls 
Health Elevation 

Light 

Conditions 

Height 
R - 0.93 0.24 0.27 -0.41 

p-value - <0.001 <0.001 <0.001 <0.001 

Number of 

Whorls 

R 0.93 - 0.21 0.33 -0.40 

p-value <0.001 - 0.001 <0.001 <0.001 

Health 
R 0.24 0.21 - 0.20 -0.18 

p-value <0.001 0.001 - 0.002 0.007 

Elevation 
R 0.270 0.33 0.20 - -0.41 

p-value <0.001 <0.001 
0.002 - <0.001 

Light 

Conditions 

R -0.41 -0.40 -0.18 -0.41 - 

p-value <0.001 <0.001 
0.007 <0.001 - 
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Comparing Health among populations for L. grayi and L. superbum with Kruskal-Wallis Testing 

The health score differed significantly between populations of L. grayi and L. superbum  

p < 0.001 for both species.  For L. grayi, lilies on Roan Mountain (the Cloudland Hotel site) and 

Grassy Ridge were healthier than those in Blue Ridge Parkway (BRP) population 1 (BRP1), 

BRP2, and Whitetop Mountain (Table 11; Figure 5A).  For L. superbum, lilies on Holston 

Mountain were healthier than those in Roan Mountain State Park and Unaka Mountain (Table 

12; Figure 5B).   

 

Table 11.  Comparison of mean health among L. grayi populations.  Means with the same letter 
were not significantly different.  For significant differences, all p-values were less than 0.01. 
 

Population 

Big 

Yellow 

Mt. 

BRP1 BRP2   BRP3 BRP4 
Roan 

Mt. 

Grassy 

Ridge 

Whitetop 

Mt. 

Mean health 4.0A B 2.5B 2.0B 2.8B C 2.9A B 4.0A C 4.8A C 1.5B 

 
 
 
 
Table 12.  Comparison of mean health among L. superbum populations.  Means with the same 
letter were not significantly different.  For significant differences, all p-values were less than 
0.01. 
 

Population Holston Mt. 
Roan Mt. 

State Park 
Unaka Mt. 

Mean health 3.8 A 2.7 B 3.0 B 
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A)  Lilium grayi.  

 
 
 
 

B) Lilium superbum. 
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C)  Comparison of health among L. superbum subpopulations in 2015.  

 

 
Figure 5.  Health score of populations in 2015.  Bars extending below and above the box 
represent the range of the health score.  The heavy line represents the median.  The extent of the 
box above and below the heavy line represents the 75th and 25th percentiles, respectively.  
Outliers (1.5–3x the interquartile range) are represented by a circle. 
 
 
 
 
Comparing Health among Conditions:  Plant Structure, Light Condition, and Elevation for both 

L. grayi and L. superbum 

To test for a relationship between health and morphological variables in L. grayi and L. 

superbum the Kruskal-Wallis was used.  Taller L. grayi (>45 cm) were significantly more 

healthy than smaller plants (≤45 cm); similiarly, larger L. superbum individuals (>76 cm) were 

also healthier than smaller ones (≤76 cm).  Individuals of both species growing in full sun were 

significantly more healthy than those in shade.  Lilium grayi growing at high elevations (>1372 
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meters or >4,500 feet) were significantly more healthy than those found in mid elevations (427–

1372 meters or 1,400–4,500 feet); however, there was no significant difference between L. 

superbum individuals growing at mid elevations (427–1372 meters or 1,400–4,500 feet).  A 

summary of all test statistics, p-values, and sample sizes for L. grayi are found in Table 13, and 

Table 14 has corresponding results for L. superbum.  

 

 

Table 13.  Health of L. grayi among populations, habitats, light conditions, elevation, and plant 
stature.  Variables underlined indicate the healthier of the two conditions.  Superscripts indicate 
statistical test utilized:  AKruskal-Wallis Test; BPair-wise comparison.  Figure refers to the 
corresponding boxplot associated with the statistical test.  N = 148 for L. grayi. 
 
 

Health Comparison 
Test 

Statistic 

Degrees of 

Freedom 
P Figure  

Among Populations 37.2A 7 <0.001 3 A 

Among Habitats 16.2A 2 <0.001 4 

     Forested Seep - Bald Habitat -42.5B 1 <0.001 4 

     Forest - Bald Habitat -36.0B 1 <0.001 4 

Among Light Conditions:  Full Sun – Shade 15.6A 1 <0.001 5 A 

Elevation:  High – Mid 7.7A 1 0.005 6 

Stature:  Larger – Smaller 34.8A 1 <0.001 7 A 

 
 
 
Table 14.  Comparison of health of L. superbum among populations, habitats, light conditions, 
elevation, and plant stature.  Variables underlined indicate the healthier of the two conditions.  
Superscripts indicate statistical test utilized:  AKruskal-Wallis Test.  Figure refers to the 
corresponding boxplot associated with the statistical test.  N=225 for L. superbum. 
 

 

Health Comparison 
Test 

Statistic 

Degrees of 

Freedom 
P Figure  

Among Populations 17.9 A 2 <0.001 3 B 

Among Light Conditions:  Full Sun – Shade 7.0 A 1 0.008 5 B 

Stature:  Larger – Smaller 14.5A 1 <0.001 7 B 
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Figure 6.  Comparison of health by habitat for L. grayi in 2015.  Bars extending below and above 
the box represent the range of the health score.  The heavy line represents the median.  The 
extent of the box above and below the heavy line represents the 75th and 25th percentiles, 
respectively.  Outliers (1.5–3x the interquartile range) are represented by a circle. 
 
 
 
 
 
 

 
 
Figure 7.  Health by elevation for L. grayi in 2015.  Bars extending below and above the box 
represent the range of the health score.  The heavy line represents the median.  The extent of the 
box above and below the heavy line represents the 75th and 25th percentiles, respectively. 
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A) Lilium grayi. 

 

 
 

 

 

B) Lilium superbum.  

 

 
 

 
Figure 8.  Health by light condition in 2015.  Bars extending below and above the box represent 
the range of the health score.  The heavy line represents the median.  The extent of the box above 
and below the heavy line represents the 75th and 25th percentiles, respectively.  Outliers (1.5–3x 
the interquartile range) are represented by a circle. 
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A) Lilium grayi. 

 

 
 

B)  Lilium superbum. 

 

 
  
 
Figure 9.  Health by plant stature (small vs. large).  Bars extending below and above the box 
represent the range of the health score.  The heavy line represents the median.  The extent of the 
box above and below the heavy line represents the 75th and 25th percentiles, respectively.  
Outliers (1.5–3x the interquartile range) are represented by a circle. 
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Comparing Demographic Characteristics between L. grayi and L. superbum 

Several demographic characteristics differed significantly between the L. grayi and L. 

superbum.   The average L. grayi tended to be taller than L. superbum (Table 15, Figure 10 B).  

The health score also differed significantly between species, with L. superbum having a higher 

health score than L. grayi (Table 15; Figure 10 A).  Frequency histograms showing plant height, 

number of whorls, number of flowers, and health categories for both L. grayi and L. superbum in 

2015 are in Figure 11. 

 

 

Table 15.  Comparisons between L. grayi and L. superbum for health, height, and number of 
whorls.  Variables underlined indicate the higher health mean and healthier of the two 
conditions.  Superscripts indicate statistical test utilized:  AKruskal-Wallis Test.  Figure refers to 
the corresponding boxplot associated with the statistical test.  N = 148 in L. grayi; 225 in L. 

superbum. 
 

Variables 
Test 

Statistic 

Degrees of 

Freedom 
P Figure  

Health:  L. superbum - L. grayi  7.6 A 1 0.006 10 A 

Height:  L. superbum - L. grayi 61.8 A 1 <0.001 10 B 

Number of Whorls:  L. superbum - L. grayi  41.1 A 1 <0.001 10 C 

 

 

 

 

 

 



52 
 

A)   Health. 

