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ABSTRACT 

Chronoecology of the Cave-dwelling Orb-weaver Spider, Meta ovalis (Araneae: Tetragnathidae) 

by 

Rebecca Steele 

 

Circadian clocks enable coordination of essential biological and metabolic processes in relation 

to the 24-hour light cycle. However, there are many habitats that are not subject to this light 

cycle, such as the deep sea, arctic regions, and cave systems. This study analyzes the circadian 

pattern of isolated populations of a subterranean spider, Meta ovalis from two Tennessee caves 

and five Indiana caves. Locomotor activity was recorded with TriKinetics LAM50 Locomotor 

Activity Monitor under a 12-hour light (L), 12-hour dark (D) (LD 12:12) cycle preceding total 

darkness (DD). Significant differences were found within and among populations found in 

Tennessee cave systems in average free running period and onset of locomotor activity. 

Selection, drift, and genetic fixation are explored as the causes of variation in the present study, 

using M. ovalis as the model organism. All five caves in Indiana show little variation, whereas 

both Tennessee caves show large interindividual variation. 
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CHAPTER 1. INTRODUCTION 

 

Circadian Clocks 

 

 Circadian clocks are endogenous pacemakers that are rhythmic and predictable. 

Circadian rhythms are oscillations in behavior or physiology, and can entrain to the day night 

cycle, can compensate for temperature changes, and persist under constant conditions (Dunlap et 

al. 2004). Most organisms have a periodicity of about (circa) a day (diem), and terrestrial 

organisms are exposed to differing light and temperature cycles in concordance with sunrise and 

sunset. This external cue syncs the endogenous clock with the external day, allowing for control 

of physiological, behavioral, and metabolic processes in anticipation of the changing external 

environment, likely increasing fitness (Foster and Kreitzman 2005). Many studies have been 

conducted on organisms that live in a natural light:dark (LD) cycle. One such organism is the 

highly studied Drosophila melanogaster. Using Drosophila mutants in 1971, Konopka et al. 

determined the mutations in the X chromosome could make changes in the circadian clock 

period (Konopka and Benzer 1971). The clock is based on transcription-translation feedback 

loops, which results in oscillations in expression of clock-related genes about every 24 hours. 

The clock is temperature compensated, such that variation in temperature common to most 

environments has a reduced effect on the rate of circadian oscillations compared to most 

metabolic processes (Huang et al. 1995). Circadian rhythms have been studied in depth using 

gene “knock-out” models, as well as by studying organisms that have naturally occurring genetic 

mutations in their circadian genes (Huang et al. 1995; Bittman 2014).  

This molecular mechanism in most animals, however, is not a stand-alone time keeper. It 

is routinely modified and reset, known as entrainment, based on external cues, most notably 
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exposure to light, temperature variation, and food availability (Refinetti 2015). Other factors that 

can entrain the biological clock are feeding, activity of other organisms, social contact, and 

sound (Refinetti 2016). This ability to be aware of, and entrain to external cues is one of the main 

features of endogenous biological clocks. These cues are commonly referred to as Zeitgebers, 

from the German word, meaning “time giver”. When all Zeitgebers are removed, the organism is 

in a constant environment, and can only respond to its endogenous clock. Therefore, any 

behaviors or physiology which continue to oscillate with a period of about 24 h reflect the 

internal clock in a pattern known as “free-running”. The most frequently studied Zeitgeber is 

light intensity, as it is the most easily detectable and reliable external source of information for 

most organisms (Menzel 1979; Erkert 2004).Temperature can also entrain organisms’ activities, 

such as eclosion in flies (Zimmerman et al. 1968), locomotor and transcriptional rhythms in 

crickets (Kannan et al. 2019), and thermal entrainment in the plant Arabidopsis (Avello et al. 

2019). Taken together, this suggests that there is an advantage to having multiple cues that 

circadian clocks can entrain to in the environment.  

Caves and Other Arrhythmic Environments 

 

Studies have examined and found circadian rhythms in organisms living in arrhythmic 

environments (A D Beale et al. 2016; Abhilash et al. 2017), such as caves, deep sea, and polar 

environments. These studies strive to understand how these rhythms have adapted without daily 

photic cues. Out of the common arrhythmic environments, caves have the potential to be one of 

the most stable. Caves lack light, many have relatively steady temperatures, and fairly high 

humidity levels, although some in arid regions have very low humidity (Poulson and White 

1969). Caves have three defined zones that are based on the amount of light they receive; the 

entrance, twilight, and dark zones, as well as three classifications of animals that reside within 
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caves (Culver and Pipan 2009a). Trogloxenes are animals such as bats that use caves, but are not 

dependent on them. Troglophiles are organisms that live within caves for most, if not all, of their 

lives but have no specific physiological adaptations for cave life. Troglobites live in the depths of 

the cave, and are unable to survive outside of the cave. The spatial distribution in terms of linear 

distance from the entrance of the cave seems to be related to the level of adaptation. Less adapted 

species are found closer to entrances, while more adapted species are found in the dark zone. 

