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ABSTRACT 

 

Functionalized Silica Gel for Adsorption of Cesium from Solution 

by 

Kenneth Marshall Seaton III 

 

Mesoporous silica gel containing embedded phosphotungstic acid (PTA) was synthesized by sol-

gel co-condensation of tetraethyl orthosilicate with PTA in acidic media. The obtained material 

had high Brunauer-Emmett-Teller Theory (BET) surface area and pore volume. A characteristic 

band of the Keggin structure of PTA was present in its FT-IR spectrum while its X-ray 

diffraction patterns were absent. This proved the embedding of PTA on a sub-molecular level 

and not as a second phase. Acidic sites were determined by neutralization with base in aprotic 

solvent, followed by titration of the remaining base with an acid. The material demonstrated high 

adsorption capacity of Cs. Kinetic studies showed that the adsorption data correlates strongly 

with the pseudo-second order model. At higher temperatures, the nature of adsorption fit the 

Langmuir model extremely well. The obtained results can be used in the development of an 

effective adsorbent for clean-up of water contaminated by radioactive 137Cs. 
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CHAPTER 1 

INTRODUCTION 

Danger of Radioactive Cesium 

 Cesium, a member of the alkali metal family, has only one naturally occurring isotope, 

which is 133Cs. Several radioisotopes of cesium exist, such as 135Cs and 134Cs, but one 

radioisotope of Cs is of particular danger: 137Cs. 137Cs is not produced naturally in any significant 

amount, but is a byproduct of nuclear fission in reactors and weapons testing. Due to nuclear 

weapons testing (which occurred up to the 1980’s) and relatively recent industrial disasters, 137Cs 

has been emitted into different layers of the atmosphere as well as the environments surrounding 

the release. To illustrate the danger resulting from 137Cs contamination, if less than two grams of 

137Cs were to be distributed evenly over Central Park in New York, the zone would be 

considered a radioactive exclusion zone and therefore uninhabitable.1 Recent nuclear accidents, 

namely the Chernobyl and Fukushima disasters, released high levels of radiation into the 

environment, up to 40,000 kBq m-2 in the case of the Chernobyl incident.2 Due to 137Cs being the 

most abundant long-lived radionuclide released by nuclear reactors and having a half-life of 

approximately 30 years, the effects of its presence in the environment can be observed long after 

release.  

 Large-scale nuclear accidents are not the only source of 137Cs, however. Numerous other 

small releases have been recorded in various parts of the world. Process accidents, which occur 

during fissile materials processing, have contributed to deaths and hospitalizations due to 

radiation exposure. Radiation therapy units contain 137Cs and many hospitals use it to calibrate 

equipment, but irresponsible use or improper storage can lead to emission of harmful radiation, 
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resulting in hospitalization and sometimes death. Due to this possibility, the potential for 137Cs to 

be used by terrorists exists and must be addressed accordingly. Exposure to high energy radiation 

from radionuclides results in irreversible damage to the human body, therefore measures to treat 

and effectively remove 137Cs from the environment are extremely important. 

 Although 137Cs itself, when concentrated in human tissue, can have adverse effects on the 

human body, it is the radiation the radioisotope emits that is of particular concern. 137Cs degrades 

by very high-energy pathways, producing β and ɣ radiation.3 β radiation is lower in energy and is 

unable to penetrate through to the organs, while ɣ radiation passes through the entire body, 

resulting in radiative damage to tissue. However, when internally exposed to radiocesium, lower 

energy radiation can cause sufficient damage.3  

An area of farmland in Japan was studied after radionuclide contamination by the 

Fukushima meltdown after the incident on March 11th, 2011, and the presence of radiocesium 

was subsequently monitored. It was found that rice from fields located in the Fukushima 

Prefecture retains radiocesium in concentrations that exceed the Japanese limit of 100 Bq kg-1 for 

grains.4 In addition, the factors related to soil-to-fruit transfer were studied by Velasco, et al. to 

demonstrate the potential for radiocesium to enter the human diet.5 Cesium exists in soil 

solutions as a hydrated cation with very little tendency to form insoluble complexes, having 

chemistry closely resembling that of potassium, resulting in high mobility and the potential to be 

absorbed by plant roots and translocated to other plant parts.5 The bioavailability and mobility of 

137Cs is of significant concern in the chemistry community due to the possibility of entering the 

food chain, and action must be taken to remedy the problem of radiocesium contamination in the 

environment. 
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Cesium Removal 

Most compounds of cesium, like those of other alkali metals, are generally very soluble 

in aqueous media. Other radionuclides released into the atmosphere following nuclear accidents, 

such as 60Co and 90Sr, form very insoluble compounds with many different anions, making 

separation following their release relatively simple. The environmental mobility of the Cs+ ion is 

very high, which causes the contaminant to be easily introduced into food or potable water. Due 

to other alkali metals’ tendency to compete with cesium for adsorption sites, highly specific 

adsorbents are needed for effective removal.  

Because the removal of cesium is inherently difficult, many people have tried to find 

solutions to this problem. Existing technologies and current research for removing 137Cs from 

soil and water fall into five general categories: solvent extraction, phytoextraction, precipitation, 

ion exchange, and adsorption.6-8 However, the first four approaches have insufficient 

effectiveness due to low selectivity and high cost. The adsorption method has attracted a great 

deal of attention due to rapid separation, high thermal and radiation stabilities of the adsorbents, 

and reduced volume of wastes.  

Inorganic adsorbents yield selective separation of trace radioactive nuclides in solutions 

containing a high concentration of salts. In addition, inorganic adsorbents exhibit several 

desirable properties including high thermal and radiation stability.9 A number of inorganic 

adsorbent materials have been investigated including natural and synthetic materials. Natural 

materials such as clay minerals, soils, sediments and rocks have shown adsorptive characteristics 

towards Cs, including pure minerals such as illite, kaolinite, montmorillonite, bentonite, 

magnesite, phlogopite, granite, sepiolite and goethite. In addition, zeolites including 

clinoptilolite, chabazite, and natural and synthetic mordenite have been applied in cesium 
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removal in wastewaters.9 Wagh et al. successfully synthesized a chemically bonded phosphate 

ceramic (ceramicrete) for nuclear waste immobilization and nuclear radiation shielding.10 To 

accomplish this, they partially replaced potassium by cesium in the struvite structure, thus 

forming a struvite-(K,Cs) mineral. Although these materials demonstrate reasonable adsorptive 

characteristics, they are not feasible for selective and efficient cesium removal due to the weak 

interaction between cesium and the elements on their surface.  

 Ferrocyanides exhibit adsorption properties desirable for cesium removal due to their 

high affinity for cesium as well as relative stability over a large range of pH. Ferrocyanides are 

generally prepared as either a grainy or powdered insoluble solid with reproducible chemical and 

physical properties.11 One drawback, however, is that it is difficult to effectively use insoluble 

hexaferrocyanides on columns because they are composed of very small particles, which 

complicates the separation of saturated adsorbents from liquid waste. Han et al. used copper 

ferrocyanide (CuFC) as an adsorbent, but the CuFC particles used were very small.11 This 

problem was solved by immobilizing CuFC on a support material such as silica gel, which can 

be modified to yield specific characteristics depending on the type of chemistry involved. 