 
B)  Height. 

 

C)  Number of whorls. 

 
 
 
Figure 10.  Species comparison of height, health, and whorls.  Bars extending below and above 
the box represent the range of the health score.  The heavy line represents the median.  The 
extent of the box above and below the heavy line represents the 75th and 25th percentiles, 
respectively.  Outliers (1.5–3x the interquartile range) are represented by a circle. 
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A) Height (cm). 

 

 
 
 
B)  Number of whorls. 
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C)   Number of L. grayi flowers.  Due to time and monetary constraints, priority was given to L. 

grayi, so monitoring of L. superbum flowering was not possible. 
 

 

 

 
D)  Health. 

 
 

   

 

Figure 11.  Frequency histograms showing plant height, number of whorls, number of flowers, 
and health categories for L. grayi and L. superbum in 2015. 
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In-season Health of L. grayi 

The health scores decreased significantly between the first and second census using the 

Friedman’s test (χ2 (1) = 57.00, p <0.001) (Figure 12 A, B). 

 

 

 
A)  First census. 

 
 
 
B)  Second census. 

 
 
 
Figure 12.  Distribution of L. grayi health at first and second census. 
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Between Season Health of L. grayi 

The health of 232 L. grayi individuals did not differ significantly between years H (1) = 

0.14, p = 0.71 (Figure 13). 

 

 

 

Figure 13.  Comparison of L. grayi health between sample years. 

 

 

 

Demography and Flowers 

 

Comparing Flowers among Conditions: Population Site, Plant Structure, Light Condition, and 

Elevation for both L. grayi and L. superbum 

In L. grayi, the number of flowers per plant differed significantly between populations 

(Table 16; Figure 14 A) with more flowers on Roan Mountain compared to Whitetop Mountain 

and BRP populations 1, 2, and 3.  There were also more flowers in BRP4 than BRP1 (Figure 14 

A).  Habitat type also influenced the number of flowers per plant (Figure 14 C).  Lilies growing 
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in bald habitats had more flowers than those growing in forests and forested-seeps and lilies 

growing in full sun flowered more than those growing in shade (Table 16; Figure 14 C).   

 

 

 

Table 16.  Summary of nonparametric tests comparing flower number in L. grayi.   Comparisons 
were among populations, light conditions, and habitats.  Variables underlined indicate which 
condition had more flowers.  Superscripts indicate statistical test utilized:  AKruskal-Wallis Test; 
BPair-wise comparison.  Figure refers to the corresponding boxplot associated with the statistical 
 test. 

   
 
 
 
 
 
A)  Comparison of L. grayi flower number by population in 2015.  

 

Flower Number Comparison 
Sample 

Size 

Test 

Statistic 

Degrees 

of 

Freedom 

P Figure 

Among Populations 148 43.72 A 7 <0.001 11 A 

Among Light Conditions:  Full Sun – Shade 148 24.86 A 1 <0.001 11 B 

Among Habitats 148 27.13 A 2 <0.001 11 C 

     Forests -Bald  -54.80 B 1 <0.001 11 C 

     Forested-Seeps -Bald  -43.07 B 1 <0.001 11 C 
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 B)  Comparison of L. grayi flower number by light condition in 2015.  
 

 
 

 

C)  Comparison of L. grayi flower number by habitat in 2015. 

 

 
 
 
Figure 14.  Comparison of L. grayi flower number by population, light condition, and habitat.  
Bars extending below and above the box represent the range of the health score.  The heavy line 
represents the median.  The extent of the box above and below the heavy line represents the 75th 
and 25th percentiles, respectively.  Outliers (1.5–3x the interquartile range) are represented by a 
circle, and extreme values (>3x the interquartile range) are represented by a star. 
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Lilium grayi reproduction 

The number of capsules produced was significantly less than the number of flowers 

recorded in the first census χ2 (1) = 37.00, p <0.001 (Figure 15 A, B).   Only sites with first and 

second census data were included in this analysis (BRP1, Elk Hollow Preserve, Roan Mountain 

(Cloudland Hotel Site), and Whitetop populations). 

 

 
 
A) Flower distribution from first census. 

 
B)  Capsule distribution from second census. 

 

Figure 15.  Lilium grayi flower histogram from first census and capsule histogram from second 
census.  
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Fungal Inoculation Trials – Lesion Analysis 

 

Fungal Lesion Development 

Whether an abrasion develops a lesion does not depend on the species inoculated using a 

Fisher’s exact test (p = 0.55), and abrasion development does not depend on inoculum type (x2 

(1) = 0.53, p = 0.47).   

 

Fungal Lesion Size Analysis.  Abrasions without Lesion Development Excluded.   

Assumption Testing.  To determine if a difference in lesion size area was seen over the 

course of approximately 30 days post infection with P. inconspicua, a two-way repeated 

measures ANOVA was conducted.  There were 12 outliers identified (Figure 16).  The data was 

not normally distributed for all four time points, as determined by the Shapiro-Wilk test (p < 

0.05).  This represents a violation of two of the main assumptions of the repeated-measures 

ANOVA (Lund 2015).  The assumption of sphericity was also violated, χ2 (2) = 18.69, p = 0.002.  

A result that means the variance is not equal between the levels of the within-subject factor [the 

time point 1-4]; violating this assumption is very common in repeated-measure ANOVAs (Lund 

2015).  To remedy this violation, a Greenhouse-Geisser correction was used (ε = 0.70), which 

adjusts the degrees of freedom and allows for a correct p-value to be reported (Lund 2015).   
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Figure 16.  Comparison of lesion size by time period for all three fungal lesion experiments.  
Bars extending below and above the box represent the range of the lesion area size in cm2.  The 
heavy line represents the median.  The extent of the box above and below the heavy line 
represents the 75th and 25th percentiles, respectively.  Outliers (1.5–3x the interquartile range) are 
represented by a circle, and extreme values (>3x the interquartile range) are represented by a 
star. 

 

 

Test Results.  Lesion size increased significantly though time (Table 17; Figure 17).  The 

rate increase was dependent on the inoculum type and the species inoculated, as a significant 

inoculum type by species interaction for mean lesion size over time was shown (Table 17).  

Lesion change over time was a significant, but an expected result, as fungal lesions expand as 

infection progresses.  The significant interactions of inoculum and species are found in Table 20.  

Figures 18 and 19 show lesion size over time by inoculum type and species inoculated, 

respectively.  Significant p values for lesion size over time by inoculum type are located in Table 

18 and the corresponding table for lesion size over time by species is found in Table 19.  
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Figure 17.  Mean lesion size (cm) across time points 1–4 for all fungal inoculation experiments.  
Bars represent error bars with 95% Confidence Interval.  

 

 

 

Table 17.  Summary repeated multivariate ANOVAs for lesion size over time for different 
inoculum types used on three species.  Significant p-values, based on Wilks lambda, are in bold. 
 

Lesion Size Effects 
Numerator 

DF 

Denominator 

DF 

Test 

statistic 
P 

Time 3 18 47.61 <0.001 

Time x inoculum type 3 18 8.59 <0.001 

Time x species 6 36 2.35 0.05 

Time x inoculum type x 

species 
6 36 2.94 0.02 
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Table 18.  Least squares mean lesion size (LS mean) by type of P. inconspicua inoculum.  
Superscripts of the same letter indicate an insignificant p-value among mean lesion sizes within 
that time period.  Tukey post hoc tests were used to determine p-values.   No significant results 
were found, p > 0.05. 
 

Inoculum 
Hyphal culture from 

L. grayi 

Conidia from 

L. superbum 

LS Mean 

Time 1:   Day 3-9 0.07A 0.00 A 

Time 2:  Day 10-14 0.52 A 0.11 A 

Time 3:  Day 15-20 1.3 A* 0.60 A* 

Time 4:  Day 21-32 1.59 A 2.40 A 

*The inoculum types in time period thee had insignificant but borderline p-value of 0.06.  

