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ABSTRACT 

Candida albicans Hyphal Mannan is Structurally Distinct from Yeast Mannan 

by 

Francis Kwofie 

C. albicans is a polymorphic fungal pathogen which has the ability to shift from yeast to hyphae.  

C. albicans cell wall is composed of glucan, chitin, mannoprotein and mannan. It is not possible, 

using standard extraction methods, to isolate mannan from C. albicans hyphae. To isolate hyphal 

mannan, we developed a simplified alkali extraction method.  Using this method it was 

determined that hyphal mannan has a much lower molecular weight, a smaller polymer 

distribution and altered conformation structure when compared to yeast mannan. The hyphal 

mannan was found to contain little to no acid-labile portion with only α-Man-PO4 groups and no 

long chains of β-1, 2-linked mannosyl repeat units, when compared to the yeast mannan. It was 

concluded that the C. albicans hyphal mannan is substantially different from the mannan found 

in the yeast form. This is an entirely new observation that extends the existing knowledge about 

the structural biology of C. albicans hyphae and may provide insights into the role of hyphae in 

pathogenesis.  
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CHAPTER 1 

 

INTRODUCTION 

Candida albicans 

Candida albicans, an opportunistic pathogen, is the most commonly hospital-acquired 

fungal infection in critical care wards.1-2 C. albicans infections of mucosal surfaces are common  

in otherwise healthy individuals.3 However, the fungus can cause serious life threatening 

infections in immunosuppressed individuals.3 Under normal conditions, C. albicans is a 

commensal organism which exists as part of the normal microbial flora in approximately half the 

world’s population.4 C. albicans have many virulence attributes that contribute to its general 

survival, including persistence and fitness within the host organism and other factors associated 

with adhesion, invasion, cell damage and induction of host responses.5-7 The host defense 

mechanisms which hold C. albicans in a commensal (non-infectious) state include mechanical 

barriers that prevent fungal penetration such as the epithelial surfaces, soluble antimicrobial 

factors as well as the innate and adaptive cellular immune mechanisms.4 Alterations in the 

physiological state of the host organism have been shown to turn this normally harmless 

commensal yeast into a pathogen capable of inflicting debilitating illness. This points both to the 

importance of host defense mechanisms in keeping C. albicans in the commensal state and the 

potential virulence of C. albicans when suitable conditions arise.4 C. albicans can cause 

potentially fatal systemic infections due to their ability to break down mucosal barrier.4 The 

fungus has several features that enables it to be virulent including hydrolytic enzymes and 

adhesions as well as the ability to undergo structural or morphological changes from the yeast 

form to the hyphae form in a process known as fungal dimorphism.8-10   
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Morphological Transition in C. albicans 

The ability of C. albicans to shift between a single celled form called yeast (blastospore) 

and a filamentous form (both pseudohyphae and true hyphae) is critical to its pathogenicity.11 In 

addition to this yeast-hyphal transition, there are a number of other natural occurring 

morphological forms that are characteristics of specific cellular functions.12 These distinct 

morphologies include the opaque form, characteristic of mating-competent cells13 the 

chlamydospores, characteristic of suboptimal growth conditions resulting in thicker cell wall14 

and the pseudohyphal form, which usually coexists with the hyphal and yeast forms in vegetative 

cultures and during infections.11 Hyphal cells may promote invasion of the host tissue, but the 

yeast cells facilitate dissemination of the pathogen.15-18 C. albicans morphogenesis is controlled 

by a complex network of signaling pathways that are commonly accompanied by the regulation 

of genes associated with the morphological states.19 The shift from the yeast to hyphal 

morphology can be activated by various external factors such as serum, N-acetyl-D glucosamine, 

neutral pH, physiological temperature of 37 oC, high amount of CO2, and nutrient starvation12 

such as amino acid starvation by the presence of serum. The morphogenic shift is also reported 

to be caused by stresses such as oxidative, nitrosative and osmotic stresses.20 

 

The Cell Wall of C. albicans 

The cell wall of C. albicans is composed of approximately 90 % carbohydrates and 10 % 

protein. The majority of the carbohydrates are found as branched glucose polymers (β-1, 3 and β-

1, 6 –(β-glucan), unbranched polymers of β-1, 4 N-acetyl-D (chitin), and mannose polymers 

covalently bonded to proteins.21 Studies on the composition of the cell wall of the fungus is 

generally based on chemical characteristics utilizing the solubility differences of the components 
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upon treatment with alkali and an acid.22 A brief description of each carbohydrate component of 

the cell wall is presented below. 

Cell Wall Chitin 

Chitin, the second most abundant natural polysaccharide after cellulose, is composed of 

β-(1,4)-linked-2-acetamedo-2-deoxy-β-D-glucose23 (N-acetylglucosamine). Chitin is a 

carbohydrate polymer that is commonly found in the exoskeletons of insects, spiders, and other 

arthropods.24 The content of chitin varies from 22-44% in fungal cell walls, 3-5% in green algae, 

and 25-50 % in the cuticles of arthropods and mollusks.25 It is often considered as a derivative of 

cellulose as it is structurally identical but it has acetamide groups (-NH2COCH3) at the C-2 

positions26 as shown in Figure 1. The use of chitin has become of great interest as a new 

functional biomaterial with great potential in many fields.26 Chitin as well as its deacetylated 

form (chitosan) also participate in immune recognition, activation and attenuation.27-28 

 

                                         

Figure 1: The structure of chitin which is composed of β-(1, 4)-linked-2-acetamedo-2-deoxy-β-

D-glucose.23 
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Cell Wall Glucans 

β-Glucans are structurally complex, insoluble glucose homopolymers, found in the cell 

wall of algae, bacteria and fungi.29-30 In C. albicans, β-glucans are the major cell wall 

component, accounting for approximately 50-60 % of the total dry cell weight. Based on their 

different solubilities in basic and acidic solutions, C. albicans β-glucans have been categorized 

into an alkali-soluble polymer of low molecular weight and an acid-soluble, branched molecule. 