Caves provide a unique opportunity to study the adaptive significance of the biological clock. 

Dozens of cave dwelling arthropod species and 14 cave dwelling vertebrate species have been 

the focus of locomotor activity and circadian studies (M Friedrich 2013). The species that have 

been studied have been defined into three broad classifications based on the extent of visual 

system retention. Macrophthalmic species retain full visual systems, microphthalmic species 

have mild to significant loss of visual systems, and anophthalmic species have no trace of a 

visual system remaining (see Friedrich 2013). Studies that have focused on circadian or 

locomotor activity of cave dwelling species have found subterranean fish have varying degrees 

of rhythmicity, correlated with the degree of cave specialization. The more specialized the fish is 

to subterranean life (e.g. reduction or loss of eyes), the less circadian rhythmicity was detected 

(Trajano et al. 2009). Others have tested non-photic Zeitgebers to determine if these organisms 

are receiving time-cues exogenously. A species of cave beetle, Speonomus diecki was exposed to 

temperature cycles of 2.6 °C amplitude, which it entrained to, but the beetle was not allowed to 

free run after entrainment (Pasquali and Sbordoni 2014). Most studies indicate retention of the 

molecular components of the clock, even with physiological adaptations for subterranean life. 

(Erckens and Martin 1982; Andrew David Beale et al. 2016). See Table 1 for details. 
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Spiders in Subterranean Habitats 

 

Spiders are among the most wide-spread organisms on the earth, inhabiting every 

continent, except for Antarctica, and colonizing every habitat except for sea and air. They are 

one of the most diverse groups of arthropods, comprising more than 46,500 known and described 

species, dating back to around 300-360 million years ago (Rainer 1996; Selden et al. 2014). They 

are among the most successful groups of organisms as far as adaptation and evolutionary 

colonization, and have wide physiological and morphological diversity (Rainer 1996). Both the 

smallest spider ever described (Anapistula ataecina approx. 0.4 mm.) (Cardoso and Scharff 

2009) and the largest (Hederopoda maxima approx. 30cm) (Jaeger 2001) are cave dwelling 

spiders, aptly showing the morphological diversity of subterranean spiders. Around 1,000 spider 

species have been classified as strongly bound to hypogean habitats (Christman and Culver 

2001). There are at least 48 families out of 113 described families with species that show 

adaptations for subterranean life (Mammola and Isaia 2017). These adaptations include 

morphological, physiological, and behavioral adaptations displayed by subterranean spiders. 

Morphologically, decreasing or loss of cuticular pigments, thinning of integuments, elongation of 

legs, heavy spination, and the recession or loss of eyes can be seen among troglobitic spiders 

(Cardoso and Scharff 2009; Marroquín 2014; Yao et al. 2016; Mammola and Isaia 2017). 

Pigment changes can also be correlated to habitat size. In a central Texas population of 

Kryptonesticus eremita individuals show variability in pigmentation patterns in a single 

population. This variability was inversely correlated with distance from the entrance of the cave 

(Vink and Dupérré 2011). In another study, two different species of Tayshaneta were found with 

variation “from darkly pigmented, large-eyed individuals to lightly pigmented, reduce-eyed 
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forms to depigmented, blind individuals” (Ledford et al. 2011). Thus, morphological variation 

among individuals can be seen in single cave populations. 

Ecologically, cave populations are similar to island populations, being effectively isolated 

from the terrestrial environment and can experience adaptations commonly found in remote 

island populations (Snowman et al. 2010). Physiological adaptations seen in island populations 

include reduction of metabolism, reduction in fecundity, delayed maturity, and a tendency to lay 

fewer, larger eggs (Deeleman-Reinhold and Deeleman 1980; Gertsch 1992). It is not clear, 

however, if these adaptations are in response to environmental effects such as having fewer 

resources and limited habitat or if is genetic, such as the case with K-selected species. Further 

studies are needed. Several studies suggest that subterranean spiders have specialized their 

physiological tolerance to the narrow temperature range and relative constant humidity of their 

habitats by having a thinner cuticle than their epigean counterparts (Espinasa et al. 2016). The 

thinning of the cuticle makes these spiders more prone to desiccation. Lycosa howarthi showed a 

particular sensitivity to saturation deficit (Howarth 1980; Howarth 1983; Hadley et al.). Cave 

dwelling spiders have differing tolerances for cold temperature based on where they reside 

within the cave. Troglophiles retain their thermotolerance or thermoregulatory mechanisms, 

while troglobites seem to have lost their ability to withstand temperature fluctuations (Novak et 

al. 2014).  

