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ABSTRACT 

 

Effects of Respiratory Perturbations on Aging and Healthspan in Daphnia magna 

by 

Millicent Nkiruka Ekwudo 

Aging is a degenerative process characterized by a decline in physiological functions and cellular 

activities. Environmental and pharmacological interventions affecting longevity pathways have 

been extensively studied in model organisms. This study investigated the effect of chronic mild 

intermittent hypoxia (4 mg O2/L) or mild mitochondrial uncoupling with three doses of 0 

(control), 0.1, 1, and 5 μM of 2,4-Dinitrophenol (DNP), on life history and gene expression in 

four clones of Daphnia magna. Interestingly, clones from intermittent ponds displayed better 

tolerance to hypoxia and DNP. Although neither treatments extended longevity, hypoxia 

increased fecundity and body size, and decreased food consumption and respiration rate. We 

uncovered 12 candidate genes that were differentially expressed in hypoxia-tolerant and sensitive 

clones in response to hypoxia. Unexpectedly, DNP increased fecundity and mitochondrial 

membrane potential without affecting food intake. This work opens up an opportunity for 

genomic determination of the potentially important phenotypes in a model organism.  
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To little girls who were forced to draw swords in battles   

  Little hands holding on to big dreams   

Little voices refusing to be silenced   

To the Unbroken    
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CHAPTER 1. INTRODUCTION 

Mitochondria and Mitochondrial Membrane Potential 

 

The mitochondria are vital self-replicating organelles that can no longer be solely 

described as the powerhouse of the cell since recent studies have demonstrated that they play a 

vital role not just in bioenergetics and metabolism, but also in the maintenance of calcium levels, 

cell death, autophagy and production of reactive oxygen species (ROS) (Akbari et al. 2019; 

Belenguer et al. 2019).  The electron transport chain (ETC), which occurs in the mitochondrial 

inner membrane, provides eukaryotes with significant amounts of adenosine triphosphate (ATP) 

necessary for the maintenance of biological activities. In the ETC, oxygen acts as the final 

electron acceptor. The ETC involves five complexes, of which complexes I, III and IV are H+ 

pumps that largely generate the mitochondrial membrane potential (Zorova et al. 2018).  

Mitochondrial membrane potential (ΔΨm) is created largely by the proton concentration 

gradient, and is used to drive ATP synthesis in the mitochondrial matrix. Mitochondrial 

membrane potential is fairly stable under standard conditions and is an indicator of cellular 

health and viability. Increased ΔΨm tends to elevate ROS, which could result in oxidative 

damage, whereas a large decrease in ΔΨm could lead to a decline in ROS production and 

reductive stress. Oxidative and reductive stress may trigger apoptotic mechanisms or even cause 

various pathologies (Peris et al. 2019).  

During the early stress response, ΔΨm can be significantly affected, possibly being the 

reason why ΔΨm is a good measure for assessing cellular stress and apoptotic processes (Witte 

and Horke 2011; Barbour and Turner 2014). Mitochondrial membrane potential can be 

modulated endogenously by mitochondrial uncoupling proteins or exogenously by 
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pharmacological uncouplers such as carbonyl cyanide m-chlorophenylhydrazone (CCCP), 

carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), and 2,4-Dinitrophenol (DNP).  

Rhodamine 123 is a cationic green fluorescent dye used for the detection of the 

electrochemical potential across the mitochondrial inner membrane, the greater the fluorescence, 

the greater the mitochondrial membrane potential. The diffusion of rhodamine 123 from the 

mitochondrial matrix into the cytoplasm results in a decrease in the amount fluorescence emitted 

by the dye in the treated tissues and this may serve as evidence of mitochondrial dysfunction 

(Chazotte, 2011). The rhodamine 123 probe is preferred for its commercial availability, 

affordability, minimal interference with cellular processes, desirable quantum yield, and easy 

detection (Forster et al. 2012). 

Aging and Mitochondria 

 

Aging is a degenerative process often characterized by a decline in physiological 

functions and cellular activities and can lead to tissue failure and ultimately, death. 

Mitochondrial biogenesis, which entails the formation of new mitochondria from preexisting 

ones, frequently begins with Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) 

coactivator-1alpha (PGC-1α) (Li et al. 2017; Akbari et al. 2019; Bouchez et al. 2019), with the 

phosphorylated or deacetylated form of PGC-1α being active and can activate the transcription 

factors nuclear respiratory factor 1 (NRF1) and NRF2 (Li et al. 2017).  Ultimately, through both 

factors, the expression of mitochondrial transcription factor A (TFAM) is induced, with TFAM 

translocating into mitochondria and inducing the expression of mtDNA encoded genes. Other 

nuclear-encoded mitochondrial proteins are also induced by NRF1 and NRF2, leading to 

mitochondrial division and new mitochondria being formed (Bouchez et al.2019). Mitochondrial 
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function and mitochondrial biogenesis decline with age whereas the frequency of mitochondrial 

DNA mutation increases with age (Akbari et al. 2019). 

While the mitochondrial free radical theory of aging proposes ageing is induced by 

oxidative damage arising from the accumulation of ROS, which are products of cellular 

metabolism (Pomatto et al. 2018), the mitochondrial theory of aging considers aging as a 

consequence of mitochondrial damage and mutations accumulated in mtDNA (Wei et al. 2001). 

Thus, both theories implicate oxidative damage as a predisposition to senescence (Yeo 2019).  

Hypoxia and Hypoxia-Mediated Responses 

Hypoxia in an aquatic environment occurs when the dissolved oxygen (DO) level is less 

than 2.8 mg O2/L (Lai et al. 2016) and can result in mass mortality not just in fishes but 

macroinvertebrates as well. For most animals, suffocation can occur at low oxygen levels, but 

hypoxic effects begin to set in when the level of dissolved oxygen drops to 2 mg/L, which is a 

huge deviation from the normal 8 mg O2/L (Collins, 2019). Chronic mild intermittent hypoxia 

(CMIH) refers to daily exposure to 50% dissolved oxygen (4 mg O2/L).  Responses to hypoxia 

have been well characterized in Daphnia, including acclamatory gene expression adjustments 

(Pirow et al. 2001; Bäumer et al. 2002; Zeis et al. 2003; Klumpen et al. 2017) that can extend 

epigenetically across parthenogenetic generations (Lai et al. 2016). Also, hypoxia increases 

hemoglobin concentration and mortality rate, and decreases body size and fecundity (Seidl et al. 

2005; Lyu et al. 2015). Coggins et al. 2017, reported that exposure of D. magna to mild hypoxia 

at 5 mg O2/L for 90 minutes significantly increased acute heat tolerance, possibly through 

activation of antioxidant pathways. 

 Hypoxia mediated responses are controlled by a family of heterodimeric transcription 

factors, the hypoxia-inducible factors (HIFs). The HIF family includes three genes; HIF1A, 
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HIF2A, and HIF3A (Wang et al. 1995; Yeo 2019). The HIF pathway interacts with other 

pathways such as SIRT1, AMPK, mTOR, and NF-κB pathways (Ruderman et al. 2010; Hong et 

al. 2014; Antikainen et al. 2017; Pan et al. 2017).  Hypoxic responses at the cellular level are 

maintained mostly by HIF1α (Wang et al. 1995; Iyer et al. 1998).  Hypoxia response elements 

(HREs) are located in the promoter region of hypoxia-responsive genes and HIF1α exerts 

transcriptional control over roughly 100 target genes during hypoxia (Yang et al. 2015) 

especially genes associated with oxygen homeostasis such as Vascular Endothelial Growth 

Factor (VEGF), Erythropoietin (EPO), and hemoglobin that are vital for increasing tissue 

perfusion and oxygenation as adaptive responses to hypoxia (Zeis et al. 2009; Yeo 2019).  

HIF1α upregulates pyruvate dehydrogenase kinase and consequently the conversion of 

pyruvate to lactate when low oxygen hinders ETC function, thereby decreasing NAD+: NADH 

ratio. This ratio is vital for intracellular redox homeostasis especially in the mitochondria and 

nucleus as well as cellular signaling and the regulation of metabolic activities.  A decline in 

NAD+: NADH ratio is indicative of slower oxidative metabolism.  Furthermore, HIF1α 

upregulates the expression of glucose transporters GLUT1 and GLUT 3 to improve glucose 

absorption and other glycolytic enzymes, thus promoting anaerobic glycolysis (Yeo 2019). 

Importantly, HIF1α modulates c-MYC and IGF2 signaling, the cell cycle, and apoptotic 

pathways (Yeo 2019).  Hypoxia induces inflammation and the immune response by increasing 

the expression of tumor necrosis factor-alpha (TNF- α).  Interestingly, HIF-1α is constitutively 

expressed under normoxia, although the protein is degraded, and expression is highly 

upregulated under hypoxic conditions and by increased ROS through NF-κB (a redox-sensitive 

transcription factor) (Bonello et al. 2007). 
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Hypoxia-induced AMPK-associated pathways and aging. The FOXO (forkhead box O) 

genes, most notably FOXO1 and FOXO3A in mammals, exert protective effects on cells and 

increase resistance to oxidative stress by upregulating the activities of catalases, thus promoting 

longevity (Wang et al. 2017). Invertebrates such as Daphnia possess one FOXO homolog, which 

may promote longevity like was shown for the C. elegans FOXO homolog DAF-16 (Murtaza et 

al. 2017). 