Both of which contain β-D-(1→6)-linked residues, including an alkali-acid insoluble, highly 

branched complex containing equivalent amounts of β-D-(1→6) and β-D-(1→3) linkages in a 

complex with chitin.31  

While the basic molecular structure of β-glucans is relatively homogeneous, the type of 

bonding, its molecular weight as well as its molecular configuration may vary depending upon 

the microbial source.32 Therapeutically, β-glucans are known for their immunomodulatory and 

antitumor properties.33 The glucans on the cell wall is known to stimulate the immune system 

under conditions that enhance 1, 3-β-glucan exposure at the surface of the cell induce an increase 

in the amount of pro-inflammatory cytokines.34 This enhanced glucan exposure can occur after 

exposure to echinocandins and during the progression of an infection as host enzymes act on the 

fungal cell surface.35  

Cell Wall Mannans 

Cell wall mannan accounts for approximately 40 % of the total carbohydrate composition 

of the cell wall.21 C. albicans N-linked mannan is composed an α-1, 6-linked D-mannose repeats 

units with branches containing α-1, 2, α-1, 3,and β-1,6 and single α-1,6-linked mannose units and 

phosphodiester bonds.36-37 The O-linked mannan is composed of either single or short 
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unbranched mannose monomers.38 The cell wall mannan of C. albicans is composed of an acid-

labile potion and an acid-stable portion. These two components are bridged by a phosphodiester 

group and some studies have shown that the acid-labile portion is sometimes significantly 

reduced.39 The mannan layer covering the glucan is not strictly an ‘immunological shield’ since 

it is also recognized by a plethora of Pattern Recognition Receptors (PRRs). However, 

alterations to the mannan layer with subsequent exposure of β-1,3 glucan, enhances the immune 

and pro-inflammatory response.3 The masking of glucans by mannans is thought to reduce 

recognition of the yeast by the innate immune system.40 Figure 2 is a schematic representation of 

a representative cell wall mannan structure. 

 

 

Figure 2. Schematic representation of cell wall mannan of C. albicans as described by Shibata et 

al.39 

 Acid Stable 

  Acid labile 

Phosphodiester 

group 
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Evidence indicates that the cell wall-mannan of yeast is a linear polymer backbone 

consisting of α-(1→6)-linked D-mannopyranose units with short side chains of mannose units 

attached to the backbone mainly by α-(1→2)-linkages and to each other by both α-(1→2) and α- 

(1→3)-linkages.41 It is known that some of the side chains are linked to the α-(1→6)-linked 

backbone by (1→3)-linkages.41  It is reasonable to assume that some of these side chains may be 

branched, and some of the mannose units in the backbone are unsubstituted. All of the 

polysaccharides of the cell wall contribute to the immunological signature of C. albicans.42 One 

of the important questions which remains to be answered is what makes one fungus commensal 

and another pathogenic. It is believed that differences in the fungal cell wall play an important 

role in determining whether a fungus is pathogenic. Differences in the structure and or 

composition of the cell-wall mannan, as well as other cell-surface components such as the 

protein and β-glucan are well known to affect the virulence of Candida species including C. 

albicans.43 

Among the potential virulence factors of C. albicans as well as antigens, the significance 

of mannan is truly unique.44 It is known to provide the antigenic variability that is most useful for 

species identification and subtyping as it may be the antigen that is most useful for rapid and 

early serodiagnosis of infection, and it has been the component chosen most often for studies of 

effects of Candida on immune function.44 Mannan is known to stimulate or suppress cell-

mediated and immune functions because the oligosaccharide fragments of mannan appear to be 

effective inhibitors of cell-mediated immunity.44 
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Extraction Methods of Fungal Mannan 

Several extraction methods exist for the isolation of mannan from the cell wall of C. 

albicans. These methods utilize hot alkali, citrate buffer, hot water and/or an enzymatic 

digestion. When mannan is extracted with hot alkali44 at very high concentrations, mannose 

serine and mannose threonine linkages as well as phosdiester and other peptide bonds are 

cleaved due to the basic pH. This leads to the loss of O-linked oligosaccharides and thus greatly 

affects the mannan’s antigenicity and biological properties.44 Extraction of cell wall mannan with 

neutral citrate buffer44 or hot water44 leads to the preservation of the carbohydrate component but 

may denature the protein due to the higher temperatures involved. Treatment of cells with 

zymolyase, which is a mixture of β-glucannase and proteinase, with a trace amounts of 

mannosidase optimally preserves the structure of the mannan.45 It is worth mentioning that most 

of these methods have been used for the extraction of mannan from the yeast form of C. albicans 

and not the hyphal form as information about the extraction of mannan from the hyphal form is 

limited. Table 1 below details some methods previously employed for the extraction of cell wall 

mannan in yeasts. These methods provide a large amount of products but they all have their 

limitations. 
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 Table 1. Methods previously employed for the extraction of cell wall mannan44 

 

It is also worth mentioning that no extraction method is completely selective for cell wall 

mannan44. Another step must be employed to enable a successful separation of mannan from other 

carbohydrates and protein components of the cell wall and cytoplasm. One of the most widely used 

methods is the Fehling method46 which utilize Fehling solution. This approach exploit the ability 

of mannan to chelate and to be precipitated by the copper in Fehling solution. One limitation of 

this method is that some traces of copper remain bonded to the mannan even after repeated 

washings and reprecipitation with methanol-acetic acid mixture.47 

 

 

 

 

Method Conditions Limitations 

 

Hot alkali extraction 

 

2 % KOH at 100 oC for 2 

hours 

 

Glycosyl-serine and threonine 

linkages, phosdiester linkages 

and the cleavage of some 

peptide bonds 

 

  Citrate buffer method 20 mM citrate buffer at pH 7 

at 120 oC for 1hour, 30 

minutes. 

 

Protein is denatured 

Hot water extraction Distilled water at 140 oC for 2 

hours 

 

Protein is denatured 

Enzyme treatment 

(zymolyase) 

Phosphate buffer at pH 7.5 at 

28 oC for 1 hour to 3 hours 

 

High cost involved 
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Hypothesis 

Cell wall mannan and mannoprotein from C. albicans has been previously extracted 

using a simplified but still harsh method.48 This method, though useful for extracting mannan 

from the yeast form of the organism, has not been successful extracting mannan from the hyphal 

form. We hypothesized that C. albicans hyphal mannan is structurally less complex than the 

yeast mannan, which has prevented its isolation using standard methods as it is more easily 

degraded. To solve this problem, we have developed a new and simplified method for the 

extraction of hyphal mannan. 

Research Aims 

1. Develop a milder and an effective technique for the extraction of cell wall mannan from C. 

albican hyphae as well as the yeast. 

2. To elucidate the structures as well as their molecular weight of the mannans isolated with 

Nuclear Magnetic Resonance and Gel Permeation Chromatography respectively. 