However, the disadvantages accompanied by this approach included a reduced adsorption 

capacity of CuFC by the support materials and kinetics of adsorption being negatively affected.11 

Other methods of membrane separation used in treatment of cesium-containing liquid waste 

include nanofiltration, semipermeable dynamic membranes, ultra-filtration, and membrane 

distillation, but these generally are not as advantageous as the adsorption micro filtration process 

due to high pressures and energy consumptions.12  

 Arguably the most effective among the treatments using ferrocyanides is Prussian blue 

(PB). PB is a dark blue pigment with chemical formula Fe7(CN)18 arranged in a face-center 
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lattice structure with eight water molecules existing in the unit cell. Pharmaceutical grade PB has 

been effectively used to remove cesium from the body of a patient after the Chernobyl disaster in 

1987, as well as in the decontamination efforts after the Fukushima disaster, due to its high 

selectivity towards cesium.13 Nanoparticles of PB have been effectively synthesized in several 

cases and modified in order to yield more desirable characteristics.12 Omura et al. successfully 

dispersed PB nanoparticles in water by modifying their surface.14 Using a spin-coating method, 

fabrication of a thin film with a water-dispersible ink of PB nanoparticles was achieved with a 

film thickness estimated at 40-430 nm.14 Nanocomposites based on functional silica or glass 

matrices containing PB nanoparticles of <10 nm have been shown to exhibit adsorption rates ten 

times higher than bulk analogues and three times higher adsorption capacity.15 Thammawong, et 

al. proposed that PB magnetic nanoparticles (MNP) could be used as an effective new type of 

drug for human body decontamination of cesium pollution. However, this approach has limited 

applicability in environmental chemistry due to the low recovery rate of MNP in drinking water 

streams.16 Chen, et al. applied a PB non-woven fabric in batch and column tests as a method to 

remove soluble cesium from waterworks.17 However, it was found that impurities in drinking 

waters such as humic substances, residual coagulants and residual chlorine could interfere with 

effective cesium removal. 

 Although ferrocyanides demonstrate a high degree of selectivity towards cesium with 

good adsorptive characteristics, these compounds decompose readily into harmful chemicals and, 

more importantly for the purpose of this work, are unstable under radiation. In order to 

successfully remove radioisotopes of cesium from contaminated areas, the adsorbent used would 

need to form strong bonds with cesium, not release toxic compounds, and be stable under heat 
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and radiation. One particular class of compounds fulfilling these characteristics is 

heteropolyacids. 

Heteropolyacids 

 A heteropolyacid (HPA) is a class of acid containing a particular combination of certain 

metals, non-metals, oxygens and acidic hydrogens (Figure 1). The metal in the HPA is known as 

 

Figure 1: The Keggin structure of H3PW12O40 
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the addenda atom, while the central atom (generally a p-block element such as silicon or 

phosphorus) is termed the hetero atom. The heteroatom is bonded to the rest of the structure via 

oxygen atoms, which are linked by the addenda atoms, and the hydrogens are bonded to either 

bridged or terminal oxygens. There are many different configurations of HPAs due to the large 

number of combinations of addenda and hetero atoms, but the focus in this work will be on the 

Keggin structure, HnXM12O40, where X is the hetero atom and M is the metal  

HPAs have become well known for their environmentally friendly nature as solid acids as 

well as their high catalytic activity. HPAs are considered superacids due to their very strong 

Brønsted acidity, being stronger than typical mineral acids such as H2SO4 or HNO3.18,19 For 

catalytic reactions, the catalytic properties of HPAs directly depend on their acidities. In order to 

understand the acidity and thus the catalytic activity of HPAs, the proton sites of the compound 

must be characterized. The Keggin HPA structure has three types of outer oxygen atoms that can 

possibly be protonated: two types of bridging oxygens (M – O – M), as well as terminal oxygens 

(M=O). Due to the increased electron density present on the bridged oxygens, these sites are 

protonated preferentially to terminal oxygens.18  

Solid HPAs are acidic only by the Brønsted definition, and are stronger than typical solid 

acids such as silica, alumina and common zeolites. Acidities of typical solid HPAs of the Keggin 

type are in the order of PTA > SiTA > PMA > SiMA.19,20 PTA (H3PW12O40) is a strong, fully 

dissociated acid in aqueous solution, with the anion remaining deprotonated after receiving two 

or even three additional electrons.21  

Their acidity can be increased further by partial neutralization with different cations, such 

as Na+, K+ and Cs+
, with the solubility of the resulting salt decreasing in the order of Na+ > K+ > 



 
 

19 
 

Cs+
.
22

  Interestingly, when acidic protons are exchanged with Cs+ in PTA, the acidity of the 

compound increases dramatically. This effect is most prominent when the number of Cs atoms 

per PTA molecule is 2.5 (Cs2.5H0.5PW12O40).23  

Due to the high stability of Cs+-HPAs and their selective formation in the presence of 

other alkali metals, these compounds possess great potential for applications in cesium removal. 

Preparing Cs+-HPAs simply consists of adding an aqueous Cs+ salt to an aqueous solution of the 

HPA with stirring, then drying the resulting material. The Cs content on the HPA can be adjusted 

by using different stoichiometric ratios of the Cs+ salt with respect to the HPA.22  

As a part of the successful development of an efficient adsorbent for cesium 

contamination, the acidity of surface sites should be well understood. There are different 

methods to analyze the acidity of solid materials, with the most common of these being 

temperature-programmed desorption and direct titration. The first option for determining the 

acidity of the material is temperature-programmed desorption of adsorbed bases such as 

ammonia or pyridine, which are used as probe molecules. In this method, the relative acidity of 

different sites is obtained from the temperature at which the probe molecule desorbs from the 

material’s surface, with the bond strength of the acidic site and the probe molecule depending on 

the acidity of the individual site. Afterwards, the peak area can be integrated to determine the 

total number of acidic sites present on the surface of the material.24 This method gives precise 

determination, but there are significant drawbacks to using this method. Temperature-

programmed desorption requires very expensive equipment, runs only one sample at a time and 

each sample can take up to an entire day to analyze. Because of this, titration is the most 

convenient method for analyzing the surface acidity of multiple solid samples. In this case 

however, the solid material is unstable in alkaline media due to the presence of PTA in the 
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molecular framework. Consequently, traditional determination of acidity by direct titration is not 

feasible.  

With this in mind, one of the main objectives of this work was to develop methodology 

for titration of a solid mesoporous material unstable in basic media to determine the number of 

surface acidic sites present in the material. 

Incorporation of Heteropolyacids to Silica Gel 

A wide array of chemical syntheses in industry utilize homogeneous acids and bases. 

These generally result in large volumes of hazardous waste being produced, which is coupled 

with high treatment and/or disposal costs. This presents a high demand for cleaner liquid phase 

chemical processes.25 Molybdenum- and tungsten-containing HPAs have found many catalytic 

applications in oxidation, alkylation, esterification, and many other reactions in industry.26 HPAs 

are insoluble in non-polar solvents, making them environmentally friendly and promising 

heterogeneous acid catalysts to replace potentially harmful homogeneous acid catalysts while 

preserving catalytic activity.26,27 However, their low surface area limits their application. HPAs 

have a high degree of Brønsted acidity, but low surface area limits efficiency due to a limited 

number of acid sites for catalytic reactions, and catalytic activity depends directly on the acidity 

of the material.26-28 

With these properties in mind, HPAs, particularly the Keggin-type (H3PW12O40), possess 

a wide array of potential environmental and economic benefits.29 To increase applicability, it is 

necessary to disperse the HPA onto a support with large surface area. Non-basic substances such 

as activated carbon and ion-exchange resins are suitable, but SiO2 is most often used due to its 

high surface area, regular geometry and being essentially inert towards HPAs. Two different 
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routes have been utilized in the bulk of the literature to immobilize HPAs (or polyoxometallates) 

onto porous support: impregnation and co-condensation using the sol-gel technique.27-30  

 Impregnation involves simply introducing the HPA to an already-formed silica structure. 