 
 
 
 

 

Figure 18.  Lesion size by inoculum type—P. inconspicua hyphae from L. grayi and P. 

inconspicua conidia from L. superbum. 
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Table 19.  Least squares mean lesion size (LS mean) by species.  Superscripts of the same letter 
indicate an insignificant p-value among mean lesion sizes within that time period.  Tukey post 
hoc tests were used to determine p-values.  No significant results were found, p > 0.05. 
 

Species L. grayi L. michauxii L. superbum 

LS Mean 

Time 1:   Day 3-9 0.00A 0.00 A 0.10 A 

Time 2:  Day 10-14 0.18A 0.19A 0.58A 

Time 3:  Day 15-20 0.63 A 1.24 A 0.97 A 

Time 4:  Day 21-32 1.2 A* 3.00 A* 1.80 A 

*The L. grayi and L. michauxii in time period four had an insignificant but borderline p-value of 
0.054.   
 

 

 

 

 
Figure 19.  Lesion size by species inoculated—L. grayi, L. michauxii, and L. superbum. 
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Table 20.  Comparison of least squares mean lesion size (LS Mean) for each inoculum and 
species combination.  Inoculum types: 1 = P. inconspicua hyphae from L. grayi; 2 = P. 

inconspicua conidia from L. superbum.  Means with the same superscript indicate an 
insignificant p-value within that time period.  Tukey post hoc tests were used to determine p-
values.    
 

Inoculum*species 
1*L. 

grayi 

1*L. 

michauxii 

1*L. 

superbum 

2*L. 

grayi 

2*L. 

michauxii 

2*L. 

superbum 

LS 

Mean 

Time 1:  Day 3-9 0.00 A 0.00 A 0.20 A 0.00 A 0.00 A 0.00 A 

Time 2:  Day 10-14 0.26 A 0.17 A 1.15 A 0.11 A 0.21 A 0.02 A 

Time 3:  Day 15-20 0.72 A 1.38 A 1.82 A, B 0.55 A 1.11 A 0.12 A, C 

Time 4:  Day 21-32 0.72 A 1.4 A 2.66 A, C 1.68 A 4.57 B, C 0.94 A 

 

 

 

Additional Analysis.  Lesion analysis that included all lesion measurements (even 

abrasions that did not develop lesions) was conducted and yielded similar results (Table 21). 

 

 

 
Table 21:  Summary repeated multivariate ANOVAs for lesion size over time (abrasions that did 
not develop lesions were included) for different inoculum types used on three species.  
Significant p-values, based on Wilks lambda, are in bold. 
 

Lesion Size Effects 
Numerator 

DF 

Denominator 

DF 

Test 

statistic 
P 

Time 3 28 24.10 <0.001 

Time x inoculum type 3 28 13.11 <0.001 

Time x species 6 56 3.76 0.003 

Time x inoculum x species 6 56 5.36 <0.001 
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Fungal Inoculation Trials – Area of Chlorotic Zone Analysis 

 

Area of Chlorotic Zone 

Assumption Testing.  To determine if a significant difference in chlorosis size was seen 

over the course of approximately 30 days post infection with P. inconspicua, a one-way repeated 

measures ANOVA was conducted.  There were seven outliers identified (Figure 20).  The data 

was not normally distributed for all four time points, as determined by the Shapiro-Wilk test (p < 

0.05).  This represents a violation of two of the main assumptions of the repeated-measures 

ANOVA (Lund 2015).  The assumption of sphericity was also violated, χ2 (2) = 14.45, p = 0.01.  

A result that means the variance is not equal between the levels of the within-subject factor [the 

time point 1-4]; violating this assumption is very common in repeated-measure ANOVAs (Lund 

2015).  To remedy this violation, a Greenhouse-Geisser correction was used (ε = 0.81), which 

adjusts the degrees of freedom and allows for a correct p-value to be reported (Lund 2015).   
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Figure 20.  Comparison of chlorosis size by time period for all three fungal lesion experiments.  
Bars extending below and above the box represent the range of the chlorosis area size in cm2.  
The heavy line represents the median.  The extent of the box above and below the heavy line 
represents the 75th and 25th percentiles, respectively.  Outliers (1.5–3x the interquartile range) are 
represented by a circle, and extreme values (>3x the interquartile range) are represented by a 
star. 

 

 

 

Testing Results.  The area of the chlorotic zone increased significantly over time (Table 

22; Figure 21).  There was a significant interaction of chlorosis size over time and species type 

inoculated:  L. grayi, L. michauxii, or L. superbum.  A difference in chlorosis least square mean 

was found for time period two and three between inoculum source, with P. inconspicua hyphal 

inoculum from a L. grayi individual producing larger chlorosis areas than the conidia P. 

inconspicua culture gathered from a L. superbum, depending on the time period (Table 23).   

Lilium grayi produced a larger chlorosis size than L. michauxii for time period two (Table 24).  
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For time period three, all three species differed from each other in chlorosis size, with L. grayi 

having the largest chlorosis and L. superbum having the least (Table 24).  For the last time 

period, L. superbum had smaller lesions than the rest of the species (Table 24; Figure 23).  The 

rate of increase in the chlorotic zone area depended on the inoculum type used and the species 

inoculated, as a significant inoculum type by species interaction for mean chlorosis size over 

time was found (Table 22; Table 25).  These results parallel that of the lesions size analysis.  

Each result was calculated using Wilks’ Lambda MANOVA.   

 

 

 
 

 

 

Figure 21.  Mean area of the chlorosis zone (cm) across time points 1-4 for all fungal inoculation 
experiments.  Bars represent error bars with 95% Confidence Interval.  

 

 

 



69 
 

Table 22.  Summary repeated multivariate ANOVAs for area of the chlorotic zone over time for 
different inoculum types used on three species.  Significant p-values, based on Wilks lambda, are 
in bold. 
 

Source 
Numerator 

DF 

Denominator 

DF 

Test 

statistic: 

F value 

P 

Time 3 19 172.72 <0.001 

Time x inoculum 3 19 27.12 <0.001 

Time x species 6 38 19.28 <0.001 

Time x inoculum x species 6 38 18.46 <0.001 

 

 

Table 23.  Least squares mean chlorosis size (LS mean) by type of P. inconspicua inoculum.  
Superscripts of the same letter indicate an insignificant p-value among mean lesion sizes within 
that time period.  Tukey post hoc tests were used to determine p-values.  Significant results were 
found, p < 0.001.  
 

Inoculum 
Hyphal culture from 

L. grayi 

Conidia from L. 

superbum 

LS Mean 

Time 1:   Day 3-9 0.16 A 0.00 A 

Time 2:  Day 10-14 2.36 A 0.00 B 

Time 3:  Day 15-20 4.81 A 1.88 B 

Time 4:  Day 21-32 4.99 A 4.56 A 

 
 
 
 
Table 24.  Least squares mean chlorosis size (LS mean) by species.  Superscripts of the same 
letter indicate an insignificant p-value among mean chlorosis sizes within that time period.  
Tukey post hoc tests were used to determine p-values.  Significant p-values were p < 0.05. 
 