Available information on behavior of cave adapted spiders is extremely sparse (Doran et 

al. 2001; L M Carver et al. 2016). Circadian rhythms are still present in some cave spiders 

(Soriano-Morales et al. 2013; Guadanucci et al. 2015a), however, other troglobiotic species have 

lost their circadian rhythms (Saunders 2002). 
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 Spiders are generally found in areas that have a high concentration of prey items where 

they can maximize food intake (Howarth 1980; Mammola et al. 2016; Mammola and Isaia 2016; 

Resende and Bichuette 2016). Caves, however, have a general trend of low prey availability 

(Gunn 2004; Culver and Pipan 2009b), so spiders have had to evolve unusual foraging strategies 

in order to thrive. Many are more opportunistic in the food they will consume (Gibert and 

Deharveng 2002), and some have been known to eat fish, amphibians, and reptiles (Horstkotte et 

al. 2010; Rasalan et al. 2015). Meta menardi is a well-studied European cave dwelling spider, 

with a diet consisting mainly of arthropods (Mammola and Isaia 2014; Mammola et al. 2016; 

Mammola and Isaia 2016; Resende and Bichuette 2016). For M. menardi, spiderlings live on the 

ceiling of the cave, seemingly balancing their shrinking yolk against the risk of leaving the cave 

and finding an additional food source. Some unknown cue tells them to migrate to live outside of 

the cave as juveniles, where there is a higher density of small prey items, and a chance for 

dispersal to other caves (Smithers 2005a), then as adults, they migrate back into the cave 

(Chiavazzo et al. 2015). There is more known about the early life of M. menardi than there is 

about their adult lives, and circadian rhythms (Smithers 2005b). 

 Meta ovalis (Araneae: Tetragnathidae), the cave-dwelling orb weaver, is found in caves, 

basements, abandoned mines, and deep ravines in the United States (Yuri and Seppo 1992). They 

are found along the eastern coast of the United States and Canada, running from Newfoundland 

and Labrador south to Georgia, and west to Arkansas (Figure 1.1).  It is one of two species of 

this genus in North America, the other being Meta dolloff, located only in two counties in 

California, and listed on the 2000 IUCN Red List of Threatened Animals (Mammola and Isaia 

2014). M. ovalis has not been extensively studied, and little, if anything is known about this 

organism’s life cycle, lifespan, or circadian pattern. Of what is known from the literature, M. 
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ovalis has been observed preying on a troglobiotic millipede (Slay et al. 2009), and can 

potentially transfer entomopathogenic bacteria to co-dwelling cave crickets (Yoder et al. 2009).  

Circadian Studies of Spiders 

 

Few studies analyze the locomotor activity rhythms in cave dwelling spiders, and none 

thus far have focused on Meta ovalis. One study analyzed locomotor activity under laboratory 

light:dark (LD) and constant dark (DD) conditions for spiders in the families Ctenidae and 

Dipluridae collected from Los Riscos Cave in Mexico. The researchers found that individuals 

from both families were able to entrain to an LD cycle, and free run through DD, both showing a 

periodicity close to 24 hours (Soriano-Morales et al. 2013). These particular individuals inhabit 

the twilight and dark zones, with few, if any found in the entrance zone. In the largest 

subterranean population of mygalomorph spiders (Trechona sp.), spiders located in the entrance 

Figure 1.1: Map of the United States showing user-reported occurrences of Meta ovalis and Meta dolloff, according to GBIF.com 
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zone were found to be actively foraging during the night, and either resting during the day, or not 

present in their webs. The spiders observed in the twilight and dark zones were found to be 

active for longer periods of time. Those in twilight showed an intermittent pattern, active before 

dusk, through the night, and returning to their retreats after dawn. The individuals in the dark 

zone stayed outside of their retreats throughout the night and day (Guadanucci et al. 2015b). This 

shows the variation of cave-dwelling spiders in circadian activity. We hypothesize Meta ovalis 

will show individual variation within the same cave, but also between isolated sites. 

 Spiders are able to rapidly entrain to new LD cycles (Ortega-Escobar 2002). This rapid 

entrainment, along with wide variation of circadian periods, both among and within species show 

the circadian diversity in various spider species (Moore et al. 2016; Jones et al. 2018; Garmany 

et al. 2019). This variation within a species of chronobiological measures are examined in the 

present study using M. ovalis as the model organism due to isolated populations, extreme habitat, 

and potential for local adaptation and/or drift in circadian period.  

Abiotic and Biotic Considerations 

 

Several variables need to be considered when analyzing activity patterns of cave 

inhabitants. Abiotic considerations include moisture content, running water, temperature, light 

penetration, minerals, and layout of the geology. Biotic considerations include plants and 

animals. All of these could potentially have an impact on locomotor activity cycles in the cave-

dwelling spider, Meta ovalis, and cause potential differences between caves in circadian 

measures.  