This technique is simpler but generally results in loss of homogeneity due to structure changes 

and difficulties in achieving high loading percentages.30 In addition, due to the HPA being 

introduced to the surface and not incorporated into the silica structure, it is very soluble in polar 

solvents, thus resulting in a high degree of leaching. These combined attributes lead to low 

stability and activity of the HPAs, resulting in an undesirable material for use in aqueous 

media.30  

The other method of interest is a direct synthesis which utilizes co-condensation using the 

sol-gel method. The sol-gel process involves the formation of a sol and crosslinking to form a 

gel. These reactions are typically carried out using polar solvents such as ethanol, which is 

essential for the primary reactions that take place: hydrolysis and condensation. A step-wise 

polymerization occurs, causing a continual increase of molecular weight of the product, 

eventually forming a three-dimensional highly cross-linked network.30,31 This process often takes 

several days to complete, but the addition of an acid or base catalyst greatly speeds up the 

process and can also affect the physical properties of the product obtained. It should be noted, 

however, that although this process can be carried out in acidic or basic media, HPAs are very 

unstable in basic media. As a result, it is necessary to perform the synthesis in acidic 

conditions.30  

The reaction proceeds via SN2 mechanism (Figure 2). In an acid-catalyzed system, the 

protonation of the oxygen on the alkoxy group causes electron density to be withdrawn from Si, 
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resulting in a nucleophilic attack from a water molecule and the loss of ethanol as a leaving 

group.  

Proceeding the nucleophilic attack, the ethoxy group is replaced with a hydroxyl group, 

which allows condensation to occur between multiple molecules. The resulting material after 

polycondensation is a three-dimensional oxide network.30  

Introduction of HPAs into a silica network involves the co-incorporation of an oxide 

precursor with HPA clusters using the sol-gel technique. By doing this, HPAs are incorporated 

 

 

Figure 2: The acid-catalyzed polycondensation of TEOS 
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into the framework of the material covalently by formation of W-O-Si bonds. This is shown by 

the following equation:  

H3PW12O40 + xSi(OC2H5)4 + 2xH2O → [H3PW12O40]/[SiO4]x + 4xC2H5OH (x=2-5)  

 
In addition, the presence of a surfactant during synthesis yields highly mesoporous materials, 

which is necessary when high surface areas are desired (Figure. 3).  

 

Figure 3: The formation of a porous system using a surfactant in sol-gel synthesis32 

The preparation of materials using a direct synthesis of this type yields materials with 

large pore sizes with a more stable and uniform distribution of active sites, thus enhancing the 

performance of the material, as successfully demonstrated by Li, et al.28,29 In addition, cross-link 

density, porosity and homogeneity can be controlled by using different solvent-removal methods 

and changing the type of catalyst used. Due to a higher control over the resulting product as well 

as the greatly increased stability of the HPA in the prepared material, the sol-gel technique is a 

much more advantageous method of preparation of porous silica materials.29 
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With all of these techniques in mind, the use of phosphotungstic acid incorporated into a 

silica structure via sol-gel synthesis will be employed for effective cesium removal. Tungsten 

HPAs form strong bonds with cesium, so it may be potentially effective in selectively removing 

cesium from aqueous and biological environments. The overall goal of this research project is to 

develop a quantitative method of surface analysis of the adsorbents for accessible and 

inaccessible adsorption sites. First, the material to be used in the adsorption study will be 

synthesized by co-condensation of TEOS and tungsten containing HPAs. In this process, the 

metal oxides will be incorporated into the molecular framework. Surface hydrogens will be 

exchanged with cesium to study any differences in characteristics between the substituted and 

non-substituted material, then the contents of Cs and W will be determined by atomic absorption 

spectroscopy (AAS). The adsorbent will be characterized using FT-IR (Fourier Transform 

infrared spectroscopy), solid-state NMR (nuclear magnetic resonance), TEM (transmission 

electron microscopy) imaging, porosimetry, X-ray diffraction, and thermoanalysis.  Batch 

adsorption tests, column tests and kinetic experiments will be done in order to understand the 

adsorption characteristics of the material. Finally, surface acidity and accessibility of adsorption 

sites will be quantified.  
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CHAPTER 2 

EXPERIMENTAl / METHODOLOGY 

Materials Used 

Precursors for the adsorbent synthesis, tetraethoxysilane (TEOS) and phosphotungstic 

acid hydrate (PTA), were purchased from Acros Organics. (Morris Plains, NJ). Pluronic P123 

with M.W.=5800, a pore-forming agent, was purchased from Sigma-Aldrich (St. Louis, MO).  

Salts used in adsorption studies, CoCl2•6H2O, SrCl2•6H2O, KCl and NaCl were 

purchased from Fisher Scientific (Pittsburg, PA). HF (48%), used for the dissolution of silica, 

was purchased from VWR International, LLC. (Radnor, PA).  

Bases used for acidity determination, pyridine and diphenylamine, were purchased from 

Acros Organics (Morris Plains, NJ.) and J.T. Baker Chemical Co. (Phillipsburg, NJ), 

respectively.  

Common solvents used in this work include acetone, THF and ethanol. Other 

miscellaneous chemicals used were HCl, KBr, Na2CO3 and NH4OH. 

Synthetic Methods 

 The adsorbent H-PTA/SiO2 was synthesized using a slightly modified procedure 

published earlier.33 Two solutions were prepared. Pluronic P123 (50 g) was dissolved in 150 mL 

of ethanol, and separately TEOS (72 g) and PTA (18 g) were dissolved in 50 mL of ethanol. 

Then solutions of TEOS/PTA and 20% HCl (150 mL) were added dropwise simultaneously to 

the solution of the surfactant under stirring. The reaction mixture was refluxed for 24 h. The 
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resulting gel was filtered, washed with deionized water until complete removal of the acid, then 

rinsed with acetone and air dried overnight. The sample was calcined at 500 °C for 5 h.  

Cs-exchanged material Cs-PTA/SiO2 was prepared by mixing 8.2 g of H-PTA/SiO2 with 

100 mL of 0.13 M solution of CsCl. The mixture was stirred overnight, washed by deionized 

water, and air dried overnight.     

Instrumental Characterization 

Elemental Analysis 

Contents of Cs and W in the samples were determined through atomic absorption 

spectrometry (AAS) using a Shimadzu AA-6300 spectrometer (Kioto, Japan). The samples for 

measurement were prepared by dissolution of the materials in 48% HF (VWR International, 

Radnor, PA) followed by neutralization by NH4OH to pH=7. Concentrations of Cs+, Sr2+ and 

Co2+ in solutions after adsorption were measured on the same instrument.   

Chemical stability of adsorbed Cs in acidic and basic media was examined by the 

treatment of Cs-PTA/SiO2 samples (0.1 g each) with 10 mL of 11.6 M HCl and 2.3 M Na2CO3 

solutions for 2 h. Then the contents of leached Cs+ were analyzed by AAS. 