Species L. grayi L. michauxii L. superbum 

LS Mean 

Time 1:   Day 3-9 -0.00 A -0.00 A 0.24 A 

Time 2:  Day 10-14 2.19 A, C 0.31 B, C 1.04 C 

Time 3:  Day 15-20 4.88 A 3.34 B 1.78 C 

Time 4:  Day 21-32 4.88 A 6.51 A 2.99 B 
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Figure 22.  Area of chlorotic zone by inoculum type—P. inconspicua hyphae from L. grayi and 

P. inconspicua conidia from L. superbum. 
 
 
 
 

 

Figure 23.  Chlorosis size by species inoculated—L. grayi, L. michauxii, and L. superbum. 
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Post hoc testing.  To determine which inoculum type, species, or interaction differed, 

Tukey post hoc testing using pairwise comparisons was performed.  A difference in chlorosis 

least square mean was found for time period two and three between inoculum sources, with P. 

inconspicua hyphal inoculum from a L. grayi individual producing larger chlorosis areas than the 

conidia P. inconspicua culture gathered from a L. superbum (Table 23; Figure 22).  No 

difference among area of chlorotic zone was seen among the species in time period one (Table 

24).  Lilium grayi produced a larger chlorosis size than L. michauxii for time period two (Table 

24).  For time period three, all three species differed from each other in chlorosis size, with L. 

grayi having the largest chlorosis and L. superbum having the least (Table 24).  For the last time 

period, L. superbum had smaller lesions than the rest of the species (Table 24; Figure 23).  For 

the interaction of inoculum and species on chlorosis size, there were several significant findings 

(Table 25). 

 

 

 
Table 25.  Least squares mean chlorosis size (LS mean) by interaction of inoculum and species, 
where 1 = P. inconspicua inoculum hyphae from L. grayi and 2 = P. inconspicua conidia from L. 

superbum.  Superscripts of the same letter indicate an insignificant p-value among mean 
chlorosis sizes within that time period.  Tukey post hoc tests were used to determine p-values.    
  

Inoculum*species 
1*L. 

grayi 

1*L. 

michauxii 

1*L. 

superbum 

2*L. 

grayi 

2*L. 

michauxii 

2*L. 

superbum 

LS 

Mean 

Time 1:  Day 3-9 -0.00 A -0.00 A 0.48 A -0.00 A -0.00 A -0.00 A 

Time 2:  Day 10-14 4.38 B 0.63 A* 2.07 A 0.00 A 0.00 A 0.00 A 

Time 3:  Day 15-20 4.38 A, B 6.75 A 3.28 A, B 5.37 A, B -0.00 C 0.27 C 

Time 4:  Day 21-32 4.38 A, B 6.75 A 3.85 A, B 5.37 A 6.30 A 2.05 B 

*An insignificant but borderline p-value was found p = 0.08. 
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Additional Analysis.  Area of chlorotic zone analysis that included all chlorosis 

measurements (even those that did not develop chlorosis) was conducted and yielded similar 

results (Table 26). 

 

 

Table 26:  Summary repeated multivariate ANOVAs for area of chlorotic zone over time 
(abrasions that did not develop lesions were included) for different inoculum types used on three 
species.  Significant p-values, based on Wilks lambda, are in bold. 
 

Lesion Size Effects 
Numerator 

DF 

Denominator 

DF 

Test 

statistic 
P 

Time 3 28 33.50 <0.001 

Time x inoculum type 3 28 21.87 <0.001 

Time x species 6 56 11.97 <0.001 

Time x inoculum x species 6 56 13.66 <0.001 

 
 
 

 

 

Fungal Inoculation Trials – Incubation Period 

 

Incubation period.  Abrasion without lesion development excluded. 

Assumption testing.  To determine if a difference in incubation period was seen post 

infection with P. inconspicua, a two-way repeated measures ANOVA was conducted.  There 

were four outliers identified (Figure 24).  The data was normally distributed for all four time 

points, as determined by the Shapiro-Wilk test (p = 0.09).  The assumption of homogeneity of 

variance was not violated, as determined by the Levene’s test (p = 0.16) (Lund 2015). 
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Figure 24.  Comparison of incubation time (in days) for all three fungal lesion experiments.  Bars 
extending below and above the box represent the range of incubation time.  The heavy line 
represents the median.  The extent of the box above and below the heavy line represents the 75th 
and 25th percentiles, respectively.  Outliers (1.5–3x the interquartile range) are represented by a 
circle, and extreme values (>3x the interquartile range) are represented by a star. 

 

 
 
 

Testing Results.  Table 27 shows a summary of the descriptive statistics for incubation 

period for all three fungal inoculation trials.  The incubation period for lesions to develop did not 

differ significantly among inoculum types or among species (Table 28; Figure 25; Figure 26). 

 
 
 

Table 27.  Descriptive statistics showing mean incubation days by inoculum type, species, and 
by interaction of inoculum and species.  Inoculum types: 1 = P. inconspicua hyphae from L. 

grayi; 2 = P. inconspicua conidia from L. superbum.  SD = standard deviation and N = sample 
size. 
 

 
Factors 

Mean 

incubation 

(days) 

N 

Inoculum 

Hyphal culture from L. 

grayi 
11.96 14 

Conidia from L. 

superbum 
15.33 12 
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Table 27.  Continued. 

 Factors 

Mean 

incubation 

(days) 

N 

Species 

L. grayi 13.08 7 

L. michauxii 13.75 6 

L. superbum 14.11 13 

Interactions 

1*L. grayi 12.67 3 

1*L. michauxii 13.00 2 

1*L. superbum 10.22 9 

2*L. grayi 13.5 4 

2*L. michauxii 14.5 4 

2*L. superbum 18.00 4 

 

 

 

 

 

Table 28. Summary of two-way ANOVAs for incubation days by inoculum type, species, and by 
interaction of inoculum and species.  No significant p-values were found. 
 
  

 
DF 

effect 

DF 

error 

Test statistic, 

F 
P 

Inoculum 1 20 2.91 0.10 

Species 2 20 011 0.90 

Inoculum*species 2 20 1.56 0.24 
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Figure 25.  Comparison of incubation time (in days) for all three fungal lesion experiments by P. 

inconspicua inoculum type–P. inconspicua hyphae from L. grayi and P. inconspicua conidia 
from L. superbum.  Bars represent 95% confidence interval (CI).  

 
 

 

 

 

 
 

Figure 26.  Comparison of incubation time (in days) for all three fungal lesion experiments by 
species–L. grayi, L. michauxii, and L. superbum.  Bars represent 95% confidence interval (CI). 
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Fungal Inoculation Trials – Plant Survival 

 

Plant survival post inoculation  

Assumption Testing.  To determine if a difference in plant survival was seen post 

infection with P. inconspicua, a two-way repeated measures ANOVA was conducted.  There 

were no outliers identified (Figure 27).  The data was normally distributed, as determined by the 

Shapiro-Wilk test (p = 0.12).  The assumption of homogeneity of variance was not violated, as 

determined by the Levene’s test (p = 0.38) (Lund 2015). 

 

 
 

 

 
Figure 27.  Plant survival days post inoculation for all three fungal lesion experiments.  Bars 
extending below and above the box represent the range of incubation time.  The heavy line 
represents the median.  The extent of the box above and below the heavy line represents the 75th 
and 25th percentiles, respectively.  No outliers identified 
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Tests Results.  The mean days a plant survived post inoculation did not differ 

significantly among inoculum types or among species (Tables 29; Table 30; Figure 28; Figure 

29). 

 

Table 29.  Descriptive statistics showing mean days a plant survived post inoculation by 
inoculum type, species, and by interaction of inoculum and species.  Inoculum types: 1 = P. 

inconspicua hyphae from L. grayi; 2 = P. inconspicua conidia from L. superbum.  SD = standard 
deviation and N = sample size.     
 

 Factors Mean survival of plant (days) N 

Inoculum 

Hyphal culture from L. grayi 44 5 

Conidia from L. superbum 62 3 

Species 

 

 

L. grayi 23 2 

L. michauxii 71 2 

L. superbum 65 4 

Interactions 

1*L. grayi 

 
19 1 

1*L. michauxii 

 
19 1 

1*L. superbum 

 
95 3 

2*L. grayi 

 
26 1 

2*L. michauxii 

 
123 1 

2*L. superbum 

 
36 1 

 

 

 
 
Table 30.  Summary of two-way ANOVAs for plant survival post inoculation by inoculum type, 
species, and by interaction of inoculum and species.  No significant p-values were found. 
 