Sirtuins are a family of seven mammalian proteins (SIRT 1-7) homologous to the silent 

information regulator 2 (sir2) protein of yeast; orthologs of several sirtuins are also present in 

Daphnia genome. They are NAD+-dependent protein deacetylases (and deacylases) whose 

activities have been greatly investigated because they oversee the regulation of biological 

processes such as inflammation, apoptosis and senescence. Since several of these processes are 

associated with aging, SIRT1 is often described as the “longevity gene”. However, aging 

decreases NAD+: NADH ratio in organisms, thereby repressing the activity of sirtuins.  

  When activated, SIRT1 protects cells against age-associated pathologies by promoting 

DNA stability, oxidative stress alleviation, and regulation of glucose and lipid metabolism 

(Guarente 2011; Kilic et al. 2015).  SIRT1 stimulates the expression and activity of FOXO 

(earlier described) and it also prevents the acetylation of the p53 gene, which can trigger cell 

apoptosis (Alcendor et al. 2004, 2007). SIRT1 enhances mitochondrial biogenesis by 

deacetylating the p53 and PGC-1α genes (Lee and Gu 2013). 

 The AMP activated protein kinase pathway regulates oxidative energy metabolism and 

responds to a variety of stresses such as a decrease in glucose levels, ischemia, heat shock and 

hypoxia (Yeo 2019). Previous studies have implicated this pathway in slowing the rate of aging. 

Salminen et al. 2012, suggest that activation of the AMPK pathway decreases oxidative stress by 
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increasing thioredoxin levels and the autophagic degradation of protein aggregates (such as 

observed in Alzheimer’s disease with the amyloid-beta peptide). AMPK also attenuates 

endoplasmic reticulum (ER) stress and inflammatory diseases. 

Hypoxia can directly trigger the AMPK (Figure 1) pathway when there is an elevation in 

the AMP: ATP ratio. It can also activate SIRT1, which in turn triggers the AMPK pathway 

through phosphorylation of AMPK by LKB1 (Tumor suppressor serine/threonine-protein liver 

kinase a regulator of AMPK).  Activation of LKB1 by SIRT1 leads to the phosphorylation and 

activation of p53 (Jones et al. 2005).  Following this activation, cyclin dependent protein kinase 

inhibitor turns on genes that induce cell death (p21 and Bax). These genes arrest the cell cycle 

and initiate apoptosis (Yeo 2019). Additionally, the phosphorylation of p53 by AMPK and the 

inactivation of SIRT1, increases the acetylation of p53 and consequently the proapoptotic genes 

are further upregulated. (Lee et al. 2012).  

AMPK also plays a role in the regulation of mitochondrial biogenesis through PGC-1α. 

In skeletal muscles, activation of AMPK during exercise increases the activity of PGC-1α, which 

augments mitochondrial biogenesis and promotes the transcription of mitochondrial genes (Jäger 

et al. 2007). When PGC-1α is acetylated, mitochondrial biogenesis is greatly reduced (Jornayvaz 

and Shulman 2010; Fernandez-Marcos et al. 2011).  

Gui et al. (2017) suggest that hypoxia is accompanied by cellular autophagy. Protein 

kinase mTOR can decrease lifespan (Pan et al. 2017). ULK1 is a protein kinase that promotes 

autophagy during nutrient depletion. Activated AMPK can phosphorylate ULK1 directly or 

indirectly through the mTOR protein by activating the TSC2 gene, a negative regulator of 

mTOR. AMPK can thus exert an inhibitory effect on mTOR, decreasing cell growth and 
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proliferation. MTOR phosphorylates ULK1 and inhibits autophagy (Kim et al. 2011; Shang et al. 

2011). 

  AMPK suppresses NF-κB signaling by alleviating ER and oxidative stress as well as by 

phosphorylating proteins such as SIRT1, p53, PGC-1α, and FOXO3A, which in turn inhibits NF- 

κB-mediated inflammation (Salminen et al. 2011). This anti-inflammatory activity of AMPK 

helps to enhance healthspan and lifespan (Yeo 2019). 
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Figure 1. Hypoxia-induced AMPK-associated pathways and aging. A. Hypoxia mediated 

activation of AMPK through AMP: ATP ratio and SIRT1. B. Hypoxia-mediated autophagy 

through AMPK’s crosstalk with mTOR-ULK1. C. Relationship between hypoxia, AMPK, aging 

and NF-ΚΒ signaling. Yeo, EJ. (2019) Hypoxia and aging. Exp Mol Med. 51, 1–15 (creative 

commons license 4.0). 

 

2,4-Dinitrophenol 

2,4-Dinitrophenol (DNP) is a protonophore that carries protons down their concentration 

gradient across lipid bilayers. In mitochondria protonophores dissipate the proton gradient 

uncoupling oxidative phosphorylation, thus inhibiting ATP synthesis. DNP was taken by humans 

A B 
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as an anti-obesity agonist (Tainter 1935) before its ban by the FDA in the 1930’s. (Caldeira da 

Silva et al. 2008). The lipolytic effects of DNP have been suggested to occur independently of 

lipolytic enzymes, but instead occur through autophagy since endolysosomal vesicles engulf 

lipid droplets in adipocytes (Demine et al. 2017). Sun and Zemel (2003), showed DNP increased 

the expression of fatty acid synthase but suppressed its activities in an intracellular Ca2+-

independent manner. They also reported that DNP inhibited lipolysis in a calcium-dependent 

manner. 

Nile red (NR) is a remarkable histological stain known to fluoresce brightly in lipophilic 

environments (Hornum et al. 2021). Thus, the NR probe has been commonly used to assess 

intracellular lipid droplets in diverse organisms such as yeast, microalgae, C. elegans, and 

Daphnia magna (Alemán-Nava et al. 2016; Escorcia et al. 2018; Song et al. 2020; Gosalawit et 

al. 2021).  

Despite being banned by the FDA, over the last couple of decades DNP has been 

increasingly used in animal studies. Interestingly, the neuroprotective role of DNP in 

neurodegenerative and aging-associated disorders has become a “hot” area of research. Recent 

studies have considered DNP prodrugs with the goal to optimize DNP’s rapid pharmacokinetics, 

and attenuate its toxicity and thermogenicity, while enjoying the benefits of mild mitochondrial 

uncoupling (Khan et al. 2017; Geisler 2019).  

 Liu et al. (2015) demonstrated a neuroprotective of DNP in cortical neurons where the 

uncoupler suppressed the mTOR and insulin receptor-PI3K-MAPK pathways. DNP also 

upregulated CREB (cAMP-response element-binding protein) signaling, autophagy-related 

genes, as well as proteins involved in maintaining synaptic plasticity and stress response. 

Mitochondrial uncoupling with DNP decreases mitochondrial membrane potential, ROS 
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production, and tissue and protein oxidation (Cho et al. 2017; Ulgherait et al. 2020; Caldeira da 

Siva et al. 2008). DNP increases intracellular calcium and the AMP:ATP ratio. The latter 

stimulates the AMPK pathway whose important role in aging has been described above. Samaiya 

et al. (2018) provided evidence that a seven day administration of DNP increased antioxidant 

enzymes such as superoxide dismutase (SOD) and catalase (CAT) in post-anoxia neonatal rats. 

DNP also increased the respiration rate and decreased the expression of proapoptotic proteins, 

thus preventing mitochondrial dysfunction. 

 The lifespan-extending potential of DNP has been demonstrated in various species 

including mice, toad, Drosophila, and C. elegans (Caldeira da Silva, 2008; Salin et al. 2012; 

Ulgherait et al. 2020, Cho et al. 2017). DNP did not increase lifespan in zebra finches. DNP also 

caused a decline in inflammatory immune response and failed to decrease oxidative stress (Stier 

et al. 2014). Surprisingly, there is dearth of literature on the effect of mitochondrial uncoupling 

with DNP on longevity in the reputable model organism Daphnia magna. Additionally, clone-

specific responses to chronic DNP exposure in D. magna are yet to be understood. This research 

seeks to bridge the knowledge gap. 

Daphnia magna as a Model Organism 

Considered one of NIH’s recognized model organisms (Edison et al. 2016) Daphnia 

magna are plankton crustaceans that are primary consumers and thus are an integral part of 

trophic webs. They are short-lived and easy to culture (Lai et al. 2016). Daphnia reproduce by 

cyclic parthenogenesis, giving rise to clonal offspring that are genetically identical, thus, 

allowing experimental work with genetically uniform individuals.  The Daphnia genome is 

responsive to environmental stressors (Coulborne et al. 2011). In the presence of environmental 

stressors (predation, temperature, low food), male offspring and haploid resting eggs are 
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produced (Khudr et al. 2019). These eggs require fertilization and thus Daphnia populations are 

outbred even when genetically uniform. These make D. magna a great model for investigating 

the effects of genetics, various environmental factors, and pharmacological treatments on 

lifespan (Constantinou et al. 2019) and healthspan. 