3. Compare and contrast the molecular weight and polymer distribution of yeast and hyphal 

mannans. 
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CHAPTER 2 

MATERIALS AND METHODS 

Strains and Media 

 

Candida albicans strain SC5314 was taken directly from frozen stock and passaged on 

YPD (1 % yeast extract, 2 % peptone, 2 % dextrose, and 2 % agar). For yeast morphology, strain 

SC5314 was inoculated into 2 L of YPD for growth at 30 oC for 18 h. For hyphal morphology, 

strain SC5314 was inoculated into 15 L medium 199 at pH of 7.5 (9.5 g M199 and 12.5 g Tris-

HCL) at 1×105 cells/mL for growth at 37 oC overnight for a well-developed hyphae. Fully 

developed hyphae were microscopically confirmed before harvesting each flask by filtration 

which typically yields 10-12 g hyphal cells before lypholization. Stock was received from Dr. 

Kruppa at the Quilin School of Medicine, ETSU. 

Mannan Extraction 

The isolation procedure employed for the mannan extraction includes the following: 

Briefly, approximately 4 g of yeast cells and 1.5 g of the hyphae cells were delipidated with 100 

mL acetone for about 15 minutes. The samples were then centrifuged for about 10 minutes at 

5000 rpm. The lipid free residue was boiled in either 50 mM NaOH (100 mL) or 50 mM H3PO4 

(100 mL)  for 15 minutes, allowed to cool, neutralized with small amounts of an acid and the cell 

debris was separated by centrifugation for 5 minutes at 5000 rpm. Methanol (4 volumes) of 50 

mL each was added to precipitate the carbohydrate. The supernatant was separated from the 

precipitate. The mannan isolates were then frozen at -80 oC and lypholized to dryness. The new 

procedure for the extraction of both hyphal and yeast mannan of C. albicans is as shown in 

Figure 3 below. 
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Figure 3: Method of isolation of mannan from C. albicans yeast and hyphae 

 

 

Lipid free residue boiled in 100 

mL 50 mM NaOH 

Hyphal/yeast cells (C. albicans) 

delipidated with acetone then 

centrifuged (~ 4 g hyphal) 

Centrifuged supernatant  

Saved methanol precipitate 

Lyophilized to dryness 

Structural characterization and 

molecular weight determination 
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NMR Analysis of Yeast and Hyphal Mannan 

The 600 MHz NMR parameters developed by Kruppa et al40 were employed for the 

analysis of the mannans in this study. Proton NMR spectra for mannan were collected on Bruker 

Avance III 600 NMR spectrometer using a CH cryoprobe operating at 333 K (60 oC) in 5-mm 

NMR tubes. Mannan (variable sample sizes ranging from 10 to 23 mg) was dissolved in a l mL 

D2O (Cambridge Isotope Laboratories, 99.8+ % deuterated). Proton 1D and 2D NMR spectra 

including COSY, were obtained in this study. Chemical shift referencing was relative to 

Trimethylsilylpropionate (TMSP) at 0.0 ppm. NMR spectra at 600 MHz were collected and 

processed as follows: for 1D NMR, 256 30o scans, 65,536 points, 20.5 ppm sweep width 

centered at 6.175 ppm, exponential apodization with 0.3 Hz broadening, and 1 s pulse delay. 

Mannan NMR spectra were processed using wxMacNUTS (2nd Generation NMR Utility 

Transform Software, Version 1.0.1, Acorn NMR, Inc.) on a Macintosh MacBook Pro running 

OSX version 10.5.8. Spectral comparisons in pairs are used to detect structural changes as 

indicated by changes in assigned peak intensities. For each set of comparisons, the spectra are 

height normalized to the largest peaks in each spectrum. The tallest peak in each spectrum at 

5.067 ppm is assigned to the anomeric proton of α-D-(1-2)-linked mannosyl repeat units. 

Multi-Detector Gel Permeation Chromatography Analysis of Cell Wall Mannan from Yeast and 

Hyphal C. albicans 

 The MW, polydispersity, polymer distribution and Mark-Houwink (α) values were 

obtained using a Viscotek/Malvern GPC system consisting of a GPCMax auto injector fitted to a 

TDA 305 detector (Viscotek, Houston, TX). The TDA contains a refractive index detector, a low 

angle laser light scattering detector, a right-angled laser light scattering detector, an intrinsic 

viscosity detector and a UV detector (λ = 254 nm). Three Waters Ultrahydrogel columns, i.e. 
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1200, 500 and 120, were fitted in series (Waters Corp., Milford, MA). The columns and 

detectors were maintained at 40°C within the TDA 305. The system was calibrated using Shodex 

P-82 pullulan standards (5000–800,000 Da) in mobile phase (Showa Denko distributed by 

Waters Corp.). Mannan samples were dissolved (3 mg/mL) in mobile phase (50 mM sodium 

nitrite, pH 7.6). The samples were incubated for ~15 min at ambient temperature, followed by 

sterile filtration (0.2 μm) and injected into the GPC (200 μL). The data were analyzed using 

Viscotek OmniSec software v. 4.6.1.354. Dn/dc was calculated using the OmniSec software (v. 

4.6.1.354). Dn/dc for the mannan samples was determined to be 0.185.  

Initially the data were analyzed using a single peak assignment in order to obtain an 

average Mw for the entire polymer distribution. Subsequently, the data were analyzed using 

multiple peak settings. Each peak was quantified and the data expressed as area under the 

refractive index curve-adjusted for calculated concentration. The percentage that each peak 

contributed to the total polymer distribution was calculated based on a total of 100 %. Replicate 

analysis of calibration standards indicated reproducibility of ± 3 %, which is well within the 

limits of the technique. 
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CHAPTER 3 

 RESULTS AND DISCUSSION 

The structure of mannan from the yeast form of C. albicans is well known but there are 

very few reports on the structure and composition of the C. albicans hyphae mannan.49 This is 

due, in part, to the fact that the classical method for mannan isolation from the yeast is not 

effective in isolating mannan from C. albicans hyphae. 

In this study, our aim was to develop a method capable of isolating mannan from both the 

yeast and hyphal morphologies of C. albicans. Mannan was successfully isolated from the 

hyphal and yeast morphologies of C. albicans employing a simplified procedure which is 

described in Figure 3. This simplified method employs the use of a weak base concentration (50 

mM) or the use of a weak acid (50 mM H3PO4). This is in contrast to the classical method which 

employs a stronger acid. In the classical method, yeast or hyphae are boiled for about 2 to 3 

hours in an autoclave. In this novel method (Figure 3), the boiling times were significantly 

reduced to 15 minutes. This makes the whole extraction process more time and cost effective. 