 DF  
Test 

statistic 
P 

Inoculum 1 0.22 0.62 

Species 2 0.63 0.69 

Inoculum*species 2 1.67 0.37 
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Figure 28.  Comparison of experimental plant survival days post inoculation for all three fungal 
lesion experiments by P. inconspicua inoculum type–P. inconspicua hyphae from  L. grayi and 
P. inconspicua conidia from L. superbum.  Bars represent 95% confidence interval (CI).  
 
 
 
 
 

 
 

Figure 29.  Comparison of mean experimental plant survival days post inoculation for all three 
fungal lesion experiments by species–L. grayi, L. michauxii, and L. superbum.  Bars represent 
95% confidence interval (CI).  
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Fungal Inoculation Trials – Death of Experimental Leaf 

 

Death of experimental leaf.  Abrasions without lesion development excluded   

Assumption Testing.  To determine if there was a difference in number of days until the 

experimental leaf senescenced from disease, a two-way ANOVA was performed.  There were no 

outliers identified (Figure 30).  The data were not normally distributed, as determined by the 

Shapiro-Wilk test (p = 0.03).  The assumption of homogeneity of variance was violated, as 

determined by the Levene’s test (p = 0.01) (Lund 2015). 

 

 

 
 

 
 

Figure 30.  Survival days of experimental leaf post inoculation for all three fungal lesion 
experiments.  Bars extending below and above the box represent the range of incubation time.  
The heavy line represents the median.  The extent of the box above and below the heavy line 
represents the 75th and 25th percentiles, respectively.  No outliers identified. 
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Test Results.  No statistical difference was seen in inoculum type or species regarding the 

number of days it took for an experimental leaf to die (Table 31; Table 32; Figure 31; Figure 32).  

A visual determination of death was made.  

 

 

Table 31.  Descriptive statistics of mean days until experimental leaf died regarding inoculum 
type, species, and by interaction of inoculum and species, where 1 = P. inconspicua inoculum 
hyphae from L. grayi and 2 = P. inconspicua conidia from L. superbum.  Standard deviation 
denoted by SD and sample size by N.      
 

 Factors 
Mean days 

until leaf died 
N 

Inoculum 
Hyphal culture from L. grayi 20 9 

Conidia from L. superbum 25 7 

Species 

L. grayi 3 4 

L. michauxii 3 3 

L. superbum 2 9 

Interaction 

1*L. grayi 21 2 

1*L. michauxii 32 1 

1*L. superbum 21 6 

2*L. grayi 19 2 

2*L. michauxii 28 2 

2*L. superbum 24 3 

 

 

 

Table 32.  Summary of two-way ANOVA for number of days until death of experimental leaf by 
inoculum type, species, and by interaction of inoculum and species.  No significant p-values 
were found. 

Source DF 
Test 

statistic 
P 

Inoculum 1 1.86 0.20 

Species 2 1.41 0.29 

Inoculum*species 2 2.63 0.12 
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Figure 31.  Comparison of mean experimental leaf survival days post inoculation for all three 
fungal lesion experiments by P. inconspicua inoculum type–P. inconspicua hyphae from L. grayi 
and P. inconspicua conidia from L. superbum.  Bars represent 95% confidence interval (CI).  
 
 
 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
Figure 32.  Comparison of mean experimental leaf survival days post inoculation for all three 
fungal lesion experiments by species–L. grayi, L. michauxii, and L. superbum.  Bars represent 
95% confidence interval (CI). 
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CHAPTER 4 

DISCUSSION 

 

Disease Extent 

The current project has shown the disease was present throughout the range of L. 

grayi and ubiquitous within populations.  Sample sites included:  Bluff Mountain, Roan 

Mountain massif (Big Yellow Mountain, Rhododendron Gardens, Cloudland Hotel, Grassy 

Ridge), Whitetop Mountain, and four sites along the Blue Ridge Parkway).  Disease was also 

present in all sampled L. superbum populations (Big Yellow Mountain, Bluff Mountain, Holston 

Mountain, Roan Mountain State Park, Unaka Mountain, Whitetop Mountain, and the Blue Ridge 

Parkway sites). 

Variables Associated with Health 

Several variables were identified in this study that were associated with lily health.  

Taller plants tended to be healthier than shorter plants in both L. grayi and L. superbum (Table 

13; Table 14).  Since P. inconspicua lesions take up leaf area and cause foliar damage, thereby 

disrupting photosynthesis, plants with a more leaves would have a greater leaf surface area and 

presumably, an advantage against the pathogen.  Taller plants would also have an advantage in 

escaping inoculum as rain splash is a known vehicle for disease transmission (Madden 1997) and 

it would spread P. inconspicua inoculum from infected leaf litter to lower leaves.  If fungal entry 

occurs through leaves, then smaller plants and lower lying leaves would be the most susceptible, 

as they experience a higher inoculation rate and a greater chance of contracting fungal infection.   

In this study, the mean height of L. grayi exceeded that of L. superbum (Table 15).   

However, Skinner states that L. superbum is the taller species (2002).   The discrepancy could lie 
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in an intentional survey bias.  In the majority of sample sites, L. grayi was mixed with other 

Lilium species.  Vegetatively, L. grayi looks nearly identical to other Lilium species state (Table 

1).  To maintain data integrity, only plants for which a definitive identification was possible, or 

previously marked plants of L. grayi were censused (Table 3 and 4).  Since flowering individuals 

are taller than juveniles, this sampling bias would invariable skew the average height.  In 

contrast, the L. superbum populations censused were known pure populations (Table 3 and 4), 

which allowed for inclusion of smaller, nonflowering individuals to be censused.  

In L. grayi, plants in bald habitats and in full sun tended to be healthier than those in 

lower light conditions and other habitats.  The sun effect may be caused by greater air flow and 

more light, both of which reduce humidity.  Lower humidity, in turn, lowers fungal spore 

germination and viability (Block 1953), conditions that would ultimately cause less disease.  

This result appears to conflict with previous work, which did not identify any morphologic 

predictors of health for L. grayi (Ingram 2013).  However, that study monitored only L. grayi on 

Roan Mountain, a site with a relatively uniform habitat and light condition.  The current study 

included a wider range of habitats and light conditions, which facilitated a more comprehensive 

analysis of predictors of health.  The Roan Mountain bald habitat was also the only population in 

full sun in the present study, so more study is needed to determine which factor, light or habitat, 

is more closely associated with health.        

Diseased Populations and Individuals 

Lilium superbum was first investigated as a host species of P. inconspicua because 

observations of L. superbum populations revealed disease symptoms similar to those in infected 

populations of L. grayi.  Both species exhibited mass infection, chlorosis, wilting, and early 

senescence.  At an individual level, both species had tan fungal lesions that when sampled, 
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yielded P. inconspicua conidia (Figure 34; Figure 35; Figure 36).  The two species differ at the 

individual level.  Lilium superbum lesions are slightly more linear than the circular L. grayi 

fungal lesions.  There were also more L. superbum survivors later in the season than in L. grayi.  

Differing pattern of survivors were also seen.  Lilium grayi health is clustered (Figure 33) and L. 

superbum has sporadic healthy individuals.  This suggests L. grayi survivorship is due to 

environmental factors and L. superbum might be less susceptible to the disease. 

 
 
 
 

        

Figure 33.  Lilium grayi individuals, on left typical observation from population sites (August).  
On right, clustered late season survivors of L. grayi on Roan Mountain (September). 
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Figure 34.  Similar population observations of a L. grayi (top) and L. superbum (bottom).  
Photographs taken in early summer. 
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Figure 35.  Similar observations of L. gray (left) and L. superbum (right) individuals. 
Photographs taken in May for L. grayi and July for L. superbum. 
 