Daphnia magna clones are found in geographically diverse habitats (Table 1). Clones IL 

and FI are from intermittent ponds/ pools that are short-lived. As the water dries up, particularly 

in the summer/fall, dissolved oxygen presumably becomes less available. Hence these clones are 

better accustomed (tolerant) to hypoxic conditions (unpublished data). On the other hand, their 

conspecifics GB and HU are from permanent lakes/ponds that are all year round. Hence these 

clones are hypoxia naïve (sensitive). 

Hypotheses and Specific Goals 

  The goal of this study is to investigate the effects of hypoxia and mitochondria 

uncoupling on lifespan in four different clones of Daphnia magna. Specifically, we expected that 

prolonged exposure to mild intermittent hypoxia or DNP might improve longevity and 

healthspan. Additionally, we aimed to test the predictions that the aging-decelerating effects of 

chronic mild intermittent hypoxia (CMIH thereafter) will be more pronounced in hypoxia-

adapted clones of Daphnia than in hypoxia naïve ones and that acclimation to CMIH would 

improve tolerance to acute severe hypoxic stress.  To test these hypotheses, we conducted the 

following experiments: 

1. We evaluated age-related changes of NAD+:NADH ratio (using lactate:pyruvate as a 

proxy) in Daphnia from geographically distinct clones in hypoxic and normoxic 

conditions. 
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2. We assessed the effects of hypoxia and mitochondrial uncoupling using the mild 

uncoupler DNP, on life history traits such as survival, respiration rate, feeding rate, body 

length and fecundity, mitochondrial membrane potential, and neutral lipid storage. 

3. We measured transcriptomic changes in response to CMIH (18 days) and acute (12 h) 

severe hypoxia (<1 mg O2/L) in all the four clones.  
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CHAPTER 2. MATERIALS AND METHODS 

Daphnia Cultures  

Daphnia magna from four clones, two with low hypoxia naivety (IL, FI) and two with 

high hypoxia naivety (GB, HU) (Table 1) were maintained on a 12:12 light dark cycle at 20 ºC in 

100 mL glass jars containing artificial pond (COMBO) medium (Kilham et al. 1998) at the 

density of n=5. Daily, each individual was fed approximately 100,000 Scenedesmus obliquus 

cells/ mL augmented with essential minerals and vitamins. Artificial pond medium and jars were 

replaced every 3 days to avoid waste buildup and to maintain desired density. Adult female 

Daphnia were maintained for three generations before use. The goal of three-generation 

acclimation was to annul maternal effects (Yampolsky et al. 2014). Therefore, for all 

experiments, third generation (G3) female adults were used. 

CMIH Longevity Experiments 

Seven days old G3 individuals were transferred to TetraO 10 L glass tanks organized in 2 

consecutive experimental blocks consisting of three tanks in block 1 and five tanks in block 2. 

Each tank contained an array of eight plastic containers (Appendix A) equipped with 1 mm 

plastic mesh, each of which had a capacity to house 20 individuals. Cups were equitably 

assigned to all four clones, thus creating a common garden experiment, with Daphnia of 

different clones sharing the same tank (Figure 2).  The mesh allowed water to circulate between 

containers (facilitated by regular raising and lowering the containers into the tank) as well as 

removal of neonates produced inside each container. Thus, each tank contained 160 individuals 

from 4 clones, 40 individuals per clone, as the start of each cohort. Tanks were maintained at 

20˚C until all individuals in a cohort died or were censored from the experiment with water level 

and food quantity adjusted every three days to maintain 20 mL of water per Daphnia and 
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100,000 Scenedesmus cells per mL as food. Water change was done every 3 days to prevent the 

accumulation of waste products (especially ammonia) and to prevent competition for food 

between mothers and neonates. At the time of each water change, adult individuals in each 

cup/tank were counted, neonates removed, and volume of fresh COMBO water adjusted to suit 

the current number of individuals alive. Daphnia aged 15-20 days as well as 55-60 days old were 

frozen for future assays. 

 

 

 

 

 

 

 

 

Figure 2. Schematic of hypoxia and DNP experiments. Concentrations of O2 mg/L (A) and DNP, 

μM (B) are shown. Colors correspond to color code on figures thereafter. 

 

Oxygen levels in each tank were adjusted twice daily by bubbling either compressed 

nitrogen gas at a flow rate of approximately 25 mL per second through COMBO water (Butler et 

al. 1994) until the oxygen concentration decreased to 4 mg O2/L for the hypoxic conditions, or 

ambient air until the concentration 8 mg O2/L was attained. The dissolved oxygen concentration 

was measured with either YSI Pro20 or Extech DO210 dissolved oxygen probes (Appendix D). 
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Fecundity in Hypoxia Experiments 

To assess fecundity in normoxic and hypoxic conditions, snapshot measurements were 

taken, such that individuals with clutches, ovaries, and ephippium were counted and recorded. 

Also, the number of eggs in three randomly selected individuals from each cup were counted.  

Respiration in Hypoxia 

Respiration rates were measured using Loligo® 24-channel fluorometer (Loligo Systems, 

Viborg, Denmark; sensor software: MicroResp™) equipped with SDR SensorDish® sensor 

(PreSens Precision Sensing, Regensburg, Germany). To investigate total metabolic rate, 1700 μL 

of hypoxic/normoxic COMBO water were pipetted into each well of Loligo sensor plate with 

one Daphnia per well and with each plate containing 4 blanks (without Daphnia) and the other 

twenty wells containing 20 Daphnia, 10 from each hypoxia treatment.  The wells were sealed 

with PCR film avoiding air bubbles. The well plates were placed on Loligo sensors and oxygen 

readings were logged for 45 minutes with the first 15 minutes discarded. A similar procedure 

was implemented to measure basal metabolic rate (i.e. in immobilized individuals) except that it 

was done in 200 μL Loligo plates containing 1% urethane solution in hypoxic/ normoxic water. 

The same individual Daphnia from the total metabolic rate measurements were transferred to the 

1% urethane-containing plate. Afterwards, Daphnia were thoroughly rinsed with COMBO water, 

body length was measured, and individuals turned back to the tanks in which they were sampled.    

Feeding Rate in Hypoxia 

To measure filtering rate in normoxia and hypoxia, we placed Daphnia from either 

normoxic or hypoxic treatments individually into plastic cell culture flasks containing 20 mL of 

COMBO water with the same oxygen concentration as in Daphnia’s tanks of origin containing 

200,000 cells/mL of Scenedesmus food (i.e., twice the regular food concentration). A total of 
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fifty 20 mL flasks were used, 25 flasks per treatment. Out of these 50 flasks, 10 were blanks (had 

no Daphnia, just COMBO water with food). The other 40 flasks were distributed evenly between 

the two treatments and four clones, resulting in five replicate individuals per clone per treatment. 

The flasks were placed in the dark in a 20˚C incubator on a shaker set to 60 rpm. 

Food concentration with chlorophyll fluorescence as a proxy was measured with Loligo 

fluorometer (set to amplitude) using plastic 24-well plates (not Loligo sensor plates) at the 

beginning of the experiment as well as after 17 and 24 hours by taking 3 mL samples from each 

flask, with replacement. Pilot experiments demonstrated that there was not enough sensitivity to 

detect consistent decreases of food concentration during shorter durations. Fluorescence readings 

were logged for 5 minutes.  

At the end of the 24-hour experiment, body length of all individuals, from the top of the 

head to the posterior edge of the carapace, excluding the spine, was measured using an ocular 

micrometer and Daphnia were returned to the tanks from which they were sampled. 

Measurement of Hemoglobin 

We assessed hemoglobin concentration in Daphnia tissues by either measuring the 

intensity of red coloration in optical microscopy or by absorption at 575 nm using a Nanodrop 

spectrophotometer. First, whole bodies of individuals sampled from the hypoxia experiment, one 

Daphnia per clone, and four per treatment (n=8) were photographed using a 10X lens on a Leica 

compound microscope equipped with color camera, upper body, and abdomen separately. The 

image was split into RGB channels and the intensity of the red channel was measured across the 

whole image using ImageJ. Next, the same Daphnia individuals were homogenized in 10 μL of 

PBS, the homogenates centrifuged at 13,000 rpm for 4 min and the supernatant absorption 

measured using a Nanodrop spectrophotometer at 541 and 575 nm. 
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Lactate and Pyruvate Measurements 

To compare lactate and pyruvate levels in hypoxic and normoxic individuals, pyruvate 

and lactate assays were conducted using CellBiolab kits. 15-20 days old and 55-60 days old 

Daphnia were sampled from the experimental tanks, stored frozen at -80˚C until assay time. 

Each Daphnia was homogenized in 100 µL ice-cold PBS with a pestle and the homogenates 

were centrifuged at 4˚C. 25 µL of supernatant were pipetted into each of the lactate and pyruvate 

assay plates using the manufacturer’s protocol (CellBiolab CAT IDs 101820174 & 82320181). 