Also, the likelihood of degradation in the native structure of the mannan was highly reduced 

because of the milder nature of the extraction procedure.  

In this study both 1D and 2D NMR analyses were employed to elucidate the hyphal 

mannan structure. Also, previously published chemical shift assignments, characteristic of 

individual mannosyl motifs in specific side chains, were employed to correlate the groups that 

correspond to the specific resonances observed. From the analysis of chemical shifts of H-1 and 

H-2 for each crosspeak, we are able to assign unique mannosyl repeat units to each resonance in 

the 1D spectrum. Based upon those assignments and integration of the 1D spectrum, it was 
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possible to determine the level of different structural features present in the mannan products. By 

using this approach, it was possible to provide structural assignments both for the acid-stable and 

acid-labile mannan side chains. Based upon these assignments, detailed structural differences in 

isolated cell wall mannan from both the yeast and hyphae C. albicans were made based upon 600 

MHz proton 1D NMR spectra.  

Chemical Shift Analysis 

Specifically the unique chemical shifts of the anomeric proton, H-1, and its neighboring 

proton, H-2, in specific mannosyl repeat units of isolated mannan side chain fragments to the 

chemical shifts of mannosyl repeat units in similar chemical environments in non-degraded, 

intact mannans were correlated. By this approach, it was possible to provide structural 

assignments both for the acid-stable and acid-labile mannan side chains without the time-

consuming degradation and isolation of individual side chain fragments and detailed 2D NMR 

side chain structural characterization studies. Table 2 shows our chemical shift analysis from our 

data between proton (H-1) and proton (H-2) of the mannose units with respect to the isolated 

yeast mannans. From the 2D COSY correlations many structural features can be obtained. 

Mannans typically have a backbone composed of α-(1-6) mannose repeats units and a side chain 

made up of both α-(1-3 and 1-2) mannose repeats units. The chemical shifts at 5.154 ppm and 

5.096 ppm (Tables 2 and 3) for both the yeast and hyphae respectively show the presence of 

repeat units along the backbone of α-(1-6) mannose repeats units.40 For the structural motif Man 

β1-2Man-α1-P the anomeric proton, H-1 of α-Man-1-PO4 which resonates at 5.572 ppm while 

H-2 resonates at 4.221 ppm for the yeast and is characteristic in yeast mannan of C. albicans.40 

This information is important because it defines the Man β1-2Man-α1-P structural motif in the 

acid labile portion of the yeast mannan.  
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The hyphal mannan extracted using this novel method did not exhibit chemical shift at 

5.572 ppm for the H-1 ppm or at 4.221 ppm for the H-2 (Table 3) which according to Lowman et 

al40 represent the presence of Mβ1-2Ma1-P in the acid-labile portion. However, the shifts at 

5.441 ppm (Table 3) show the presence of Man-PO4 for the hyphae and is in line with one 

reported by Lowman et al.40 This shows that the hyphae mannan’s acid labile portion was gone 

or significantly reduced. Similarly other spectral regions in Table 3 can be defined for structural 

motifs containing α-Man and β-Man in the subregions Mb1-2Ma1-2, Man-β1-2Man-β1-2Man-

α1-2, Man-β1-2Man-α1-PO4. 

Table 2: NMR data and structural assignment of C. albicans yeast mannan from this research 

H-1 (ppm) H-2 (ppm) Type Structural Assignment 

5.572 4.221 Yeast mannan Mβ1-2M-α-1-Pa 

5.556 4.204 Yeast mannan Mβ1-2(Mβ1-2)nM-α-1-P 

5.373 4.108 Yeast mannan * 

5.294 4.113 Yeast mannan M-α-1-2M-α-1-2 

5.278 4.131 Yeast mannan α-1-2M-α-1-2M-α-1-2 

5.259 4.102 Yeast mannan M-α-1-2(M-α-1-2)nM-α-1-2 

5.192 3.647 Yeast mannan * 

5.183 4.281 Yeast mannan Mβ1-2M-α-1-2 

5.171 4.301 Yeast mannan Mβ1-2M-α-1-2  *c 
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Table 2: (continued) 

 

H-1 (ppm) H-2 (ppm) Type  Structural Assignment 

5.166 4.269 Yeast mannan Mβ1-2M-α-1-2 

5.154 4.081 Yeast mannan α-6(-2)M-α-1-6(Ma1-2)M-α-1-6(-2)M-α-1-6 

4.941 4.029 Yeast mannan Related to Mα-1-6* 

4.926 4.020 Yeast mannan * 

4.856 4.261 Yeast mannan Mβ1-2Mβ1-2Mβ1-2 

4.854 4.183 Yeast mannan Mβ1-2Mβ1-2Mβ1-2Mβ1-2(3) 

4.833 4.084 Yeast mannan Mβ1-2M-α-1-P 

4.785 4.058 Yeast mannan Mβ1-2M-α-1-2 

a  α = alpha; β = beta; M = mannan; mannosyl repeat unit used for the assignment is shown in 

BOLD; 

P = phosphate linkage group, 

b nd = crosspeak not detected, chemical shift taken from the 1D spectrum only 

c * indicates uncertainty in the assignment 
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                    Table 3: NMR data and structural assignment of C. albicans hyphal mannan from this research 

 

H-1 (ppm) H-2 (ppm) Type Structural Assignment 

5.441 3.661 Hyphal mannan M-α-1-P 

5.441 ndb Hyphal mannan  

5.377 4.112 Hyphal mannan α-1-2M-α-1-3M-α-1-2 

5.376 4.107 Hyphal mannan * 

5.291 4.120 Hyphal mannan * 

5.289 4.121 Hyphal mannan * 

5.277 4.137 Hyphal mannan * 

5.277 4.133 Hyphal mannan * 

5.253 4.117 Hyphal mannan * 

5.192 3.656 Hyphal mannan * 

5.192 3.651 Hyphal mannan * 

5.192 3.608 Hyphal mannan * 

5.162 4.267 Hyphal mannan * 

5.162 4.266 Hyphal mannan * 

5.120 4.030 Hyphal mannan * 

5.096 4.018 Hyphal mannan -6(M-α-1(-2M-α-1)n-2)M-α-1- 

5.096 4.013 Hyphal mannan * 

5.071 4.077 Hyphal mannan * 

5.071 4.077 Hyphal mannan * 

5.055 4.208 Hyphal mannan α-1-3M-α-1-2 
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Table 3: (continued) 

 