Surface Acidity 

Surface acidity of the samples was determined by reversed titration. Keggin units are 

unstable in aqueous media at high pH, thus the neutralization of acidic sites on the samples was 

conducted in anhydrous THF. The samples were dried overnight at 140oC to remove physically 

adsorbed water molecules. Then 0.1 g of each sample was dispersed in 6 mL of 0.01 M solution 

of pyridine or diphenylamine in dry THF. The mixture was allowed to equilibrate for 18 h at 23 

°C. After equilibration, the solution was decanted from the solid, diluted by 100 mL of DI water 



 
 

27 
 

and titrated by 0.01 M HCl until pH=3. Obtained data were compared to the blank solution 

prepared without the solids. The data were recorded on an Orion 350 pH meter (Thermo 

Scientific, Pittsburg, PA). The volumes occupied by pyridine and diphenylamine molecules were 

calculated using Spartan software and found to be 93 and 196 Å3, respectively.  

Spectral Analysis 

FT-IR spectra were recorded in KBr pellets on a Vertex 70/80 FT-IR spectrometer 

(Bruker Optics, Inc., Billerica, MA).  

All solid state NMR spectra were acquired on a Bruker AVANCE 400 spectrometer 

(Rheinstetten, Germany). 29Si spectra were recorded at 79.49 MHz, pulse length: 6 µs, delay 

time: 15 s, number of scans: 50,000. Relative intensities of the signals were calculated by 

deconvolution of the spectra using the Gaussian function on Origin 2016 software. 1H NMR 

spectra were recorded at 400.13 MHz, pulse length: 12 µs, delay time: 2 s. The number of scans 

was 128. Chemical shifts were referenced to external TMS. For recording 31P spectra, the 

experiments were conducted at 162 MHz, pulse length: 14 µs, delay time: 10 s, number of scans: 

1024. Chemical shift was measured in respect to 85% H3PO4. 133Cs spectrum was recorded at 

52.48 MHz, pulse length: 12 µs, delay time: 0.5 s, number of scans: 1024. The standard was 

CsCl solution in D2O. Before measurements, samples were dried at room temperature in a 

vacuum until the weight was constant. 

Structure and Morphology 

Transmission electron microscopy (TEM) images were obtained on a JEOL 1230 

electron microscope (Tokyo, Japan) at 80 kV. Before imaging, samples were dispersed in a 50% 

ethanol solution using a W-385 sonicator (Heat Systems Ultrasonic, Newtown, CT) for 2 min. 
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Porous characteristics were measured on a Quantachrome Nova 2200e porosimeter 

(Boynton Beach, FL). Prior to measurements, the samples were degassed at 300 °C in vacuum 

for 2 h. The Brunauer–Emmett–Teller (BET) surface areas were calculated from the adsorption 

branch of isotherms in the range P/Po=0.2–0.4. Pore size distributions were obtained using 

Density Functional Theory (DFT) method. Micropore volumes were calculated by Saito–Foley 

(SF) method. All calculations were performed using NovaWin v.11.02 software.  

Particle sizes were determined by dynamic light scattering on a Zetasizer Nano ZS90 

(Malvern, UK). The samples were dispersed in water at sonication.  

X-ray diffraction (XRD) patterns were recorded on a Dron 2.0 diffractrometer (St. 

Petersburg, Russia) using an X-ray tube with a copper anode and a nickel filter at 30 kV and 15 

mA. The patterns were collected in the range of angles 2θ from 5 to 40° that corresponds to a 

wave vector (q) values 3.6-27.9 nm-1. The size of the corresponding domain was estimated using 

the Scherrer equation:  

D=Kλ/(βcosθ)                                                                (1) 

where D is the mean size of the ordered domains, K is a proportionality constant with a typical 

value of 0.9, λ is the X-ray wavelength (0.154 nm), β is the line broadening at half-height (taking 

into account instrumental broadening) (rad), θ is the Bragg angle (degrees). 

Thermal Analysis 

Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were 

provided by Robertson Microlit Lab. (Ledgewood, NJ). DSC analysis was conducted on a Pyris 

Diamond differential scanning calorimeter (Perkin Elmer, Waltham, MS) in a sealed pan. TGA 

analysis was conducted on a Perkin Elmer TGA 7 analyzer. The heat rate was 10 °C/min.  
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Adsorption 

Batch Tests 

Adsorption isotherms were constructed using data from the adsorption of Cs+ on H-

PTA/SiO2 at 23, 31 and 39 °C. Portions of the adsorbent (0.1 g) were dispersed in 10 mL of CsCl 

solutions with Cs+ contents of 100, 200, 300, 400 and 500 mg/L. The mixture was incubated for 

2 h at constant temperature in a circulating water bath (Thermo Scientific, Pittsburg, PA). Then, 

the remaining concentrations of Cs+ in the solutions were measured using AAS. The equilibrium 

adsorption of Cs+ (qe, mg/g) was calculated from the difference between the initial and the 

equilibrium (Ce, mg/L) concentrations.  

The adsorption of Sr2+ and Co2+ was studied as described above using SrCl2 and CoCl2 

solutions. In the selectivity study with Na+ and K+, equimolar amounts of NaCl or KCl were 

added to the CsCl solutions and the mixtures were processed at 23 °C as described above. 

Fitting of the linearized form of adsorption isotherm equations to the experimental data 

was performed. For this purpose, the following three isotherm models were used: 

1)     Langmuir model: 

1/qe=1/qm+1/qmKLCe      (2) 

2)     Freundlich model: 

Logqe=logKF+logCe/n                                                   (3) 

3)     Temkin model: 

qe=RTln(ATCe)/bT                                                           (4) 
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where KL is the Langmuir constant (L/mg) related to the energy of adsorption, qe and qm are the 

metal ion concentration on the adsorbent at equilibrium and the maximum of monolayer 

adsorption capacity (mg/g), respectively, Ce is is the equilibrium concentration of the metal in 

the solution (mg/L), KF is the Freundlich constant (mg/g) related to the adsorption capacity, n is 

adsorption intensity, AT is the equilibrium binding constant (L/g), bT is the Temkin isotherm 

constant, R is the universal gas constant, 8.314 J/(mol•K), and T is the temperature (K). 

Kinetic Studies 

The process by which Cs+ ions were removed from the solution by the adsorbent was 

explained using intraparticle and kinetic modeling, which examines the diffusion-controlled and 

rate-controlled mechanism of adsorption, respectively. Information on the diffusion of Cs+ was 

obtained by plotting the adsorption of cesium vs. t0.5 for five initial Cs+ concentrations ranging 

from 100-500 mg/L.  The intraparticle diffusion rates were calculated using the Weber-Morris 

equation:  

qt=kidt0.5 + C       (5) 

where qt is the amount of Cs+ (mg/g) adsorbed at time t (min), kid is the rate constant of 

intraparticle diffusion (mg/(g•min0.5)), and C is the intercept (mg/g) related to the boundary layer 

thickness. The data were obtained as described above, with the exception that the solution 

samples were collected after 5, 10, 20, 40, and 60 min. 

The linear form of the pseudo-first order equation: 

1/qt = k1/qet + 1/qe      (6) 

as well as the pseudo-second-order equation: 

t/qt = 1/k2qe
2 + t/qe      (7) 
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were used to determine rate constants for the adsorption process, where qt and qe are the amounts 

of Cs+ adsorbed at time t and at equilibrium (mg/g), respectively, k1 and k2 are the rate constants 

for pseudo-first order adsorption (min-1) and pseudo-second-order adsorption (g/(mg•min)), 

respectively. Graphs were obtained for the pseudo-first-order model by plotting 1/qt vs. 1/t, while 

plots of t/qt vs. t were used to obtain graphs for the pseudo-second-order model. 