Additionally, 25 µL of the supernatant were used to quantify soluble proteins by Bradford assay 

with 175 µl of Bradford colorimetric reagent added to each well. Water served as blanks for 

some of the wells and BSA concentrations from 0.125 to 2 mg/mL used for calibration.  All 

assay well plates were analyzed using BIOTEK plate reader, lactate and pyruvate fluorescence 

assay sensitivity was set to 35 and the Bradford assay absorption was measured at 595 nm.   

Acute Hypoxia Experiments and Sample Collection for RNA-Seq 

Daphnia were sampled from each of the four tanks, two tanks per hypoxia treatment (see 

above) at the age of 25 days (i.e. after 18 days at either normoxic or mild intermittent hypoxic 

conditions) and moved into 70 mL cell culture flasks filled with COMBO water with the 

concentration of oxygen at or below 1 mg/L, sealed without a bubble, 7 Daphnia per flask. 

Control groups included Daphnia exposed to normoxia or chronic hypoxia but not acute 

hypoxia. Flasks were kept at 20˚C.  The acute hypoxia experiment was set up at 9:00 p.m. and 

mortality was recorded 12 hours afterwards and every hour subsequently. Individuals for RNA 

sequencing were frozen at the beginning at the experiment and after 12 hours exposure, sampling 

2 individuals from each flask. Flasks were then topped with 1 mg O2/L water and sealed again. 
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At the end of the 48 hours of exposure, the collective wet weight of adult individuals and any 

neonates born in each flask was measured.  

Table 1. Location of Geographically Diverse Daphnia Clones Used. Clone ID, habitat and 

geographic coordinates are displayed (Yampolsky et al. 2014). IL-MI-8 and FI-FSP1-16-2 have 

the least hypoxia naivety while GB-EL75-69 and HU-K-6 have the highest (Yampolsky, 

unpublished). 

CLONE ID LOCATION LATITUDE LONGITUDE HABITAT 

IL-M1-8 Jerusalem, 

Israel 

318˚ 42’ 52" 358 3’ 03" Intermittent Mediterranean 

pond 

FI-FSP1-16-2 Suur-Pellinki, 

Finland 

608 ˚ 10’ 04’’ 258 47’ 41’’ Intermittent summer  

rock pool 

GB-EL75-69 London, UK 518 ˚ 30’ 26’’ 208 7’ 39’’ Permanent pond 

 HU-K-6 Fülöpszállás,  

Hungary 

46° 47' 33.3"  19° 10' 53.84" Permanent lake 

RNA Sequencing 

Two individuals from each of the four clones (IL, FI, GB, and HU) and from each of the 

hypoxia treatments were frozen during the acute hypoxia experiment (see above). The four 

treatments were: Daphnia reared at normoxia (8 mg O2/L), Daphnia reared at normoxia and 

exposed to acute hypoxia (<1 mg O2/L) for 12 hours, Daphnia reared at mild intermittent 

hypoxia (4-6 mg/L O2), and Daphnia reared at mild intermittent hypoxia and exposed to acute 

hypoxia for 12 hours. RNA extraction was performed using Qiagen RNAeasy kit (Cat ID: 

74134).  RNA was quantified by a Qubit (ThermoFisher) fluorometer. 

Following extraction, RNA were reverse transcribed and sequencing libraries were 

constructed from the cDNAs as prescribed by Oxford Nanopore Technology PCR-cDNA 
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Barcoding kit protocol (SQK-PCB109), with 3 biological replicates per clone per treatment, each 

replicate consisting of RNA extracted from two Daphnia. Barcoded samples from the 4 

treatments within each clone were pooled together into 3 replicate libraries purified separately 

and pooled together immediately before adding the sequencing adapter. Libraries were then 

sequenced using Oxford Nanopore MinION for 24-48 hours per sequencing run obtaining 2-4 

Gb of reads in each run. 

Gene Expression and Transcript Analysis 

  Once sequencing was completed, base calling and quality filtering were done using 

OxfordNanopore guppy basecaller. The reads were then demultiplexed and barcodes trimmed 

using guppy barcoder and aligned to a reference transcriptome (ver. DM3.0) obtained from 

Dieter Ebert and Peter Fields (Basel University, Switzerland). Following alignment, BAM files 

obtained were merged and indexed using with samtools and read counts per transcript exported 

for further analysis. Transcripts were filtered to retain only those that had at least 60 reads in at 

least one sample. Reads per kilobase per million reads (RPKM) and Transcripts per kilobase per 

million (TPM) in each sample were calculated and used as the response variables in downstream 

statistical analysis. Principal components analysis and heatmap clustering were performed to 

evaluate clustering of samples in the space of transcripts abundances.  

Differential gene expression in acute hypoxia was analyzed in JMP® using a full 

factorial general linear model with clones, chronic hypoxia levels and acute hypoxia levels as 

factors, and RPKM as the response variable.  False discovery rate was calculated for each 

transcript to correct for multiple testing. An a priori determined set of transcripts with expected 

changes in response to hypoxia was analyzed with respect to significant effects of chronic 

hypoxia or their interaction. In order to identify transcripts that respond to hypoxia differently in 
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clones from permanent habitats (sensitive) and clones from intermittent habitats (resistant), we 

analyzed generalized model of the effects of habitat and clones nested within habitats on the 

abundance of reads mapped to each transcript, with the assumption of binomial distribution and 

with logit link function (JMP, SAS Institute, 2012) 

DNP Longevity Experiments 

Ten days old Daphnia from the four clones were placed, in groups of 10 into plastic 

inserts with the bottom opening covered with 1 mm nylon mesh, each of which were placed into 

200 mL jars (Appendix E) containing 0, or 0.1, or 1, or 5 µM concentration of DNP (Figure 2).  

The LC50 for Daphnia magna is 4.1 mg/L (Sigma 2013) so the highest dose of DNP used (5 

µM) was about 4.5 times below the LC50.  The jars were maintained at 20oC with 100,000 algae 

cells per mL per day supplied as food and water changed every 3 days. At each water change the 

surviving individuals and offspring produced were counted blindly and water volume and food 

supply adjusted to maintain 20 mL of water per Daphnia. 

Rhodamine 123 Assays  

On day 10 and 30, one individual per clone per treatment (a total of 16 individuals per 

assay) were sampled. Each individual was kept in 0.5mL of 4 uM rhodamine 123 and 0.5 mL of 

the concentration of COMBO water with or without DNP and left in the dark for 24 hours at 

20˚C.  Post incubation, individuals were washed twice with COMBO water to get rid of excess 

rhodamine 123. Daphnia body regions of interest (head and epipodite) were photographed with a 

Leica confocal microscope at 10X, cube 3 (blue-wide green-red) exposure filter 50% at gain 1 

(Appendix B).   
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Nile Red Assay for Lipids 

Following photographing Daphnia after rhodamine 123 exposure, the COMBO water 

was removed from the vials and individual daphnids were incubated in 1 µg/mL of NR for two 

hours in the dark at 20˚C. The vials were left to sit in the dark incubator at 20˚C for two hours 

after which they were rinsed thrice with COMBO water. Then, the body regions, abdomen, and 

mid-sections (base of antenna and heart) were photographed (Appendix C).  

Food Consumption with DNP Treatment 

The feeding rate was measured in a similar way as in the hypoxia feeding experiment. A 

two-point calibration was created such that Daphnia were in water containing 0 and 5 μM DNP 

with food (200,000 cells) and without food. 

Statistical Analyses 

Statistical analyses for this study were performed using the software JMP (SAS Institute, 

Cary, North Carolina). Data are shown as mean ± SE.  Lifespan/ survival in chronic mild and 

acute severe hypoxia was analyzed using proportional hazard and parametric survival.  

3-way ANOVA analysis was performed to assess the effect of hypoxia, age, and clone on the 

lactate/pyruvate.  Three-way ANOVA was done to investigate the effects of O2 concentration 

and clones on the respiration rate, with wet weight as a covariable. A 2-way ANOVA was used 

to investigate the effect of O2 and clone on body length. One-tailed student’s t test was used to 

analyze the mean absorbance of hemoglobin at 541 and 575 nm, as well as the median red 

intensity of the upper body and abdomen. Two-way ANOVA was used to determine the effect of 

O2 and clone on clutch size and the number of eggs per female. 

For DNP experiments, longevity analysis was done using parametric survival platform 

and effects likelihood ratio tests, additional survival comparisons were done using log rank and 
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Wilcoxon tests.  Two-way ANOVA was used to investigate the effect of DNP concentration and 

clones on sum fecundity in early, mid, and late life respectively.  Two-way ANOVA was 

employed to assess the effect of DNP and clones on feeding rate normalized by wet weight. 

Image analysis was performed with ImageJ.   Nile Red fluorescence and rhodamine 123 

fluorescence intensities (total number of pixels and sum of intensities weighted by the number of 

pixels) were log-transformed to achieve normality of residuals of linear regression over DNP 

concentration. 
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CHAPTER 3. RESULTS 

 

Contrary to the expectations, neither CMIH nor prolonged exposure to DNP increases 

lifespan in Daphnia magna. Both respiratory perturbations decreased lifespan in clones 

originating from permanent habitats, but not in clones from hypoxia-prone intermittent ones. We 

observed clone by environment interactions for some of the traits assessed. Also, we uncovered 

genes showing strong habitat-by-hypoxia interactions.  The results of the hypoxia and DNP 

experiments are summarized in Table 2. 