 
 
 

      
 

Figure 36.  Pseudocercosporella inconspicua conidia from lesion samples of a L. grayi (left) and 
L. superbum (right).  Photographs taken at varying levels of magnification.   
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Disease Effect 

The second health score was significantly lower than the first health score taken earlier in 

the growing season.  In fact, it was common on the second survey to find only bare stems of lily 

plants because entire subpopulations had experienced early senescence (Figure 37).  The 

magnitude of the decrease in the mean health score indicates disease has weakened plants, and in 

many cases, this caused the plant to senescence three to four months prematurely.  Further study 

is needed to determine if this trend is sustainable for L. grayi and L. superbum or if reserve 

storage in bulbs is sufficient to maintain plants. 

 

 

 

Figure 37.   Photograph of 18 previously healthy L. superbum plants.  Typical second census 
observation for both L. grayi and L. superbum in August and September. 
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Lilium grayi Reproduction 

The number of capsules produced (N = 9) was significantly lower than the number of 

flowers (N = 55) recorded earlier in the season among the BRP1, Elk Hollow Preserve, Roan 

Mountain (Cloudland Hotel Site), and Whitetop populations (Figure 15).  It is unknown at 

present the number of capsules needed to sustain a healthy population, as L. grayi is capable of 

asexual cloning.  However, it is concerning that BRP1 and Whitetop did not secure any capsules 

during 2016.  

Lilium superbum Reproduction 

Time constraints prevented observations of reproduction of L. superbum to be made.  

However, it is suspected that a similar pattern of low seed capsule production is present in L. 

superbum.  For example, a L. superbum population in Roan Mountain State Park produced no 

capsules in 2015 or 2016.  The number of capsules needed to sustain a vigorous, healthy 

population for either species is not known. 

Lilium canadense:  A Disease-free Population 

Analysis of 28 L. canadense plants at a population in the TNC Shady Valley Schoolyard 

Springs Preserve showed no infection throughout the 2016 season (Table 4, Figure 1).  In stark 

contrast, disease was found at all other sample sites including nine L. grayi and three L. 

superbum populations (Table 3; Table 4).  In epidemiology, the presence or absence of disease 

depends on three factors:  the host, environment, and disease (Gordis 2014; Figure 38).  One of 

these factors must be different at the Shady Valley site compared to all other sites.  The host 

factor can be excluded, as L. canadense is a known host for P. inconspicua (Braun 1995), unless 

this population represents a previously unknown resistant population.  Late season survivors are 

pictured in Figure 39.  The environment of Shady Valley is like that of Big Yellow Mountain 
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where disease is present (Figure 40) except the latter is at high elevation and the former is at a 

low elevation.  Both sites have a thick, herbaceous groundcover that often surround lily plants 

with the crowding and high humidity conditions which would be conducive to fungal infection.  

Therefore, environmental differences are an unlikely explanation for the health of the Shady 

Valley site.  A more likely explanation may lie in the disease factor.  Possibly, P. inconspicua 

conidia are not present at this site.  Thus, site and vector isolation could explain the absence of 

disease.  TNC Shady Valley Schoolyard Springs Preserve is located in a maintained field apart 

from infected sympatric Lilium populations.  This location also receives fewer visitors who can 

unknowingly transfer the microscopic conidia from one plant to another.  To test this hypothesis, 

potted L. grayi could be brought in for one season to see if the plants becomes infected, but they 

should not be allowed to set seed as interspecific hybridization could occur.  The finding of this 

disease-free site is a significant anomaly, as further study could uncover factors underlying the 

healthy L. canadense population.  Most importantly, if a factor is identified, this could aid in 

treatment of infected L. grayi populations.  Lilium michauxii also was disease-free but for a 

different reason as discussed below in “Fungal inoculation:  Two new hosts.” 
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Figure 38.   The three contributing factors of a diseased state:  host, environment, and agent.  
Figure modeled after Gordis (2014). 
 

 

 
 

       

Figure 39.  Late season survivors of L. grayi (2Sep2016) and L. canadense (9Aug2016), both are 
known hosts for P. inconspicua. 
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Figure 40.  Environment of healthy L. canadense population at Shady Valley, TN (top) and 
diseased L. grayi and L. superbum population on Big Yellow Mountain, NC (bottom). 
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Outbreak or Epidemic? 

An epidemic and outbreak are similar in their definition as an “increase in the number of 

cases of a disease above what is expected” (Gordis 2014).  However, an outbreak differs from an 

epidemic in several aspects.  Most importantly, an outbreak is localized compared to a 

widespread epidemic (“Lesson” 2012).  At all locations of L. grayi and L. superbum, P. 

inconspicua leaf spot disease was ubiquitous.  These sample sites together represent an extensive 

range with occurrences in 11 counties and 3 states comprising the entire range of L grayi (Table 

3; Table 4).  Pseudocercosporella inconspicua and lily leaf spot disease therefore, meet the 

criteria of an extensive geographic occurrence that is essential for a disease to be characterized as 

an epidemic.  

An outbreak is limited in magnitude.  Although baseline data is not available for lily leaf 

spot disease, trends seen on Roan of up to 59% and of early senescence rates in 2013 (Ingram 

2013) and up to 100% early senescence seen in this study should suffice as epidemic proportions.   

An outbreak is transient not sustained over time.  The effects of P. inconspicua on L. 

grayi have been noted for several decades, with several researchers noting fungal disease prior to 

a correct identification of the causal pathogen (Bates 1998; Donaldson 2003; Powell 2011; 

Ingram 2013; and Ulrey pers. comm.).  This study also confirmed a sustained disease state for L. 

grayi for two consecutive years (Figure 13).  These studies together provide sufficient evidence 

for a sustained disease state that is necessary for a disease to be considered an epidemic.   

Additionally, characteristics of lily leaf spot disease aid, if not ensure, the fungal 

pathogen is widely dispersed and leads to an epidemic.  It has a polycyclic conidia lifecycle, 

resilient, overwintering ascospores, and the fungal infection is not systemic.  Together, this set of 

characteristics allow susceptible individuals to continually face the disease all season long and 
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return the following year to remerge through a pre-inoculated area.  As a result, the epidemic can 

be expected to recur with similar amplitude year after year.  High morbidity and extensive 

geographic occurrence support the hypothesis of P. inconspicua as an introduced species, as 

similar fungal epidemics with equivalent morbidity and range-wide extent were the result of a 

pathogen of exotic origin—examples include the chestnut blight of American chestnut and Dutch 

elm disease of North American elms (Schlarbaum 1998).   

Inoculum Type or Host Source? 

The fungal inoculation trials utilized P. inconspicua inoculum from two host sources:  P. 

inconspicua from L. grayi and P. inconspicua from L. superbum.  Including inoculum from two 

sources stemmed from visual observations and later demographic statistical analysis of presumed 

increased susceptibility of L. grayi to P. inconspicua infection as compared to L. superbum 

(Table 15).  However, in the fungal inoculation trial, there was a significant interaction between 

the inoculum type used and the species inoculated (Table 17; Table 20).  A result that suggests 

there is not a more virulent genotype.  The hypothesis of a more virulent strain affecting L. grayi 

is unlikely because one inoculum did not elicit a greater more sever response in the Lilium 

species (Table 18).  (A borderline, p = 0.06, result was found in time period 3 where P. 

inconspicua hyphal culture from a L. grayi produced a larger lesion area than P. inconspicua 

conidia culture from a L. superbum.  See Table 18.)  It should be noted that care was taken to 

gather hyphal inoculum from the perimeter of a fungal colony—the most actively growing area 

of the fungus—because hyphae may not always be infectious.   

