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ABSTRACT 

Temperature and Polyunsaturated Fatty Acid’s Effect on Daphnia magna Reproduction 

by 

Mark Thomas Albright  

Organisms adapt to their environments by adjusting their biochemistry and physiology; such 

adaptation is limited by resource availability and physiological constraints. The freshwater 

crustacean Daphnia magna inhabits a wide range of environments and must survive and 

reproduce within a range of temperatures. One limit to low-temperature adaptation is thought to 

be the availability of unsaturated fatty acids necessary to maintain proper fluidity of cellular 

membranes. D. magna maintained at 10 ºC on a diet poor in unsaturated fatty acids have been 

observed to produce clutches that fail to develop. However, this has not been observed on a diet 

rich in unsaturated fatty acids or at a higher temperature regardless of diet. Clonal variation is 

commonly seen in D. magna life history traits, including heat tolerance, and was also 

investigated. D. magna were kept at two temperatures and fed two algal diets that differ in 

unsaturated fatty acid content. To investigate the role of fatty acid composition on the 

reproductive success of D. magna, fatty acids were extracted from adults and eggs. Of the 

twenty-one clones studied, no clonal variation was seen in the ability to produce successful 

clutches at 10 °C on a diet poor in unsaturated fatty acids. Gas chromatography revealed 

significant differences in 20-carbon fatty acids and suggest a parent-offspring conflict over a 

limited resource.  
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CHAPTER 1 

INTRODUCTION 

Homeoviscous Adaptation 

 An organism’s ability to maintain cellular functions essential to life is contingent on its 

environment and its capacity to adapt to that environment. Poikilotherms in particular can face a 

notable challenge of widely changing internal temperatures and the effect that has on cellular 

conditions, such as membrane viscosity (Angilletta et al. 2004). When internal temperature is 

below the physiological range of an organism, the temperature at which it has adapted or 

acclimated to, acyl chains in the lipids that form cell membranes adopt trans conformations, 

which straighten the chains (Hazel 1995). In this conformation, the lipids are more compact, and 

the membrane becomes viscous and gel-like as a result (Hazel 1995). If not corrected, this 

viscosity can have detrimental effects on the cell, such as reducing the activity of membrane-

bound proteins (Aho and Vornanen 1998), slowing the rate of lateral protein diffusion (Padrón-

Pérez 2000), and reducing cellular respiration rate (Atkin and Tjoelker 2003). However, thermal 

adaptation can help cells defend against the effects of unfavorable temperatures by altering the 

lipid composition of their membranes (Hazel 1995). An almost universal response to temperature 

change is a decrease in the proportion of saturated fatty acid and an increase in the proportion of 

unsaturated fatty acids or polyunsaturated fatty acids (PUFAs) in the membrane (Hazel and 

Williams 1990). PUFAs resist straightening at lower temperatures more than saturated fatty acids, 

due to PUFAs having multiple double covalent bonds between carbon atoms and thus have a 

lower melting point (Hazel and Williams 1990). This temperature-induced remodeling of the 

membrane’s lipid composition is also known as homeoviscous adaptation (Hazel 1995).  
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 Although prokaryotes do not have membrane-bound organelles, it is still necessary that 

they regulate the fluidity of their cell membrane (Cronan 2006). A paper by Sinensky (1974) 

examined membrane lipids in Escherichia coli using electron spin resonance spectroscopy to 

determine that the lipid composition of E. coli’s membrane can be dramatically altered by 

temperature. E. coli lack PUFAs, but they do produce two unsaturated fatty acids, palmitoleic 

acid and cis-vaccenic acid, that they can incorporate into their cell membranes (Scheuerbrandt 

and Bloch 1962). Due to their limited ability to move to other environments or thermoregulate, it 

stands to reason that prokaryotes would need robust regulation of membrane fluidity.  

Plant cells also show homeoviscous adaptation. Plant biosynthesis of membrane 

glycolipids follow one of two pathways, either beginning with C16:0 or C18:1 fatty acids 

(Shimakata and Stumpf 1982). Fad2 mutant Arabidopsis have deficient C18:1 desaturase that is 

responsible for synthesizing polyunsaturated glycolipids for the cell membrane (Miquel et al. 

1993). These mutants were unable to grow in cold temperatures, while the wild-type was only 

slowed (Miquel et al. 1993). 

Polyunsaturated Fatty Acid Biosynthesis 

PUFAs are known as essential fatty acids for animals because of their integral role in 

development and growth. For example, eicosapentaenoic acid (C20:5n-3, EPA) and arachidonic 

acid (C20:4, ARA) are precursors to prostaglandins, which regulate molting and reproduction in 

decapods (Harrison 1990). Decosahexaenoic acid (C22:6n-3, DHA) has roles in human neural 

development and function (Crawford 1993). Despite the integral role of PUFAs, animals have a 

very limited capacity to synthesize them and must rely on their diet for PUFAs (Monroig et al. 

2013). Certain photosynthetic algae, as well as some heterotrophic protists and bacteria, can 

synthesize PUFA by the sequential addition of double bonds on saturated fatty acids (Guschina 
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and Harwood 2006). The pathway for PUFA synthesis begins with the saturated fatty acid stearic 

acid (C18:0), which is desaturated by ∆9 and ∆12 desaturase enzymes producing linoleic acid 

(C18:2n-6, LA) (Guschina and Harwood 2006). LA can be further desaturated with ∆15 

desaturase creating ɑ-linolenic acid (C18:3n-3, ALA) (Guschina and Harwood 2006). Either LA 

or ALA can be further converted, through a series of ∆6, ∆5, and ∆4 desaturases, along with 

elongases, to insert double bonds and add carbons to convert them to ARA and EPA, 

respectively (Monroig et al. 2013). 

 While most animals can produce saturated fatty acids via elongases adding two carbons 

together at a time, they cannot synthesize PUFAs from saturated fatty acids or monounsaturated 

fatty acids as they lack the necessary desaturases ∆12 and ∆15 (Tocher 2003). However, if the 

animal obtains LA or ALA through its diet, they can be desaturated and elongated to form the 

crucial EPA and DHA (Tocher 2003). Therefore, omega-3 and omega-6 fatty acids are called 

essential fatty acids for humans. Certain invertebrates, such as some crustaceans, do have some 

capacity to synthesize PUFAs. For example, the copepod Eucyclops serrulatus has shown the 

ability to endogenously produce DHA when raised on a diet lacking it (Desvilettes et al. 1997). 

Daphnia magna (Crustacea, Cladocera) has also been shown to have a limited capacity to 

biosynthesize EPA when provided the omega-3 fatty acid, ALA (Schlechtriem et al. 2006). The 

rate-limiting step to this reaction is believed to be the creation of an additional double bond by 

∆6 desaturase (Vannice and Rasmussen 2014). 

Lipid Analysis 

 Study of an organism’s lipid composition requires a rapid and efficient method for 

extraction and isolation of lipid molecules. The Bligh and Dyer’s method for lipid extraction has 

long been called the “gold standard” for lipid extraction methods (Bligh and Dyer 1959). It 
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begins with a solution of chloroform, methanol, and water in ratio of 1:2:0.8, respectively (Bligh 

and Dyer 1959). This forms a monophasic solution, however, with the addition of a sufficient 

amount of water and chloroform, becomes biphasic (Breil et al. 2017). The water-methanol 

inorganic layer contains the proteins, carbohydrates, and phospholipids, while the chloroform 

organic layer, contains the lipids (Breil et al 2017). These layers organize by density, with the 

denser settling lower, after proper mixing and centrifuging. Potassium chloride (KCl) can be 

added to further improve the separation of lipids into the organic phase. Acidic lipids are present 

in the water-methanol aqueous phase as disassociated salt and in the organic phase as their 

undissociated salts (Folch et al. 1957). Adding KCl forms salts with the acidic lipids and 

consequently shifts them to the organic phase (Breil et al. 2017). Further preparation for gas 

chromatography include transesterification of fatty acids. Transesterification is the chemical 

process by which an ester group is converted to another by means of cleavage by an alcohol. If 

the cleaving alcohol is methanol, the process is called transmethylation (Liu 1994). Fatty acid 

methyl esters are created when the ester of a fatty acid (usually glycerol) is replaced with a 

methyl group through transmethylation. Transmethylation is commonly done to prepare a fatty 

acid sample for gas chromatography, as methyl esters are stable and separate well in the column 

(Christie 1993). 

