
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

12-2018

Relative Permittivity As A Function of Co-Solvent
and Impedance Spectroscopy for Quantifying
Anions in Solution
Yahya Sami Alseiha
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Analytical Chemistry Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Alseiha, Yahya Sami, "Relative Permittivity As A Function of Co-Solvent and Impedance Spectroscopy for Quantifying Anions in
Solution" (2018). Electronic Theses and Dissertations. Paper 3510. https://dc.etsu.edu/etd/3510

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=dc.etsu.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Relative Permittivity as a Function of Co-solvent and Impedance Spectroscopy for Quantifying 
Anions in Solution 

________________________________________________ 
 

A thesis 

presented to  

the faculty of the Department of Chemistry 

East Tennessee State University 

In partial fulfillment 

of the requirements for the degree 

Master of Science in Chemistry 

______________________ 

by 

Yahya Sami Alseiha 

 December 2018 

_____________________ 

Dr. Dane W. Scott 

Dr. Gregory Bishop 

 Dr. Catherine McCusker 

 

Keywords: Relative Permittivity, Impedance Spectroscopy, Nyquist Plot, Resistivity and 

Conductivity  



	 2 

ABSTRACT 

Relative Permittivity as a Function of Co-solvent and Impedance Spectroscopy for Quantifying 

Anions in Solution 

by 

Yahya Sami Alseiha 

 

This work measured relative permittivity from 15.0 to 55.0 °C of aqueous solutions containing 

acetone or tetrahydrofuran using a BI 870 dielectric meter. A cubic polynomial fit resulted in 

coefficients for calculating permittivity as a function of temperature and mole fraction. Literature 

values for other co-solvent system resulted in similar polynomial coefficients. Using BI 870, 

permittivity measurements of ionic solutions were not possible because of high conductivity. A 

simple method using impedance spectroscopy measured these solutions. Impedance decreases 

with increasing temperature and decreases with increasing ionic strength. Due to the temperature 

dependence of impedance, all measurements were at 25.0 °C. Anions including bicarbonate, 

sulfate, acetate, and carbonate were determined using this method. Detection limits were at parts 

per trillion (ppt) levels. A simple sensor based on smaller stainless steel cylinders and a circuit to 

determine impedance is currently being developed in combination with an anion exchange 

column.  
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CHAPTER 1 

INTRODUCTION 

Purpose of Research 

 Hydrolysis of acetic anhydride results in acetic acid and the reaction rate in pure water is 

well understood. To quantify the effect of solute-solvent interactions using tetrahydrofuran as a 

co-solvent, relative permittivity values of different aqueous solutions of tetrahydrofuran and 

water are required and were measured. These were obtained using Brookhaven’s BI 870 

dielectric constant meter. Pure water and aqueous solutions using acetone as a co-solvent were 

measured and compared to literature values to validate the method of measurement. Relative 

permittivity values of some water co-solvent systems are available in published literature. These 

values were fit as a function of mole fraction instead of molarity to compare to other co-solvent 

systems. All values fit a cubic polynomial permitting calculation of relative permittivity as a 

function of mole fraction over a temperature range from 15.0 and 50.0 °C. Another use for 

permittivity explored was determining the concentration of ions in solution.  

A primary reason for this effort is a method for detecting and measuring nitrate in ground 

water near agricultural centers. Ideal systems are low cost, robust, maintenance free and 

wireless.1 The main electrochemical techniques for determining concentration of ions are 

conductivity, ion selective electrode and pulsed amperometry.2–4 The detection limits for these 

techniques are between ppb to ppt levels, which is below the maximum contaminant level 

established by the EPA, and depend on the ion being measured.2–5 Pulsed amperometry methods 

are excellent for species that can be oxidized and reduced requiring a reference electrode.2,6 

Different metal electrodes used for pulsed amperometry include silver, gold and platinum.2,3,7 Ion 

selective electrodes are easily polluted by other species such as organics in real water samples.1,7 
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Different metal electrodes and modifications such as polymer treatment have been used to 

circumvent these problems.7,8 In attempt to circumvent these issues permittivity measurements of 

solutions of low ionic strength were explored. However, the method for measuring solutions with 

low ionic strength was not successful due to conductivity of the solution interfering with the 

electrical measurement performed by the BI 870. 

Interestingly, the probe of the BI 870 connected to an electrochemical workstation was 

successful in using impedance measurements to determine the concentration of ions in solution. 

This method involves an electrical measurement across two stainless steel cylinders with solution 

between them. The result of this work uses the BI 870 probe and an electrochemical workstation 

to determine the concentration of ions in solution. Detection limits obtained are comparable to 

ion conductivity and pulsed amperometry.2 Stainless steel is more robust in the presence of real 

samples and impedance measurements do not require a reference electrode. As such, the method 

of calibrating impedance measurements following ion exchange should result in further 

development of an in-situ sensor for monitoring ions in water. 

Relative Permittivity 

One important property of a solution is relative permittivity, (ε), which is the dielectric 

response of a material or solution to an applied electrical field.9 In 1948 Hasted et al. conducted 

the first organized experimental study of the dielectric properties of different concentrations of 

salt in water.10 Dielectric constants of aqueous electrolyte solutions depend on hydration, 

complexation characteristics of ions, electric conductivity, structure saturation and kinetic 

depolarization.11  

The Relative Permittivity of Pure Water Compared to Other Solvents 

In most cases, polarity has a direct relationship with relative permittivity.12 As a general 
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rule, if polarity is high so will relative permittivity. Table 1 is a list of pure water and relative 

permittivity values for liquids at 20.0 °C.12,13 For example, water is highly polar having a relative 

permittivity value of 80.2 while hexane is non-polar having a dielectric constant of 1.89.13 