Column Tests 

Column tests were conducted using CsCl solutions of 100, 200, 300, 400 and 500 mg/L 

concentrations. The solutions passed through a column containing 0.1 g of H-PTA/SiO2 mixed 

with sand as a filler with a flow rate of 1.5 mL/min. Filtrate samples were collected every 2 mL 

and analyzed by AAS. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

Synthesis and Composition 

Gelation of the solution started about 1 h after the start of reflux. Yield of the product was 

37.3 g, corresponding to a 96% conversion of TEOS and PTA to the product. Content of PTA in 

the obtained material was determined from analysis of tungsten (Table 1) using AAS and was 

found to be 18.4% (0.064 mmol/g). After Cs exchange, the material was found to contain 17.1% 

of PTA (0.059 mmol/g) and 2% of Cs (0.15 mmol/g). Thus the molar ratio Cs/PTA after 

adsorption was 2.54.  

Cs-PTA/SiO2 was relatively stable in acidic and basic media. The leaching of Cs+ in HCl 

solution was 4.6 mg/g while in Na2CO3 solution it was only 3.5 mg/g. A more alkaline solution 

was not used due to the low stability of the silica network at high pH media.  

Table 1: Characteristics of H-PTA/SiO2 and Cs-PTA/SiO2 

Characteristic H-PTA/SiO2 Cs-PTA/SiO2 

Contents of W, mg/g 141 131 

Contents of Cs, mg/g - 20.2 

Acidity (pyridine), mmol/g  0.12 0.15 

Acidity (diphenylamine), mmol/g  0.09 0.19 

BET surface area, m2/g 582 597 

Total pore volume, cm3/g 0.49 0.44 

Micropore volume, cm3/g 0.17 0.18 

Average pore diameter, nm 4.89 4.89 

Average micropore diameter, nm 0.35 0.45 

Average particle size, nm 520 589 

Polydispersity index 0.46 0.51 

 



 
 

33 
 

Instrumental Characterization 

FT-IR Spectroscopy 

FT-IR spectra of H-PTA/SiO2 and Cs-PTA/SiO2 (Figure 4) have characteristic bands of 

silica gel at 470, 810, 1080, 1650 and 3480 cm-1. In addition, they have peaks assigned to the 

Keggin structure of PTA. In the spectrum of H-PTA/SiO2 one broad band is located at 960 cm-1. 

The same band in the spectrum of Cs-PTA/SiO2 contains two sharp peaks at 980 and 890 cm-1 

(νW=O terminal and νW-O-W corner, respectively).34 Treatment by CsCl solution produced changes 

in the chemistry and structural characteristics of H-PTA/SiO2. The acidic form of the adsorbent 

contains protonated bridged W-O-W and terminal W=O groups in the Keggin structure. 

 

                Figure 4: FT-IR spectra of H-PTA/SiO2 and Cs-PTA/SiO2 
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Protonation and, as a result, presence of hydrogen bonds causes broadening of corresponding 

peaks at 980 and 890 cm-1 in the FT-IR spectra that makes them undetectable. In contrast, the 

spectrum of Cs-PTA/SiO2 has narrow peaks at these wavelengths.35 

Solid State NMR Spectroscopy 

Solid state NMR spectra of 1H, 29Si, 31P and 133Cs are presented in Figure 5. 29Si NMR 

spectra of both materials contain four major signals at -75, -82, -103, and -108 ppm. The last 

three signals are present in typical spectra of amorphous silica gel and correspond to (Si-

O)2Si(OH)2 (Q2), (Si-O)3Si-OH (Q3), and (Si-O)4Si (Q4) silicon atoms, respectively. The first 

downfield signal not observed in the silica spectra might be attributed to silicon atoms bonded to 

tungsten of Keggin units (Si-O)3Si-O-W.36 High intensity of this signal shows that a significant 

fraction of Si atoms are bonded covalently to W atoms via oxygen bridges.  

For H-PTA/SiO2, the ratio of the signal intensities was found to be 0.36:0.18:0.09:0.37. 

Thus most silicon atoms did not contain silanol groups. After the adsorption of Cs+ cations, this 

ratio changed to 0.38:0.29:0.23:0.10. Relative contents of Q2 and Q3 Si atoms increased notably 

for the account of Q4 atoms. The number of Si-O-W bridges did not change significantly. It is 

clear that in the solution of CsCl, hydrolysis of Si-O-Si bridges occurs. This process might be 

catalyzed by free acid released during exchange of protons by Cs+ cations after adsorption.37 

Change in acidity of the sample after ion exchange with Cs was clearly evident from solid state 

1H NMR spectra. The signal of protons shifted from 7.49 to 2.43 ppm. It is known that PTA is a 

superacid and the signal of protons in NMR spectra are located at 9 ppm. In the partially 

exchanged Cs+ salt, another signal at 5 ppm appears.38 The first signal can be attributed to 

superacidic OH groups, which are H-bonded to adjacent Keggin anions. The second signal 

represents less acidic OH groups without H-bonds. Pure silica gel contains peaks in the region of 
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1.7-3.5 ppm. Due to the broadening effect in solid state, the spectra of H-PTA/SiO2 and Cs-

PTA/SiO2 contain only one broad peak. However, the position of this peak enabled the 

estimation of relative contributions of different acidic sites in the samples. The signal at 7.49 

ppm (H-PTA/SiO2) indicated the presence of superacidic sites while the peak at 2.43 ppm 

showed a lower contribution of strong acidic sites in the acidity of Cs-PTA/SiO2. 

Anhydrous PTA has one peak at -10.9 ppm in the 31P NMR spectrum. This signal was 

attributed to protons directly bonded to bridging oxygens of Keggin anions. For hexahydrated 

 

                 Figure 5: Solid state NMR spectra of H-PTA/SiO2 and Cs-PTA/SiO2 
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PTA, this signal is shifted to -15.6 ppm, which is very close to the data reported in literature for 

supported PTA (-15.0 ppm) and our experimental data (-14.9 ppm).39 Thus acidity of H-

PTA/SiO2 is produced by protonated water molecules bonded to the terminal oxygens of PTA 

via H-bonds. Position of the signal of Cs-PTA/SiO2 (-15.4 ppm) is also very similar to literature 

data.40 Little upfield shift after ion exchange might be caused by shielding effect of the electron-

rich anion of the Keggin structure. Presence of only one signal proved that no partially Cs-

exchanged PTA molecules were present in the sample. 

The presence of Cs+ in the exchanged adsorbent was confirmed by 133Cs solid state 

NMR. In the spectrum of Cs-PTA/SiO2, a signal at -29.6 ppm is located in the region typical for 

hydrated Cs+ cations adsorbed on clay materials. Chemical shift of 133Cs depends on its 

coordination number: electrons of oxygen atoms coordinated to Cs+ provide a shielding effect. 