 Gas chromatography with flame ionization detector (GC-FID) provides a rapid technique 

for identifying and quantifying compounds, such as fatty acids based on their boiling point, size, 

polarity, and other identifying factors. GC-FID works by first dissolving the sample in a neutral 

solvent, such as hexane, which is injected into the column through the injector port via syringe 

(Restek n.d.). The column is a long thin tube which is heated within the column oven. The 

solvent is carried through the column by an inert carrier gas, such as helium, known as the 
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mobile phase (Restek n.d.). Within the column is the stationary phase, and how the sample 

interacts with the stationary phase is a primary way to separate compounds (Restek n.d.). At the 

end of the column, the compounds combust over a flame sustained by a flow of air and nitrogen. 

The carbon from the sample is oxidized to form carbon dioxide or CHO+, the latter of which 

produces a charge that is detected by the FID (Sobrado et al. 2016). The intensity of the charge is 

related to the quantity of molecules combusting and will result in a higher peak (Sobrado et al. 

2016). The retention time is how long it takes for the molecule to reach the end of the column to 

combust and informs us of the size of the molecule (Sobrado et al. 2016). The boiling point of a 

molecule is the primary factor in influencing its retention time, but size and interactions with the 

stationary phase are also important (Christie and Han 2010). Longer fatty acid chains generally 

have higher boiling points, and greater unsaturation of the fatty acid also leads to longer retention 

(Sobrado et al. 2016). 

 The polarity of the stationary phase within the column is the next greatest influence on 

retention time, after differences in the samples’ boiling points (Restek n.d.). A variety of 

stationary phases specialize in improving the retention times, and therefore the resolution, of 

specific compounds. Nonpolar stationary phases, such as dimethyl polysiloxane or diphenyl, are 

well-suited for separating nonpolar compounds, such as lipids (Restek n.d.). The polyethylene 

glycol stationary phase in the Zebron ZB-Wax column (Phenomenex, Torrance, California) used 

in this study, has a medium to high polarity and can separate alcohols and glycols well (Christie 

and Han 2010; Phenomenex 2018). While not ideal for fatty acid methyl esters, it is 

recommended for routine tests and general purposes (Christie and Han 2010). 
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Clonal Variation in Daphnia magna 

 D. magna is a planktonic freshwater crustacean which serves as a key primary consumer 

in standing bodies of freshwater around the world (Ebert 2005). It has been a model species in 

many studies in part due to its major role in trophic webs, ease of culture, and short lifespan 

(Glazier and Calow 1991).  Cyclic parthenogenic reproduction of Daphnia provides the ability to 

maintain clones of genetically identical individuals without inbreeding, which is critical for the 

studies of the interactions between genetics and the environment. Daphnia lay a clutch of diploid 

parthenogenic eggs after every molt, which develop into genetically identical females (Ebert 

2005). If environmental conditions are stressful, Daphnia may instead produce diploid 

parthenogenetic male offspring or haploid resting eggs, called ephippia, which require 

fertilization by a male to develop (Ebert 2005). Genetically identical lineages of Daphnia, 

referred to simply as clones, give researchers a unique tool to study differences in genotype 

responses to the environmental changes. Inter-clonal variation in Daphnia has been observed in 

temperature adaptation (Hietala et al. 1997; Yampolsky et al. 2014), energy allocation (Glazier 

and Calow 1991) and reproduction rate (Young 1979; De Coninck et al. 2013). However, 

literature is lacking on possible clonal variation in reproduction at cold temperatures, where 

reproduction may be limited by the availability of PUFAs. Given the additional challenges faced 

by D. magna exposed to cold temperatures, such as a greater abundance of unsaturated fatty 

acids required, phenotypes that could reproduce more successfully in this condition would be 

strongly selected for.  

Daphnia Reproduction in Cold Temperatures 

Fatty acids are essential for an organism’s growth, reproduction, and membrane integrity 

(Ravet and Brett 2006). However, most animals lack the desaturase enzymes necessary to 
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synthesize certain fatty acids themselves, and thus must rely on obtaining them through their diet 

(Abrusán et al. 2007). Diets low in PUFAs, particularly eicosapentaenoic acid (EPA), cause 

reduced growth rates and egg production in D. magna (Becker and Boersma 2005). Egg 

production is believed to require a significant amount of fatty acids from the mother (Becker and 

Boersma 2005). This is exacerbated further in cold temperatures at which Daphnia require 

greater amounts of PUFAs to maintain membrane fluidity (Martin-Creuzburg et al. 2012). This is 

shown by Martin-Creuzburg et al. (2012), who observed lower production of viable offspring in 

D. magna fed Scenedesmus obliquus than those fed Nannochloropsis limnetica when held at 

10 °C. S. obliquus has a significantly lower total PUFA content than N. limnetica and no 

detectable amount of EPA (Martin-Creuzburg et al. 2012). Additionally, diets low in fatty acids 

will reduce the total amount of lipids in a Daphnia’s eggs and somatic tissue with cholesterol 

being an exception (Putman et al. 2015). 

Parent-Offspring Conflict 

 In organisms that supply eggs with a significant amount of nutrients or provides 

additional care to its young during embryo development, parent-offspring conflict is a strong 

selective force (Schrader 2009). This is because for the mother it is equally advantageous that 

each of her offspring survive, while for each offspring it is most advantageous that they survive 

(Schrader 2009). This creates a conflict between the amount of resources that the mother 

commits to each offspring and the resources that each offspring demands. This is most apparent 

in species where the phenotype of the offspring can be expressed during maternal care, and the 

offspring has some control over maternal investment, as it can be selected for maximizing self-

gain (Parker et al. 2002). In a lecithotrophic organisms in which maternal care is not given to its 

young beyond providing the egg, and parent-offspring conflict is believed to play a lesser, but 



15 
 

non-zero evolutionary role (Schrader 2009). Nevertheless, variability in the size of offspring at 

birth and the number of offspring in a clutch are likely indicators of the level of parental 

investment even in lecithotrophic organisms (Gasperin and Kilner 2016). Furthermore, shifting 

environmental conditions may favor a paradigm of fewer, larger offspring over more, smaller 

offspring or vice versa (Gasperin and Kilner 2016). This creates a balance needed between 

parental fitness and offspring fitness, where optimal parental fitness is directly reliant on 

offspring number and fitness, but offspring fitness is highest when offspring number is lowest. 

D. magna show limited influence on their offspring size but can greatly vary the number 

of offspring produced depending on resource availability. Larger offspring have been shown to 

have increased triacylglycerides investment from the mother compared to smaller counterparts, 

giving them an advantage if put into limited food conditions (Tessier and Consolatti 1989). 

However, more of a conflict may arise if fatty acids are limited for the mother, not only in the 

trade-off of clutch size and offspring fitness, but also between parental and offspring fitness. If 

investing resources poorly into a clutch allows the mother to survive longer, then limiting 

offspring fitness may result in higher parental fitness over her life. Since the mother and her 

parthenogenetic offspring share identical genotypes, selection could benefit reduced provisioning 

a limited resource into eggs if retaining them in the maternal tissues would increase the mother’s 

survival and subsequent reproduction. 