Table 1. Relative permittivity of pure water and solvents at 20.0 °C12,13  

Solvent Relative permittivity 
Water 80.20 

Methanol 32.35 
Ethanol 25.00 

n-propanol 20.81 
Isopropanol 18.62 

Acetone 19.56 
Hexane 1.890 

 

Temperature and Relative Permittivity 

Temperature is a factor that dramatically affects the relative permittivity of a solvent. In 

general, the dielectric constant for a pure solvent is inversely related to temperature.13,14 This is 

due to molecules having more random thermal motion as temperature increases meaning 

molecules are less aligned in an applied electric filed causing relative permittivity to decrease.12 

Table 2 shows the relative permittivity values of pure water listed in the CRC Handbook of 

Chemistry and Physics. This data is from the work of Malmberg and Maryott which used an 

equal ratio arm and capacitance-conductance bridge operated at frequencies below 100 

kilocycles per second to measure relative permittivity values of pure water over the temperature 

range 0.00 to 100.0 °C.14,15  
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Table 2. Relative permittivity of water at different temperatures listed in the CRC Handbook13,15	

T(°C) Relative Permittivity 

10.0 83.96 
20.0 80.20 
30.0 76.60 
40.0 73.17 
50.0 69.88 
60.0 66.73 
70.0 63.73 
80.0 60.86 
90.0 58.12 
100.0 55.51 

 

 
Figure 1. Relative permittivity values of pure water and temperature fit to a cubic polynomial 

using Malberg and Maryott’s data13,15 

 

The data collected by Malmberg and Maryott plotted in Figure 1 was fit to a polynomial 

because the slope of permittivity and temperature decreases at higher temperatures.14 The general 

polynomial is: 

ε = a + bX + cX* + dX,  (1.1) 
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In this equation, X can be temperature or mole fraction of a co-solvent in water. Linear 

regression of the data provides the coefficients of the polynomial (a-d) and these values are given 

in equation (1.2).14 

                           𝜀 = 87.74 − 0.4008𝑡 + 9.398 1089 𝑡* − 1.41(108;)𝑡,           (1.2)14  

Equation (1.2) can be used to calculate the relative permittivity of pure water over a 

temperature range of 0.00 to 100.0 °C. Today, there are simple instruments, such as Brookhaven 

Instruments BI 870 dielectric constant meter, available to measure relative permittivity values of 

water co-solvent solutions with reasonable accuracy. The BI 870 was used to measure relative 

permittivity of pure water. Comparing experimental coefficients to those in equation (1.2) offers 

a method to validate the technique of measuring relative permittivity of water co-solvent 

systems. 

Relative Permittivity Measurements of Water Co-Solvent Systems 

Co-solvent systems for reactions are of interest and relative permittivity values of these 

mixtures are needed.16 An example is measurement of the relative permittivity of water and 

methanol, ethanol and propanol as co-solvent solutions using developed microwave 

frequencies.16 Yet another example is use of dielectric relaxation spectroscopy which was used to 

measure aqueous solutions of 1,4-dioxane.17 

Relative Permittivity and Ionic Strength 

 In 1948, Hasted et al. were the first scientists who studied dielectric properties of aqueous 

solutions of salts.10 Their experiment demonstrated that the relative permittivity of a solution 

decreases when the salt concentration increases which is called dielectric decrement. The reason 

behind the inverse relationship between the relative permittivity and the salt concentration is the 

local electric field created by electrostatic interaction between ions and an external applied 
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field.18 Polar molecules in water create a local ionic field around them, which generates a 

hydration shell around them. This lowers the sensitivity of water molecules to the external field, 

which decreases the relative permittivity.10,18 The relative permittivity of salt concentrations is 

linear up to 1.5 M. Equation (1.3) shows this relationship.10 

𝜀 = 𝜀= − 𝛼𝑐           (1.3) 

Where ɛ is the dielectric constant, ɛω is the dielectric constant of pure water, c is the 

concentration of salt and a is the total excess polarization of the ionic species. This equation is 

not valid for salt concentrations higher than 1.5 M most likely due to ionic strength having a 

greater effect on the degree of excess polarization.10 Gavish and Promislow developed equation 

(1.4) for salt concentrations greater than 1.5 M.10 The equation presumes that the presence of 

ions causes a local electric field to develop.10 

𝜀 𝑐 = 𝜀= − 𝛽𝐿
𝟑𝜶
𝜷
𝑐           (1.4) 

Where ε(c) is the dielectric constant as a function of salt concentration c, ɛω is the 

dielectric constant of pure solvent, a is the total excess polarization of the ions, β is the relative 

difference between an effective ion-pair dipole moment and the water dipole moment, and L is 

the Langevin function which can be determined using equation (1.5).10 

𝐿 𝜐 = coth 𝜐 − I
J
         (1.5) 

Equation (1.4) provides means of determining the dielectric constant with a high degree 

of accuracy for concentrations of salts. Figure 2 shows a comparison of experimental relative 

permittivity values fit to equation (1.4) on the left and with calculated values (in color) on the 

right.10,19  
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Figure 2. Experimentally fit relative permittivity values (left) and calculated relative permittivity 
values (right) of different molar NaCl solutions and temperature using equation (1.4)10,19 

 
Plots in Figure 2 fit to equation (1.4) result in values of a and b at different temperature 

listed in Table 3.10 

Table 3. Values for 𝛼 and 𝛽 and legend for each temperature in Figure 2 

T(°C) a b Legend 
5.00 13.7 70.25 (- -) 
20.0 12.0 52.94 (--) 
25.0 11.5 47.91 (.-.) 
35.0 10.7 40.12 (-x) 

 
In this work, using the BI 870 of solutions with ions caused current to flow interfering 

with the method of measurement. However, the probe attached to an electrochemical workstation 

permitted electrochemical impedance measurements to quantify ions in solution. 

