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ABSTRACT 

 

Structure Elucidation of a Pyrrolobenzodiazepine Alkaloid and a Biologically Active Polyketide 

Produced by Rhodococcus sp. MTM3W5.2 via Two-Dimensional NMR Spectroscopy 

by 

 

Garrett Adam Johnson 

 

 

As the battle against ever-increasing drug resistence bacteria rages on, novel and sometimes 

more complex natural products can be used to combat this. In this study, two-dimensional NMR 

techniques were utilized to collect a complete spectral data set for two natural products. The first 

structure, a synthesized Pyrrolobenzodiazepine alkaloid natural product was confirmed through 

these methods. The second, a strain of  Rhodococcus, MTM3W5.2, produces a novel 

antibacterial molecule in broth cultures and the active compound was fractionated using a 

Sephedex LH-20 column. Chromatographic purification yielded a pure sample at 58.90 minutes, 

RT.58. HRMS data deduced an exact mass of 911.5490 Da, equivalent to a molecular formula of 

C52H78O13. Several major spin systems were constructed from the 2D-NMR spectra. However, 

due to limited sample quantity in compound with a large molecular weight and product 

instability, the long range HMBC signals needed to connect these fragments have not yet been 

obtained.  
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CHAPTER 1 

INTRODUCTION 

 Natural product discovery and elucidation is a growing field in the effort to develop novel 

antibiotics in order to combat the ever-increasing problem of drug resistent bacteria. This is just 

one of the many end use products that utilize the biological activity that natural products obtain. 

Dating back to the discovery of penicillin over 75 years ago, more than 23,000 natural product 

species have been identified and characterized in the fields such as pharmaceuticals, herbicides, 

insectacides1. As interest in this field has grown throughout the late 20th and early 21st centuries, 

so has the applied techniques to aid in this advancement.  

The first 30 years of natural product discovery followed a very systematic architype : (1) 

phenotypic screening, (2) compound isolation and structural characterization, (3) mode of action 

studies in some cases, (4) preclinical development, and if successful, (5) clinical development 

and commercialization. One technique in particular that has shown great effect in the second step 

of structural characterization is the development and implementation of Nuclear Magnetic 

Resonance techniques. These advanced NMR techniques have helped in not only eliminating the 

dereplication of known compounds quicker but also gave way to the complete structural 

elucidation of larger, more complex natural product species2. 

The scope of this research thesis will focus on the theory of various NMR techniques and 

how those can be utilized in order to validate the exact structural makeup of three differing 

natural product species. The first species being a Pyrrolobenzodiazepine (PBD) alkaloid 

analogue, being researched as a novel β-lactam antibiotic to combat the ever-increasing β-

lactamase-mediated resistance.3 These PBD analogues have also been reported to serve as 

anticancer therapeutics due to uniques guanine binding charateristics.4 The second species is 
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most likely that of a polyketide derivative, Rhodococcus, MTM3W5.2, as previously reported by 

the research group.5 

Chemical Shift 

  The basis to the theory behind NMR spectroscopy is built on the principles of nuclear 

spin, more importantly the nuclear spin in the presence of a magnetic field. This was first 

discovered in the 1950’s when 1H and 31P nuclei were observed to absorb energy when placed 

into a magnetic field frequency that was specific to the nucleus itself. Once absorbed, nuclei 

would then resonate, with different atoms within the same molecule resonating at different 

frequencies. These differences in resonances are what are used to determine the chemical 

structure of a molecule.6  

  The spin of an electron can be denoted as the spin quantum number (ms), this electron has 

both angular momentum and orbital angular momentum as it spins around a given axis. This 

momentum is a vector, therefore possessing both magnitude (1/2) and direction (+ or -).7 Atomic 

nuclei that possess even numbers of protons and neutrons  have zero spin with all other atoms 

said to have a non-zero spin. A given atom with non-zero spin has a magnetic moment, which 

can be illustrated as bar magnets in figure 1. Undisturbed, the magnet has an equal probability of 

any random orientation. When an external magnetic field, Bo, is applied, the magnet is forced to 

align with or against the magnetic field.8   
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Figure 1. Magnetic Moment under an applied magnetic field8 