Hypotheses 

While the relationship between the availability of fatty acids and viable egg production in 

D. magna at low temperatures has been studied, clonal variation of this relationship has largely 

not been investigated. Clonal variation in D. magna has been seen in many attributes, including 

tolerance to high temperatures (Yampolsky et al. 2014). One of the challenges faced by clones 
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with a higher heat tolerance would be efficient restructuring of the lipid composition in cell 

membranes. If clones with a higher heat tolerance exhibit a preference for saturated fatty acids, it 

could aid them in higher temperatures, but hinder them in lower temperatures. Therefore, it is 

hypothesized that D. magna clones with a low heat tolerance will be able to reproduce more 

successfully at cold temperatures than clones with a high heat tolerance. This can be rationalized 

as a possible trade-off for heat tolerance and could suggest genetic differences among clones in 

the expression of membrane lipid restructuring. Furthermore, eggs produced in cold temperatures 

which are part of a clutch that developed successfully are predicted to have a greater PUFA 

investment from the mother when compared to equivalent eggs that are part of a clutch which 

failed to develop. Meanwhile, adult D. magna that laid a failed clutch are predicted to have a 

greater amount of PUFA than adults that laid a successful clutch, and eggs that failed to develop 

will have less PUFA than eggs that successfully develop. These predictions on PUFA content 

will support the hypothesis of a parent-offspring conflict over an important limited resource. 

These hypotheses were tested by first observing the reproductive success of several D. 

magna genotypes kept at cold temperatures and fed a diet limited in PUFAs. The objective of 

this experiment is to elucidate which clones can reproduce under these conditions and how heat 

tolerance plays a role in it. Secondly, a fatty acid analysis was performed on D. magna and their 

eggs when reared in two different temperatures and diets. In this second experiment, PUFA 

investment from mother to egg was measured and the differences in fatty acids between a 

successful clutch and a failed clutch were quantified.  
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CHAPTER 2 

MATERIALS AND METHODS 

Algae Cultures 

 The green alga, S. obliquus, was chosen as the PUFA-poor diet due to its ability to subsist 

D. magna while lacking ARA and EPA entirely. S. obliquus was grown on site in 1 L 

Erlenmeyer flasks filled with COMBO medium adjusted for algae (Table 1, Kilham et al. 1998). 

Essential vitamins, including B-vitamins, were supplemented to provide complete nutrition for D. 

magna (Mehdipour et al. 2011). An air stone was provided, and the flasks were placed in front of 

three 30-watt, 30 cm long white light fluorescent bulbs. Cultures were started from previously 

grown stock and allowed to grow until deep green, or about one week. While growing, algae 

were kept at a room temperature of about 22-24 ºC but were provided with a fan for air flow to 

dissipate heat from the lights. The heterokont alga, N. limnetica, was chosen for the PUFA-rich 

diet due to its high quantities of ARA and EPA, as well as its presence in similar studies (Martin-

Creuzburg et al. 2012). N. limnetica was provided by AquaAlgae (Brunswick, Ohio). Algae were 

stored in plastic or glass containers and kept in an incubator at 10 ºC which was kept from light 

to prevent further growth. Algae concentration was determined by using a Qubit 2.0 fluorometer 

(Thermofisher Sci., Waltham, Massachusetts) via delayed fluorescence excitation spectroscopy. 

Fluorometer readings were calibrated to direct cell counts of diluted samples using a 

hemocytometer. 

  



18 
 

Table 1: COMBO Medium. From Kilham et al. (1998): compounds and their respective 

concentrations in both animal and algal versions of COMBO medium presented in µmol of each 

compound in 1L of medium. 

Compound µmol/L 

CaCl2 250 

MgSO4 150 

K2HPO4 50 

NaNO3 1000 

NaHCO3 150 

Na2SiO3 100 

H3BO3 388 

KCl 100 

Algal Trace Elements  

Na2EDTA 11.7 

FeCl3 3.7 

MnCl2 0.9 

CuSO4 0.004 

ZnSO4 0.08 

CoCl2 0.05 

NaMoO4 0.09 

H2ScO3 0.012 

Na3VO4 0.01 

Animal Trace Elements  

LiCl 7.3 

RbCl 0.6 

SrCl 0.57 

NaBr 0.16 

KI 0.02 

 

Animal Acclimation 

 Twenty-one different clones of D. magna were used for this study, which are maintained 

in a laboratory at East Tennessee State University and originated from geographically separated 

populations (Table 2; see Yampolsky et al. 2014). Five replicants of each clone (n = 105) were 



19 
 

cultured in 100 mL glass jars filled with 100 mL of COMBO water medium and stored in an 

incubator at 20 °C (Kilham et al. 1998). These clones were designated as having either a high 

heat tolerance or low heat tolerance. Clones that have high heat tolerance can survive at 33 °C, 

and clones with low heat tolerance are not able to survive at 31 °C or higher (Yampolsky 2018, 

unpublished data; unreferenced). Since males cannot produce eggs, only females were used in 

this study, and all males were discarded. D. magna were fed every two days with live S. obliquus 

at a concentration of approximately 100,000 cells per 100 mL of medium. A complete water 

change was performed every four days by transferring animals to a new container with new 

medium via pipet. Feeding took place after water changes on days that both occurred. D. magna 

show phenotypic plasticity in the young based on the environment that the mother was exposed 

to (Agrawal et al. 1999). To avoid this maternal effect based on stock conditions, the animals 

were acclimated to experimental conditions for three generations (G2). Offspring from these G2 

clones (G3) were used for the experiment, but only if they were hatched within six days of each 

other, the approximate time between clutches in D. magna, to synchronize ages in the 

experiment. Clones that did not hatch within six days of the previous group of clones were used 

in a staggered simultaneous experiment after they hatched. 
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Table 2: The Twenty-One Daphnia magna Clones Used. Clonal designation along with their 

country of origin is shown. Clones that have high heat tolerance can survive at 33 °C, and clones 

with low heat tolerance are not able to survive at 31 °C or higher (Yampolsky 2018, unpublished 

data; unreferenced). Clones indicated in bold were used for lipid analysis. 

Clone designation Country of origin Heat tolerance 

CN-W1-1 China High 

DE-S3-3 Germany High 

ES-HT-1 Spain High 

FR-SA-1 France High 

GB-EL75-96 United Kingdom High 

HU-HO-2 Hungary Low 

HU-K-6 Hungary High 

IL-BN-1 Israel High 

IL-M1-1 Israel High 

IR-GG1-1 Iran Low 

IT-PER-2 Italy High 

MN-DM1-1 Mongolia High 

NO-AA-1 Norway Low 

PL-1-1 Poland High 

RU-BAI1-2 Russia Low 

RU-BOL1-1 Russia Low 

RU-HA1-1 Russia Low 

RU-R2-1 Russia Low 

RU-YAK-1 Russia High 

SE-G4-20 Sweden Low 

TN-RA-2 Tunisia Low 

 

Clonal Variation in Cold-Temperature Fecundity Experiment 

 To determine which clones can produce viable eggs at low temperature on a diet low in 

PUFAs, a single G3 individual from each replicant of each clone (n = 105) was kept in a 100 mL 

French glass square jar (The Cary Company, Addison, Illinois) filled with 50 mL of COMBO 

water medium. Due to mortality, not all G2 mothers produced five offspring, and the final 
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number of G3 individuals was n = 87. Daphnia were kept at 10 °C and fed approximately 

100,000 cells of S. obliquus per 100 mL of medium every two days. Water was changed every 

four days by moving the animals to new jars with new medium via pipet. The new medium was 

chilled to approximately 10 °C before moving the animals. Positions of jars in the 10 ºC 

incubator were randomly assigned. 

 For two months, Daphnia were observed daily under a dissecting scope to check for egg 

development. If eggs were present in the brood chamber, the time and date they were first seen 

was recorded as the time of oviposition. Over the next two days, the deposited eggs were visually 

inspected for signs of development. Eggs that developed completely were considered successful, 

and eggs that failed to develop completely were considered failed. 