H-1 (ppm) H-2 (ppm) Type  Structural Assignment 

5.054 4.210 Hypha mannan * 

4.928 4.014 Hyphal mannan M-α-1-6 

4.928 4.012 Hyphal mannan * 

4.915 3.991 Hyphal mannan α-1-6M-α-1-6 

4.855 4.268 Hyphal mannan * 

4.855 4.265 Hyphal mannan * 

4.852 4.186 Hyphal mannan * 

4.850 4.162 Hyphal mannan * 

a  α = alpha; β = beta; M = mannan; mannosyl repeat unit used for the assignment is shown in 

BOLD; 

P = phosphate linkage group, 

b nd = crosspeak not detected, chemical shift taken from the 1D spectrum only 

c * indicates uncertainty in the assignment 

 

Results from the 50 mM NaOH Extraction Method 

Yeast and hyphae were extracted using 50 mM NaOH in 3 separate experiments. 600 

MHz NMR spectra were collected for each of the extracted mannan samples. Figure 4 represents 

a typical spectra resulting from the mannan isolated from the yeast form of C. albicans. The 

resonances for both the acid-stable and the acid-labile portions of the carbohydrate were 

consistent with mannan isolated by the classical method. In each of the yeast mannan analyses, 
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Table 2 was employed to aid in the resonance assignments. The overlapping doublet resonances 

at 5.556 and 5.572 ppm are characteristic of -2Man1- repeat units in short and long side chains 

attached to the phosphodiester group in the acid-labile portion40 and this is observed in our 

isolates (Table 2).  Resonances at 5.294, 5.278, 5.259, 5.183, 5.171, and 5.166 ppm indicate the 

presence of side chains containing -2Man1- repeat units and these resonances are a close match 

to the one reported by Lowman et al.40 Resonances at 5.154 and 5.072 ppm arise from -6-

Man1- repeat units in the backbone containing (1-2)-linked side chains40 and this is also present 

in Figure 4 and Table 2. The resonance at 4.856 ppm is characteristic of multiple -2Man-1- 

repeat units in a side chain and this is in close agreement with one reported by Lowman et al.40 

The resonance at 4.833 ppm is characteristic of the Man1- terminal repeat unit in a side chain of 

the acid-labile portion while the resonance at 4.785 ppm is characteristic of the same terminal 

repeat unit in the acid-stable portion40 and these were observed in our data showing the presence 

of Man1-terminal repeat unit as shown in Table 2 and in Figure 4.  

 

Figure 4: A typical NMR spectrum of the anomeric proton spectral region of C. albicans yeast 

mannan isolated with 50 mM NaOH 
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Our novel method with 50 mM NaOH resulted in the successful isolation of mannan from 

the hyphae form of C. albicans as shown in Figure 5.  Analysis of Figure 5 shows that there is a 

complete loss of the long chain acid-labile portion, which is readily evident due to the complete 

absence of the doublet resonances 5.556 and 5.572 ppm.  This demonstrates that the structure of 

the hyphal mannan is different from that of the yeast mannan. It was originally thought that the 

hyphal mannan would be longer and more complex than the yeast mannan but our data shows 

otherwise. Mannan extracted from hyphae with the novel method exhibits resonances for the 

acid-stable portion predominantly, but the resonances were reduced in height compared to the 

acid-stable portion of the yeast mannan. The acid-labile portion is only minimally observed or 

not observed at all in the hyphae (Table 3 for hyphae NMR assignments). The overlapping 

doublet resonances at 5.556 and 5.572 ppm characteristic of -2Man1- repeat units in short and 

long side chains attached to the phosphodiester group in the acid-labile portion of the yeast 

mannan40 are not present in the hyphae spectra. A very small doublet resonance at 5.551 ppm 

(arrow in Figure 5) for a Man1- repeat unit attached to the phosphodiester linkage is observed 

in some of the hyphae spectra suggesting that the mild NaOH conditions may be hydrolyzing 

some or all of the unique, smaller acid-labile portions of the hyphal mannan.  Clearly the acid-

labile portion was structurally different in the hyphae compared to the yeast mannan. In addition, 

several of the long-chain repeat units characteristic of content in the yeast mannan were not 

observed in the hyphal mannan suggesting the presence of different, shorter side chain structures 

in the acid-stable portion for the hyphae compared to the yeast. 
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Figure 5: Proton anomeric region of C. albicans hyphal mannan isolated with 50 mM NaOH. 

The black arrow indicates a Man1- repeat unit attached to the phosphodiester linkage. 

All replicate extraction experiments provided similar spectra for the mannan isolated 

from yeast and hyphae supporting our conclusion that the novel extraction protocol did not 

impact the structural results reported here for yeast and hyphal mannan.  While the NMR spectra 

from each of the different extraction experiments showed similar isolates with slight variations in 

composition, there was no evidence of any major differences in the chain compositions.  

 

2D COSY NMR Analysis 

The 2D COSY NMR (Two Dimensional Correlated Spectroscopy) spectrum of the full 

carbohydrate region for yeast and hyphae mannan is shown in the left hand of Figures 6 and 7. 

The expanded region (red square) shows the individual crosspeaks for correlations between 

neighboring H-1 and H-2 for each unique mannosyl repeat unit. From the analysis of chemical 

shifts of H-1 and H-2 for each crosspeak, it was possible to assign unique mannosyl repeat units 

to each resonance in the 1D spectrum as described in the chemical shift analysis above. Based 
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upon those assignments and integration of the 1D spectrum, the level of the various structural 

features can be estimated. A comparison of Figures 6 and 7 shows that yeast mannan is more 

complex than that of the hyphae mannan. which may be due to the absence of the acid-labile 

portion in the hyphal mannan indicated by the disapperance of the peak at 5.556 ppm. 

 

Figure 6. 2D COSY 600 MHz NMR spectrum of yeast mannan expanded to show detailed 

correlations between the anomeric proton spectral region and the rest of the carbohydrate 

spectral region  

 

 

Figure 7. 2D COSY 600 MHz NMR spectrum of hyphae mannan expanded to show detailed 

correlations between the anomeric proton spectral region and the rest of the carbohydrate 

spectral region  
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Results from the 50 mM H3PO4 Extraction Scheme 

Phosphoric acid (H3PO4) was investigated as a possible substitute for sodium hydroxide 

for the extraction of mannan from the cell wall of the yeast and hyphal C. albicans. The use of an 

acid for the extraction procedure has the potential to deplete or take away the acid labile portion. 