Table 2. Summary of Results for Hypoxia and DNP Experiments 

 Measurements  Treatments 

Hypoxia (8 vs. 4 mg O2/L) DNP (0, 0.1, 1, 5 µM) 

Longevity 

(lifespan) 

Reduced for clones from 

permanent ponds (Figure 3, Table 

3) 

Reduced for clones from 

permanent ponds (Figure.14, 

Table 9) 

Fecundity Increased at older ages (Figure 4) Increased in a dose dependent 

manner (Figure 16, Table 10) 

Body length 

 

Significantly increased in a 

clone- specific manner (Figure 5, 

Table 4). 

No effect. 

Analysis not shown 

 

Feeding rate Significantly increased (Figure 6, 

Table 4) 

No effect on food intake 

(Figure 17, Table 11) 

 

Respiratory rate  No effect.(Figure 8, Table 6) Analysis not performed 

Lactate:Pyruvate 

ratio 

Significantly increased especially 

in older Daphnia (Figure 9, Table 

7). 

Analysis not performed 

Hemoglobin Significantly increased (Figure 

10) 

Analysis not performed 

Mitochondrial 

membrane 

potential (MMP) 

 

Analysis not performed Unexpectedly increased 

(Figure 18, Table 12) 

Lipid storage Analysis not performed Significantly decreased (Figure 

19, Tables 13) 
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Effect of CMIH on Longevity 

CMIH did not extend lifespan in any of the clones (Figure 3). In fact, it significantly 

(p=0.0084) reduced lifespan in hypoxia naïve clones originating from permanent ponds/ lakes 

(GB and HU) and had no significant (p=0.9579) effect on hypoxia- adapted clones from 

intermittent ponds (IL and FI). While there was a significant effect of clone (0.0007) on the 

survival of clones from intermittent habitats in hypoxia, we provide no such evidence for clones 

from permanent ponds (Table 3). 

 

Figure 3. Effect of chronic mild intermittent hypoxia on lifespan. A-D Kaplan-Meier survival 

and mortality rate among four different D. magna clones from intermittent (hypoxia adapted) and 

permanent habitats (hypoxia-naïve). Probability of survival/mortality rate on the vertical axes 

and age on the horizontal axes.  Orange lines and dots repesents hypoxia, green normoxia, here 

and throughout. Statistical analysis is shown in Table 3. 

 

 

 



 

 

35 

Table 3. Parametric Survival Fit Effect Likelihood Ratio Tests for D. magna Clones from                     

Intermittent and Permanent Habitats 

Habitat Source DF L-R 

ChiSquare 

Prob > ChiSq 

Intermittent O2 1 0.00279 0.96 

 Clone 1 11.3744 0.0007 

 O2*Clone 1 0.15468 0.69 

Permanent  O2 1 6.95623 0.0084 

 Clone 1 1.24407 0.26 

 O2*Clone 1 0.00074 0.98 

 

Effect of Hypoxia on Fecundity 

  Though hypoxia had no significant effect (p=0.9439)  on  early age (18 days) fecundity, 

and fecundity in middle age (38 days) was lower (p=0.9675), there was a significant (p=0.0021) 

increase in fecundity in older Daphnia (66 days). Additionally, there was no significant 

interaction between clones and oxygen levels in all ages (Figure 4). 
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Figure 4. Fecundity in hypoxia. Mean clutch size of hypoxia and normoxia acclimated Daphnia. 

Green bars represent normoxia, orange bars represent hypoxia, here and throughout. Vertical 

bars represent standard error. 

 

Effect of Hypoxia on Body Length 

Exposure to CMIH resulted in a significant (p=0.0377) increase in body length across all 

clones compared to controls, except in GBs, where there was a decrease in body length (Figure 

5). There was also a significant interaction between clones and hypoxia (Table 4). 
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Figure 5. Body length of clones acclimated to hypoxia. Green and orange bars represent mean 

body length (mm) in normoxic and hypoxic clones and vertical bars represent standard error. P-

values are shown in Table 4. 

Effect of Hypoxia on Feeding Rate 

Food intake declined across all clones in hypoxic conditions compared to controls with 

IL and FI consuming the most amount of food respectively, and GB remarkably consuming the 

least number of algal cells (Figure 6). Although hypoxia and clone had a significant effect 

(p=0.0014 and p =0.003, respectively) on feeding rate, there were no significant interactions with 

each other (Table 4). 

 

Figure 6. Feeding rate in hypoxia. Green and orange bars represent mean cells consumed per 

hour normalized by body wet weight (103 cells/h/mg ww). Vertical bars represent standard error. 

P-values are shown in Table 4.  
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Table 4. ANOVA Model of the Effects of Hypoxia on Feeding Rate and Body Length 

 
Response: feeding rate     
Source DF     MS        F Ratio          Prob > F  
Hypoxia 1 0.331 12.24 0.0014  
Clones 3 0.155 5.73 0.003  
Hypoxia*clones 3 0.026 0.95 0.43  
Error 32  0.027      

Response: body length     
Source DF MS      F Ratio     Prob > F  
Hypoxia 1 0.037 4.4  0.0377  
Clones 3 2.479       298.35  <.0001  
Hypoxia*clones 3 0.034 4.1 0.0079  
Error 151 0.008      

  

Survival in Acute Severe Hypoxia 

  Acclimation to CMIH significantly decreased survival in acute severe hypoxia (Figure 

7).  It wasn’t surprising to observe poor survival of hypoxia/ normoxia acclimated clones from 

permanent ponds in acute severe hypoxia, but it was unexpected to observe this in hypoxia-

tolerant clones from intermittent ponds. Normoxia acclimated clones from intermittent ponds had 

the highest survival in these experiments. Overall, habitat, treatment and clone nested within 

habitat had significant effects on survival and a significant interaction between clone and 

treatment nested within habitat was recorded (Table 5). 
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Figure 7. Parametric survival plot of all clones and treatments following exposure to severe acute 

hypoxia. Survival is plotted on the vertical axis and hours of exposure is plotted on the horizontal 

axis. The light blue line represents hypoxia-acclimated clones from permanent ponds. The dark 

blue line represents normoxia-acclimated clones from permanent ponds. The light red line 

represents hypoxia-acclimated clones from intermittent ponds. And the dark red line represents 

normoxia-acclimated clones from intermittent ponds. Statistical analysis is shown in Table 5. 

 

Table 5. Effect Likelihood Ratio Tests for Survival in Acute Severe Hypoxia Tolerance. cHyp84 

represents Daphnia acclimated to normoxia (8 mg O2/L) or hypoxia (4 mg O2/L). Habitat is 

permanent or intermittent ponds. 

Source DF L-R ChiSquare Prob > ChiSq 

Habitat 1 204.168028 <.0001 

Clone[habitat] 2 6.3965041 0.0408 

cHyp84 1 98.4017384 <.0001 

habitat*cHyp84 1 

 

3.14979839 0.0759 

Clone*cHyp84[habitat] 2 7.98079205 0.0185 
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Effect of Hypoxia on Respiration Rate 

   There was no statistically significant difference in the respiratory rate between hypoxia- 

and normoxia-acclimated Daphnia measured in either condition (Figure 8, p < 0.13), with no 

interactions detected (Table 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Respiratory rate in hypoxia. Oxygen consumed normalized by wet weight.  N_8 is 

normoxia acclimated Daphnia, assay O2 =8, H_8 is normoxia acclimated Daphnia (assay O2=4), 

N_4 is hypoxia acclimated Daphnia (assay O2=8), H_4 is hypoxia acclimated Daphnia (assay 

O2=4). Vertical bars represent standard error. Statistical analysis is shown in Table 6. 
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Table 6. Three-way ANOVA for the Effect of Hypoxia on Respiratory Rate. Respiratory rate is 

normalized by wet weight. 

     

Source 

 

DF MSx10^3 F Ratio      Prob > F 

Assay O2  1 0.023 2.048 0.16 

Acclimation O2  1      1.2E-04 0.011 0.92 

Assay O2* Accl. O2  1      1.2E-04 0.01 0.92 

Clone  3 0.003 0.243 0.87 

Assay O2*Clone  3 0.001 0.075 0.97 

Accl. O2*Clone  3 0.003 0.236 0.87 

Assay O2* Accl. O2*Clone  3 0.012 1.099 0.35 

Error 100 0.237     

 

Effect of Hypoxia on Lactate:Pyruvate Ratio 

   Lactate and pyruvate concentrations in two clones, IL and GB were assessed using 

younger Daphnia (15-20 days old) and older Daphnia (55-60 days). CMIH hypoxia caused a 

significant increase in lactate concentration and a decline in pyruvate levels in older Daphnia 

(Figure 9). Thus, a significant increase in lactate: pyruvate ratio was seen. While there was no 

significant three-way interaction, there was a significant effect of oxygen, age, and an interaction 

between oxygen and age (Table 7). 
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Figure 9. Lactate and pyruvate concentration in young and old Daphnia. A. Mean lactate 

concentration normalized by total proteins (mM/mgProt) B. Mean pyruvate concentration 

normalized by total proteins (mM/mgProt). C. Lactate: pyruvate ratio. Green bars: normoxia; 

orange bars: hypoxia. Vertical bars represent standard error. See Table 7 for statistical analysis. 
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Table 7. Three-way ANOVA of the Effects of Hypoxia on Lactate:Pyruvate Ratio. Clone, age, 

and block are random factors. 