However, it is difficult to determine if inoculum type (hyphae or conidia) or host source 

of P. inconspicua inoculum (L. grayi or L. superbum) is responsible for the borderline result, p = 

0.06, seen in lesion size that followed infection (Table 18).  This is because only two types of 
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inoculum were available during the time experimental plants were viable—hyphal culture 

derived from an L. grayi individual and collected in the field from L. superbum lesions.  Hence, 

the two factors are confounded.  However, a plausible hypothesis for the differences points to 

inoculum type.  The longer incubation period of the conidia inoculum would agree with the life 

cycle of a spore, where germination must first take place before infection proceeds.  This lag 

time could explain why disease symptoms appear first when using hyphal culture because it 

skips the germination and early differentiation steps.  Additional study is needed using inoculum 

that does not confound the two variables because an alternative hypothesis is that P. inconspicua 

isolates from one species is more virulent, i.e. has the shortest incubation period and elicits the 

largest lesion and chlorosis zone. 

Leaf Lesions:  Use of Chlorosis Measurements 

Measurements and analysis of the chlorotic leaf area following inoculation were included 

because lesion measurements alone did not accurately represent the visual appearance of disease 

progression on leaves.  For example, in many experimental leaves, the chlorosis would surpass 

the lesion and consume the entire leaf.  Consequently, the leaf would wither and die, even though 

the inoculation lesion did not continue to expand.  In other experimental leaves, the plant 

appeared to wall off the infection and much of the leaf remained green and apparently healthy.  

In both cases, the lesion size was similar.  Therefore, measurements of lesion size and chlorosis 

size provided a more accurate quantitative representation of the differing disease states, 

progression, and severity.   
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Chlorotic Area Size 

Although not specifically studied in P. inconspicua, other Cercospora species 

(sometimes a synonym of Pseudocercosporella) produce a toxin called cercosporin (Daub 2000).  

A cercosporin or a similar toxin would explain the chlorosis seen around and oftentimes far 

surpassing the P. inconspicua lesions.  The chlorotic area data suggest a more widespread area of 

chlorosis on L. grayi compared to L. superbum.  Possible explanations for the difference are that 

P. inconspicua produces more toxin in L. grayi, or if similar amounts are produced, L. grayi has 

a lower tolerance to the toxin or a more toxic version of the toxin is produced. 

Direction of Chlorosis and Lesion Spread 

Braun described circular P. inconspicua lesions on L. grayi and similar species (1995).  

Inoculations of L. superbum showed a more elliptic, nearly linear trend.  Walling off of fungal 

lesion and chlorosis spread was seen in many experimental leaves (Figure 41), this trend was 

also seen in L. grayi and L. michauxii but to a lesser extent.  As Lilium species have a vascular 

system with parallel veins, it is possible the fungal hyphae and toxic products are traveling along 

the vasculature and causing the somewhat linear lesions.   

 

 

 
 
 
 
 
 
 
 
Figure 41.  Observation of restricted lesion spread across parallel veins in L. superbum.  This 
trend was noted in all species inoculated (L. grayi, L. michauxii, and L. superbum) but most 
frequently seen on L. superbum. 
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Toxin and Chlorosis 

It would be most informative to determine if stem and leaf senescence was caused by a 

cercosporin-like toxin produced by P. inconspicua.  Lilium grayi can develop extensive chlorosis 

before lesions develop (Figure 42).  These observations combined with the prompt senescence 

suggest L. grayi are intolerant of a systemic factor such as a toxin.  The response was greater 

than what appeared attributable to foliar damage of fungal lesions.  If so, differences in the extent 

of chlorosis (when using the same inoculum type) suggest varying tolerances to such a toxin.  

Therefore, a working hypothesis is that L. superbum, with smaller chlorosis zones is perhaps 

more tolerant of the toxin.   

 

 

 

 
 
 
Figure 42.  Observation of systemic chlorosis that exceeds the lesion area in an inoculated 
abrasion.  Individual pictured is a L. grayi thirteen days post inoculation. 
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Lesion Size 

Varying host susceptibility is one explanation for the borderline result seen in lesion size 

(Table 19).  Another explanation could lie in plant structure.  Perhaps the cellular walls of the L. 

grayi venous system of L. grayi are more permeable, allowing the toxin to cross the parallel 

veins and have a more systemic effect than that observed in L. superbum.  In support of this, 

observations of hindered lesion spread across the parallel veins was seen in all species, but the 

most pronounced and frequent restriction to intervein areas was in L. superbum (Figure 41). 

Host Susceptibility 

If the chlorotic area is an indicator of disease severity, then a significant differences in 

lesion size, chlorotic area, or both would suggest varying levels of host susceptibility among the 

three Lilium species.  

However, the inoculation trials revealed there was not a difference in response to P. 

inconspicua inoculum between the three Lilium species.  This result would not indicate a 

difference in host susceptibility.  (A borderline, p=0.054, result was found in time period 4 where 

L. michauxii had a larger lesion area than L. grayi.  See Table 19.)   

This agrees with the disease observations in the field where L. grayi and L. superbum act 

similarly on a population level (Figure 34) and on an individual level (Figure 35).   

Analysis Shortcomings 

Increased sample size would increase the power of data analysis in the inoculum 

experiments.  However, with concerns for the threatened plant status, it was difficult and not 

ecologically feasible to obtain more L. grayi plants.  Plant transfer shock and complications of 

artificial overwintering were contributing factors in lower plant sample size of L. michauxii and 
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L. superbum.  Lilium canadense was not included in the analysis because the unusual healthy 

population was not identified until the end of the second year of study. 

Increased sample size would allow for abrasions to be placed on different leaves, and if 

enough plants were secured, only one leaf per plant would be inoculated.  This would eliminate 

concerns for nesting and all observation would remain independent.  Again, due to difficulty in 

obtaining plants, it was necessary to have two abrasions per experimental leaf and two 

experimental leaves per plant (provided the plant had sufficient leaf whorls). 

Number of Days until Plant and Leaf Death 

Although no significant difference was seen in mean survival days post inoculation 

(Table 30), several small and large lab inoculated plants of L. superbum individuals were capable 

of living with infection until the time when natural, seasonal senescence would be expected.  See 

Figure 43.  (One large L. michauxii also had long survivorship).  More study is needed to 

determine if height is a contributing factor for longer survival following infection for L. 

superbum and L. michauxii.  Survival of infected L. grayi was short (but still insignificant).  No 

L. grayi survived longer than 26 days.  This result is in agreement with observations seen in the 

field where populations and individuals of both species had diseased states that are nearly 

identical (Figure 34; Figure 35).  
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Figure 43.  End of fungal inoculation trial two where both L. grayi, and the L. michauxii 
senesced under fungal pressure, but the L. superbum did not. 
 

 

 

Fungal Inoculation:  Two New Hosts 

At the onset of the study, it was hypothesized that L. superbum was a host for P. 

inconspicua due to field observations and positive conidia recovery from samples.  However, all 

observed L. michauxii individuals were healthy throughout the season (Table 2).  Perhaps most 

intriguing is the observation of a browsed, healthy L. michauxii individual surrounded by 

unhealthy L. superbum plants stricken with P. inconspicua infection.   

         L. grayi 

L. michauxii 

         L. superbum 
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Inoculation of L. michauxii led to infection, a result that provides valuable insights into 

the underlying explanation and mechanism of its sustained health in the field in the presumed 

presence of disease inoculum.  Occurrence of infection after leaf abrasion and after inoculation 

suggests that L. michauxii has mechanical resistance to P. inconspicua and that L. michauxii’s 

thicker cuticle and preference for a dryer habitat offer this species an advantage to P. 

inconspicua infection in the field.  The severity of the infection after inoculation makes the 

diagnosis of a hypersensitive response unlikely, which would have pointed to a general but not 

genetic immunity to disease (Mur et al. 2008).  Since infection was inducible, it is also unlikely 

that genetic resistance is present in L. michauxii.  This hypothesis suggests the development of a 

genetically resistant L. grayi—whether naturally, evolved, developed through breeding programs, 

or conferred through genetic manipulation—is much less promising.   