Therefore the use of an acid should have no or little effect on the structure since there will be no 

acid labile portion for it to deplete in the first place. 

The mannan resulting from the hyphal cell wall through the use of 50 mM H3PO4 is 

shown in Figure 8. Again the overlapping doublet resonances at 5.556 ppm and 5.572 ppm 

characteristic of the -2Man1- repeat units in the yeast40 were not observed in the mannan 

spectra. This supports the results that were observed for mannan extracted using 50 mM NaOH. 

There were slight differences such as the small doublet at resonance 5.551 ppm observed in 

Figure 5 which was not observed in the acid-extracted mannans for hyphae. The spectra for the 

samples are shown in Figure 8. For the spectra in Figures 8B and 8C respectively, there was a 

large amount of mannose monomer as seen from the large peak at 4.22 ppm. 
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The extraction of mannan from the yeast form of C. albicans is shown in Figure 9. For the 

yeast, it was discovered that the mannan in Figure 9C was just a residue while the spectrum for 

Figures 9A, 9B and 9D did resemble a good yeast mannan. The overlapping doublet resonances at 

5.556 and 5.572 ppm, characteristic of -2Man1- repeat units in short and long side chains 

attached to the phosphate diester group in the acid-labile portion in the yeast40 (Table 2) were 

present. Figure 9A and Figure 9B were not great mannan samples when compared to the mannan 

from both the yeast and hyphae isolated using 50 mM NaOH solution, due to the presence of a 

large amount of material called glucan, but with the large doublet peak at 4.22 ppm, this may 

actually be a monosaccharide instead of a polymer. In short, even though the acid-extracted 

Figure 8. Comparison of the 600 MHz proton NMR spectra of mannans isolated with 50 

mM H3PO
4
 from yeast and hyphae C. albicans. Spectra for Figures 8A, 8B and 8C are all 

hyphae mannan from the same extraction. 
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mannan also had the same NMR fingerprint as the base extracted mannan, it does not work 

effectively well as compared to the base extracted mannan because materials like glucans start to 

appear in the spectrum when the extraction solution as an acid. Even the peak at 5.200 ppm in 

Figure 9D is reduced compared to that of Figures 9A and 9B. 

      

 

 

Distinct Structural Differences Between Yeast and Hyphal Mannan 

From this work, it was confirmed quantitatively, that the hyphal mannan is significantly 

different from the yeast mannan. Table 4 compares structural features of yeast and hyphal 

mannans.  The structures of these two mannans are clearly different.  The acid labile portion of 

the hyphal mannan contains only one mannosyl repeat unit attached to the phosphate diester 

linkage in place of the longer chains observed in the yeast mannan.  

Figure 9. Comparison of the 600 MHz proton NMR spectra of mannans isolated with 50 mM 

H3PO
4
 from yeast and hyphae C. albicans. Figure 9A is just a residue, while Figures 9B, 9C 

and 9D are all yeast mannan from the same extraction.  
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Also, the composition of the acid stable portion is different between the two mannan 

isolates.  The percentages in Table 4 were generated for RU (Repeat Unit) composition of the 

side chains in the yeast and the hyphae.  A comparison was made in terms of the percent of each 

side chain RU type relative to the total amount of RU’s, total of side chain and back bone RU’s. 

For example, as the acid stable portion is about 94 % in the yeast mannan, it was found out that it 

was more that 99 % in the case of the hyphae mannan. Also, while the acid labile portion of the 

yeast was 6 %, it was only about 1 % in the case of the hyphae mannan. This is a confirmation 

that the acid labile portion of the hyphae mannan is either completely missing or significantly 

reduced. Again from Table 4, while the yeast mannan contained about 33 % dimers (Mβ1-2Mα1-

PO4) and 65 % trimers (Mβ1-(2Mβ1)n2Mα1-PO4) and long chain acid labile portions, the hyphae 

did not contain any at all, represented by 0 %.  

However, the hyphal mannan contained about 100 % Mα1-PO4 while only 2 % was seen 

in the case of the yeast mannan. The significance in the structure of both the yeast and hyphae 

mannan is also clearly evident in the case of the backbone to side-chain ratios. It was discovered 

that the hyphae mannan is only about 28 % in terms of the backbone to side chain ratios relative 

to the yeast mannan that is 4.3:10 compared to 15:10. This quantitative information is very 

important because it shows the actual amount of the different units in the mannan polymer of 

both the C. albican yeast and hyphae. 
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Table 4: A quantitative comparison of hyphae and yeast mannan from Candida albicans 

 

The unique structural differences in the yeast and hyphae mannans were put together in a 

form of a diagram and are presented in Figure 10. It is evident from Figure 10 that while the 

yeast mannan has some considerable amount of the acid-labile portion present, the hyphae 

mannan has just about a fraction of its acid-labile portion present which is true for all the 

extracted mannans. 

Structural Information Yeast Hyphal 

Acid Stable Portion 94 %  99 % 

Acid Labile Portion 6 % < 1 % 

Acid Labile Portion 

 

Mα1-PO4 2 % 100 % 

Mβ1-2Mα1-PO4 33 % 0 % 

Mβ1-(2Mβ1)n2Mα1-PO4 65 % 0 % 

Acid Stable Portion 

 

1-3Mα1-2 in side chains 12 % 7 % 

-2Mα1- in side chains 17 % 41 % 

Mβ1-2Mα1-2 5 % < 1 % 

Mβ1-2Mβ1-2Mα1- 5 % 24 % 

Backbone-to-Side chain Ratio 15:10 4.3:10 
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Figure 10: Diagrammatic presentation of the structural differences in yeast (10A) and hyphae 

(10B) mannans isolated. 

GPC Analysis on Mannans Isolated with 50 mM NaOH 

 Gel Permeation Chromatography depends solely on the molecular size of the polymer. 

GPC is a powerful tool for determining the size and molecular weight of a polymer as well as the 

polymer distribution in solution. GPC was employed to confirm MW differences between 

hyphae and yeast mannan. NMR indicates a difference in the composition that should provide a 

large difference in MW for these two sources of mannan. Table 5 shows molecular weight as 

well as the polydispersity we obtained for both yeast and hyphae mannan isolated with 50 mM 

NaOH. 
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The hyphae mannan was found to be about 70 % smaller in terms of molecular weights 

than the yeast mannan and as well as narrower polydispersity than the yeast mannan. Figure 11 

shows the polymer distribution for the yeast and hyphae mannans. The GPC data correlate well 

with the NMR data as smaller molecular weights for the hyphal mannan maybe a result of the 

significant or complete loss of the acid-labile as was already shown by the NMR data. 