Source 

DF 

Num 

MS 

Num F Ratio   Prob > F   

O2 1 252. 51.31 <.0001 

Clone 1 21.6 4.38 0.0389 

O2*Clone 1 1.26 0.26 0.61 

Age 1 137.4 27.89 <.0001 

O2*age 1 112 22.75 <.0001 

Clone*age 1 0.21 0.04 0.84 

O2*Clone*age 1 0.06 0.01 0.92 

Block 1 107.8 21.88 <.0001 

Error 103 4.93     

     

 

Effect of Hypoxia on Hemoglobin Expression 

 Daphnia exposed to hypoxic conditions had increased levels (p<0.0011 and p= 0.0626) 

of hemoglobin measured as mean absorbance (Figure 10) or by median red intensity, 

respectively.  

 

 

Figure 10. Effect of hypoxia on hemoglobin level. A is a plot of mean absorbance at 541 and 574 

nm of hemoglobin in hypoxic and normoxic clones. The insertion in A is a plot of absorbance 

against wavelength (nanometers) in both treatments. B is a graph of the median red pigment 

intensity of the abdomen.   
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Gene Expression in Hypoxia 

  Preliminary assessment of the overall effect of hypoxia on gene expression in all 48 

RNA samples revealed clustering patterns and differential expression of the 65 a priori genes. 

(Figure 11).  Principal component analysis of the samples showed that FI (the most tolerant to 

acute hypoxia) is central and also the only clone for which acute hypoxia and controls are 

separated by PC1 (Figure 12). In order to identify transcripts that respond to CMIH differently in 

clones from permanent habitats (sensitive) and clones from intermittent habitats (tolerant) we 

analyzed a generalized model of the effects of habitat and clones nested within habitats on the 

abundance of reads mapped to each of the 65 a priori transcripts of interest. We identified 12 

transcripts with a significant habitat effect surviving FDR correction with p<0.05 (Table 8). Four 

of these transcripts were up-regulated in (intermittent) hypoxia tolerant clones (Figure 13), but 

down-regulated in hypoxia sensitive clones (permanent). 
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Figure 11. Gene expression in hypoxia. A: Two-way clustering heatmap of 48 samples and 65 

“genes of interest”. IDs are displayed as clone, treatment (A=acute, C= chronic) and barcode (1-

12). Sample IDs in format “Clone/CMIH/AcuteHypoxia/barcode”, where 8 (green) and 4 (red) 

are oxygen concentrations in CMIH treatments and A and C are acute hypoxia and control 

treatments in the acute hypoxia experiment; samples from acute hypoxia treatment highlighted 

by background color (controls = white background). Color code on the heatmap: red- up-

regulated; blue down-regulated (log fold change). 
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Samples from acute hypoxia treatment clustered together, along with some of the GB 

control samples and with the exception of some of the IL and HU samples. There was no 

evidence of samples from the same CMIH treatments clustering together. This is consistent with 

differential response to CMIH treatment observed in different clones (see below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Principal component analysis of 48 RNA samples. Four clones in 4 hypoxia 

treatments with 3 replicates in each, represented by 6050 transcripts with at least 60 reads and 

present in at least one sample. 
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Table 8. Transcripts with a Significant Habitat Effect in Chronic Mild Intermittent Hypoxia. The 

table shows transcript description, false discovery rate (FDR), habitat with most expressed 

transcripts in normoxia and differential expression of transcripts in chronic hypoxia by clones 

from intermittent and permanent habitats. 

Transcript FDR Habitat of 

most expressed 

in normoxia:  

Response to CMIH 

intermittent  Permanent 

di-domain hemoglobin precursor 5.00E-13 permanent no change UP 

RICTOR 1.15E-07 permanent UP DOWN 

Tumor necrosis factor ligand 6.91E-07 intermittent DOWN UP 

TP53-regulated inhibitor of 

apoptosis 

0.0004 permanent UP DOWN 

Cytoglobin-2 0.0004 intermittent DOWN UP 

Vitellogenin precursor 1F36.70 0.0004 intermittent DOWN UP 

Cu-Zn superoxide dismutase 0.0019 permanent UP UP 

Carbonic anhydrase 0.0089 intermittent DOWN UP 

Autophagy-related protein 16-1 0.0116 intermittent DOWN UP 

Vitellogenin precursor 16F1.38 0.0104 intermittent UP DOWN 

L-lactate dehydrogenase A chain 0.0154 permanent UP DOWN 

NAD-dependent protein 

deacetylase sirtuin-2 

0.0179 permanent UP DOWN 
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Figure 13. Genes up-regulated in hypoxia-tolerant clones. P-values are from a generalized linear 

model of the effect of habitat type on abundance of reads in the two hypoxia treatments. Vertical 

bars represent standard error. 
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Effects of DNP on Lifespan 

 Chronic DNP exposure did not increase lifespan, but we observed remarkable clone-

environment interactions similar to CMIH (described earlier). DNP significantly (p< 0.0001) 

reduced longevity in clones from permanent ponds and had no significant effect on clones from 

intermittent ponds (Figures 14-15 and Table 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Kaplan-Meier survival curves of Daphnia clones treated with DNP. Survival is 

plotted on the Y-axes, and age is plotted on the X-axes.  A: survival curves of clones from 

intermittent ponds. B: survival curves of clones from permanent pond. Black lines represent 

unexposed controls. Blue, orange, and red lines represent Daphnia exposed to 0.1, 1 and 5 μM 
DNP, respectively. See Table 9 for statistical analysis. 
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Figure 15.Median lifespan of all four clones treated with DNP. Vertical axis represents median 

lifespan in days. Horizontal axis represents concentrations of DNP (0, 0.1, 1, and 5 µM, 

respectively). Green bars represent clones from intermittent habitats and red bars represent 

clones from permanent habitats. Vertical bars represent 95% confidence intervals.   

 

Table 9. Likelihood Ratio Test for Longevity in Chronic DNP Exposure. Habitat is permanent or 

intermittent ponds. 

Source DF L-R 

ChiSquare 

Prob > ChiSq 

Habitat 1 35.753 <.0001 

Clone[habitat] 2 5.616 0.06 

DNP 3 6.275 0.1 

habitat*DNP 3 13.194 0.0042 

Clone*DNP [habitat] 6 13.816 0.03 

  

Effect of DNP on Fecundity 

DNP increased lifetime fecundity in all clones and in a dose-dependent manner, with 

some saturation observed at 5 μM (Figure 16). Further analysis showed that DNP significantly 
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increased fecundity at early and middle ages, but had no significant effect on fecundity late in 

life (Table 10). Different clones had no significant effect on fecundity in the different life stages.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Fecundity during DNP Treatment. A: Lifetime fecundity across all clone, black, blue, 

orange, and red represent 0, 0.1,1, and 5 μM of DNP respectively. B. Least squared mean sum 

fecundity when treated with DNP. Blue, fecundity between 0-40 days, orange fecundity between 

41- 80 days, and gray, fecundity beyond 80 days. Vertical bars represent standard error.  See 

Table 10 for statistical analysis. 
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Table 10. Two-way ANOVAs of the Effect of DNP Concentration on Sum Fecundity. Sum 

fecundity (per female) during early (0-40), mid-life (41-80), and late life (>80 days) periods are 

shown. 

Age 0-40 days 
   

Source DF MS F Ratio Prob > F 

Clone 3 55.73 2.4 0.09 

DNP 3 94.26 4.06 0.02 

Clone*DNP 9 9.97 0.43 0.91 

Error 28 23.23 
  

Age 41-80 days 
   

Source DF MS F Ratio Prob > F 

Clone 3 13.55 0.73 0.54 

DNP 3 111.03 6 0.0029 

Clone*DNP 9 12.21 0.66 0.74 

Error 27 18.5 
  

Age >80 days 
   

Source DF MS F Ratio Prob > F 

Clone 3 31.09 0.79 0.51 

DNP 3 36.24 0.92 0.45 

Clone*DNP 9 27.05 0.69 0.71 

Error 26 39.4     

     

Effect of DNP on Feeding Rate 

Chronic DNP exposure had no significant effect on food consumption (Figure 17). 

However, report a significant effect of clones as well as clone by environment interactions 

(Table 11). 
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Figure 17. Feeding Rate in DNP. Black and red bars represent mean cells consumed per hour 

normalized by body wet weight (103 cells/h/mgWW) in controls and in DNP treated Daphnia. 

Vertical bars represent standard error. P-values are shown in Table 11.  

 

Table 11. Two-way ANOVA of the Effect of Clone and DNP on Feeding Rate. Wet weight is a 

covariable. 