  The presence of electrons determines how great the effect of the external magnetic field 

will have on a given nucleus of a molecule. As the charged electrons orbit the nucleus a magnetic 

field is created and acts upon the nucleus, creating slight changes in energy levels. This 

phenomenon is known as shielding.8 Inequivalent nuclei experience different magnetic fields 

dues to the local electronic environment, this change in energy requires a different frequency to 

excite the spin flip which allows for differentiation in the NMR spectrum. In figure 2, the effect 

of localized electrons is illustrated to describe how their magnetic field can shield the nucleus 

from the externally applied magnetic field. 

 

Figure 2: Shielding effect of localized electons8 

  Chemically inequivalent environments can be interpreted through the use of Fourier 

Transforming the NMR signal. This results in a spectrum with an arrangement of peaks that 

corresponds to a unique chemical environment. Figure 3 is an example of a typical 1H NMR 

spectra for the natural product menthol, displaying numbered peaks at varying chemical shifts, 



 

12 

 

each unique to their electronic environment within the molecule. 

 

Figure 3: 1H NMR of menthol9 

  The integration of area underneath each numbered peak in Figure 3 is directly 

proportional to the number of each given nuclei, in this case protons, within that specific 

environment.8  

 

Sample Preparation 

  A high-quality NMR tube should always be used, poor quality tubes will result in poor 

spectra, this explains why typical NMR tubes are so expensive. A standard NMR tube is 

typically a cylindrical glass 5mm diameter. Smaller, more specialized NMR tubes are available 

in order to increase sensitivity however can be very expensive.9  

  Depending on the sample, 1-5 mg is commonly standard for an organic molecule with 1H 

NMR, while 5-50mg is reasonable for 13C NMR. Preparing an NMR tube with too little sample 

will hamper the signal therefore possibly giving an incomplete spectrum, while a sample with 

too much will cause an increase in viscosity of the sample solution leading to broad peaks.10  
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Commonly,  a solvent height of 5cm is used for NMR experiments. The cylindrical tubes are 

inserted into a spinner which will be spun around inside of the instrument by air. A typical 

spinner is shown in Figure 4.  

 

Figure 4: Typical NMR tube with spinner11  

The vertical position of the tube in Figure 4 will be set by the depth gauge, indicated by the tube 

resting on the bottom of the gauge.  

 

Distortionless Enhancement by Polarization Transfer Spectroscopy 

  An alternative to traditional decoupled 13C-NMR experiments is a Distortionless 

Enhancement by Polarization Transfer (DEPT) experiment. DEPT experiments differ from the 

classic 13C in that it is a spectral editing sequence which can be used to produce different signals 

based off of the type of carbon nuclei present in the molecule. Specifically, DEPT-135, uses a 

135-degree decoupler pulse which in turn yields a spectrum that positively phases methyl (CH3) 

and methine (CH) carbons while negatively phasing methylene (CH2) carbons. Quaternary 

carbons (C) give no signal in a DEPT-135 experiment because the large one-bond heteronuclear 
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J-coupling is used for polarization transfer.12 This allows for complete determination of all 

carbon multiplicities within a molecule.  

  Comparison between the standard decoupled 13C spectrum and the DEPT-135 spectrum 

allows easy identification of quaternary carbons by looking for absent peaks in the DEPT when 

compared to the original 13C spectrum.  

 

Figure 5 : Pulse sequence for a DEPT-13513 

  The DEPT sequence depicted in figure 6 begins with a 900 H pulse after which, under the 

influence of proton-carbon coupling, proton magnetization evolves. A period of 1/2J elapses, 

resulting in the two proton satellite vectors being anti-phase. A new 900 C pulse is applied in 

which both transverse proton and carbon magnetization evolve coherently, this is termed as 

multiple quantum coherence. Unlike the typical transverse magnetization that is observed in 

single quantum coherence NMR, multiple quantum coherence cannot be directly observed 

because it induces no signal in the detection coil. Thus, this signal produced must be transferred 

back into single quantum coherence for it to be of any use.14 

  Changing the proton decoupler pulse angle changes what multiplicity signals are detected 

and how they are phased. Using a 900 decoupler pulse produces a carbon spectrum containing 

only carbons with a single attached proton, methine (CH). Switching to a 450 decoupler pulse 

will produce a carbon spectrum containing only carbons with protons directly attached, all of 
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which are positively phased. Quaternary carbons are not observed. Example spectra of each 

decoupled pulse angle is depicted below in figure 6 for the terpene andrographolide. 