Electrochemical Impedance Spectroscopy 

Impedance spectroscopy (also referred to as electrochemical impedance spectroscopy, 

EIS) is an electrochemical technique that measures a current-voltage response.20,21 

Experimentally, impedance spectroscopy is performed by applying a constant initial voltage. A 

sine wave potential of different frequencies is superimposed on the base potential. Both current 

salt concentration (M) 
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and potential are measured to obtain the real and imaginary impedance values. It is also a method 

where an impedance of cell is plotted against the frequency.22 This spectroscopy method 

provides valuable electrical information including charge transfer and electrical properties of 

reactions and materials.23 Equation (1.6) shows how to determine impedance for resistor and 

capacitor in parallel.24  

𝑍 = LM
INO*PQLMRM

		 (1.6) 

This results in impedance having a real (Zʹ) and imaginary (Zʺ) component in units of 

ohms. A plot of these two values results in a Nyquist plot shown in Figure 3.25 

 

Figure 3. Nyquist plot of the real (Zʹ) and imaginary (Zʺ) component of impedance for a 
capacitor and resistor in parallel using sample data from EIS Spectrum Analyzer Software 25 

 

Impedance, denoted as Z, is the expression or measure of the ability of an electric circuit 

or any other electronic component to resist the flow of electric current. Impedance is a circuit 

element that is represented by two scalar quantities, resistance and reactance.26 In this case, 

impedance is more of a resistance phenomenon where the resistance is the ability of the circuit to 



	 20 

resist the flow of an electrical current.26 The reactance is the non-resistive component of 

impedance in AC circuit. In this work, the real impedance is the most useful value, which is the 

diameter of the semi-circle.23 This value is obtained by fitting the Nyquist plot to a model 

electrical circuit, in which the solution being measured is represented by a capacitor and resistor 

in parallel. Electrochemical impedance software is open source which fits the Nyquist plot. The 

result is a regression fit providing the capacitance and real impedance and error of the 

experimentally measured solution.  

Current Applications of EIS 

Applications of EIS include the study of metal corrosion, adsorption and desorption on an 

electrode surface, discharge and charging batteries and ion mobility in batteries and super-

capacitors.27 Measurements obtained by Electrochemical impedance spectroscopy used with 

coaxial-like electrodes functioned as a sensor.28 The sensor was used in frequency range between 

20 Hz to 2 MHz for specific electrolyte solutions having low conductivity to determine electrical 

properties. The sensor was most efficient for solutions not less than 0.05 mM for potassium and 

sodium chloride.28 Also, the method most comparable to this work involved two stainless steel 

parallel plates used to investigate dilute solutions of lithium chloride.29 This technique was used 

to measure the lithium chloride solutions over a frequency range of 1 kHz to 13 MHz. However, 

no detection limit was reported. Heavy metals including mercury ions have been determined with 

a detection limit of 10 ppt using Electrochemical impedance spectroscopy.30,31 To achieve this 

low detection limit Zhang and his team developed an extremely sensitive and selective DNA 

biosensor using a gold electrode and sulfhydryl groups to determine the mercury ions using 

EIS.31 Another example is a DNA biosensor made of an electrode modified with polyaniline and 

gold nanoparticles for silver ions with a detection limit of 10 fM using EIS.32 In addition, EIS is 



	 21 

also used to study friction processes in industries and automobiles applied to electrochemical 

reactions in fuel cells, capacitors, resistors and inductors.27 Others use EIS for studying catalytic 

reaction kinetics. Additionally, impedance spectroscopy can be used to study solutions of low 

ionic strength. Impedance measurements are also temperature dependent.33 

Resistivity and Impedance of Pure Water and Ions in Solutions 

Increasing temperature of pure water increases its conductivity due to the concentration 

of hydronium and hydroxide ions increasing with temperature.34 Resistivity measures the ability 

of pure water to resist electric current, which is the inverse of conductivity. Generally, pure water 

is a poor conductor of electric current or rather an insulator. However, not even “de-ionized” 

water is completely free of ions. This is due to water being in equilibrium with hydroxide and 

hydronium ions. Therefore, the resistivity of pure water is dependent on the sum of concentration 

and ion specific conductivity of each ion present. The resistivity of pure water can be calculated 

using equation (1.7).33 

𝜌UVW
8I = 	108,𝑑 𝜆UZ + 𝜆WU[ 𝐾]   (1.7) 

where 𝜌UVW is the resistivity of pure water in Ω·cm, 𝜆UZ and 𝜆WU[ are specific ion 

conductivities which are 349.19 and 199.18 S·cm2/mole respectively at 25.0 °C, d is specific 

gravity and Kw is the equilibrium constant of water, which is 1.00 x 10-14 at 25.0 °C. The square 

root of Kw results in the concentration for each ion being 1.00 x 10-7 M.33,35 Using these values, 

the resistivity of pure water is 18.2 MΩ·cm at 25.0 °C. Knowing the resistivity, the real 

impedance can be calculated with the area and thickness of sample being measured given in 

equation (1.8).36 

𝑍^_ = 	
𝜌𝑙
𝐴    (1.8) 



	 22 

Where l is the thickness of sample between the electrodes in cm and A is the contact area 

in cm2. Different ionic solutions have different impedance values due to different quantities, 

types and charges. In some cases, solution impedance can only be determined from EIS spectra. 

Water with high concentrations of ions has a lower impedance.37 This relationship exists due to 

the solution being a better conductor because of a greater amount of ions in solution. 
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CHAPTER 2 

EXPERIMENTAL 

Materials and Equipment 

All chemicals were used as received from the manufacturer. Sodium chloride, sodium 

bicarbonate, potassium carbonate, sodium acetate and sodium sulfate were obtained from Fisher 

Scientific. A Millipore Direct Q UV3 purifier system generated 18.2 MΩ·cm water used to 

prepare and measure all solutions. A Vernier temperature probe was used to monitor 

temperature. A BI 870 dielectric constant meter and probe from Brookhaven Instruments was 

used for relative permittivity measurements. The probe consisted of outer and inner stainless-

steel cylinders separated by Teflon posts shown in Figure 4. 