Fatty Acid Analysis 

 Using the previous experiment’s results, three D. magna clones that showed a mix of 

successful and unsuccessful clutches were chosen for fatty acid analysis: ES-HT-1, HU-K-6, and 

TN-RA-2. Throughout this experiment, Daphnia were kept in 100 mL glass jars filled with 100 

mL of COMBO water medium (Kilham et al. 1998). To avoid maternal effects, D. magna were 

kept for two generations before being used for the experiment. The first generation was kept with 

one animal per jar, fed S. obliquus, and kept at a room temperature of about 22-24 °C. A single 

female from the first clutch (G2) of these Daphnia was transferred to each of the following 

experimental conditions: 10 °C and fed S. obliquus, 10 °C and fed N. limnetica, 25 °C and fed S. 

obliquus, and 25 °C and fed N. limnetica. The three latter treatments will serve as controls. Five 

females from the first clutch (G3) of each of these Daphnia were transferred to new jars in the 

same conditions and were used for this experiment. All feeding was at a concentration of 

approximately 100,000 cells per 100 mL of medium every two days. All animals were 
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transferred to new jars with clean water every four days. There were five replicants of the three 

clones in these four conditions (n = 60). As soon as the third generation Daphnia laid eggs, the 

eggs were extracted. The eggs and the mother were stored separately in 2 mL Eppendorfs 

(Biotech, Hamburg, Germany) at -80 °C to prevent develop while samples were accumulated. To 

determine the success of the clutch in the 10 °C S. obliquus treatment (the only treatment known 

to produce failed clutches) before freezing, 1-2 eggs from each clutch were stored in a 96-well 

plate, kept at 10 °C, and observed over the next 2-5 days for signs of development. Since eggs in 

clutches generally all develop or all fail to develop, the success of the clutch was inferred from 

the success of these 1-2 eggs (Yampolsky 2018, personal observation; unreferenced). After 

gathering eggs in this manner, it was discovered that a greater amount of sample material from 

the 10 ºC S. obliquus population was needed. This was due to a higher mortality of G3 

individuals in this treatment as well as the later division of samples into those that developed 

successfully and those that failed to develop. To help with this, a separate population of HU-K-6 

was started from five 10 ºC stock D. magna fed S. obliquus. These Daphnia were kept in a single 

100 mL glass jar filled with 100 mL of COMBO medium (Kilham et al. 1998). An additional 

145 G3 individuals were prepared this way (n = 205). Animals were fed twice as much at a 

concentration of approximately 200,000 cells of S. obliquus every two days to encourage greater 

egg-laying. Although this did help alleviate sample size problems, differing feeding 

concentrations were confounded in the 10 °C S. obliquus treatment group. All other procedures 

were performed identically to other treatment groups. The fatty acid profile of the frozen eggs 

and adult Daphnia were analyzed using gas chromatography. 
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Gas Chromatography 

 Lipids were extracted from the animal tissue using Bligh and Dyer’s chloroform-

methanol method (Bligh and Dyer 1959). Only glass tubes, Teflon-lined caps, and glass Pasture 

pipets were used throughout lipid preparation to avoid plastic contamination. The samples were 

homogenized via crushing with mortar and pestle and suspended in 0.2 mL of deionized water. 

Chloroform, methanol, and water were then added in a 1:2:0.8 ratio. After thoroughly mixing 

and centrifuging at 10,000 rpm for 7.5 minutes, three chloroform washes were performed to 

ensure complete separation of lipids from the inorganic phase. The organic, chloroform layers 

were removed and combined before being washed with potassium chloride and water to further 

improve separation of acidic lipids and associated salts. 

Methylation of fatty acids through transesterification is needed to analyze samples with 

gas chromatography, as methyl esters are more stable and separate well in the column (Christie 

1993; Carvalho and Malcata 2005). To do this, potassium methoxide and hexane was added to 

the lipid extract. The alkaline reaction takes place over roughly two minutes at room temperature 

and then is stopped with 2M hydrochloric acid. The solution was centrifuged at 10,000 rpm for 

7.5 minutes and the organic, hexane layer was removed and stored in a separate container. Two 

more hexane washes were performed to ensure thorough separation of the methyl esters. The 

combined hexane layers were dried using nitrogen gas under low flow and then resuspended in 

20 µL of hexane to achieve a comparable final concentration of lipids. 5 uL of a C17:0, 

heptadecanoic acid, solution in hexane at a concentration of approximately 0.56 mg/uL was 

added to each sample as an internal standard for comparing fatty acid time signatures. The 

samples were kept in 125 mL polypropylene autosampler inserts (Thermo Scientific Waltham, 
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Massachusetts) inside 8 mm glass amber autosampler vials with screw thread caps 

(ThermoFisher Sci., Waltham, Massachusetts). 

The gas chromatograph used for this study was a Shimadzu GC-2010 (Shimadzu Corp., 

Kyoto, Japan) provided by Dr. William A. Clark at East Tennessee State University’s 

Valleybrook campus. The column used was a 30 m length x 0.25 mm internal diameter x 0.25 

µm film thickness Zebron ZB-Wax capillary column (Phenomenex, Torrance, California). 

Helium was used for the mobile phase at a flow rate of 30 mL/min. Hydrogen at a flow rate of 40 

mL/min and air at 400 mL/min supplied the flame. The column oven’s temperature program 

started at an initial temperature of 160 ºC for 5 minutes, which was raised at a rate of 2 °C/min to 

170 ºC for 8 minutes, 180 °C for 10 minutes, 190 °C for 15 minutes, 200 °C for 15 minutes, and 

a final temperature of 210 °C for 20 minutes. The total run time was 120 minutes. The flame 

ionization detector temperature was 255 °C, and the injector port temperature was 250 °C. 

Samples were manually injected by syringe at a volume of 1 µL. 

After the run is finished the chromatograms were integrated using the software 

LabSolutions to remove the solvent peaks and clean up improperly identified peaks (Shimadzu 

Corp., Kyoto, Japan). Fatty acid peaks were compared to the GLC-782 fatty acid analytical 

standard (Nu-Chek Prep, Inc., Elysian, Minnesota) based on retention time and proximity to the 

internal standard. See Appendix for specific compounds present in this standard 

(faculty.etsu.edu/yampolsk/data/GC/Albright.zip). Fatty acids were quantified as a percent of 

total area under the peak. 
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Analysis 

Peaks in chromatograms were manually matched by retention times with the cut-off value 

to differentiation between neighboring peaks chosen as the midpoint between the lowest 

retention time of the later peak and the highest retention time of the earlier peak. A catalog of 

peaks was created based on the two algae samples, the fatty acid external standard, and three 

adult D. magna samples. The matched peaks were then examined by eye to eliminate any 

apparent mismatches. Peaks that were observed in only one sample were discarded. Statistical 

analyses used the percent area under each peak out of the total area under the peak for identified 

fatty acid methyl esters. 

Statistical analyses for this study were performed in the software JMP (SAS Institute, 

Cary, North Carolina). In the clonal variation in cold-temperature fecundity experiment, a nested 

Analysis of Variance (ANOVA) was performed to study the effect that heat tolerance and clone 

has on clutch size and portion of eggs developing. A Principle Component Analysis was 

performed to identify relationships between fatty acids and treatment groups. Two-way 

ANOVA’s were performed throughout the study to determine significant correlation between 

categorical variables, such as temperature and diet, and a continuous variable, percent area of a 

fatty acid’s peak in the chromatogram. An Analysis of Covariance was used to compare the 

percent area of C18:3n-3 to the covariate C18:2 with the success of the sample. The significance 

level for these analyses was ɑ = 0.05. The normality of residuals was verified by a Shapiro-Wilk 

test. Due to the robustness of ANOVA to normality assumptions, a significance level of ɑ = 0.03 

was used in Shapiro-Wilk tests. No significant deviations from normality were found unless 

otherwise stated.  
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CHAPTER 3 

RESULTS 

Clonal Variation in Cold-Temperature Fecundity Experiment 

Of the twenty-one D. magna clones studied, three clones, DE-S3-3, RU-YAK-16, and 

SE-G4-20, did not produce more than one clutch and were excluded from statistical analyses. Of 

the remaining eighteen clones, no clone produced only successful clutches, three clones 

produced only failed clutches, and the rest produced failed and successful clutches intermittently 

(Table 3). A positive relationship between clutch size and the portion of eggs completing 

development was found (Figure 1A). Further investigation revealed that heat tolerant clones 

showed a significantly greater mean clutch size compared to heat intolerant clones (p = 0.005, 

Figure 1B, Table 4). Although they generally produced larger clutches, heat tolerant clones did 

not have a significantly greater portion of clutches completing development (p = 0.087, Table 

4A). When examining individual clones’ effect on clutch size, it was seen that clones do produce 

differently-sized clutches, but all clones have the same ability to produce successful clutches in 

these conditions (p = 0.001, p = 0.13, Table 4A). Although eggs were observed together with 

their clutches, if treated as separate, individual observations, sample size is increased greatly. If 

treated this way, a nested contingency table shows that clones, but not heat tolerance, did have a 

significant effect on the success of eggs developing (p < 0.0001, Table 4B). 
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Table 3. Clutches Produced And Percent Developed. N clutches refers to the number of clutches 

produced by the clone. SE is the standard error. % dev is the percent of clutches that developed 

successfully. Three clones, DE-S3-3, RU-YAK-16, and SE-G4-20, did not produce more than 

one clutch and were excluded from statistical analyses. 