Although the circadian clock is temperature compensated, temperature fluctuations can 

be used for entrainment (Erkert 2004; Novak et al. 2014; Avello et al. 2019), light exposure has 
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been shown to have strong effects on FRP in numerous studies (Menzel 1979; Saunders et al. 

2002; Soriano-Morales et al. 2013; Refinetti 2015; Tao et al. 2017), but entrainment with 

humidity alone has thus far only been shown in plants (Mwimba et al. 2018).  

Biotic influences on circadian period and locomotor activity are numerous, but can 

reduced to three main groups of influence: prey, predator, and other. The activities of prey items 

such as flying or crawling insects could have an effect on activity cycles of M. ovalis, especially 

if those food items are not bound to the hypogean habitat. Troglophilic spiders in the Meta genus 

have prey items that mostly come from epigean habitats, rarely catching hypogean prey (Slay et 

al. 2009), but other troglobiotic species in the Nesticus genus prey on mostly troglobiotic items, 

such as millipedes, springtails, and beetles (Linnea M Carver et al. 2016). This variation of 

preferred prey items has the potential to change the spider’s activity pattern, based on prey 

availability. Predation also can have an effect on the spider’s activity, but the extent of predation 

of subterranean spiders is unknown. Generally, spiders are predated upon by wasps, birds, frogs, 

lizards, toads, and some species of bat (Feldhamer et al. 2009). In the cave ecosystem, most of 

these predators are sparse, with bats sporadically inhabiting the same caves as the spiders, 

although there is no evidence that bats predate upon Meta ovalis. Other forms of entrainment 

could come in the form of other animals’ daily activities, such as the movement of bats in and 

out of caves. This movement can act as a Zeitgeber, cuing the spiders in to dawn and dusk. Each 

cave is unique in each of these factors and the degree to which they are present or absent within 

the cave. 

Impact of Geology 

 

In addition to other abiotic considerations, geology (i.e. type of bedrock, and cave layout) 

is a potential source of change in activity cycles of M. ovalis. These spiders tend to spin their 
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webs on vertical surfaces or on the ceiling, so layout of the cave will have an impact on available 

space to inhabit, but also the amount of light on each potential location. Meta ovalis can be found 

throughout the cave, including near the entrance(s), twilight zone, and dark zone, and from the 

ceiling to just above the floor (Rector 2009).  

Although caves can provide relatively stable environments, with little fluctuation in 

temperature, and moisture, caves (and locations within caves) are variable in these measures 

(Culver and White 2012). The direction the entrance is facing, altitude, airflow, presence of 

water, exposure of entrance, and configuration of passages all have an impact on the amplitude 

of fluctuation. An additional difference between cave locations is the amount and type of water 

present. For example, in this study, one Tennessee cave in this study has a shallow stream 

running through it, the other has a strong flow of water averaging three feet deep, with a small 

waterfall near the entrance. Indiana caves visited had either very little water, or shallow streams 

running through the main passages. These water features have seasonal changes, and the 

potential for flooding. Season and amount of water can change activity patterns of all biota 

involved in the cave food chain. 
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CHAPTER 2. MANUSCRIPT 

 

Journal of Biological Rhythms 

 

Chronoecology of a Cave-dwelling Orb-weaver Spider, Meta ovalis (Araneae: Tetragnathidae) 

Rebecca Steele*, Rebecca J. Wilson†, Blaine W. Schubert‡, Darrell Moore*, and Thomas C. Jones* 

*Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, 
‡Department of Geosciences, East Tennessee State University, Johnson City, Tennessee, and 
†Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee 

 

Abstract The predominant Zeitgeber for most circadian systems is the natural 24-hour light cycle. 

However, there are many habitats that are not subject to this light cycle, such as the deep sea, arctic 

regions, and cave systems. Here we describe entrainment profiles and circadian rhythms of 

locomotor activity in the cave dwelling spider, Meta ovalis. We compare populations collected 

from seven cave systems: two in Tennessee, and five in Indiana. Spiders collected from Indiana 

caves all had free running periods (FRPs) close to 24 h (23.93 ± 0.13, n=69). Spiders from one of 

the Tennessee caves showed unusually high variation among individuals (23.71 ± 2.19, n=22), 

while the other Tennessee cave individuals had unusually long FRPs (26.89 ± 1.71, n=25). Overall, 

this study found Indiana populations consistent with circadian theory, having free-running periods 

close to 24 hours with little variance among individuals. Tennessee populations, however, 

exhibited high interindividual variation in FRP with high deviation from 24 hours which is similar 

to other species of spider studied this far. These results are discussed in the context of extreme 

habitat, potential for local adaptation or genetic drift between populations. 