 

Source DF MS F Ratio Prob > F 

Clone 3 90.66 4.544 0.011 

DNP 1 79 3.96 0.057 

Clone*DNP 3 74.85 3.75 0.023 

CalcWW 1 10.49 0.53 0.47 

Error 27 19.95     

 

Effect of DNP on Mitochondrial Membrane Potential 

Tissue rhodamine 123 fluorescence intensity (regions of interest- brain, optical lobe, and 

epipodite) was significantly (p=0.0063) higher in all clones exposed to DNP compared to 

controls (Figure 18, Table 12). Interestingly, tissue fluorescence in younger controls (day 0) was 

greater than that of the older controls (30 days), although this comparison may be misleading, 
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because these two measurements were not done in a common garden experiment. Since tissue 

fluorescence is an indicator of MMP, the latter was significantly increased in DNP treated 

Daphnia. 

 

 

Figure 18. Effect of DNP on Mitochondrial membrane potential. Plots A and B represent log 

mean fluorescence of brain, optical lobe and epipodite in varied concentrations of DNP (0, 0.1, 1 

and 5 µM) before the start of the experiment (green bars) and after thirty days (blue bars). Plot C 

represents the least squares means (LSM) of the mean fluorescence. Letters over the bars depict 

significant differences (at α=0.05) among DNP concentrations, based on Tukey-Kramer HSD. 

See Table 12 for statistical analysis. 
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Table 12. Two-way ANOVA of the Effect of DNP and ROI on Rh123 Mean Fluorescence 

Source DF MS F Ratio Prob > F 

DNP 3 0.358 4.5907 0.0063 

ROI 1 10.974 140.5647 <.0001 

DNP*ROI 3 0.083 1.0695 0.3701 

Error 52 0.07807     

 

Effect of DNP on Neutral Lipid Storage 

Chronic exposure to DNP led to a significant decrease (regression coefficient =0.744951, 

SE = 0.141696, p<0.0001) in lipid droplets as indicated by the lower fluorescence intensity of 

abdomen and mid-body compared to controls (Figure 19).  Clones also had a significant 

(p=0.0202) effect on lipid storage, but there were no significant interactions between DNP and 

other groups of the model (Table 13). Interestingly, it appears that lipid storage declines with age 

when considering the starting point as day 0. DNP =0 and Day 30 (as described above). 

 

 

 

 

 

 

 

 

Figure 19. Effect of DNP on Neutral Lipid Storage. Vertical axis represents mean fluorescence 

intensity, horizontal axis represents varied food and DNP concentration in abdomen (blue) and 

mid-body (orange). Error bars represent standard error.  DNP day 0 represents before the start of 

the experiment. B: Nile Red-positive small neutral lipid droplets in cells (red) and rhodamine 

123-positive mitochondria (green), bar = 100 µm. See Table 13 for statistical analysis. 

  

0

5000000

10000000

15000000

20000000

25000000

 DNP day0  DNP 0  DNP 0.1  DNP 1  DNP 5

F
lu

o
re

sc
e

n
ce

 i
n

te
n

si
ty

abdomen

mid body

 

B A



 

 

56 

Table 13. Three-Way ANOVA Model for the Effect of DNP on Lipid Storage.  Body region 

includes mid body and abdomen. 

Source DF MS F Ratio Prob > F 

Clone 3 10.918 4.34 0.02 

DNP 1 74.174 29.52 <.0001 

Clone*DNP 3 5.308 2.11 0.14 

body region 1 11.061 4.40 0.052 

Clone*body region 3 0.0851 0.034 0.99 

DNP*body region 1 0.555 0.22 0.64 

Clone*DNP*body region 3 1.684 0.67 0.58 

Error 16 2.512 
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CHAPTER 4. DISCUSSION 

 

In this study, the effects of two respiratory function perturbations, CMIH and 

mitochondrial uncoupling, on aging, healthspan, and gene expression were investigated in a 

model organism, Daphnia magna.  

Effect of CMIH on Aging and Health span 

We observed several effects of hypoxia on the physiology of Daphnia. Prolonged 

exposure of D. magna to CMIH for a period of 68 days significantly increased total hemoglobin 

content in tissues.  Under normoxic conditions, Daphnia are pale, which is often thought to have 

evolved to reduce visibility to predators (Pirow et al. 2001). However, during chronic hypoxia, 

the pertinent need to optimize aerobic metabolism through increased tissue perfusion and oxygen 

carrying capacity, contributes to increased hemoglobin synthesis and consequently a reddish 

color (Zeis et al. 2003). Hypoxia-induced hemoglobin synthesis is dependent on HIF expression. 

Thus, it was unsurprising to see elevated hemoglobin transcripts levels and this served as a 

plausible positive control in the transcriptomics study (Figure 10). Different hemoglobin 

isoforms (paralogs) are known to be expressed in response to acute vs. chronic hypoxia (Zeis et 

al. 2003). Consistently with that we observe some, but not other hemoglobin transcripts to be 

differentially expressed (see below). 

We observed a significant decrease in feeding rate in hypoxia-acclimated clones and no 

significant interaction between clone and environment (Figure 6), which was surprising 

considering the elevated hemoglobin levels that occurred. Increased hemoglobin allows Daphnia 

to filter during oxygen depletion. Animals with elevated hemoglobin levels consume food 2.5 

faster when compared to individuals with less or lack of hemoglobin (Kring and Brien 1976).  
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The feeding rate of rainbow trout (Oncorhynchus mykiss) chronically exposed to hypoxia (4.5 

mg O2/L), decreased by 6% compared to controls (Magnoni et al. 2018). 

Our findings revealed that hypoxia increased body length and, in 3 out of the 4 clones 

studied (the clone that showed a decrease in body length in hypoxia, GB, was also the one that 

showed the most reduced feeding rate and had the shortest lifespan in the hypoxic condition). 

The increase of body length in hypoxia, at least in hypoxia-tolerant clones was surprising, 

considering that previous studies have demonstrated that during oxygen depletion, Daphnia have 

smaller body size (Seidl et al. 2005; Lyu et al. 2015). The decrease in body length is suggested to 

increase hypoxia tolerance due to their larger surface area to volume ratio that promotes diffusive 

oxygen transport. The observed increase in body length could not be explained by filtering rate, 

considering the latter was significantly decreased in hypoxic conditions in all 4 clones. 

We found no significant difference in the respiratory rate between normoxia- and 

hypoxia-acclimated Daphnia, measured either in normoxic or hypoxic conditions, overall, or in 

any of the four clones studied separately. This finding contradicts Seidl et al. (2005), who 

demonstrated that hypoxia-acclimated Daphnia had 22% lower mass-specific oxygen 

consumption rate in normoxia compared to normoxia-acclimated controls. We hypothesize that 

the difference between the two studies is in the degree of hypoxia treatment (10–19% oxygen 

saturation in Seidl et al. 2005 vs. ~50% of saturation in this study). This result thus confirms that 

our goal of achieving mild, non-damaging level of hypoxia had been met. 

In contrast, despite no significant differences in respiratory rate, we showed that the 

lactate:pyruvate ratio increased in hypoxia-acclimated Daphnia. We attribute this increase to the 

accumulation of lactate and decrease in pyruvate in hypoxia especially with age (Figure 9). The 

results of our gene expression analysis further confirm the upregulation of LDH in hypoxia 
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(Figure 12).  Hypoxia is often characterized by increased conversion of pyruvate to lactate as a 

result of HIF-stimulated increased expression of pyruvate dehydrogenase kinase and lactate 

dehydrogenase (Yeo 2019). Webster (1987) reported 2-5-fold higher expression of genes such as 

LDH and pyruvate kinase in the skeletal muscles of rat, following a 72 hr chronic hypoxia 

exposure. During sustained hypoxia, lactate dehydrogenase was upregulated in killifish (Rees et 

al. 2001). Moreover, the increase in lactate: pyruvate ratio is indicative of an increased NADH: 

NAD+ ratio.   

Increased heat tolerance had previously been reported in heat-acclimated Daphnia 

(Yampolsky et al. 2014; Loureiro et al. 2015). We posited that acclimation to CMIH would 

increase tolerance to severe acute hypoxic stress. Our findings do not support this hypothesis 

since we observed that normoxia-acclimated individuals have better tolerance and survival under 

acute severe hypoxic stress. We suggest this stronger tolerance might be due to healthier 

mitochondria and lower oxidative stress. 

Earlier, we hypothesized that CMIH extends lifespan in Daphnia magna. We also posited 

better hypoxic stress tolerance in hypoxia-adapted clones (ILs and FIs). Our findings support the 

latter hypothesis.  So, while CMIH did not significantly increase lifespan in any of the clones, we 

recorded better survival of clones with lower hypoxia naivety (Figure 3). We hypothesize that  

D. magna hypoxia-naive clones GB and HU are locally adapted to permanent lakes/ ponds that 

are less prone to develop hypoxic conditions, unlike their hypoxia-adapted counterparts IL & FI 

from short lived/intermittent ponds, with possibilities of poorer oxygen availability especially 

during the dry season. Overall, we observed remarkably significant clone-environment 

interactions in CMIH that reflects local adaptation and poses questions about evolutionary trade-

offs that might be underlying such local adaptations.  
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In this study, we reported increased fecundity in older hypoxia-acclimated Daphnia. 