Clone N clutches Mean clutch size SE (clutch size) % dev SE (%dev) 

CN-W1-1 20 8.000 0.913 40.833 0.167 

ES-HT-1 24 13.462 1.930 70.074 0.126 

FR-SA-1 12 9.375 1.051 0.000 0.000 

GB-EL75-69 20 6.750 1.359 64.701 0.167 

HU-HO-2 16 5.250 2.750 54.487 0.231 

HU-K-6 20 10.200 1.116 56.000 0.100 

IL-BN-1 16 8.692 1.322 63.810 0.124 

IL-M1-8 20 12.000 1.106 53.255 0.093 

IR-GG1-1 12 8.750 1.548 43.875 0.230 

IT-PER-2 24 5.143 0.986 29.677 0.145 

MN-DM1-1 20 6.000 3.000 16.667 0.056 

NO-AA-1 12 1.500 1.003 86.607 0.009 

PL-W1-1 4 13.750 3.198 67.982 0.223 

RU-BAI1-2 20 1.400 1.400 0.000  

RU-BOL1-1 8 1.500 0.982 83.333 0.167 

RU-HA1-1 20 0.769 0.690 33.333 0.333 

RU-R2-1 12 3.000 3.000 0.000  

TN-RA-2 24 8.400 0.779 59.524 0.127 
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Figure 1. Relationship between clutch size and portion of eggs completing development. A. The 

correlation between the size of a clutch and the success of that clutch. A trendline is provided to 

clarify the correlation between the variables. B. The mean clutch size for each clone and the 

mean portion of eggs completing development are compared. 

 

A 
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Table 4. Analysis Of Clonal And Heat Tolerance Effects On Clutch Size And Portion Of Eggs 

Developed. Three clones, DE-S3-3, RU-YAK-16, and SE-G4-20, did not produce more than one 

clutch and were excluded from statistical analyses. A. A nested ANOVA between heat tolerance 

groups and among clones was performed on clutches laid. DF refers to degrees of freedom, SS 

refers to sum of squares, F Ratio is ratio of variances, and the significance is shown as a 

probability of the F ratio being greater than 1. B. A nested contingency table was performed on 

the success of eggs developing as if eggs were observed separately from the clutches they were 

in. DF refers to degrees on freedom and the significance is shown as a probability of the log-ratio 

being greater than Chi2. 

A Nested ANOVA for clutches     

 Response: clutch size        

 
Source DF SS F Ratio P > F 

 
Heat tolerance 1 204.22 9.82 0.005 

 Clone (heat tolerance) 17 424.58 4.1 0.001 

 Error 25 152.16 
  

 
          

 
Response: portion of clutches developed 

 
  

  

 Heat tolerance 1 0.003 0.03 0.87 

 Clone (heat tolerance) 17 2.264 1.69 0.13 

 
Error 20 1.58     

      

B Nested contingency table for eggs     

 Source DF  Log-ratio Chi2 P > Chi2   

 Heat tolerance 1  1.17E-06 > 0.9 

 Clone (heat tolerance) 17  248.78 < 0.0001 

 All observations 1222      

  

Fatty Acid Analysis and Gas Chromatography 

 Fatty acid peaks in chromatograms were arranged in a predictable manner based on chain 

length and unsaturation. See Appendix for this comparison as well as all chromatogram files 

(faculty.etsu.edu/yampolsk/data/GC/Albright.zip). These peaks were identified by comparison of 

retention times between samples, the external standard, and algal samples (Figure 2). The mean 

percentages of each identified fatty acid in the different treatments are shown (Table 5). ARA 

(C20:4) and EPA (C20:5n-6) were completely absent from the adults that laid successful 
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clutches in the 10 °C S. obliquus treatment, but present in adults that laid a failed clutch. This 

supports the idea that the parent must make an investment of these PUFA into their eggs for the 

egg to develop. The clutch of failed adults may have failed because of a lack of this investment, 

evidenced by ARA and EPA remaining in the adult. However, while eggs that failed to develop 

in the 10 °C S. obliquus treatment indeed lack ARA and EPA, eggs which successfully 

developed also lack them. While the expected pattern for a parent-offspring conflict is seen in 

adults and failed eggs in the 10 °C S. obliquus treatment, it is not supported by successful eggs. 

 The ratios of the total amount of unsaturated fatty acids to saturated fatty acids, as well as 

PUFA to saturated fatty acids is shown (Figure 3). The ratio of unsaturated fatty acids, 

specifically EPA, to saturated fatty acids in the 25 °C treatments appears abundantly greater than 

other treatments. Comparing 10 °C S. obliquus treatments, failed adults and eggs both showed 

greater ratios of unsaturated fatty acids than successful samples (Figure 3B). This pattern 

supports the hypothesis of parent-offspring conflict in adult samples but not in egg samples.  
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Figure 2. GLC-782 external standard chromatogram and one selected sample. Retention times, 

in minutes, are labeled above each peak, along with the fatty acid that is believed to cause the 

peak. The first large peak is the solvent, hexane, and its retention time is omitted. A. The GLC-

782 fatty acid analytical standard (Nu-Chek Prep, Inc., Elysian, Minnesota). B. An adult sample 

from the 10 °C S. obliquus treatment which produced eggs that failed to develop. Inset shows 

peaks between 10 minutes and 55 minutes for better visibility.
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Table 5. Mean Percent Of Identified Fatty Acids In Samples. Percent of fatty acids were 

calculated by the mean percent area under the chromatogram peak out of the total area under 

identified peaks. N and S refer to the algae, Nannochloropsis limnetica or Scenedesmus obliquus, 

fed to adults or fed to the mother, in the case of eggs. Failed or successful refers to adults that 

laid a clutch that either failed to develop or was successful in developing or eggs that were part 

of a clutch that either failed to develop or was successful in developing. T in the name of fatty 

acids refers to the trans configuration of that fatty acid. The sums of saturated, unsaturated, and 

polyunsaturated fatty acids are provided. The alga included here is S. obliquus. 