Earlier it was suggested that the signal at this position can be attributed to 9-coordinated Cs+ 

cations.41 

Surface Acidity 

 In order to determine the acidity and number of acidic sites of the adsorbent surface, 

direct titration was the method initially used. It was observed that the amount of OH- absorbed 

was completely unrealistic, taking more than ten times the expected stoichiometric amount 

without reaching equilibrium. Because of this, a new approach needed to be developed. In the 

case of this material, acidic sites are adsorption sites, so in order to study adsorption, the acidity 

needs to be well characterized. In this work, a new analytical method was developed to study the 

acidity of solid porous materials unstable in basic conditions: reverse titration using organic 

bases in non-aqueous media.  
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Organic bases in dry THF were used for neutralization of acidic sites on the surface of the 

adsorbent. After neutralization, the remaining amount of unreacted base was titrated with HCl to 

determine the number of accessible surface acidic sites present. Experimental data obtained by 

titration with pyridine and diphenylamine are in agreement with theoretically expected acidity 

calculated from tungsten contents (0.19 mmol/g). Lower experimental values were caused by 

inaccessibility of a part of acidic sites located inside the silica network. Only acidic sites on the 

pore surface can interact with molecules of organic bases. These data also correlate with the 

relative sizes of organic base molecules. Titration curves for the titrations for both pyridine and 

diphenylamine are presented below (Figure 6). 

Figure 6: Titration curves for blank solution (1), 0.1 g Cs-PTA/SiO2 (2) and 0.1 g H-PTA/SiO2 

(3) with pyridine (a) and diphenylamine (b) 

Unexpectedly, after the substitution of most protons by cesium, the acidity of the samples 

increased. This effect was reported earlier for bulk PTA and its cesium salts of different 

compositions. In accordance with Dias et al., the adsorption of pyridine on Cs2.5H0.5PW12O40 was 
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much higher than on H3PW12O40.42 As calculated from the data in Table 1, the ratio Cs/W in Cs-

PTA/SiO2 corresponded to the most acidic reported material (2.5). The authors attribute this 

phenomenon to the increase of porosity and surface area of PTA at proton substitution. In 

addition, hydration of Keggin units can create additional acidic sites. In accordance with 

Okuhara et al., one hydrated PTA anion can adsorb up to 8.5 molecules of pyridine.43 

TEM Imaging 

The H-PTA/SiO2 material was present in the form of small particles, mostly 200-500 nm. 

The presence of PTA was easily visualized due to phase contrast properties of tungsten in an 

electron beam.44 PTA formed small spherical nanoparticles of 6-25 nm diameters. The product 

after exchange with Cs+ contained a significant amount of larger particles up to 1 μm. The 

samples had a disordered porous structure with pores about 5-8 nm diameter (Figure 7). Dark 

spots in the images of Cs-PTA/SiO2 particles with sizes in the range of 6-25 nm are most likely 

Cs-exchanged PTA.  

 

Figure 7: TEM images of H-PTA/SiO2 (a and b) and Cs-PTA/SiO2 (c) 
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Porosity 

The obtained material was mesoporous but contained significant fraction of micropores 

in its structure. Adsorption/desorption isotherms belong to the type IV with H1 type of hysteresis 

loop, which is typical for cylindrical pores (Figure 8). The shape of desorption branch shows the 

presence of necks in the porous system. 

 

Figure 8: Nitrogen adsorption isotherms (a) and pore size distribution (b) of H-PTA/SiO2 and 

Cs-PTA/SiO2 

The total pore volume of H-PTA/SiO2 decreased after the adsorption of Cs+ (Table 1). 

This effect is expected as Cs+ ions occupy a much higher volume than protons. In addition, they 

may block access to small pores thus reducing accessible surface area. The adsorption of Cs+ did 

not change the average pore size but, surprisingly, the volume and average size of micropores 

somewhat increased. BET surface area of Cs-PTA/SiO2 also somewhat increased. 

The combination of reduced pore volume with increased BET surface area after ion 

exchange with Cs+ looks unusual. However, the formation of porous structures in non-porous 
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PTA after reaction with Cs2CO3 was reported and discussed in earlier works.45 In particular, the 

authors noted that micropores provided the main contribution to the surface area. In Cs-

PTA/SiO2, the volume ratio of micropores to mesopores increased in respect to H-PTA/SiO2.  

Considering the known content of Cs in Cs-PTA/SiO2 and its BET surface area, the 

surface density of adsorbed Cs+ was found to be 0.15 atoms/nm2.   

Particle Size 

Particles of H-PTA/SiO2 have diameters between 200 and 600 nm with the maximum at 

342 nm. In the case of Cs-PTA/SiO2, two groups of particles are present. Small particles 100-300 

nm contribute 11.3% of total amount while larger ones (most likely agglomerates) have sizes in 

the range of 300-1100 nm with the maximum at 712 nm (Figure 9). The polydispersity index  

Figure 9: Particle size distribution of H-PTA/SiO2 and Cs-PTA/SiO2 
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increased after treatment with CsCl solution (Table 1). 

It was evident that the treatment by the solution of CsCl caused strong agglomeration of 

the particles. This interesting effect was the result of high ionic strength of the solution. The 

surface of the particles had negative charge that resulted in the formation of protective double-

layer. In the solutions with low ionic strength (e.g., deionized water), this double-layer extends 

beyond the range of the van der Waals force. Thus the electrical repulsion between particles 

prevented agglomeration. Higher ionic strength (e.g., solution of CsCl) reduced the size of 

double layer making the attractive van der Waals force stronger.46 

X-Ray Diffraction 

The phase composition of the samples was clarified by XRD technique. XRD patterns 

showed an amorphous structure of the materials (Figure 10). The spectra showed a maximum in 

the broad peak at 2θ=24.6°, which corresponds to d-spacing (average size of repeating units) of 

0.34 nm.  

It is known that the acidic form of PTA has XRD patterns of low intensity. Its Cs salt 

contains a much more intensive peak at 2θ=26.4°.34 The Cs-PTA/SiO2 sample also had a small 

broad peak at 2θ=24.2° that might be attributed to immobilized Cs-PTA. Thus appearance of this 

peak at 2θ=26.4° after treatment by CsCl proved ion exchange in the adsorbent.  

The size of a unit cell of a single Keggin unit is 2 nm.47 The size of corresponding 

domains of Cs-PTA crystallites was found to be 11.8 nm, which is consistent with TEM data. 

Considering this value, it is evident that PTA was embedded in the silica matrix on the sub-

molecular level. 
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Figure 10: XRD patterns of H-PTA/SiO2 and Cs-PTA/SiO2 

Thermoanalysis 

The TGA curve of H-PTA/SiO2 (Figure 11) shows a sharp loss of mass before 100 °C, 

which can be attributed to the evaporation of physically adsorbed water. In this temperature 

range, the material lost 8% of its total weight. At temperatures above 100 °C, the weight loss 

with temperature became gradual. The sample lost 4% more between 100 and 700 °C, which 
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proved a constant dehydration of the sample. It was not possible to distinguish between 

dehydration of silica or PTA phases as they occur simultaneously. 