However, we are wary of interpreting this data considering our previous studies (unpublished 

data) have shown that brief late-life spikes in fecundity occur in these clones, often after a period 

of reproductive senescence. More detailed fecundity data are needed to ensure that this 

observation is not an artifact of snap-shot fecundity measurements. Future investigations will 

involve detailed assessments of fecundity using three-day measurement intervals. 

Effect of CMIH on Gene Expression 

We focused on genes that show a significant effect of the habitat of origin (intermittent 

vs. permanent ponds) on transcript abundance in chronic mild hypoxia; this analysis uncovered 

12 candidate genes (Table 8). This list should be interpreted with caution, because in most of 

these cases, clones nested within habitats also had a significant effect on transcript abundance 

and we do not have statistical power, due to low number of clones per habitat type, to test 

whether the habitat effect is independent from the effect of individual clones. Interestingly, we 

identified two patterns of differential response of transcript abundance in different hypoxia 

treatments between habitat types. The pattern with a transcript’s expression increasing in 

sensitive clones but decreasing in tolerant clones may be indicative of an induced response to a 

higher damage or stress caused by hypoxia in these clones (such transcripts include cytoglobin, 

hemoglobin, TNF, SOD, carbonic anhydrase, and autophagy related protein). This pattern 

identifies genes functionally related to the hypoxia response, but not necessarily providing 

protection against hypoxia, as the lifespan of clones from permanent ponds was still lower than 

those from intermittent ponds, despite this, presumable adaptive, up-regulation. The other pattern 

is characterized by up-regulation of a transcript in tolerant clones, but down-regulation in the 
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sensitive clones, which is consistent with the hypothesized protective action (transcripts such as 

RICTOR, Ldh, tp53-regulated apoptosis inhibitor, and SIRT2).  

Effect of DNP on Aging and Healthspan 

As expected, the results of lipid storage analysis revealed that daphnids who had been 

exposed to DNP for thirty days, had lower lipid reserves. Additionally, we observed that lipid 

reserves in these individuals, declined with age. As a caloric restriction mimetic, although DNP 

reduces ATP generation and increases NAD+: NADH ratio, it does not restrict energy uptake 

(Barger et al. 2017).  Sustained release of an anti-lipogenic uncoupling compound reduced 

plasma triacylglycerol,liver triglyceride, and total cholesterol in rat (Wei et al. 2017) and 

supports our findings.   

 Decreased lipid accumulation was not associated with decreased food intake. Although 

we observed significant interactions between the feeding rate of clones and DNP- acclimation, 

we interpreted this cautiously because we know clones such as ILs and FIs have bigger sizes and 

arguably eat more compared to their counterparts GB’s and HUs with relatively smaller body 

size. Overall, Daphnia did not increase food consumptions to make up for inefficient ATP 

production following mitochondrial uncoupling. These findings agree with the Salin et al. (2012) 

study using frogs; Goldgof et al. (2014) and Alexopoulos et al. (2020) studies using mice; and 

the Takahashi et al. (2009) study using rat, and are in contrast with Stier et al. (2014) study using 

zebra finches and Toyomizu et al.’s study using broilers (100 mg DNP/day diet). 

  The “uncoupling to survive” hypothesis proposes mitochondrial uncoupling extends 

lifespan by decreasing mitochondrial membrane potential and consequently ROS production 

(Brand 2000). Contrary to previous studies by Caldeira da Silva et al. (2008); Salin  et al. (2012); 

Ulgherait et al. (2020), depicting the lifespan extension potential of the mitochondrial uncoupler 
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DNP in mice,  fruitflies and frogs respectively, our findings indicate DNP does not extend 

lifespan in Daphnia magna. Interestingly, while pharmacological mitochondrial uncoupling had 

no significant effect on longevity of clones from intermittent ponds; ILs and FIs, it significantly 

decreased lifespan in clones such as GB and HU from permanent ponds.  This clone-

environment interaction suggests mitochondrial uncoupling might have already been optimized 

in the latter clones and further uncoupling had no effect. Alternatively, we suspect these clones 

from intermittent ponds are better equipped to handle respiratory perturbations, judging from 

their exceptional tolerance to CMIH demonstrated earlier (Figure 3). 

As a mild uncoupler, DNP increases respiratory rates and reduces ROS accumulation 

(Barros 2004). Caldeira da Silva et al. (2008) reported decreased hydrogen peroxide production 

as well as decreased oxidative damage in DNP-treated fruit flies. DNP treatment of zebra finches 

for 32 months had no effect on lifespan or total reproductive capacity and Stier et al. (2014) 

additionally reported a decline in optimum immune function in the DNP-treated birds. They 

suggested a healthy amount of ROS was important for triggering an inflammatory response, 

supporting earlier proposed ROS-dependent signaling to improve stress tolerance and 

consequently longevity (Schulz et al. 2007; Brys et al. 2010).Wada and Heidinger (2019) suggest 

the pharmacological effect of DNP is dose, species, duration, as well as context dependent. Their 

argument considered Stier et al.’s (2014), findings as described before and Padalko’s (2005) 

finding where DNP increased lifespan in well-nourished Drosophila, and decreased lifespan in 

calorie restricted flies. In this study Daphnia were exposed 0.1, 1, or 5 μM of DNP and provided 

food ad libitum, yet we provide no evidence for lifespan extension.  

We showed that DNP increased fecundity in a dose dependent manner, contrary to the 

findings of Stier et al. (2014) that showed that DNP impacted reproductive capacity specifically 
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by reducing the number of eggs produced by female zebra finches with uncoupled mitochondria. 

Wulff et al. (1935); and Takahashi et al. (2009) provided evidence that DNP treatment did not 

significantly affect the number of offspring produced by rats. They did however report a 

significant decrease in the viability and survival of pups. While we cannot certainly explain the 

mechanisms behind the increased fecundity observed in DNP treated Daphnia, we suspect it may 

be due to upregulation of vitellogenin fused with SOD.  This would require future investigation 

to confirm. We also hypothesize that upregulation of lipid catabolism caused by DNP indirectly 

resulted in increased deposition of lipids into the ovaries, resulting in higher fecundity. 

Finally, we observed one more unexpected result of DNP exposure. The mitochondrial 

depolarization potential of exogenous and endogenous uncouplers have been extensively 

demonstrated (Cho et al. 2017; Khailova et al. 2020; Ulgherait et al. 2020). Unexpectedly, thirty 

days exposure to DNP increased MMP in our experiment, at least in neural tissues, possibly due 

to some sort of compensatory mechanisms that operated during prolonged exposure to the DNP 

treatment. 

Future Research 

A follow up study should evaluate mitochondrial membrane potential, mitochondrial 

ROS, lipid peroxidation, antioxidant capacity, and lipid storage/mobilization in CMIH exposed 

clones. These tests would provide deeper insight as to how clones from intermittent ponds were 

more tolerant to hypoxic stress and also why prolonged exposure to CMIH does not increase 

tolerance to severe acute hypoxic stress. Furthermore, it is pertinent to assess transcriptomic 

changes in response to chronic DNP treatment. This would provide invaluable understanding of 

differentially expressed genes among clones that may have influenced survival and fecundity. 

Similar to hypoxia, measurement of mitochondrial ROS, antioxidant capacity, lipid peroxidation, 
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antioxidant capacity, sex ratio of neonates in DNP and even hemoglobin levels will enhance our 

understanding of the effects of chronic DNP exposure. 

Conclusion 

This work demonstrates that neither CMIH nor mitochondrial uncoupling with DNP 

increased longevity in Daphnia magna. On the other hand, we observed clone-specific changes 

in gene expression in response to hypoxia that are consistent with regulation of respiratory 

metabolism, apoptosis, cellular proliferation, and anti-inflammatory responses. Such clone-

specific differential expression together with clone-specific reduction of lifespan in hypoxia and 

uncoupler treatments, is consistent with the prediction that hypoxia-adapted clones from 

intermittent ponds would be more tolerant to hypoxic stress than their conspecifics from 

permanent ponds. These findings notwithstanding, acclimation to CMIH does decrease tolerance 

to severe acute hypoxic stress. 

 Overall, our findings elucidate clone-specific physiological and transcriptomic responses 

to respiratory perturbations (CMIH and DNP treatment) and contribute to our understanding of 

how longevity is altered as a function of environment in Daphnia clones from geographically 

diverse habitats.  Knowledge of how Daphnia magna clones from intermittent habitats are able 

to cope with respiratory perturbations could be geared towards the development of 

pharmacotherapeutic strategies to promote healthspan. 
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APPENDICES 

Appendix A: Tanks Used for the Hypoxia Experiment 
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Appendix B: Rhodamine 123 Stained Epipodite and Head of Daphnia magna. 

Black arrow indicates epipodite, red arrow, brain and white arrow, optical lobe.  

Bar = 100 µm here and thereafter 
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Appendix C: Nile Red stained Mid-section and Abdomen of Daphnia magna. 

Yellowish portions are neutral lipid droplets in mid-body (left) and abdomen (right).  
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Appendix D: Daily Changes in Oxygen Concentration 
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Appendix E: Jars and Inserts Used for DNP Experiment 
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