 

 

Figure 6: Andrographolide structure (left) and 13C,  DEPT-45, 90, and 135 spectra15 

 

Homonuclear Correlation Spectroscopy 

  Apart from the introduction of Fourier Transfer NMR, the application of 

multidimensional spectra contributed the greatest leap in NMR spectroscopy, both of which have 

been acknowledge by a Nobel Prize.16 Correlated Spectroscopy, COSY, is a useful two-

dimensional method for determining which protons are coupling with each other in a given 

molecule. The pulse sequence for this two-dimensional experiment can be seen below in figure 

7. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiB59S6oKHkAhWuiOAKHXgAAqkQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FChemical-structure-of-andrographolide_fig2_250781299&psig=AOvVaw1dlTWs4j3ZFeqjOKcxSGZo&ust=1566933521817473
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjN5Mf7mqHkAhVxmuAKHZXOCtEQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fchemistry%2Fdistorsionless-enhancement-by-polarisation-transfer&psig=AOvVaw2QWEChAJ1cVdHSX2m6qKjs&ust=1566932044691399
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Figure 7: Pulse Sequence for a two-dimensional COSY-90 experiment16 

   

  Similar to the anatomy of a one-dimension NMR experiment, the two-dimensional pulse 

sequence also consists of a beginning preparation and finishing detection phase. A two-

dimensional experiment also incorporates an indirect evolution time, t1, and a mixing sequence. 

Once the nuclei are prepared the spins can begin to precess freely for any given amount of time, 

as determined by experimental parameters, during time t1. As the spins are precessed the 

magnetization of the first nucleus is labelled, and the chemical shift is developed. This 

magnetization is then transferred from the first nucleus to the second nucleus during the mixing 

time. This magnetization transfer can be accomplished in one of two ways; scalar coupling 

(“through-bond”) or dipolar coupling (“through-space”).17 For this instance, a COSY experiment 

transfers magnetization through scalar couplings. At the end of the experiment, t2, the 

magnetization is labelled with the chemical shift of the second nucleus and the data is then 

processed for both nuclei.16  

  In the case of COSY, the spectrum is homonuclear since both evolution periods detect 

signals of the same 1H isotope, therefore both axis in the COSY spectrum correspond to the 
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proton NMR spectrum. An example topology is depicting for a typical homonuclear 1H,1H-

COSY spectrum below in figure 8.  

 

Figure 8: Example topology of 1H,1H-COSY spectrum16 

  A typical COSY spectrum contains two types of signals, diagonal and cross peaks. 

Diagonal signals can be seen in figure 8 as red peaks along the bold line running from bottom 

right to top left of the spectrum. This diagonal of peaks can be viewed as a plane of symmetry, 

dividing the spectrum into equivalent halves.  

  The diagonal peaks in figure 8 result from magnetization that was not changed during the 

mixing phases of the experiment. This is contributed from equal frequencies in both dimensions, 

indicating that the magnetization remained on the same nucleus throughout both evolution times, 

t1 and t2, respectively.17  

  All peak signals located off of the diagonal are referred to as cross peaks. These signals 

originate from nuclei that exchanged different magnetizations during the mixing phase. This is 

due to a difference in the frequency between the first and second nucleus in both dimensions, 

indicating a detectable interaction between the two nuclei. These interactions are transferred 

magnetizations through scalar coupling between nuclei two to three bonds apart.17 Protons within 
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a molecule that lie more than three bonds apart do no give cross peak signals in the spectrum due 

to the fact the 4J coupling constants are essentially a value of 0.17  

     There are two common types of COSY experiments, COSY-45 and COSY-90 (depicted 

in figure 8). These differ in the degree of the pulse angle for the second pulse, 450 instead of 

900.18 The advantage of using a COSY-45 instead of COSY-90, particularly in large molecules, 

is that the diagonal signals produced are less pronounced, making cross peak assignments much 

easier around the diagonal. So, although the COSY-90 experiment is higher in sensitivity, the 

COSY-45 provides a cleaner spectrum for analysis.18 This aids in the interpretation of complex 

and overlapping 1H spectrum. 