Table 5: Chromatographic analysis of C. albicans yeast and hyphae mannan with 50 mM NaOH 

 

 
C. albicans yeast 

Reference mannan 

C. albicans yeast 

mannan 

C. albicans hyphae 

mannan 

 

MW x 105  (D) 

 

8.76 

 

6.50 

 

1.15 

 

Polydispersity 

(MW/Mn) 

 

 

6.30 

 

5.90 

 

1.70 
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The refractive index detector (solid blue, black and red) displays the sample 

concentration as a function of elution volume, which provides information on polymer 

distribution. The blue and black lines are for the hyphal mannan while the red is for the yeast. 

It was found that the hyphal mannan molecular weight was 1.15 x 10
5

 D while that of the 

yeast mannan was 6.5 x 10
5

 D. Therefore the hyphae mannan is about 70 % smaller than the 

yeast mannan. This difference in the molecular weights between the yeast and hyphal mannan 

correlates with the loss of the acid-labile portion in the hyphal mannan of C. albicans. 

 

Figure 11. Polymer distribution of C. albicans yeast and hyphal mannan from C. albicans 

SC5314 with 50 mM NaOH solution. 

 

 

 

Retention volume 
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GPC Analysis on Mannans Isolated with 50 mM H3PO4 

Gel permeation chromatographic analysis was conducted on the mannan extracted with 

50 mM H3PO4. Table 6 shows the results we obtained. Though it is clear from the Table 6 that 

there is not a significant difference between the yeast and hyphae mannan, one conclusion we 

can draw from this experiment is that the hyphal mannans were smaller than the yeast mannan in 

terms of the molecular weights. The similarity in molecular weights of the yeast and hyphal 

mannans may be as a result of the depletion of the acid labile portion of the yeast mannan by the 

acid which therefore reduces its size to almost that of the hyphal mannan, example 4.53×105 D 

for hyphae compared to 4.99×105 D for the yeast. 

Table 6: GPC analysis of yeast and hyphae mannan with 50 mM H3PO4 

Sample ID 

 

Molecular Weight 

         (×105) 

Polydispersity 

    (MW/Mn) 

% Recovery 

 

Hyphal mannan 

 

4.53 

 

1.46 

 

10.7 

Hyphal mannan 2.95 8.45 7.3 

Hyphal mannan 2.94 4.6 12.0 

Yeast mannan 4.99 1.3 7.2 

Yeast mannan 3.61 5.7 4.75 

Yeast mannan               5.41                                    13.4                2.2 
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Dialysis Experiment 

In both the yeast and hyphal base extracted mannans, the information or results from both 

the NMR and the GPC data showed the presence of low molecular weight materials. To remove 

the low molecular weight materials dialysis was employed with a 1000 molecular weight cut off 

membrane. Both NMR and GPC data from the dialysis experiments are as shown in Figure 12. It 

was determined that the dialysate bath samples A and B were mostly proteins with smaller 

amounts of sugar monomers. The mannan sample from the yeast, A, was determined to contain 

both glucosamine and mannose but did not contain glucose sugars. However, the hyphae samples 

contained all three monomers glucose, glucosamine and mannose units.  

For the dialysis experiment, about 10 mg of each of the yeast and hyphae mannans were 

weighed and distilled water was added to dissolve it and was then put in a dialysis tube with a 

1000 molecular weight cut off. It was then placed in a 200 mL beaker containing distilled water. 

It was stirred overnight and the water in the beaker as well as the solid residue left behind in the 

dialysis tube were frozen to -80 oC, lyophilized to dryness and finally GPC and 1H NMR analysis 

was performed on them. 

The presence of the glucosamine might be a result of the hydrolysis of chitin by NaOH 

during the mannan isolation process. The absence of glucose in the yeast isolate is interesting as 

it might be as a result of the isolation scheme. From the NMR spectra for Figure 12C and Figure 

12D, it was determined that both mannans in Figure 12 which represents the yeast and hyphae 

mannan isolates respectively had considerable amounts of protein and the anomeric proton 

regions are consistent with the mannan structures previously seen for both the yeast and hyphae 

and that there were no significant changes observed in the mannan structures. Figure 12E is the 
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NMR spectrum for water insoluble mannan from the hyphae ad it appears to be predominantly 

protein with no evidence for mannan components in significant amounts. 

 

 

 

 

 

GPC Analysis on Both Yeast and Hyphae Dialyzed Mannans 

 

Comparing the molecular weights of the yeast and hyphae mannans in Table 7, it is clear 

that the hyphal mannan is smaller than the yeast mannan. From the data, it was estimated that the 

molecular weight of hyphal mannan is 47 % lower than yeast mannan. Also, the hydrodynamic 

volume of hyphal mannan is about 22 % smaller than yeast mannan, indicating that hyphal 

mannan is a smaller molecule in solution. Interestingly, the Rh values indicate that hyphal 

Figure 12. Comparison of the 600 MHz proton NMR spectra of mannans isolated with 50 

mM H3PO
4
 from yeast and hyphae C. albicans. Spectrum 12B, 12E and 12D are all hyphae 

mannan whiles 12A, and 12C are for the yeast mannan 
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mannan has a more rigid structure than yeast mannan. This suggests that the absence of the acid 

labile portion in hyphal mannan may impact the flexibility of the hyphal mannan. The 

polydispersity and the intrinsic viscosity were identical in both samples. The Mark Houwink (a) 

value (which is the slope of linear relationship between log intrinsic viscosity and log molecular 

weight) was determined to be about 147 % higher in hyphal mannan as compared to the yeast 

mannan. 

Table 7: GPC analysis on both dialyzed yeast and hyphae mannan with 50 mM NaOH 

 Yeast mannan Hyphal mannan % change from yeast mannan 

Mwa 2.61 x 105 1.36 x 105 -47.96 

MW/Mnb 2.58 2.50 -1.92 

IVc 0.20 0.19 -7.17 

Rhd 7.77 6.04 -22.24 

   Mark-Houwink 

(a)e 

0.461 1.12 142.95 

a) a. Mw = molecular weight in Daltons. 

b) b. Polydispersity reflects the polymer distribution. 

c) c. Intrinsic viscosity is a measure of a polymer’s contribution to the viscosity of a solution. 

d) d. Hydrodynamic volume is the volume of a polymer in solution. 