Lilium michauxii usually grows in a drier environment than both L. grayi and L. 

superbum, giving it another possible advantage against fungal infection.  Such an environment, 

with a presumed smaller spore load of P. inconspicua, would also decrease the chance of 

contracting infection if the cuticle were inadvertently breached after browsing or other damaging 

factors. 

Infection followed inoculation of L. superbum, a finding that confirms the disease 

observations seen in the field (Figure 36) and further supports the host species hypothesis.  Some 

underlying genetic resistance may be found in L. superbum.  Lesions of L. superbum do not tend 

to cross leaf veins as frequently as lesions in L. superbum or L. michauxii (Figure 41; Figure 44).   
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Figure 44.  Typical experimental leaf observation seen during the fungal inoculation trials.  
Photograph on left is a L. grayi experimental leaf, the middle is a L. superbum, and the right is a 
L. michauxii. 
 

 

 

 

Reservoir Hypothesis 

Pseudocercosporella inconspicua conidia and lily leaf spot disease were identified on L. 

superbum in the field and successful inoculation of L. superbum in the lab confirmed this species 

can act a host of P. inconspicua.  A reservoir is defined as a host where disease can successfully 

survive, i.e. one that is “chronically infested with the causative agent of a disease and can act as a 

source of further infection” (Gordis 2014).  My findings support the characterization of L. 

superbum as a reservoir given the extensive presence of P. inconspicua at every L. superbum 
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location sampled (Table 3), and sampling throughout the season yielded P. inconspicua conidia.  

Populations of L. superbum have an overlapping and lower elevation distribution than L. grayi 

(Skinner 2002).  Having been confirmed as a host for P. inconspicua, being a host and having the 

ability to co-occur with L. grayi, L. superbum would become a source of disease, with infected 

leaves of previous years contaminating leaf litter and providing inoculum for next year’s 

infection and the genesis for future fungal epidemics.  Therefore, L. superbum should be 

regarded a reservoir of disease for L. grayi.  

 Although the fungal inoculation experiments identified L. michauxii as a host species, L. 

michauxii does not serve as a functional host in the field, as all censused individuals were 

healthy across the region and throughout the season and none carried P. inconspicua conidia 

(Table 2).  Since L. michauxii does not succumb to, transfer, or harbor infection in the field, my 

findings do not support the characterization of L. michauxii as a reservoir.   

The finding that L. superbum is a host for P. inconspicua and that P. inconspicua leaf 

spot disease is a concern in L. superbum presents more complex challenges for management of 

L. grayi populations.  If a treatment for P. inconspicua is found, management of this additional 

disease reservoir would require more time and money to be allocated from an already strained 

fiscal budget of land and conservation agencies.  Conversely, there is a benefit in the knowledge 

that L. superbum is a host for P. inconspicua.  Being more common and growing near L. grayi 

populations in similar habitats, this species could be considered a surrogate for experimental and 

conservation regimens leaving the L. grayi and its fragile habitat undisturbed until an appropriate 

and effective approach to management of the fungal pathogen is found. 
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Future Study 

Additional, more extensive sampling for P. inconspicua conidia should be performed to 

determine the full extent of the P. inconspicua host range.  Mycological and herbarium 

occurrence data indicate P. inconspicua in five northern states (Maine, Michigan, New York, 

Vermont, and Wisconsin) and two Canadian provinces (Alberta and Manitoba) (Ingram et. al 

2017).   Since L. canadense and L. superbum—both hosts of P. inconspicua—have distributions 

that overlap these northern areas with the regional disease occurrences in Tennessee, North 

Carolina, and Virginia, it is a reasonable hypothesis that P. inconspicua has a continuous 

distribution from Canada to Georgia.  

 It would be interesting and informative to include cultivated lilies species in fungal 

inoculation experiments.  Since Asiatic lilies have thicker cuticles, one would expect the results 

of fungal inoculation experiments to be similar to that of L. michauxii, where infection is 

inducible but not seen in the field.  Species native to central and western North America should 

also be included in future studies, to help determine the point of origin of P. inconspicua to 

North America, as an introduction from across Pacific rather than the Atlantic is plausible.  In 

fact, infection has already occurred in plant nurseries in Russian and Japanese plant nurseries 

(Makoto 1925; Zerova 1940).  Similar infections would have substantial economic consequences 

for the nursery industry in North America.  The introduction of invasive fungal infections such as 

the chestnut blight and pine blister rust was, in part, the impetus for the US Plant Quarantine Act 

of 1912 (Palm 2001).  

To further strengthen future inoculation trials, a plant which cannot be infected with P. 

inconspicua (a negative control for the inoculum) should be added.  This would allow additional 

safeguards on the viability and restriction of the inoculum.  A negative result in this control plant 
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and a positive result in a known host species would help prove that the inoculation was 

successful. 

A genetic analysis would also be a necessary next step for untangling the historical 

occurrence and native status of P. inconspicua in North America.  Genetic samples were taken in 

this study while gathering fungal inoculum and recording demographic data.  Isolation of P. 

inconspicua from these samples has proven successful for many populations.  

Concerns for Species Viability 

Several factors are present that together raise concern for the viability of L. grayi as a 

species.  First, as a narrow, southern Appalachian endemic with a preference for high elevation 

sites, this species has a restricted geographic and ecological distribution.  Second, L. grayi has 

complex hypogeal seed germination.  Deno (1993) completed an extensive germination study 

where L. canadense var. editorum—a species closely related to L. grayi—was studied.  Deno 

speculated the germination rates of this species would closely resemble that of L. grayi.  

Laboratory treatment of fresh seeds following a shifting temperature protocol had a 94–96% 

germination rate.  However, field experiments using fresh seeds started in September—that 

experienced the warm and cool treatment needed for hypogeal germination—had 0% 

germination (Deno 1993).  Third, if germination was obtained, it takes four to five years for a 

seedling to reach reproductive maturity.  Fourth, high morbidity and mortality associated with P. 

inconspicua add additional stress to this species.  Disease has also been shown to decrease seed 

viability and capsule production (Ingram 2013).  Fifth, L. grayi can occur in mixed populations 

with other species such as L. canadense and L. superbum where this causes undesirable 

competition for space, nutrients, and light.  Decline due to exotic plant competition has been 

noted by other researchers working with endemic plants (Gioria & Osborne 2014).  Competition 
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with taller plants limits light—a necessary element for flowering and general health (Deno 

1993).  If seedlings do not receive adequate light, they can remain suspended in the single leaf 

stage for years (Deno 1993).  Lastly, the situation becomes worse when the graceful but 

conspicuous blooms make L. grayi a target for illegal collection (Dunscomb 2009) and their 

threatened status makes them all the more attractive to collect. 

Through this research lily leaf spot disease and it causal pathogen, P. inconspicua, were 

present at every location sampled and was the likely cause of declining health seen throughout 

the entire L. grayi range.  Lilium michauxii and L. superbum have been identified as new hosts 

for P. inconspicua and L. superbum is characterized as a reservoir of disease, serving as an 

additional threat to the viability of L. grayi populations.  The epidemic nature of P. inconspicua 

and the high morbidity and mortality it fosters create a disease trend that, even for an r-selected 

species, is concerning.  Given (i) the susceptibility of L. grayi demonstrated in both the 

demographic health analysis and inoculation experiments, (ii) considering the historically low 

occurrence of P. inconspicua in North East America (Ingram et al 2017), and (iii) the range-wide 

occurrence of P. inconspicua among the L. grayi species, one could postulate that L. grayi shows 

a response to the P. inconspicua pathogen typical of a naïve host newly exposed to an exotic 

pathogen.  In addition to disease, L. grayi species must overcome several serious threats 

including habitat loss, complex seed germination, competition, browsing, and poaching.  

Therefore, the lily leaf spot disease is not only a threat in itself, but by weakening plants it also 

exacerbates the other threats.  It is not one single factor but a combination of the threats that 

ultimately endangers L. grayi. 
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