 

Heteronuclear Single-Quantum Coherence  

  A heteronuclear single-quantum correlation, HSQC, NMR experiment is used to 

determine the direct, single bond correlations between nuclei of two different types within a 

molecule.19 This experiment provides a contour plot of correlations between directly bonded 1H 

and X-heteronuclear, most commonly 13C and 15N. A simplified outlook of HSQC experiments is 

to assume the combination of information given from DEPT-135 and 1H spectra into a single 

spectrum to which each proton can be assigned to their directly bonded heteroatom. HSQC 

replaced the incumbent heteronuclear correlation spectroscopy, HETCOR, due to the fact that 

HSQC is based upon proton-detection instead of carbon-detection in HETCOR, offering higher 

sensitivity due to the naturally abundant 1H and faster acquisition times. 20 The pulse sequence 

for a 1H,13C-HSQC is depicted in figure 9. 
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Figure 9: Pulse sequence for 1H,13C-HSQC20 

  Similar to the previously described COSY sequence, this two-dimensional heteronuclear 

pulse sequence involves the same three major parts; Preparation, Evolution, and Mixing. This 

particular pulse sequence utilizes the INEPT sequence during the beginning phase, as evident by 

the 900-1800-900 sequence for 1H and 1800-900 for the 13C.20 This portion completes the 

preparation phase. The evolution takes place during the 13C spins, during which an 1800 pulse is  

applied only to the 1H nucleus. The magnetization is then evolved and data are transferred back 

to 1H nucleus where it is detected. This is how the more sensitive proton nucleus is used for 

detection, there in encompassing the advantage over the aforementioned HETCOR experiment.21 

  An additional spin echo can also be utilized to decouple the signal.20 This simplifies the 

spectrum by collapsing multiplets down to a single peak, similar to the traditional decoupled 13C 

experiment. This is achieved by running sequential experiments, purposefully reversing the 

phase of one specific pulse, this changes the sign of the undesired peaks therefore when the two 

spectrum are subtracted only the desired decoupled peaks are remaining in the spectrum.22  

   In the HSQC spectrum, the contour plot provides information through the use of three 

independent axes. On two of them, the F1and F2, the one-dimensional spectra of each 

heteronucleus is plotted. In the HSQC example of the sugar moiety sucrose, displayed in figure 
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10, the 1H spectrum is plotted along the horizontal F2 axis while the 13C spectrum is plotted 

along the vertical F1 axis.22    

 

 

 

Figure 10: HSQC of sucrose22 

  The third axes is the intensity of each contour peak being phased in or out of the window 

plane, indicated by color. Similar to how DEPT-135 gives information regarding the multiplicity 

of each individual carbon through indication of being either positively or negatively phased, 

HSQC also quickly resolves this ambiguity. In the example of sucrose in figure 10, each methyl 

(CH3) and methine (CH) are positively phased as indicated by a red contour peak, while each 

methylene (CH2) are negatively phased and appear as blue contours in the given spectrum.  
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Heteronuclear Multiple-Bond Correlation  

  Heteronuclear multiple-bond correlation, specifically 1H,13C- HMBC, experiments give 

rise to the long-range correlations between protons and carbons that are most often two to three 

bonds away, although it is possible in some instances to observe correlations four or even five 

bonds away.23 HMBC are particularly important in determining the connectivity of individual 

spin systems generated through COSY and HSQC experiments. Although, HMBC spectrum 

often tend to be the most challenging step in the complete elucidation process. The lack of cross-

peak intensity is notoriously unambiguous, leading to two and three bond cross peaks displaying 

very weak signal, or sometimes not at all. Inherently, when a cross peak displays adequate 

signal, there is no simple method for distinguishing between two, three, and four bond 

correlations.  