  

Figure 4. Stainless-steel probe from BI 870 dielectric meter also used for impedance 
measurements 

 

The CHI 604E was used for electrochemical impedance spectroscopy. The probe 

connected to a CHI 604E electrochemical workstation using the reference and working electrode 

leads was used for impedance spectroscopy measurements of the solutions. The data generated a 
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Nyquist plot, which was fit using EIS Spectrum Analyzer Software to obtain the real impedance 

and error. 

Relative Permittivity Measurements  

The BI 870 measured the relative permittivity of aqueous co-solvent solutions. This 

instrument has a relative error of 2.0%. The measured signal is a sine wave that is 10 kHz with 

an amplitude of 0.7 V. All solutions were prepared using 18.2 MΩ water prepared by starting 

with tap water treated by Culligan® systems followed by a Millipore Direct Q UV3 system. 

Ultrapure water, 40 ml, was put in a cylindrical glass cell provided with the BI 870. The solution 

was stirred ensuring homogeneity. A Vernier temperature probe was positioned in the middle of 

the probe’s cylinders. To increase temperature a water bath with ice was used on a hotplate. 

Once the temperature of the solution to be measured dropped to less than 15.0 °C, the hot plate 

was turned on maintaining a heating rate of 1.0 °C/minute from 15.0 to 55.0 °C. The relative 

permittivity values were recorded every 5.0 °C. To validate the method pure water was measured 

and compared to known values discussed previously. To further validate the method, water and 

acetone co-solvent solutions were measured from 15.0 to 55.0 °C. The water mole fraction 

ranged from 0.3 to 1.0.  

Impedance Methods 

The BI 870 probe was connected to the CHI 604 E workstation to obtain impedance 

measurements of pure water.  
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Figure 5. The water bath, probe and leads of the BI 870 probe for impedance measurements 

 

Figure 5 shows the experimental setup. A Vernier temperature probe was above the 

stainless-steel probe to monitor the solution’s temperature. An AC impedance used an initial 

applied potential of 0.2 V and sine amplitude of 0.1 V over a temperature range from 25.0 to 

60.0 °C. Real and imaginary impedance data was collected over a frequency range from 1 to 100 

kHz. Each spectrum was imported as a text file into EIS Spectrum Analyzer Software to fit the 

Nyquist plot providing real impedance, capacitance and respective errors of the solution 

represented as a resistor and capacitor in parallel configuration.  

The same procedure was used for solutions of low ionic strength ranging from 1.0 ´ 10-4 

to 1.0 ´ 10-9 M. A stock solution of 1.0 ´ 10-4 M was prepared and serial dilution resulted in 

standards for measurement. This included solutions of sodium chloride, 5.844 ppm to 58.44 ppt, 

sodium bicarbonate, 8.400 ppm to 84.00 ppt, potassium carbonate, 13.82 ppm to 138.21 ppt, 

sodium acetate 8.203 ppm to 82.03 ppt and sodium sulfate, 14.20 ppm to 142.04 ppt. To 

determine the effect of 1:1 compared to 2:1 electrolytes solutions 1.0 ´ 10-5 M solutions of 

sodium chloride, sodium acetate, sodium bicarbonate, potassium carbonate and sodium sulfate 

were measured at 25.0 °C. 
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CHAPTER 3  

RESULTS AND DISCUSSION 

Relative Permittivity of Pure Water 

Table 4 lists relative permittivity values experimentally obtained using the BI 870 for 

pure water at different temperatures. 

Table 4. Relative permittivity of pure water vs temperature	

Temperature °C Relative permittivity 

15.0 80.9 
20.0 79.7 
25.0 78.5 
30.0 77.2 
35.0 76.0 
40.0 74.8 
45.0 73.5 
50.0 72.2 
55.0 70.9 

 

A plot of the values in Table 4 is shown in Figure 6.  

 

Figure 6. Experimental relative permittivity values of pure water as a function of temperature fit 
to a cubic polynomial 
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The data was fit to a cubic polynomial given in equation (1.1) in which X is temperature 

and compared to the work by Malmberg and Maryott. The cubic polynomial coefficients of the 

experimental data for pure water using the BI 870 is given in equation (3.1). 

𝜀b = 84.6(±0.2) − 0.25(±0.2)𝑡 + 3.6(±5.9)	×1089𝑡* − 6.1(±5.6)	×	108;𝑡, (3.1) 

The coefficients obtained by Malmberg and Maryott are given in equation (3.2).14,38 

𝜀 = 87.74 − 0.4008𝑡 + 9.938	×1089𝑡* − 1.41	×	108;𝑡,  (3.2) 

The first term in equations (3.2) and (3.3) is a constant and differ by 3.6%. The remaining 

coefficients agree within error. The measured relative permittivity at 25.0 °C should be 79.3 

according to Brookhaven instruments.39 From equations (3.1) and (3.2) the relative permittivity 

is 78.4 and 78.3 respectively. This is a 0.1 % difference and within the 2.0 % absolute error of 

the instrument. Another example agreeing with this result is the reported value of pure water 

being 78.33.40 As a result, the method of measuring relative permittivity values using the BI 870 

is valid. The polynomial coefficients permit calculating the relative permittivity of pure water as 

a function of temperature. 