 

Most terrestrial organisms are exposed to daily light and temperature cycles in 

concordance with the solar cycle, however, there are several organisms that live in arrhythmic 

environments such as caves, deep sea, and arctic regions. Several organisms inhabiting 

arrhythmic environments retain circadian rhythms (A D Beale et al. 2016; Abhilash et al. 2017). 

Others exhibit cyclical patterns only during certain seasons (Lu et al. 2010). Generally, 

organisms inhabiting typical terrestrial environments show little variation deviating from 24 h 

among and within species, with most species presenting less than 30 minute total range in 

recorded free running periods (FRPs) (Aschoff 1981; Ralph R. and Menaker 1988). There is a 

total range of about 22 to 26 hours in organisms that have been studied including humans, golden 
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hamsters, crickets, and mice (Loher 1974; Aschoff 1981; Ralph R. and Menaker 1988; Czeisler 

et al. 1999; van der Veen et al. 2012). Spiders, however, exhibit a range of 18.7 ± 0.13 h 

(Cyclosa turbinata) to 29.1 h (Meta ovalis), pushing some species far out of resonance with the 

24 hour day (Moore et al. 2016; Moore et al. 2017; Jones et al. 2018; Garmany et al. 2019). 

Typically, organisms that do not “resonate” with the solar cycle, (i.e. they have an internal period 

that is out of phase with the external environment) will have reduced fitness (Spoelstra et al. 

2016), but these abundant wild-collected spiders, do not seem to have a reduction in fitness, as 

shown by their abundance and intact reproductive ability. Additionally, typical within-species 

range of FRP has little variability in animals, with a coefficient of variation (%CV) < 1.5. 

Spiders have a %CV up to 12.34 (Mah et al. in press). Contrary to prevailing evidence for small 

interindividual variability, FRP close to 24 h, and stability of circadian rhythms, some spider 

species do not exhibit these patterns, despite inhabiting environments that experience daily 

variations in light and temperature. This study focuses on the circadian pattern of locomotor 

activity in Meta ovalis, a cave dwelling spider that inhabits an arrhythmic environment, to make 

comparisons with circadian patterns in other subterranean species. 

Circadian rhythms are thought to be retained in organisms that live in arrhythmic 

environments to enable coordination of metabolic processes (Bloch et al. 2013). Many spider 

species have been classified as strongly bound to subterranean habitats (Christman and Culver 

2001), with some showing adaptations for subterranean life (Mammola and Isaia 2017). From an 

ecological perspective, cave populations are similar to island populations, being effectively 

isolated from the terrestrial environment and often show adaptations commonly found in remote 

island populations (Snowman et al. 2010). However, caution should be displayed in this thought 

process, as there are interconnected passages humans do not have access to, but smaller 
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organisms do. Studies on behavior of cave-adapted spiders are sparse (Doran et al. 2001; Rector 

2009; Reddell 2012; L M Carver et al. 2016). Circadian rhythms are still present in some cave 

spiders (Soriano-Morales et al. 2013; Guadanucci et al. 2015a), however, over 40 troglobiotic 

vertebrate and arthropod species have seen weakening in their circadian rhythms, correlated with 

reduced visual function (Saunders 2002; M. Friedrich 2013). Exposure to light is perhaps the 

major variable impacting the FRPs of cave dwelling species. One study in cave-dwelling 

millipedes has shown a significant difference in FRP before and after exposure to light (Koilraj 

et al. 2000). Consequently, in this study, we collected under red light on the initial trip to 

investigate the FRP pre- and post-exposure to light. 

This study aims to expand our knowledge of circadian rhythms in cave dwelling 

organisms, focusing on a species that has not been studied previously from a chronobiological 

perspective. Our spiders were collected from isolated populations of the same species (Meta 

ovalis) in two Tennessee and five Indiana caves. Our findings will add to what is known about 

spiders inhabiting caves and provide a unique opportunity to increase understanding of circadian 

variation among populations.  

MATERIALS AND METHODS 
 

Study Species 

 

Meta ovalis (Araneae: Tetragnathidae), the cave-dwelling orb weaver, is found in caves, 

basements, abandoned mines, and deep ravines in the United States (Yuri and Seppo 1992). They 

are found along the eastern side of the United States and Canada, running from Newfoundland 

and Labrador south to Georgia, and west to Arkansas (Fig. 1). It is one of two species of this 

genus in the United States, the other being Meta dolloff, which is found only in two counties in 
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California, and listed on the 2000 IUCN Red List of Threatened Animals (Mammola and Isaia 

2014). Meta ovalis has not been extensively studied, and little, is known about this organism’s 

life cycle, lifespan, or circadian rhythms. There are limited data on locomotor activity rhythms in 

cave dwelling spiders in general and none thus far have focused on Meta ovalis. 