 

Figure 11: DSC and TGA curves of H-PTA/SiO2 

The phase change in H-PTA/SiO2 at heating was detected by DSC analysis. In the DSC 

thermogram, an endothermic peak with the enthalpy ΔH=572 J/g was observed at 187 °C. A 

similar event was reported earlier for pure PTA.48 It corresponds to the lattice dropping from 

12.17 to 11.78 Å although it still remained cubic. After this event, the baseline shifted to the 

endothermic side up to 523 °C where the shift became more gradual. The change of slope at 

523 °C might be attributed to complete loss of constitutional water (acidic protons).35 
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Adsorption Studies 

Adsorption of Cesium 

 At temperatures below 31 °C, the adsorbent almost completely removed Cs+ from 

solutions when its concentrations did not exceed 200 mg/L (Figure 12a). It also demonstrated 

Figure 12: Adsorption of Cs+ by H-PTA/SiO2 (a) and linear fitting plots of Langmuir (b), 

Freundlich (c) and Temkin (d) isotherm models at 23, 31 and 39 °C  
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high removal effectiveness at higher concentrations. Adsorption capacity at the equilibrium point 

depended on temperature. In the solution with concentration 500 mg/L, this characteristic 

decreased from 31.9 to 21.2 mg/g when the temperature increased from 23 to 39 °C.  

Graphs of the obtained adsorption data applied to the linearized Langmuir, Freundlich 

and Temkin models are shown in Figures 12b-d, along with the degree of water purification at 

various temperatures (Figure 12a). The parameters of the models are shown in Table 2. From the 

correlation coefficients (R2) obtained for the three models, the adsorption data are fitted to the 

Langmuir and Temkin models reasonably well.  

It can be found from the correlation coefficients presented in Table 2 that the adsorption 

data were better fitted at higher temperatures. This can be attributed to the various types of 

adsorption occurring at different temperatures. At room temperature, two types of adsorption 

occur in general. The Cs+ ion can be adsorbed via ion exchange onto the heteropolyacid surface 

as well as surface silanol groups. The W-O- Cs+ ionic bond is much more stable than Si-O- Cs+. 

With an increase in temperature, Cs+ ions were displaced by H+ on the silanol groups, while the 

PTA-adsorbed Cs+ remained immobilized.  

Table 2: Parameters of Adsorption 

T,  

oC 

Langmuir Freundlich Temkin 

qm, 

mg/g 

KL, 

L/mg 
R2 

KF, 

L/g 
1/n R2 

AT, 

L/g 
bT 

B, 

J/mol 
R2 

23 33.0 0.083 0.966 7.275 0.290 0.928 1.612 448.56 5.4891 0.964 

31 28.7 0.094 0.990 7.344 0.258 0.933 2.347 563.10 4.4907 0.966 

39 20.8 0.150 0.995 7.163 0.205 0.974 5.174 861.17 3.0136 0.990 
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With this increase in temperature, the models have a better fit because the type of 

adsorption being studied is representative of PTA binding sites instead of a mixture of different 

types of adsorption.  

This is further supported by the different equilibrium binding constants observed at 

various temperatures. The strength of the adsorption (AT) increases with temperature (Table 2). 

At the lower temperature, it is lower due to the presence of Cs+ adsorption onto Si-OH groups, 

which is less stable as compared to the strong interactions of Cs+
 with W=O groups of the 

Keggin structure. At higher temperatures, the binding constant is more representative of the 

interaction of Cs+ with the heteropolyacid. 

This was also observed for calculated values of B (J/mol) obtained from the Temkin 

isotherm, which is related to the heat of adsorption:  

B = RT/bt       (8) 

At higher temperatures, the At and B values are more representative of the interaction of Cs+ with 

the heteropolyacid. 

The qm values for adsorption capacity calculated by the Langmuir model (Table 2) 

indicate a high adsorption capacity towards Cs+. Discrepancy of adsorption capacity at different 

temperatures is due to the absence of adsorption onto silanol groups at higher temperatures. 

Thus, the adsorption capacity corresponding to ion-exchange on the PTA surface of the 

adsorbent was found to be 20.83 mg/g. The Langmuir model assumes a homogeneous mono-

layer adsorption process, while the Freundlich model assumes heterogeneous adsorption. Due to 

the much stronger agreement of the data with the Langmuir model, the adsorption process is 

homogeneous and depends on the active sites of the adsorbent surface.49  
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Selectivity 

In the experiments with NaCl and KCl, an effect of competing ions was evident. 

However, the adsorbent maintained good characteristics in the selective adsorption of Cs+ 

(Figure 13). While the effect of sodium ions was negligible (decrease of adsorption capacity at 

500 mg/L from 31.9 to 28.2 mg/g), potassium affected adsorption of Cs+ somewhat stronger and 

reduced it down to 22.6 mg/g. This result correlates with relative solubilities of corresponding 

phosphotungstates: Na3[PW12O40] is very soluble, the solubility of K3[PW12O40] is much lower 

(about 1 mmol/L), while Cs3[PW12O40] is practically insoluble (3.4x10-3 mmol/L). 

Figure 13: Effect of other alkali metals on Cs+ adsorption on H-PTA/SiO2 
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Adsorption of Strontium and Cobalt 

 Other possible isotopes formed during nuclear fission are 90Sr and 60Co. As shown in 

Figure 14, strontium and cobalt demonstrated lower adsorption on H-PTA/SiO2 with respect to 

cesium. The adsorption capacity of strontium was 4.6-16.4 mg/g at different initial 

concentrations of SrCl2. For CoCl2, these data were still lower: 2.6-8.5 mg/g. It correlates with 

the high solubility of Sr3[PW12O40]2 and Co3[PW12O40]2 in water. Thus the adsorbent can 

separate 137Cs from other radioactive contaminants.  

 

  Figure 14:  Adsorption of Sr2+ and Co2+ on H-PTA/SiO2 
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Diffusion Study 

Study of the adsorption dependence on contact time showed that this process proceeds in 

two steps. In the first step, rapid adsorption occurred (Figure 15a). Most of Cs+ ions were 

adsorbed during this step. Following this, the adsorption continued at a slower rate.  

Based on the data obtained and the nature of highly porous materials, diffusion rates 

likely play a large role in the overall adsorption of Cs+ in this case. Using the slope and 

intercepts of the lines of plots of adsorption (mg/g) vs. t0.5 (min0.5), as shown in Figure 15b, the 

rate constant of intraparticle transport kip and information related to the thickness of the 

boundary layer were obtained (presented below in Table 3).  As the equilibrium concentration of 

Cs+ ions increases, the correlation coefficient of the model as well as the intraparticle diffusion 

rate increases, showing that intraparticle diffusion plays a larger role in adsorption rate at higher 

concentrations.  

Table 3: Diffusion and Kinetics Data 

Initial Cs 

concentration 

C0, mg/L 

Intraparticle diffusion constants Adsorption kinetic constants 

kid, 

mg/(g•min0.5) 
C R2 

k1, 

min-1 
R1

2 
k2, 

g/(mg•min) 
R2

2
 

100 0.058 8.561 0.571 14.00 0.205 9.056 1 

200 0.144 11.891 0.819 3.099 0.765 13.090 0.999 

300 0.703 12.074 0.954 0.646 0.940 17.431 0.999 

400 1.054 15.235 0.983 0.626 0.895 23.502 0.998 

500 1.265 17.972 0.951 0.423 0.992 29.138 0.999 
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It can be seen from Figure 15a that initial adsorption of Cs+ ions occurs very quickly, but 

becomes much slower shortly after. This can be explained by surface sites becoming occupied 

first before intraparticle adsorption sites. Because of this, diffusion of Cs+ ions into the pore 

structure is not necessary at lower concentrations where enough surface sites are available to 

adsorb most Cs+ ions. However, at higher concentrations, all surface sites become occupied, so 

Figure 15: Kinetics of Cs+ adsorption at different initial concentrations (1 – 100, 2 – 200, 3 – 

300, 4 – 400, 5 - 500 mg/L): amount adsorbed vs. time (a), diffusion rate (b), pseudo-first order 

fitting (c), pseudo-second order fitting (d). 
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Cs+ ions must diffuse into the porous system of the material in order to access additional adsorption 

sites. 