Relative Permittivity Using Acetone as a Co-Solvent 

Solutions of different mole fractions of acetone were prepared and measured using the 

same procedure as pure water. As expected, the measured relative permittivity decreased with 

increasing temperature and using lower mole fractions of water. Tables 9 through 15 in 

Appendix 1 provide relative permittivity values as a function of mole fraction of acetone in water 

from 15.0 to 55.0 °C. Figure 7 shows a plot of relative permittivity measurements as a function 

of mole fraction and temperature. 
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Figure 7. Plots of relative permittivity for water with acetone as a co-solvent system from 15.0 
°C (red top) to 55.0 °C (dark red bottom) 

 

These values were fit to the cubic polynomial expression given in equation (1.1) where X 

is mole fraction of water. Table 5 lists the cubic polynomial coefficients. These coefficients 

allow calculating relative permittivity as a function of mole fraction. The overall error in the 

temperature and mole fraction of water used was ±0.22 °C and ±0.001 respectively. The R2 

values for all plots fit a cubic polynomial and are all higher than 0.995. 

Table 5. Polynomial coefficients a-d of relative permittivity of acetone in water using mole 
fraction 

T (°C) a b c d R2 

15.0 18.8 23.8 -17.8 56.8 0.9997 
20.0 17.4 29.9 -30.8 63.7 0.9998 
25.0 16.2 33.9 -39.0 67.7 0.9998 
30.0 15.0 38.7 -47.9 71.6 0.9999 
35.0 13.9 43.2 -57.2 76.0 0.9999 
40.0 12.8 47.0 -64.8 79.4 0.9998 
45.0 10.9 56.3 -81.6 87.3 0.9997 
50.0 9.9 59.6 -86.7 88.7 0.9996 
55.0 9.1 61.4 -89.5 88.9 0.9985 

15.0 °C 
20.0 °C 
25.0 °C 
30.0 °C 
35.0 °C 
40.0 °C 
45.0 °C 
50.0 °C 
55.0 °C 
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Literature data of relative permittivity values for acetone in water results in a dielectric 

constant of 45.8 for a water mole fraction of 0.75 at 30.0 °C, which is only 2.18 % higher 

compared to 47.2 in this work.12 As mentioned earlier, the relative error of the instrument is 2-10 

% for binary solvent systems according to Brookhaven Instruments, meaning these values are 

identical within error.39 

 Solutions of different mole fractions of tetrahydrofuran were prepared and measured 

using the same procedure. Tables 16-21 in Appendix 2 provide relative permittivity values as a 

function of mole fraction tetrahydrofuran in water and temperature. Appendix 3 contains tables 

of the cubic polynomial coefficients determined following the same procedure using acetone as a 

co-solvent. Literature data was used to fit and determine the coefficients for methanol, ethanol, 

isopropanol, acetonitrile, N,N-dimethylformamide (DMF) and 1,4-dioxane.12,40–42 

Trends Among the Polynomial Coefficients 

The coefficients a-d and temperature for acetone as a co-solvent is plotted in Figure 8. 

 

 

Figure 8. Plot of coefficients a-d for acetone co-solvent systems and temperature 

 

-100

-75

-50

-25

0

25

50

75

100

10 15 20 25 30 35 40 45 50 55 60

C
oe

ff
ic

ie
nt

s v
al

ue

Temperature °C 

a

b

c

d



	 30 

Interestingly, for acetone in water over all temperatures measured coefficient a is positive 

while c is negative and both decrease with increasing temperature. Coefficients b and d are both 

positive and increase with temperature. Comparison of Tables 22-29 show that these trends for 

the polynomial coefficients vary widely and are dependent on the co-solvent present. Overall, the 

polynomial coefficients result in relative permittivity values decreasing as temperature increases 

for all water co-solvent systems measured. One possibility is that the change in polynomial 

coefficients with increasing temperature represent a measure of the change in dipole moment 

which results in decreasing alignment in an electric field which causes the relative permittivity to 

decrease. 12,43 Relative permittivity measurements of salt solutions using the BI 870 was 

attempted. However, the instrument is only accurate for solutions with a conductivity lower than 

or equal to 10 µS/cm.39 As a result, the probe of the BI 870 was used for EIS measurements to 

determine the real impedance of pure water and solutions of low ionic strength. The detection 

limit and effect of 1:1 and 2:1 electrolytes were explored.  

Impedance of Pure Water as a Function of Temperature 

EIS experiments of pure water from 25.0 to 60.0 °C generated Nyquist plots shown in 

Figure 9. EIS software analyzer fit the real and imaginary impedance to determine the real 

resistance and capacitance of the solution.  
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Figure 9. Nyquist plots for pure water from 25.0 °C (black curve) to 60.0 °C (gray curve)  

 

The diameter of the semi-circle is the value of real impedance. Appendix 4 lists the real 

impedance values and error for pure water as function of temperature from 25.0 to 60.0 °C. A 

plot of these values is shown in Figure 10. 

 

Figure 10. Real impedance as function of temperature for pure water 
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The polynomial equation for fitting the plot in Figure 10 results in coefficients provided 

in equation (3.3):  

  Zre = 10,220(± 250) – 370(± 19)T + 5.4(± 0.5)T2 – 0.029(± 0.004)T3  (3.3) 

Where Zre is the real impedance in (Ω) and T is the temperature in degrees Celsius (°C). 

The polynomial fit results in a 0.9993 coefficient of determination. Due to the temperature 

dependence of impedance, all measurements of low ionic strength solutions were measured at 

25.0 °C. The real resistance from the fit of Nyquist plots was obtained for sodium chloride, 

sodium bicarbonate, potassium carbonate, sodium acetate and sodium sulfate. Tables 31-35 in 

Appendix 5 provide the impedance values and error for ppb solutions at 25.0 °C. This data was 

used to calibrate the probe and EIS measurements for determining concentration of anions and 

detections limits. 

Calibration and Detection Limits 

The graph of real impedance in ohms versus concentration results in a logarithmic curve 

with excellent correlation. However, a linear relationship is desired due to the future goal of 

developing a simple programmable electronic circuit for converting measured real impedance to 

concentration. This was found to be possible by plotting real impedance and the negative natural 

logarithm of concentration of the ion. Figure 11 shows the calibration plot for chloride using 

sodium chloride solutions at 25.0 °C.  