Scientific Permits 

 

Work in Tennessee was permitted by The Tennessee Department of Environment and 

Conservation (permit no. 2018-033). Work in Indiana was permitted for Bronson, Sullivan, and 

Elrod Caves through the Indiana Karst Conservancy, Indiana Nature Preserves, and Indiana 

Department of Natural Resources. Work in Riggs Shelter Cave and Salamander Cave in Indiana 

was permitted by private landowners.   

Figure 2.1: Map of the United State and Canada showing occurrences of Meta ovalis and Meta dolloff, according to user generated 

data from GBIF.com 
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Data Collection 

 

The study species was collected from two caves in northeast Tennessee, five caves in 

central Indiana, and one cave in western North Carolina between April 2018 and February 2020. 

All individuals were placed into the experimental apparatus (see below) within 24 hours of 

collection. Care of animals followed ASAB/ABS guidelines: the spiders were either released at 

the cave of collection at the depth they were collected from, or were humanely dispatched and 

donated to the East Tennessee State University arachnid collection. The spiders were a mixture 

of sub-adults and adults. If they were mature, sex was noted. To record locomotor activity, 

individuals were placed in either 25 mm or 50 mm diameter X 100 mm length, clear tubes 

loosely capped to allow airflow. These were then inserted into locomotor activity monitors 

(model LAM 25 or LAM 50, TriKinetics Inc., Waltham, Massachusetts). During the experiment, 

monitors were kept in environmental control chambers (18 ± 0.5 °C) under a light-dark cycle of 

12 hours of light and 12 hours of dark (LD 12:12) for five days, followed by seven to ten days of 

constant darkness (DD). For the first collection trip, individuals were collected from Sculpture 

Cave in Washington County, TN under dim red light, transported in a light-tight container, and 

transferred to activity monitors under dim red light (Jones et al. 2011). These individuals were 

first exposed to DD conditions for seven days to record the initial free-run before exposure to 

light, then exposed to LD 12:12 for five days, then again to DD for an additional seven days. 

This protocol was used on the initial trip to determine if exposure to light would have an effect 

on the FRP of the animal before and after light exposure. A paired samples T-Test (t = -1.674, p 

> 0.1) showed there was no significant difference between the initial FRP before light exposure, 

and the second FRP after exposure; therefore, all additional individuals were collected under 

normal caving headlamps with 40-500 lux. The lights used in the environmental chambers were 
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two horizontally mounted 32 W fluorescent tubes providing approximately 1400-1600 lux at the 

level of the monitors. Lights were programmed to turn on at 08:00 h and off at 20:00 h during the 

LD cycle. Containers of water were placed in the chambers to maintain high humidity 

throughout the study. Activity bouts, compiled in 1-min intervals, were recorded by the monitors 

whenever the animal crossed an array of infrared beams bisecting each tube. Clocklab Analysis 6 

Software (Actimetrics, Wilmette, IL, U.S.A.) was used to generate actograms, determine the 

phase angle of activity onset relative to the lights-off transition, and to identify significant (p < 

0.001) circadian and ultradian periodicities. We used Lomb-Scargle periodograms to determine 

significant periodicities because this method is well suited for sparse data with frequent or large 

gaps. (Van Dongen et al. 1999). The most stringent p-value of 0.001 was used when determining 

significant periodicities. Onset of activity after photophase (min) was calculated by hand for each 

individual for each day of LD to analyze delay of activity after scotophase.  

 

RESULTS 
 

Onset of Locomotor Activity During LD 

 

Onset of locomotor activity was recorded by calculating the delay of the first bout of 

locomotor activity for each individual after lights out at 20:00 per day of the LD cycle. A one-

way between subjects ANOVA was run to examine the main effect of site and sex on onset of 

activity after lights out. There was a significant main effect of site (F7, 135 = 10.56, p < 0.001, Fig. 

2), sex (F2,135 = 16.56, p < 0.001), and interaction of site and sex (F12,135 = 3.82, p < 0.001). Post-

hoc comparisons using the Tukey HSD test showed that the onset of activity after lights out at 6-

18 Sculpture Cave was significantly later (p < 0.001) than Quaker Knobs (M = 1.15 h., SD = 0.5 
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h.) and Elrod Cave (M = 0.95 h., SD = 0.23 h Additionally, 4-19 Sculpture Cave was 

significantly later (p < 0.001) than Elrod Cave (M = 0.95 h., SD = 0.23 h.). A one-way between 

subject ANOVA showed a significant main effect of sex (F2,42 = 21.57, p < 0.001). Post-hoc 

comparisons using the Tukey HSD test revealed a significant difference between mature females 

and sub-adults at 4-19 Sculpture Cave (Table 1, Fig. 3).   