Plots of adsorption vs. t0.5 from time-dependent adsorption experiments showed a linear 

increase of reaction rate with respect to concentration, which is indicative of a pseudo-order 

process (Figure 16). With this in mind, pseudo-first-order and pseudo-second-order kinetic 

models were applied to time-dependent adsorption experiments to analyze the adsorption rate of 

Cs+. 

 

Figure 16: Intraparticle diffusion rate constants at different Cs+ concentrations 
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Correlation coefficients of the pseudo-first-order model (R1
2) were much lower than the 

pseudo-second-order model (R2
2), which implies that the former model does not correctly 

describe the adsorption process (Figure 15c). However, as shown in Table 3, correlation 

coefficients for the pseudo-second-order model are all very high, which indicates that the 

pseudo-second-order model adequately describes the nature of Cs+ adsorption onto the material 

(Figure 15d). 

Although the overall fit of the pseudo-second-order model was much better than that of 

the pseudo-first-order, both models showed good agreement at Cs+
 concentrations of 500 mg/L. 

The pseudo-first-order model assumes that one reactant in a bimolecular chemical reaction is 

present in high excess, therefore neglecting the concentration of this excess reactant in the rate 

law. At 500 mg/L of Cs+, the concentration of adsorbate molecules is significantly higher than 

the number of accessible adsorption sites, which results in the pseudo-first-order model showing 

a higher linearity than at lower concentrations. However, due to the low linearity of the pseudo-

first-order model in general, the rate constant of the pseudo-second-order model will be accepted 

as the true experimental rate constant of the adsorption process. 

Column Adsorption Tests 

The adsorbent demonstrated high effectiveness at Cs+ concentrations below 200 mg/L 

(Figure 17). Cumulative amounts of adsorbed Cs+ increased with time. In all experiments, 

adsorption curves were almost linear up to 10-15 mg/g. Following this, the adsorption rate 

gradually decreased. 

The average adsorption rates for different initial concentrations of Cs+ were calculated by 

dividing the total amount adsorbed (mg/g) by the time required for adsorption (min). The plot of 

average adsorption rate vs. concentration (Figure 18) showed a fairly linear relationship, 
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demonstrating that a flow rate of 1.5 mL/min provides adequate contact time for sufficient 

intraparticle diffusion required for high adsorption of cesium. The deviations from linearity at 

higher concentrations of Cs+ are most likely due to local fluctuations in flow rate, which would 

result in an inadequate contact time with the adsorbent. 

 

 

Figure 17: Cumulative adsorption of Cs+ by H-PTA/SiO2 in CsCl solution flow at different 

initial concentrations (1 – 100, 2 – 200, 3 – 300, 4 – 400, 5 – 500 mg/L) 
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Figure 18: Dependence of the average adsorption rate on the initial Cs+ concentration 

Discussion 

Sol-gel synthesis of silica gel in the presence of PTA resulted in the embedding of PTA 

clusters in the silica network. In the obtained hybrid material, Keggin units were covalently 

bonded to silicon atoms via oxygen bridges. Covalently bonded Si-O-W was evident from FT-IR 

spectra (Figure 4) and confirmed by 29Si NMR spectra (Figure 5) as well as the high stability of 

PTA against leaching. Elemental analysis showed that almost the full amount of PTA used in the 

reaction was successfully embedded. The volume occupied by one Keggin unit is approximately 
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0.9 nm3. Considering the data of XRD (Figure 10) and TEM (Figure 7) on the crystallite size, the 

average cluster of PTA in the silica gel consisted of ≈120 Keggin units.  

High porosity of the material enabled accessibility of acidic sites located on Keggin units 

to cations from the solution. The adsorbent pore surface contains two types of acidic sites that 

can serve as adsorption sites for a base. Strong acidic sites are located on Keggin anions. Their 

number exceeds the number of acidic hydrogens corresponding to one heteropolyacid anion due 

to hydration and formation of additional hydronium cations at the surface.43 Evidently from 31P 

NMR (Figure 5) and FT-IR spectra (Figure 4), the anions were highly hydrated. The contents of 

acidic sites can be determined by titration with a base. However, strong bases decompose Keggin 

units in aqueous media irreversibly. Thus weak organic bases were used for analysis of acidic 

sites in anhydrous conditions to prevent PTA hydrolysis. The content of strong sites was found to 

be 0.09-0.12 sites/nm2, depending on accessibility.  

The second type of acidic site is represented by silanol groups of silica gel. These sites 

are extremely weak and may interact only with strong bases. In spite of weakness of these sites, 

they can serve as adsorption sites for metal cations at certain conditions (Figure 19).   

Cesium adsorbed on silanol groups is very unstable and can be removed not only by a 

weak acid or a base, but also by water. Cs+ bonded to surface PTA has a much stronger 

interaction, however, and is much more difficult to remove. 

Study of the adsorption of Cs+ on the material surface showed that at room temperature, 

adsorption occurs on both strong and weak acidic sites. However, at increased temperature only 

adsorption on strong sites takes place (Figure 12). It is interesting that in the process of 

adsorption, structural and acidic characteristics of the adsorbent changed. In the Cs-containing 

material, a significant amount of new micropores formed. As a result, the number of acidic sites 
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increased. Cs-PTA/SiO2 contained approximately 0.15 cations/nm2 of cesium and 0.15-

0.19 acidic sites/nm2. This increase in acidity can be attributed to increased microporosity of the 

sample (Figure 8b).  

 

Figure 19: Two types of active adsorption sites for Cs+: Silanol groups (1 – water-leachable, 2 – 
acid-leachable, 3 – base-leachable) and PTA (4 – non-leachable) 

Adsorption sites of both types have different accessibility due to their location in the 

particle structure. High accessibility of external sites provided fast removal of Cs+ cations at low 

concentrations. At higher concentrations, the contribution of internal sites to the total adsorption 

became more evident. However, intraparticle diffusion limitations make the filling of internal 

sites by Cs+ much slower. As shown by elemental analysis and porosimetry (Table 1 and Figure 

8b), a minor portion of acidic sites were not exchanged by Cs+ due to steric hindrances in 

micropores.    
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A significant advantage of H-PTA/SiO2 is its stability against leaching. The materials 

reported earlier obtained by impregnation of silica gel by PTA were unstable in polar solvents 

due to its high solubility.50 The immobilization of PTA by covalent bonding eliminated this 

drawback.   

Conclusions 

 A hybrid functionalized material containing phosphotungstic acid embedded into a silica 

network was successfully synthesized. The obtained mesoporous material had high BET surface 

area and high concentration of surface acidic sites. It demonstrated effectiveness in adsorption of 

cesium from aqueous solutions. The adsorption occurred on acidic sites of two types. However, 

at increased temperatures, cesium cations were adsorbed on PTA anions only. Isotherms of 

adsorption fitted Langmuir and Temkin models. The adsorption proceeded in accordance with 

the pseudo-second-order rate law. The adsorption of Cs+ resulted in notable structural changes in 

the silica network: formation of new micropores and agglomeration of primary particles. In 

addition, the formation of new acidic sites was observed. The obtained data could be used in the 

development of an adsorbent for the removal of radioactive 137Cs from nuclear wastes or 

contaminated water. 
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