	 33 

 

Figure 11. Real impedance and -ln ppm of chloride from sodium chloride at 25.0 °C 

 

Using this method, all calibration plots were linear. The detection limit is defined as three 

times the standard deviation (3s) divided by slope (m) which results in units of concentration.44 

In Figure 11 low concentrations of chloride are closer to 12 and higher concentration of chloride 

approach zero which is opposite a normal calibration plot for signal and concentration. As such, 

the detection limit is found by subtracting three times the standard deviation of the impedance 

measurement from that of pure water and calculating concentration in units of parts per trillion 

(ppt). The resulting equation for the detection limit of an ion is shown in equation (3.4). 

Detection	Limit	in	ppt = 𝑒8
p,rspt[pu

v
I×Iwx	yyz
I	yy{

  (3.4) 

Detection limits for carbonate, bicarbonate, chloride, acetate and sulfate were calculated and 

given in Table 6.  
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Table 6. Detection limits for anion concentrations measured at	25.0 °C 

Ion Detection Limit 
(ppt) R2 

Carbonate 16 0.9942 
Bicarbonate 129 0.9998 

Chloride 13 0.9996 
Acetate 128 0.9943 
Sulfate 2.0 0.9965 

 

Using a Metrohm 761 Compact IC, detection limits for chloride are known to be 500 ppt 

and 30 ppt for sulfate.45 Obtained detection limits are similar to ion chromatography. As such, 

the method of impedance spectroscopy following separation may offer a new and novel method 

for determining the concentration of ions.  

Effect of 1:1 and 2:1 Electrolytes 

 Table 7 lists the values for the specific ion conductivities in S·cm2/mole for cations and 

anions considered in this work.46,47 

 
Table 7. Specific ion conductivities values in S·cm2/mole 46,47 

Ion 𝝀 ion 𝝀 
Sodium 50.11 Carbonate 72.0 

Potassium 73.5 Sulfate 79.8 
Chloride 76.35 Acetate 40.9 

Bicarbonate 44.5   
 

Measurements of different 1:1 and 2:1 electrolytes were performed. An example of a 1:1 

electrolyte is sodium chloride resulting in one sodium ion and one chloride ion. A 2:1 electrolyte 

is sodium sulfate. The solutions were measured at the same concentration and temperature, 1´ 

10-5 M and 25.0 °C. For comparison to calculated impedance values, measurement of distance 

between the probe cylinders and surface area of the inner cylinder were required. The 
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measurement of area of the inner cylinder was 27.3 cm2, and l, the distance between the inner 

and outer cylinder, 0.1 cm. The ratio of l and A, which is a constant, was calculated to be 3.7 ´ 

10-3 cm-1. Using this value, the impedance values of salt solutions were significantly higher 

compared to measured values. The measured impedance of pure water at 25.0 °C, 3,853Ω, and 

resistivity of pure water, 18.2 MΩ·cm, resulted in ratio of 2.1 ´ 10-4 cm-1. This is significantly 

less than the value determined by geometric measurements. This is most likely due to inactive 

sites of the metal probe. The calculated impedance values were determined by first finding 

resistivity using equation (3.5).48 

𝜌}~8I = 	108,𝑑 𝐶𝜆}Z + 𝐶𝜆~[  (3.5) 

where 𝜌}~ is the resistivity of the salt in Ω·cm, 𝜆}Z and 𝜆~[ are specific ion 

conductivities in for the cation and the anion in S·cm2/mole respectively at 25.0 °C, d is specific 

gravity and C is the concentration in molar. The calculated impedance values were found using 

equation (1.8) and the measured cell ratio, length over area �
�

 , 2.1 x 10-4 cm-1. Table 8 lists the 

measured impedance, error, sum of specific ion conductivity and calculated impedance 1 ´ 10-5 

M salt solutions. 

 

Table 8. Experimental and calculated real impedance for 1.0 ´ 10-5 M solutions at 25.0 °C35,49 

Salt 
Impedance 

(Ω) 
Error 
(±Ω) 

Calculated 
Impedance (Ω) 

Sodium chloride 656 23 166.85 
Sodium bicarbonate 850 12 222.90 

Sodium acetate 698 8 231.84 
Potassium carbonate 573 31 96.347 

Sodium sulfate 472 39 117.21 
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Table 8 shows the measured real impedance values for 1:1 and 2:1 electrolytes. All 

calculated impedance values are less than measured values. This is due to calculated values 

being based on conductivity which has units of inverse resistance. The measured values are 

higher due to impedance being a combination of resistance and reactance.  
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CHATER 4 

CONCLUSION 

The relative permittivity of pure water was determined using Brookhaven Instruments BI 

870 dielectric constant meter. Results were compared to experimental relative permittivity values 

for water and water-acetone co-solvents system to validate the method. After method validation, 

the instrument was used to measure the relative permittivity of water-tetrahydrofuran co-solvent 

systems. A third order polynomial fit resulted in coefficients to calculate the relative permittivity 

as a function of temperature and mole fraction. Based on literature values, polynomial 

coefficients for acetonitrile, ethanol, methanol, isopropanol DMF and 1,4-dioxane co-solvents 

were determined. This method was attempted for ionic solutions. However, due to current 

induced by the BI 870 and conductivity of the solutions measurement was not possible. The 

probe for the BI 870 was used with the CHI 604 E Electrochemical workstation for AC 

impedance measurements. 

Impedance of pure water as a function of temperature was measured. As the temperature 

increases impedance decreases and fit to third order polynomial. The same molar concentration 

of salt solutions were measured at 25.0 °C to compare measured impedance to calculated values 

based on molar conductivity. Detection limits were found to be at the ppt level. This work shows 

that impedance spectroscopy has detection limits are lower than ion chromatograph and similar 

to pulsed amperometry. This is promising as no reference electrode is required.50 A stainless-

steel cylinder is more robust potentially lowering the cost of detector for ions and maintenance 

costs. Ongoing work is developing a circuit and LCD screen to output ion concentrations in ppt. 