 

Figure 2.2: Comparison of onset of locomotor activity during the LD phase across sites. Statistically significant relationships are 

shown with connecting lines. Sculp 6-18 (TN) significantly higher than Quaker Knobs (TN) and Elrod (IN). Sculp 4-19 (TN) is 

significantly different from Elrod (IN) 
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Table 1: Delay in onset of locomotor activity, averaged of individual spiders in minutes for each day of LD cycle. A significant 

difference was found between mature adult females and sub-adult specimens 

 

 

Figure 2.3: Scatterplot showing effect of sub-adults on the April visit to Sculpture Cave. Females are shown by open circles, 

males by filled circles, and sub-adults by open triangles. Sub-adults generally start locomotor activity more quickly in scotophase 

than adults, this difference most notable in 4-19 Sculpture Cave 

 

Free-Running Period 

 

The endogenous free running period was calculated with Lomb-Scargle periodograms to 

determine significant peaks. A one-way between subjects ANOVA was run to examine the main 

Average Onset of Activity (min) per Individual 

Sex/Age Mean SD N 

Female 106.115 48.561 71 

Male 85.032 32.165 25 

Sub-adult 74.411 40.420 56 
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effect of site and sex on free-running period (Fig. 4). There was a significant main effect of site 

(F7,136 = 9.76, p < 0.001). Post-hoc comparisons using the Tukey HSD test showed that the FRP 

of Sculpture 6-18 (M = 23.80 h., SD = 2.19 h.) was significantly shorter (p < 0.01) than 

Sculpture 4-19 (M = 25.48 h., SD = 2.39 h.) and Quaker Knobs (M = 26.85 h., SD = 1.54 h.). 

There was no main effect of sex or interaction of site and sex on free-running period (F2,136 = 

1.341, p = 0.256 and F12,136 = 0.420, p = 0.954, respectively).   

 

Figure 2.4: Box plot showing variation in free running periods between isolated caves. Both visits to Sculpture cave show a large 

amount of variation, Quaker Knobs cave individuals showed a longer than 24 h FRP (26.85 h.), and all the Indiana caves show 

FRPs close to 24 h. with little variation 

 

The average FRP for each site is shown in Table 2. 4-19 Sculpture cave showed longer FRPs 

than 6-18. Quaker Knobs had a longer FRP than did each of the caves from Indiana (Fig. 5).  
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Figure 2.5: Actogram showing locomotor activity of individual 14 (top) and individual 21 (bottom) from Quaker Knobs cave. 

White areas represent lights on, gray shaded areas represent lights off (left). Associated periodogram analysis (right) reveals 

individual 14 and 21 have endogenous FRPs of 26.12 h and 28.13, respectively 
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Figure 2.6: Representative actogram of an individual from Indiana showing 24-h FRP 

 

SITE June 

2018 

Sculpture 

April 

2019 

Sculpture 

Quaker 

Knobs 

Bronson Elrod Riggs 

Shelter 

Salamander Sullivan 

AVERAGE 

FRP (h) 

23.80 ± 

2.19 

25.48 ± 

2.69 

26.89 ± 

1.71 

23.83 ± 

0.26 

24.03 

± 0.11 

23.95 ± 

0.07 

23.96 ± 

0.14 

23.90 ± 

0.08 

Table 2: Average free running periods for each individual cave 

 

DISCUSSION 
 

We found differences among and within isolated populations of a single species of 

subterranean spider. We show large variation in FRPs of locomotor activity between individuals 

at one southern Appalachian site with many individuals exhibiting remarkably long (e.g. 29.33 h) 

or short (e.g. 19.58 h) endogenous circadian periods. Some of this within-site variation can be 
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accounted for by the larger number of sub-adults collected during the winter; however, the 

variation can still be seen in fully mature specimens. Additionally, differences in free running 

period were found based on time of year the spiders are collected, with one site being sampled 

twice and showing a significant increase in FRP at the end of winter, and one site showing longer 

than 24-hour FRPs in January. Ecologically, this could be an adaptive strategy to take advantage 

of the more temperate habitat within the cave, allowing for a longer period per day of foraging a 

scarce winter food supply, or for reproductive advantage (L M Carver et al. 2016; Mammola and 

Isaia 2018). We found individuals at another Tennessee cave, Quaker Knobs, which show an 

average FRP longer than all the other sampled caves. The longer clock could be selective, 

allowing individuals to benefit from being released from the constraints of living in a natural 

light dark cycle. Another hypothesis for the longer endogenous period shown at Quaker Knobs is 

that the individuals have experienced the genetic effects of a small population size, and overall 

heterozygosity has been reduced in this population, with the longer clock being close to fixed 

within the population. Spiders from Indiana caves all show free-runs close to 24-h, with very 

little variation within and among sampled populations. This similarity between caves in Indiana 

could be the result of strong selection for a 24-hour period, or there is a large amount of genetic 

diversity due to migration between the populations. The sampled caves within Tennessee are 30 

miles (~48 km) apart, some caves in Indiana were within half a mile of each other, and the 

maximum distance between caves in Indiana was 20 miles (~32 km). It should be noted, 

however that these caves likely have interconnected passages the spiders and other organisms 

can use, therefore distance between entrances for humans is not an ideal measure.  