α - slope of the linear relationship between log intrinsic viscosity and log molecular mass ([η]  
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 A GPC chromatogram for yeast and hyphal mannans was obtained as presented. The red 

plot represents the C. albicans hyphal mannan while the black plot is yeast mannan. In Figure 13, 

the red plot is shifted to the right indicating a lower molecular weight polymer as compared to 

the black plot. This is an indication that the yeast mannan is of higher molecular weight than the 

hyphal mannan and this is also consistent with the data reported in this thesis. 

 

 

 

 

 

 

Figure 13. Polymer distribution of C. albicans yeast and hyphal mannan from C. 

albicans SC5314 using 50 mM H3PO4 solution. The chromatograms were produced by 

high performance GPC analysis in aqueous solution 

 

Retention volume 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

The New Method for Mannan Isolation 

A new method for the isolation of mannan from C albicans hyphae was developed in this 

work.  The new method enabled isolation of mannan from hyphae where the classical isolations 

scheme did not allow for isolation of significant quantities of mannan. Using the new extraction 

method, it was possible to isolate both yeast and hyphal mannans. It was determined that the 

structure of mannan from the hyphal cell wall is less complex than the mannan from the yeast 

cell wall. This work provided a rapid mannan isolation method which was successful for the both 

the yeast and hyphae morphologies of C. albicans and may potentially be employed on many 

other yeast species as well. To the best of our knowledge, this is the first successful isolation of 

mannan from the hyphal morphology of C. albicans, in quantities sufficient to allow for the 

elucidation of novel structural information. As the method was successful with both 

morphologies, it allowed the direct comparison of the mannan structure. 

C. albicans Yeast Mannan 

In terms of the yeast mannan, it was found that the yeast mannan of C. albicans has both 

acid stable as well as acid labile portions. It has long side chains in the acid labile portion of the 

mannan. In addition to these features, it was discovered that the yeast mannan did not exhibit 

evidence for Ma1-PO4 side chains in the acid labile portion. The average molecular weight for 

the yeast mannan was determined to be 6.5×10
5

 D and it has a higher polydispersity than that of 

the hyphae mannan. 
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C. albicans Hyphal Mannan 

It was found that the hyphae mannan of C. albicans did not contain long side chains in 

the acid labile portion. In addition to this, it had very little or no acid labile portion containing 

only a trace amount of Ma1-PO4 and also overall, the hyphal mannan has a narrower 

polydispersity than the yeast mannan. Its molecular weight was determined to be 1.15×10
5

 D.  

Comparison of Acid Versus Base Extraction Method 

Using 50 mM NaOH or 50 mM H3PO4 solutions result in the isolation of hyphal mannan 

with a structure similar to hyphal mannan, that is, the hyphal mannan isolated in both cases show 

evidence of very little or the complete absence of acid-labile component while in both cases the 

acid stable portion was retained. Thus the hyphal mannan is structurally distinct from yeast 

mannan independent of the isolation procedure. However, the NaOH method provides a ‘cleaner’ 

isolate, which is preferable, that is, while the base extracted materials contains predominantly 

mannan, the acid extracted materials contains mannan as well as other unwanted 

macromolecules like chitin and lipids. The issue of low molecular weight materials which was 

observed in all the GPC data obtained was resolved using a 1000 MW cut off membrane in a 

dialysis experiment which yielded a clean mannan for analysis. Utilizing GPC and NMR 

techniques, it was discovered that the yeast mannan is still complex, and has a higher molecular 

weight than the hyphal mannan of C. albicans. In fact, it was determined that the hyphal mannan 

molecular weight is about 50 % less that of the yeast mannan. Specifically the yeast mannan has 

a molecular weight of 2.61 x 10
5
 D while that of the hyphal mannan is 1.36 x 105 D. That is, the 

yeast mannan still has both the acid-labile and acid-stable portions intact but the hyphal mannan 

had only the acid-stable portion present.  
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Final Conclusion 

         A new method has been developed which is not only capable of isolating mannan from the 

yeast form of C. albicans, but it is also capable of isolating mannan from the hyphal C. albicans. 

This discovery has helped us to gain new insight into the structure and molecular weights of both 

the yeast and hyphal mannans. It was discovered that the hyphal mannan is structurally less 

complex than the yeast mannan in that, while the yeast mannan has both the acid-stable and the 

acid-labile portions present, the hyphal mannan has very small or sometimes not acid-labile 

portion present. The molecular weight as determined using the GPC was found to be 1.36 x 105 

D for the hyphal mannan and also 2.61 x 10
5
 D for the yeast mannan. The absence or significant 

reduction in the acid labile portion of C. albicans hyphal mannan may be crucial to the virulence 

and/or pathogenicity of this opportunistic fungus. 

Future Work 

        Further experiments should be carried out to determine how the significant decrease or the 

complete loss of the acid labile portion in the hyphal mannan may contribute to its virulence 

nature. Also the Rh values suggests that the hyphal mannan has a more rigid structure which 

might have a significant impact on the flexibility of this material and hence the nature of this 

impact must also be investigated. Also, it is proposed that different concentrations of acid or base 

should be used to see whether more structural informations can be obtained and finally, the new 

method should be employed or tried on other pathogenic cells to see if it can be used to extract 

mannans from those species too. 
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APPENDICES 

APPENDIX A: Proton NMR region of C. albicans hyphal mannan using 50 mm NaOH solution 

from the first replicates 
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APPENDIX B: Proton NMR region of C. albicans yeast mannan using 50 mm NaOH solution 

for the first replicates. 
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APPENDIX C: NMR spectrum for both C. albicans yeast and hyphal mannan using 50 mM 

NaOH solution from the second replicates. Spectrum A and B are for the yeast mannan whiles 

C and D are for the hyphal mannan. Spectra E is a standard yeast mannan from Sigma run in 

DMSO. 
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APPENDIX D: NMR spectrum for both C. albicans yeast and hyphal mannan using 50 mM 

NaOH solution from the third replicates. Spectrum A is for hyphal mannan whiles B and C are 

for the yeast mannan 
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APPENDIX E: NMR spectrum for C. albicans hyphal mannan using 50 mM H3PO4 solution 

from the fourth replicates. Spectrum A and B were obtained using the acid whiles spectrum C 

is from the extraction using 50 mM NaOH to serve as a comparison 

 

 

 

 

 

 



  

60 
 

APPENDIX F: NMR spectrum for C. albicans yeast mannan using 50 mM H3PO4 solution from 

the fourth replicates. Spectrum A and B both represents the yeast mannans obtained using the 

acid extraction method. 
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