The theoretical circuit shown in Figure 12 is a model for the current circuit being tested in Figure 

13.  
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Figure 12. Theoretical circuit needed for measuring ions in solution 

 
 

 
 

Figure 13. Current circuit development for testing 

 

Use of this circuit to determine concentration of different ions in solution would require 

use of ion exchange resin for separation. Once developed, the system can be calibrated for output 

of concentration in ppt. This technology may find use in water quality or chemical monitoring 

systems.  
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APPENDICES 

APPENDIX A: Relative Permittivity Values for Mole Fractions of Acetone in Water as a 

Function of Temperature 

 
 

Table 9. Relative permittivity of 0.60 mole fraction of acetone in water	

Temperature °C Permittivity 

15.0 38.5 
20.0 37.7 
25.0 36.8 
30.0 36.1 
35.0 35.4 
40.0 34.7 
45.0 34.2 
50.0 33.7 
55.0 33.2 

 

Table 10. Relative permittivity of 0.21 mole fraction of acetone in water	

Temperature °C Permittivity 

15.0 53.8 
20.0 52.7 
25.0 51.6 
30.0 50.5 
35.0 49.5 
40.0 48.3 
45.0 47.3 
50.0 46.4 
55.0 45.5 
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Table 11. Relative permittivity of 0.17 mole fraction of acetone in water	

Temperature °C Permittivity 

15.0 59.3 
20.0 58.0 
25.0 56.8 
30.0 55.6 
35.0 54.4 
40.0 53.3 
45.0 52.0 
50.0 50.9 
55.0 49.7 

 

Table 12. Relative permittivity of 0.13 mole fraction of acetone in water	

Temperature °C Permittivity 

15.0 63.8 
20.0 62.3 
25.0 61.0 
30.0 59.7 
35.0 58.4 
40.0 57.1 
45.0 55.8 
50.0 54.7 
55.0 53.9 

 

Table 13. Relative permittivity of 0.10 mole fraction of acetone in water 

Temperature °C Permittivity 

15.0 67.2 
20.0 65.9 
25.0 64.5 
30.0 63.1 
35.0 61.7 
40.0 60.3 
45.0 58.9 
50.0 57.7 
55.0 56.5 
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Table 14. Relative permittivity of 0.07 mole fraction of acetone in water 

Temperature °C Permittivity 

15.0 71.4 
20.0 69.8 
25.0 68.3 
30.0 66.8 
35.0 65.3 
40.0 63.8 
45.0 62.1 
50.0 60.7 
55.0 58.9 

 

Table 15. Relative permittivity of 0.027 mole fraction of acetone in water 

Temperature °C Permittivity 

15.0 77.9 
20.0 76.6 
25.0 75.0 
30.0 73.3 
35.0 71.8 
40.0 70.1 
45.0 68.6 
50.0 67.0 
55.0 65.6 
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APPENDIX B: Relative Permittivity Values for Mole Fractions of Tetrahydrofuran in Water as a 

Function of Temperature 

 

Table 16. Relative permittivity of 0.692 mole fraction of tetrahydrofuran in water 

Temperature °C Permittivity 

15.0 10.2 
20.0 9.8 
25.0 9.5 
30.0 9.2 
35.0 8.9 
40.0 8.7 
45.0 8.4 
50.0 8.2 
55.0 8.0 

 

Table 17. Relative permittivity of 0.51 mole fraction of tetrahydrofuran in water	

Temperature °C Permittivity 

15.0 17.4 
20.0 16.9 
25.0 16.5 
30.0 16.1 
35.0 15.7 
40.0 15.3 
45.0 14.9 
50.0 14.6 
55.0 14.3 
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Table 18. Relative permittivity of 0.41 mole fraction of tetrahydrofuran in water 
 

Temperature °C Permittivity 

15.0 22.3 
20.0 21.6 
25.0 21.0 
30.0 20.5 
35.0 20.0 
40.0 19.5 
45.0 19.1 
50.0 18.7 
55.0 18.4 

 

Table 19. Relative permittivity of 0.31 mole fraction of tetrahydrofuran in water 

Temperature °C Permittivity 

15.0 29.6 
20.0 28.6 
25.0 27.8 
30.0 27.1 
35.0 26.7 
40.0 25.8 
45.0 25.4 
50.0 25.3 
55.0 24.8 

 

Table 20. Relative permittivity of 0.17 mole fraction of tetrahydrofuran in water 

Temperature °C Permittivity 

15.0 45.5 
20.0 44.6 
25.0 43.4 
30.0 42.4 
35.0 41.5 
40.0 40.7 
45.0 40.0 
50.0 39.3 
55.0 39.0 
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Table 21. Relative permittivity of 0.13 mole fraction of tetrahydrofuran in water 

Temperature °C Permittivity 

15.0 48.7 
20.0 48.4 
25.0 47.8 
30.0 47.1 
35.0 46.5 
40.0 45.7 
45.0 45.2 
50.0 44.8 
55.0 44.6 
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APPENDIX C: Polynomial Coefficients Other Aqueous Co-Solvent Systems 

 

Table 22. Polynomial coefficients and coefficient of determination for interpolating relative 
permittivity of tetrahydrofuran in water 

T (°C) a b c d R2 

15.0 -26.6 208 -371 271 0.9989 
20.0 -25.4 199 -358 264 0.9993 
25.0 -25.5 198 -356 262 0.9995 
30.0 -25.8 198 -355 259 0.9995 
35.0 -25.3 193 -345 252 0.9994 
40.0 -23.7 183 -328 242 0.9990 
45.0 -21.5 167 -297 223 0.9982 
50.0 -18.9 150 -267 205 0.9976 
55.0 -14.8 124.6 -219.5 178 0.9966 
 