 Traditional circadian theory, and prevailing evidence suggests that the majority of 

organisms exhibit endogenous periods that are close to 24-hours, with a small range, and very 
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little interindividual variation (Aschoff 1981). This study adds mounting evidence that some 

spider species create their own circadian rules, and do not follow traditional theory (Moore et al. 

2016; Garmany et al. 2019). These subterranean spiders show a large range of endogenous 

periods, interindividual variation, and endogenous periods that are out of phase with the external 

day. Since these spiders are not subject to cyclical light patterns, this potentially frees them from 

entrainment constraints, allowing them to drift and adaptively take advantage of fluctuations 

within their particular habitat. Further research should include more observation to determine 

effect of predation, seasonal influences, and geologic differences. 

 Natural variation among and within each cave system has the potential to have an impact 

on the natural rhythms of cave dwellers. Although generally stable environments, temperature, 

humidity, other biota, presence of running water, and geological layout are variables that are not 

accounted for. Each cave is a unique habitat that has the ability to produce local adaptation of the 

species that dwell there. Future studies should consider recording environmental variables to be 

included in the analysis, as well as field observations. Removing any organism from its habitat 

may cause behavioral changes that will skew results. 
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APPENDICES 

Appendix A: Additional Tables 

Table 1: Table showing review of papers studying locomotor activity in LD and DD. 

PAPER AUTHOR AND YEAR ORGANISM RHYTHMICITY IN LD RHYTHMICITY IN DD CONCLUSION 

Evolution of time-control 

mechanisms in subterranean 

organisms 

Trajano, E. et al. 

2011 

Cave fish 

Teleostei: Siluriformes, 

characiformes 

Strong, significant rhythms S. typhlops (strongly 

troglomorphic): weak or no 

rhythmicity 

P. kronei (moderate troglomorph): 

moderate to strong rhythmicity 

 

External, environmental selection 

Circadian locomotor activity and 

entrainment in cave spiders 

Soriano-Morales, S. et al. 

 

Cave spiders 

Dipluridae and Ctenidae 

Strong rhythms Dipluridae: most show concise 

activity ~24 hr 

Ctenidae: spread out activity close 

to 24 hour 

When exposed to DD, then LD: 

Average FRP gets shorter (DD: 

25.18 ± 0.75 h, LD: 24.12 ± 

0.29h) 

Diplurids displayed diversity in 

activity unimodal, bimodal, and 

arrhythmic 

 

Presence of circadian rhythms in 

the locomotor activity of a cave 

dwelling millipede 

Koilraj, J. A. et al. 

2000 

Cave dwelling millipede 

Glyphiulus cavernicolus sulu 

Moderate rhythms No LD prior: 56.5% (n=23) 

showed rhythms (25.7 ± 3.3 h) 

43.5% showed no clear rhythm 

LD prior to DD: 33.7% (n=9) 

showed minor rhythmicity, 

average FRP 24.04 ± 0.8 h 

 

These organisms still retain ability 

to respond to LD 

Comparative study on free-

running locomotor activity 

circadian rhythms in Brazilian 

subterranean fishes 

 

Trajano, E. et al. 

2009 

Brazilian subterranean fish 

Teleostei: Siluriformes; 

Characiformes 

  Presence and robustness of 

activity varies according to the 

degree of specialization to 

subterranean life: More 

specialized, less circadian activity 

detected 

 

Daily pattern of locomotor 

activity of the synanthropic 

spiders 

Solís, R. et al. 

2018 

Loxosceles laeta Scytodes globula Strong, mostly nocturnal rhythms, 

73.6% of all activity, unimodal 

Strong, strictly nocturnal 95.9% 

of all activity, bimodal activity 

 

  

Circadian rhythms of locomotor 

activity in Lycosa tarentula and 

the pathways of ocular 

entrainment 

Ortega-Escobar, Joaquín Lycosa tarentula Mostly nocturnal activity, some 

diurnal 

Strong, robust rhythms averaging 

24.1 h 

Varying light intensities used able 

to entrain to as low as 1 lx. LL 

caused arrhythmic patterns. All 

eyes able to detect and entrain to 

light except anterior median eyes. 

Placed in DD first, then LD- All 

entrained within 1-2 days 
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Tennessee Caves 
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Indiana Caves 

 

Listed in order: Bronson, Elrod, Riggs Shelter, Salamander, Sullivan 
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