 

 Algae Adults Eggs   
10 °C S 

failed 

10 °C S 

successful 

10 °C S 

failed 

10 °C S 

successful 

10 °C N 

successful 

25 °C S 

successful 

25 °C N 

successful 

C14:0 17.662 8.255 25.460 6.160 23.029 21.615 8.660 9.039 

C16:0 53.608 38.778 43.760 35.809 41.581 33.034 28.759 20.227 

C16:1 14.176 2.477 0.000 12.769 0.000 2.659 9.641 3.519 

C18:0 0.000 4.616 1.357 8.833 6.136 3.831 4.045 2.134 

C18:1 2.766 12.378 4.115 6.636 14.993 6.904 9.375 1.399 

C18:1T 0.000 1.869 3.584 0.000 0.000 1.340 0.000 22.812 

C18:2 1.036 9.824 13.433 19.856 10.159 11.319 18.303 1.901 

C18:2T 1.887 0.556 0.000 0.000 0.000 0.000 0.000 2.828 

C18:3n-3 4.252 8.184 4.145 4.969 2.051 3.205 6.957 0.294 

C20:4 4.614 1.351 0.000 0.000 0.000 3.397 7.304 3.903 

C20:5n-6 0.000 3.529 0.000 0.000 0.000 9.490 0.000 31.651 

Σsat 71.270 51.648 70.577 50.802 70.747 58.480 41.464 31.400 

Σunsat 28.730 40.168 25.278 44.229 27.202 38.315 51.579 68.307 

ΣPUFA 11.788 23.444 17.579 24.825 12.210 27.412 32.563 40.577 
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Figure 3. The ratio of unsaturated fatty acids and polyunsaturated fatty acids to saturated fatty 

acids in four treatments. The ratios of the mean of total unsaturated fatty acids to saturated fatty 

acids are shown in orange, and the ratios of the mean of polyunsaturated fatty acids (PUFA) are 

shown in purple. Standard error bars are provided in black. N and S refers to the alga, 

Nannochloropsis limnetica or Scendesmus obliquus, fed to adults or fed to the mother, in the 

case of eggs. Failed or successful refers to adults that laid a clutch that either failed to develop or 

was successful in developing or eggs that were part of a clutch that either failed to develop or 

was successful in developing. A. All treatment groups are shown. B. Only 10 °C treatment 

groups are included for visibility. 
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A principle component analysis was performed to visualize differences in identified fatty 

acids among samples (Figure 4). No compelling separation of samples based on sample type, 

adult or egg, or treatment temperature, 10 °C or 25 °C, was seen. Failed samples, particularly 

adults, showed moderate grouping and separation from successful samples, mainly along 

principle component 1. Principle component 1 showed strong separation of 18-carbon fatty acids 

(Table 6). This is suggestive that 18-carbon fatty acids are related to sample success, and this is 

investigated further below. 

 

Figure 4. Distribution of samples in first two principle components. Percent peak area of total 

identified fatty acid methyl esters are investigated by Principle Component Analysis. C18:3n-6 

was present in only one sample and is therefore omitted. Principle component 1 explains 30.6% 

of the variation, and principle component 2 explains 24.6% of the variation.  
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Table 6. Principle Component Loading For Identified Fatty Acids. The first three principle 

components (PC1, PC2, and PC3) and the correlation to selected percent area of total identified 

fatty acid methyl ester peaks. Fatty acids present in less than half of samples were omitted. 

Values higher than 0.65 or lower than -0.65 are bolded for emphasis. 
 

PC1 PC2 PC3 

C14:0 -0.73817 -0.49475 0.10939 

C16:0 -0.55509 -0.55922 0.47436 

C16:1 -0.16546 0.66648 0.45811 

C18:0 0.68962 -0.38861 -0.14435 

C18:1 0.65091 -0.50608 -0.15062 

C18:2 0.68042 -0.06323 0.42078 

C18:3n-3 0.71072 0.15046 0.42053 

C20:4 -0.01714 0.76551 0.30847 

C20:5n-6 -0.04242 0.44184 -0.88507 

 

A similar pattern of separation is seen when looking at the correlation between mean 

unsaturation of fatty acids and mean chain length (Figure 5). The positive relationship between 

these two variables was expected due to the longer fatty acids, ARA and EPA, also having 

greater unsaturation. Greater mean unsaturation and chain length in failed adult samples may 

also support the parent-offspring conflict hypothesis, but this pattern cannot be discerned in other 

sample groups. 
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Figure 5. Mean chain lengths correlation with mean unsaturation in adults and eggs. The 

correlation between the mean chain length of fatty acids found in adults and eggs in four 

treatment groups. 

 

 To compare algal treatments and temperature treatments, the ratio of the sum of 20-

carbon PUFA to the sum of 18-carbon PUFA was compared between eggs from different 

treatments (Figure 6). Differences in these fatty acids are the major distinctions between the 

algae, and success at low temperatures is believed to be contingent on the ability of the animals 

to convert 18-carbon fatty acids to 20-carbon fatty acids (Schlechtriem et al. 2006). A two-way 

ANOVA showed that temperature and diet both had a significant effect on this ratio (p = 0.018, p 

= 0.002, Table 7). A Shapiro-Wilk test showed that residuals in this comparison were not normal, 

making these results suspect. However, a square root transformation of the data produced normal 

residuals and similar results, except that the interaction of temperature and diet was no longer 

significant. The significant difference between diets supports that the N. limnetica diet increased 
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the amount of ARA and EPA in D. magna eggs. However, a higher portion of 20-carbon fatty 

acids was seen in 25 °C eggs compared to 10 °C eggs. This is contrary to the expectation that 

ARA and EPA would be a greater concentration at 10 °C due to a greater need of unsaturated 

fatty acids for maintaining proper membrane fluidity. 

 

Figure 6. The ratio of Σ20-carbon polyunsaturated fatty acids to Σ18-carbon polyunsaturated 

fatty acids in eggs with two diets and two temperatures. The ratio of the sums of the percent 

areas under the peaks of 20-carbon polyunsaturated fatty acids (PUFA) (C20:4 and C20:5n-6) to 

18-carbon PUFA (C18:2 and C18:3n-3) is shown in eggs with two diets, Nannochloropsis 

limnetica (N) and Scenedesmus obliquus (S), and two temperatures, 10 ºC (blue) and 25 ºC (red). 

Standard error bars are given in black. The 10 ºC and S. obliquus treatment had no detectable 20-

carbon unsaturated FA. 
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Table 7. Two-Way Analysis Of Variance Of The Ratio Of Σ20-Carbon Polyunsaturated Fatty 

Acids To Σ18-Carbon Polyunsaturated Fatty Acids In Eggs. Temperature, 10 °C or 25 °C, was 

tested, along with diet, Nannochloropsis limnetica or Scenedesmus obliquus, for correlation with 

the ratio of Σ20-carbon polyunsaturated fatty acids (PUFA) to Σ18-carbon PUFA. The 

interaction of temperature and diet was also tested. DF refers to degrees of freedom, SS refers to 

sum of squares, F Ratio is ratio of variances, and the significance is shown as a probability of the 

F ratio being greater than 1. 

Source DF SS F Ratio P > F 

Temperature 1 5.665 9.465 0.018 

Diet 1 15.195 25.385 0.002 

Temperature*diet 1 4.315 7.209 0.031 

Error 7 4.190     

 

To determine what effect the ratio of the sum of 20-carbon PUFA to the sum of 18-

carbon PUFA may have on sample success, the correlation between this ratio and the success of 

adults and eggs was investigated (Figure 7). Although levels of 20-carbon PUFA were neither 

detectable in adults that laid a successful clutch nor in eggs from a failed clutch, a significant 

effect of sample type on sample success was still found between adults and eggs (p = 0.009, 

Table 8). The ratio of 20-carbon to 18-carbon fatty acids was not significantly correlated with 

sample success but was within each sample type (p = 0.999, p = 0.019, Table 8). When all 

treatments are considered, differences in this ratio support the hypothesis of parent-offspring 

conflict. 
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Figure 7. The ratio of Σ20-carbon polyunsaturated fatty acids to Σ18-carbon polyunsaturated 

fatty acids in adults and eggs by success or fail. The ratio of the sums of the percent areas under 

the peaks of 20-carbon polyunsaturated fatty acids (PUFA) to 18-carbon PUFA is shown in 

adults and eggs. Hollow bars represent either adults that laid a clutch that successfully developed 

or eggs from a clutch that successfully developed, filled bar represent either adults that laid a 

clutch that failed to develop or eggs from a clutch that failed to develop. Standard error bars are 

provided in black. Adults successfully laid a clutch and eggs that failed to develop had 

undetectable levels of 20-carbon PUFA. 

Table 8. Logistic Regression Analysis For The Ratio Of Σ20-Carbon Polyunsaturated Fatty 

Acids To Σ18-Carbon Polyunsaturated Fatty Acids In Adults And Eggs By Success Or Fail. 