 

Figure 11: HMBC pulse sequence24  

  

  The common pulse sequence for a typical HMBC experiment can be seen above in figure 

11. The first 900 pulse is used to eliminate the one-bond 1JCH correlations so that the direct 

connectivity cross peaks, essentially the same as recorded in HSQC spectra, are not recorded in 

the spectra, thus only allowing the long range 1H–13C connectivity to be observed. The second 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjt8frj-dfkAhWNjFkKHRdqDIkQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fmedicine-and-dentistry%2Fheteronuclear-multiple-bond-correlation&psig=AOvVaw282ALLD9n1-XeLCX4edsMM&ust=1568812902571881
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900 pulse creates zero and double-quantum coherences, which are then interchanged during the 

1800 1H pulse. The final 900 pulse serves to modulate the 1H signals resulting from 1H–13C  

multiple-quantum coherence by 13C chemical shifts and homonuclear proton couplings.25    

  Standard HMBC experiments are usually optimized for long range coupling constants of 

intermediate size, due to this both strong and weak 1H,13C- HMBC long range couplings may 

result in weak cross peaks in routine HMBC. This can be addressed by acquiring two separate 

HMBC spectra utilizing two individual mixing delays, for example 60 and 120 ms. However, 

when using longer mixing delays it should be noted that the acquisitions time should also be 

increased to at least twice the duration of the mixing delay. This can lead to parameter sets that 

are considerably above the default HMBC analysis parameters in common place. 24  

  Compared to standard HSQC and HMQC, a decrease in spectra intensity is often 

observed for the HMBC spectra. This is primarily attributed to the relatively long mixing delay 

(40-120 ms) in the HMBC pulse sequence, figure 11.24 1H line shape of the HMBC spectra can 

generally be used as a predictor of adequate S/N. A narrow 1H line width correlate with good 

S/N in the HMBC spectra. 

  In general, is not necessary to acquire a one-dimensional 13C spectra if a well resolved 

HSQC and HMBC spectra are available for organic small molecules. However, if the species of 

interest possesses quaternary carbons that do not give any cross peaks in the HMBC spectra, 

meaning there are no protons within two to four bonds of some carbons, a typical 13C spectra will 

need to be obtained to unambiguously distinguish between individual quaternary carbons.26  

  Unlike HSQC experiments, spectral resolution of routine HMBC in the  13C-chemical 

shift dimension is limited. Cross peaks in the HMBC are broadened in the 13C-dimension by the 

1H,1H-coupling constants of the proton whose long-range 1H, 13C-coupling is observed. Due to 
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this, cross peaks belonging to carbons of very similar chemical shifts cannot be completely 

elucidated. It is possible to remove the interfering 1H,1H-coupling by using a band-selective, 

constant-time variant of the standard HMBC, which can produce spectra with extremely high 

resolution in the 13C-dimension, as previously reported.27  

 

Systematic Techniques for Complete Elucidation 

 The abilities of today’s spectrophotometric instruments allow for the routine analysis of 

most classes of organic molecules. This is true for both complex natural products as well as 

synthetic creations.28 Figure 12 highlights a few recent complete structures elucidated from 

various NMR techniques; platensimycin (1)27, a broad spectrum nonmevalonate terpenoid 

antibiotic, maoecrystal V (2),28 an antitumor diterpenoid, chlorofusin, a peptide-based fungal 

metabolite with anticancer properties, daphlongeranine B (3)29, an unusual polycyclic alkaloid, 

and cytosporic acid (4)30, a polyketide- derived HIV-1 integrase inhibitor, as well as β,β_-disilyl- 

substituted vinyl cations 531 and cyanoresorc[5]arene 632. 
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Figure 12: Recently published complete structures elucidated via NMR-spectrometric 

techniques9 

   For most simple, lower molecular weight organic compounds, the basic 1D 1H and 

13C NMR, COSY and if needed NOESY (Nuclear Overhauser Spectroscopy) will suffice for the 