Table 23. Polynomial coefficients for interpolating relative permittivity of methanol in water12 

T (°C) a b c d R2 
20.0 18.3 44.7 -16.1 23.6 1.000 
30.0 26.2 42.6 -15.3 23.3 1.000 
40.0 26.8 29.4 1.4 15.7 1.000 
50.0 24.0 33.8 -7.15 19.3 1.000 
60.0 22.7 31.5 -5.5 18.1 0.9999 

 

Table 24. Polynomial coefficients for interpolating relative permittivity of ethanol in water12 

T (°C) a b c d R2 

20.0 24.9 21.8 -17.3 50.7 0.9999 
40.0 22.1 17.3 -10.8 44.4 1.000 
50.0 20.8 17.0 -12.7 44.6 0.9999 
60.0 19.5 15.5 -11.2 42.6 0.9999 
80.0 14.3 30.6 -39.9 55.4 0.9999 
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Table 25. Polynomial coefficients for interpolating relative permittivity of propanol in water12 

T (°C) a b c d R2 

20.0 20.7 26.7 -84.1 116.7 0.9998 
40.0 18.1 26.3 -82.2 110.5 0.9998 
50.0 16.9 26.0 -82.8 109.2 0.9998 
60.0 15.7 25.3 -80.1 105.3 0.9997 
80.0 13.7 23.8 -77.3 99.8 0.9997 

 

Table 26. Polynomial coefficients for interpolating relative permittivity of isopropanol in water12 

T (°C) a b c d R2 

20.0 18.5 22.3 -71.9 111 0.9998 
40.0 16.1 22.1 -70.9 105 0.9998 
50.0 14.9 21.1 -67.4 101 0.9998 
60.0 13.9 20.9 -66.9 98.1 0.9998 
80.0 11.8 19.7 -62.3 90.9 0.9998 

 

Table 27. Polynomial coefficients for interpolating relative permittivity of DMF in water18 

T (°C) a b c d R2 

15.0 41.6 28.3 -36.4 50.0 0.9961 
25.0 40.0 3.5 41.8 -5.6 0.9978 
40.0 33.7 43.8 -64.4 57.9 0.9956 

 

Table 28. Polynomial coefficients for interpolating relative permittivity of 1,4-dioxane in water41 

T (°C) a b c d R2 

0.0 0.47 56.0 -193 222 0.9984 
10.0 0.48 55.0 -190 215 0.9982 
20.0 0.40 56.6 -196 217 0.9975 
30.0 0.52 52.8 -182 203 0.9978 
40.0 0.55 51.6 -178 196 0.9977 
50.0 1.6 24.1 -87 121 0.9973 
60.0 0.25 58.5 -203 211 0.9914 
70.0 0.63 47.9 -166 178 0.9971 
80.0 0.66 46.3 -162 173 0.9968 
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Table 29. Polynomial coefficients for interpolating relative permittivity of acetonitrile in water 40 

T (°C) a b c d R2 

15.0 37.6 14.1 3.8 27.1 0.9997 
20.0 36.7 15.5 0.7 27.9 0.9997 
25.0 36.0 15.4 0.4 27.3 0.9998 
30.0 35.2 15.0 0.9 26.0 0.9998 
35.0 34.5 14.8 0.6 25.5 0.9998 
40.0 33.8 15.4 -1.5 26.1 0.9998 
45.0 33.1 15.2 -1.9 25.7 0.9998 
50.0 32.3 14.7 -1.3 24.6 0.9998 
55.0 31.7 14.5 -1.7 24.3 0.9998 
60.0 31.1 13.8 -1.1 23.4 0.9998 
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APPENDIX D: Impedance Measurements for Pure water as a Function of Temperature  

 

Table 30. Real impedance values (Ω) of pure water from 25.0 to 60.0 °C 
 

 

 

 

 

 

 

 

  

Temperature (°C) Real Impedance (Ω) Error (±Ω) 
25.0 3974 139 
30.0 3326 92 
35.0 2742 81 
40.0 2405 71 
45.0 2032 58 
50.0 1836 53 
55.0 1648 37 
60.0 1507 33 



	 55 

APPENDIX E: Impedance Measurements for Salts in Aqueous Solution as a Function of 

Temperature 

 

Table 31. The ppb amounts of prepared sodium chloride solutions and impedance determined by 
fitting Nyquist plots at 25.0 °C 

Concentration ppb Impedance Ω Error ±Ω 

5,844 68.40 0.3 
584.4 656.0 19 
58.44 1,431 131 
5.844 1,977 219 
0.584 2,697 87 

 

Table 32. The ppb amounts of prepared sodium bicarbonate solutions and impedance determined 
by fitting Nyquist plots at 25.0 °C 

Concentration ppb Impedance Ω Error ±Ω 

8,400 237.0 5 
840.0 850.0 103 
84.00 2,177 78 
8.400 2,363 52 

 

Table 33. The ppb amounts of prepared potassium carbonate solutions and impedance 
determined by fitting Nyquist plots at 25.0 °C 

Concentration ppb Impedance Ω Error ±Ω 

1,382 574.0 31 
138.2 906.0 40 
13.82 1,181 27 
1.382 2,000 26 

0.1382 2,695 83 
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Table 34. The ppb amounts of prepared sodium acetate solutions and impedance determined by 
fitting Nyquist plots at 25.0 °C 

Concentration ppb Impedance Ω Error ±Ω 
820.3 699.0 8 
82.03 1,219 21 
8.203 2,203 28 

0.8203 2,401 119 
 

Table 35. The ppb amounts of prepared sodium sulfate solutions and impedance determined by 
fitting Nyquist plots at 25.0 °C 

Concentration ppb Impedance Ω Error ±Ω 

14,204 72.00 1 
1,420.4 477.0 34 
142.04 1,689 89 
14.204 2,165 48 
1.4204 2,518 52 
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