Sample type, adult or egg, and the ratio of the sum of 20-carbon PUFA to the sum of 18-carbon 

PUFA was tested, for correlation with sample success. The interaction between sample type and 

chain length was also tested. DF refers to degrees on freedom and the significance is shown as a 

probability of the log-ratio being greater than Chi2. 

Source DF Log-ratio Chi2 P > Chi2 

Sample type 1 6.868 0.009 

C20:C18 ratio 1 2.43E-06 0.999 

Sample type*C20:C18 ratio 1 5.466 0.019 

Observations 19     
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 The portion of C18:2 and C18:3n-3 present in samples was believed to be related to 

sample success, so diet and temperature and the percentage of C18:2 and C18:3n-3 was 

examined for significant differences between treatments (Figure 8). No significant effects of 

temperature or diet was seen in C18:2, although it may appear as if C18:2 is different between 

the two algae at 25 °C (Table 9A). When looking at C18:3n-3, however, a significant interaction 

between temperature and diet is seen (p = 0.026, Table 9B). 

 

Figure 8. Mean percent areas of 18-carbon polyunsaturated fatty acid peaks in eggs with two 

diets and two temperatures. The standard error is given as black lines. Nannochloropsis 

limnetica (N) and Scenedesmus obliquus (S) are the two algal diets used. 

Table 9. Two-Way ANOVA Of The Percent Area Of C18:2 And C18:3n-3 Peaks In Eggs. DF 

refers to degrees of freedom, SS refers to sum of squares, F Ratio is ratio of variances, and the 

significance is shown as a probability of the F ratio being greater than 1. A. Percent area of C18:2 

peaks in eggs B. Percent area of C18:3n-3 peaks in eggs. 

A Source DF SS F Ratio P > F 

 Temperature 1 0.008 0.0001 0.993 

 Diet 1 167.182 1.876 0.201 

 Temperature*diet 1 295.804 3.318 0.099 

 Error 10 891.418   
 

B Source DF SS F Ratio P > F 

 Temperature 1 3.725 0.467 0.510 

 Diet 1 27.550 3.454 0.093 

 Temperature*diet 1 54.551 6.839 0.026 

 Error 10 79.770   
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To see if these fatty acids were related to sample success, the ratio C18:3n-3 to C18:2 

was studied in adults and eggs for all treatment groups (Figure 9). Algae were included in the 

figure for comparison purposes and was not included in statistics. The sample type, adult or egg, 

as well as success, whether a sample failed or was successful, had a significant effect on this 

ratio (p = 0.018, p = 0.010, Table 10). Samples that failed were only present in the treatment 

group kept at 10 °C and fed S. obliquus, so only that group was further investigated by 

comparing the ratios of various 18-carbon unsaturated fatty acids to success in eggs and adults 

(Figure 10). An analysis of covariance was performed to see how C18:3n-3 and the covariate 

C18:2 correlate with each other and sample success. In adults, the percentage of C18:2 does 

correlate with the percentage of C18:3n-3, as does the success of the adult (p = 0.047, p = 0.032, 

Table 11A). In eggs, nearly opposite relationships are seen. C18:3n-3 is significantly correlated 

with C18:2 in eggs, but success and C18:2 with success are not (p = 0.014, p = 0.137, p = 0.056, 

Table 11B). All these results suggest that the ratio of C18:3n-3 to C18:2 is a good indicator of 

success in adults, but not eggs. Greater unsaturation is thought to be needed at 10 °C due to 

maintaining membrane viscosity (Martin-Creuzburg et al. 2012). The higher ratio of the more 

unsaturated C18:3n-3 seen in adults support the hypothesis of parent-offspring conflict, but the 

opposite pattern is not seen in eggs. 
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Figure 9. The ratio of mean peak areas of C18:3n-3 to C18:2 in algae, adults, and eggs. N and S 

on the x-axis refer to the genus of algae, Nannochloropsis limnetica or Scenedesmus obliquus, 

they were fed, or their mothers were fed, in the case of eggs. Standard error bars are given in 

black. 

Table 10. Two-Way ANOVA For The Ratio Of Mean Peak Areas Of C18:3n-3 To C18:2 In 

Adults And Eggs. Sample type, adult or egg, was tested, along with success, whether an adult laid 

a clutch that successfully developed vs. failed to develop or if the eggs were from a clutch that 

successfully developed vs. failed to develop, for correlation with the ratio of the mean peak areas 

of C18:3n-3 to C18:2. The interaction of sample type and success was also tested. DF refers to 

degrees of freedom, SS refers to sum of squares, F Ratio is ratio of variances, and the 

significance is shown as a probability of the F ratio being greater than 1. 

Source DF SS F Ratio P > F 

Sample type 1 0.204 7.668 0.018 

Success 1 0.259 9.707 0.010 

Sample type*success 1 0.111 4.170 0.066 

Error 11 0.293 
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Figure 10. Ratio of C18:3n-3 to C18:2 fatty acids in adults and eggs. Ratio of 18-carbon 

polyunsaturated fatty acids are shown as ratios. All samples were kept at 10 °C and were fed 

Scenedesmus obliquus, solid trendlines show the trend of successful samples, and dashed 

trendlines show the trend of failed samples. 

Table 11. Analysis Of Covariance Tests For 18-Carbon Unsaturated Fatty Acids In Adults And 

Eggs. An analysis of covariance was performed on C18:3n-3 to C18:2 fatty acids in adults and 

eggs. All samples were kept at 10 °C and were fed Scenedesmus obliquus. DF refers to degrees 

of freedom, SS refers to sum of squares, F Ratio is ratio of variances, and the significance is 

shown as a probability of the F ratio being greater than 1. A. In adults, the correlation of percent 

area of C18:3n-3 with C18:2, success of the sample, and the interaction of C18:2 and success. B. 

In eggs, the correlation of percent area of C18:3n-3 with C18:2, success of the sample, and the 

interaction of C18:2 and success. 

A Source DF SS F Ratio P > F 

 Success 1 0.005 8.103 0.047 

 C18:2 1 0.007 10.497 0.032 

 Success*C18:2 1 0.003 3.889 0.120 

 Error 4 0.003   
 

  B Source DF SS F Ratio P > F 

 Success 1 0.0002 3.442 0.137 

 C18:2 1 0.0009 17.363 0.014 

 C18:2*success 1 0.0004 7.139 0.056 

 Error 4 0.0002   
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CHAPTER 4 

DISCUSSION 

Daphnia Reproduction in Cold Temperatures 

 Maintaining membrane fluidity in believed to be one of the predominant constraints on 

an organism’s ability to acclimate to temperatures below its’ physiological range (Hazel 1995). 

The mechanism by which an organism achieves proper homeviscous adaptation is thought to be 

the allocation of an increased ratio of unsaturated fatty acids to saturated fatty acids in its’ 

cellular membranes (Hazel and Williams 1990). This study sought to examine possible inter-

clonal variation in the ability of D. magna to reproduce in cold temperatures when limited in 

PUFA by diet. After studying twenty-one D. magna clones kept at 10 °C and fed S. obliquus, no 

significant differences were seen in the clones’ ability to lay a clutch that successfully develops 

(Table 4A). Furthermore, the heat tolerance of the clone did not make a significant difference 

(Table 4A). This lack of clonal variation is contrary to a multitude of other attributes of D. 

magna that have been shown to have variation among clones (Young 1979; Glazier and Calow 

1991; Hietala et al. 1997; De Coninck et al. 2013; Christian et al. 2018). The observations in this 

study could be evidence of an insurmountable constraint in the treatment. D. magna have been 

shown to not produce failed clutches at 10 °C when fed N. limnetica or at 25 °C when fed S. 

obliquus (Yampolsky 2018, unpublished data; unreferenced). Therefore, this study suggests that 

the interaction between 10 °C and S. obliquus produces a combination that the studied clone-

types are unable to overcome. However, the contrary is suggested when the data were studied by 

the success of individual eggs rather than clutches (Table 4B). Although observations of eggs are 

confounded with observations of clutches, keeping in mind that clones did differ in mean clutch 

size (Table 4A), this could represent a fault in the sample size of the study. Besides this, it could 
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be that S. obliquus simply does not provide adequate unsaturated fatty acids for consistent 

reproduction at 10 °C. This prospect was explored, in part, by gas chromatography of fatty acid 

methyl esters. 

Parent-Offspring Conflict 

 Greater unsaturation and great chain length of fatty acids were shown to correlate with 

adults that laid a failed clutch in the 10 °C S. obliquus treatment (Figure 5). This distinction is 

mostly driven by the greater amount of ARA and EPA in failed adults (Table 5). Although fed a 

diet lacking EPA entirely, D. magna are believed to have the capacity to convert 18-carbon fatty 

acids to ARA and EPA, although it is believed to be limited (Schlechtriem et al. 2006). These 

PUFA are believed to be crucial at low temperatures, likely due to their use in maintaining 

membrane viscosity (Schlechtriem et al. 2006; Martin-Creuzburg et al. 2012). The presence of 

these fatty acids in adults that produced failed clutches, but not those that produced successful 

ones, could support the hypothesis of a parent-offspring conflict, where adults withhold an 

important limited resource from their eggs in favor of their own survival (Table 5). This is 

further supported by the lack of ARA and EPA in eggs that failed to develop (Table 5). However, 

eggs in the 10 °C S. obliquus that successfully developed did so without detectable amounts of 

these PUFA, despite the PUFA being missing from the adults that laid these eggs (Table 5). 

Although successful eggs from the 10 °C S. obliquus treatment do not support the hypothesis of 

parent-offspring conflict, nor the hypothesis of highly unsaturated PUFA being essential for egg 

development in these conditions, successful eggs from other treatments do contain some 20-

carbon PUFA (Figure 6).  

 Differences between sample success at 10 °C were also seen in the ratio of ALA 

(C18:3n-3) to LA (C18:2). A greater portion of ALA was correlated to the success of adults, but 
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not eggs (Table 11). ALA is more unsaturated than LA and therefore may provide more efficient 

membrane restructuring at 10 °C (Hazel 1995). Since a greater portion of the more unsaturated 

fatty acid was seen in failed adults compared to successful adults, this could support the parent-

offspring conflict hypothesis (Figure 10). However, the trend does not continue in eggs, and the 

portion of ALA to LA more closely matches that of the mothers (Figure 9). Therefore, it is not 

believed that this ratio supports the parent-offspring conflict. A more applicable relationship 

between ALA and LA may be seen in the biosynthesis pathway of EPA. Both ALA and LA can 

be converted to EPA using ∆5, ∆6, and ∆17 desaturases along with elongases (Guschina and 

Harwood 2006). Preference for one of these substrates has been seen in other organisms, 

including Nannochloropsis algae, and the differences in the ratio of ALA to LA in samples could 

be evidence of a preference in the animals, although this has not been studied in D. magna 

(Guschina and Harwood 2006). Additionally, ARA is a precursor to many important compounds, 

such as prostaglandins and other signaling molecules (Sargent et al. 2002). ARA can also not be 

synthesized from ALA, but can be synthesized from LA, due to ARA being an omega-6 fatty 

acid. This could create a difference in demand for the 18-carbon fatty acids and explain some of 

the differences in the ratio that was seen in the samples. 

Unsaturation of Fatty Acids at Two Temperatures 

 The level of 18 and 20-carbon PUFA was also compared between treatment groups 

(Figure 6). In eggs, significant difference was seen between the diets, with N. limnetica diets 

showing greater portions of 20-carbon fatty acids (Table 7). N. limnetica has been shown to 

produce greater portions of ARA and EPA compared to S. obliquus, and this is supported by both 

temperature treatments. However, a greater portion of 20-carbon fatty acids was seen in 25 °C 

treatments than at 10 °C in both algal treatments. This is contrary to the hypothesis of highly 
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unsaturated fatty acids being more conserved at lower temperatures (Schlechtriem et al. 2006). 

However, it should be noted that sample size for eggs in the 25 °C S. obliquus and N. limnetica 

treatments was poor, only two representing each, and it is therefore difficult to draw meaningful 

conclusions from these data. Nevertheless, an alternative explanation could lie in the increased 

metabolism of Daphnia at higher temperatures (Martin-Creuzburg et al. 2012). D. magna has 

been shown to have increased growth rate and earlier clutch-laying at higher temperatures, and 

increased growth rate will demand greater amounts of metabolically-important 20-carbon PUFA 

(Giebelhausen and Lampert 2001). This suggestion could have implications on temperature’s 

role in trophic upgrading of fatty acids by D. magna in the ecosystem, but a more conclusive 

study with greater sample size would need to be performed. 

Conclusions 

 This study examined D. magna inter-clonal variation in fecundity at 10 °C when fed S. 

obliquus and found no difference in the ability to produce successful clutches among clones. The 

heat tolerance of the clone also did not significantly influence this ability, rejecting the 

hypothesis of clonal variation at cold temperatures when limited in PUFA, and suggesting a lack 

of a trade-off for high heat tolerance. This lack of variation may suggest a critical restriction to 

consistent production of successful clutches in these conditions. It is likely that this restriction 

would be in the availability of unsaturated fatty acids. Investigation of the long-chain fatty acids 

of D. magna and their eggs in these conditions showed that a greater ratio of 20-carbon fatty 

acids to 18-carbon fatty acids correlate with adults that laid a failed clutch and eggs from a 

successful clutch. No detectable levels of 20-carbon fatty acids were found in adults that laid a 

successful clutch nor eggs from a failed clutch. This may suggest a parent-offspring conflict over 

the essential ARA (C20:4) and EPA (C20:5n-3) when this resource is limited. Higher levels of 
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unsaturation of 18-carbon fatty acids also loosely correlated with sample success, although 

sample size was low. The hypothesis of parent-offspring conflict over a limited resource was 

partially supported. 

Future Research 

 Clonal variation studies on D. magna have been used to shed light on genetic differences 

in a variety of life history traits. The absence of clonal variation in this study may suggest that 

the experimental variables of temperature and diet were too extreme for any clone to perform 

well. Therefore, a follow-up study should be performed using a range of temperatures between 

10 °C and 20 °C. The latter of which has been suggested to be the optimal temperature for D. 

magna fitness (Giebelhausen and Lampert 2001). Alternatively, since the limiting factor to cold-

temperature reproduction is believed to be the limited ability to convert 18-carbon PUFA to 20-

carbon PUFA, direct supplementation of 20-carbon PUFA, such as EPA or ARA, could relax 

this limiting factor. Supplementation of EPA and ARA to a S. obliquus diet has shown to 

increase population growth of D. magna kept at 10 °C up to a level equal to N. limnetica diet 

(Martin-Creuzburg et al. 2012). Varying dosage level of these PUFA could reveal a 

concentration at which certain phenotypes have an advantage in reproduction at 10 °C and could 

be analogous to PUFA levels in a polyculture of algae that a Daphnia might encounter in nature. 

Support in this study for a parent-offspring conflict over PUFA fell short in the eggs of 

the 10 °C S. obliquus treatment that successfully developed. Adult D. magna that laid eggs that 

successfully developed in this treatment were found to not contain either ARA or EPA, and these 

PUFA were not found in the eggs they laid. A more direct measurement of fatty acids as they are 

taken up by D. magna from the diet, possibly converted into other fatty acids, and supplied to the 

eggs could be labelling the algal diet using carbon-13 isotopes. A metabolic flux analysis could 
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then be used to map where those carbon atoms are being metabolized in the animal and if they 

are invested in eggs (Wiechert 2001). 13C may be able to be incorporated into algae in the form 

of CO2 (Yang et al. 2005). Although 13C metabolic flux analysis has not been widely used to 

track the metabolic pathways of D. magna, it has been used to track fatty acid synthesis in other 

organisms (Alonso et al. 2010). Mass spectrometry of labelled animals at different life stages, 

including before and after laying a clutch, would provide valuable detail on fatty acid investment 

into eggs. 
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