elucidation of complete structure.33 It is when these basic spectra exhibit overlapping peaks or 

higher-order multiplet patterns which tend to complicate spectral interpretation that additional 2-

dimensional experiments need to be performed. A systematic approach can be utilized to 

determine the degree of analysis that must be performed in order to deduce a complete structure 

in the most time efficient manner.9  

  Initial screening of a 1D 1H and 13C-NMR  spectrum should reveal most of the spectral 

features as well as the complexity of the target species.33 It is also worth noting that unknown 

overlapping peaks may be present and that experimenting with different solvents is a useful 

procedure to determine the best solvent based on; solubilizing effect, chemical shift, peak 

shape.21 In addition, it is also prudent to obtain a molecular formula either through elemental 

analysis or better yet using the exact mass based off of high-resolution mass spectroscopy, HR-

MS, this should be used to verify the number of protons integrated in the 1D 1H-NMR spectrum 

matches accordingly. This will also allow the calculation of the degree of unsaturation, U, 

sometimes referred to as the index of hydrogen deficiency, equation 1. 34  

U = C + 1 – 1/2(H + X – N)                                                      (1) 

  Where C is the total number of carbons, H is the total number of hydrogens, X is the total 

number of heteroatoms with a valence of 1 (e.g. halides), and N is the total number of 

heteroatoms with a valence of 3 (e.g. nitrogen).34 U is the total number of rings and multiple 
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bonds present in the molecule. Additional preliminary information can be obtained from IR or 

UV/Vis spectroscopy if a specific functional group(s) is believed to be present in the species.  

  Next, it is most useful to identify each individual proton through HSQC experiment, 

specifically if there is overlap in the 1D 1H NMR spectra.35 This will allow for the numbering of 

each proton, most commonly ascending whole integers from left to right of the spectrum. In 

addition, the phasing of each cross peak will give evidence to the number of protons directly 

bound to a specific carbon.35 This should eliminate the need for edited 1D 13C NMR experiments 

such as DEPT, which can take up excessive instrument time.36  However, if the species contains 

a large number of quaternary carbons it may be of use to compare the standard 1D 13C NMR 

with a DEPT experiment to more easily identify each quaternary carbon rather than comparing to 

the HSQC.  

  After initial 1JC,H couplings are deduced from the HSQC it is often useful to begin 

tabulating the couplings for each numbered proton. An example for the spectral data for menthol 

can be seen in table 1.  

 

Table 1: NMR Data for menthol (CDCl3)
9 
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  In table 1, each unambiguous proton is numbered in column ID through use of HSQC 

spectrum. Each corresponding proton and carbon chemical are obtained from  standard 1D 1H 

and 13C NMR (or HSQC if necessary) and reported in ppm. The chemical shift of quaternary 

carbons can be obtained from either the 13C NMR, DEPT, or HMBC correlations. The number of 

hydrogens for each is determined from the integration of 1D 13H NMR spectra and phase of each 

HSQC crosspeak.37 The correlation data for other experiments can then be stored in additional 

columns. It is commonplace, to avoid bias, to record a full data set (HSQC, COSY, HMBC) 

before beginning spectral interpretation.9 

  Once several fragments are deduced from the HSQC and COSY spectrum, combination 

with HMBC data can begin to build the skeletal connectivity of the species.38 This technique is 

particularly useful when transmitting through heteroatoms and quaternary carbon atoms. A 

tabulated list of recommended acquisition and processing parameters for each experiment can be 

viewed in table 2. 

 

Table 2: Recommended acquisition and processing parameters for 2D-NMR experiments9 
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CHAPTER 2 

EXPERIMENTAL METHODS AND MATERIALS 

NMR Solvents 

  Deuterated chloroform, CDCl3-d (99.8% isotopic purity) +0.05% V/V TMS,  was 

obtained from Cambridge Isotopes Laboratories and used as is without further purification for 

sample DM-002. Deuterated methyl-d3 alcohol, MeOH-d3 (99.96% isotopic purity) 0.75mL 

ampoule was received from Aldrich Chemical Supply and was used as is without further 

purification for sample RT.58.   

NMR Spectroscopy Experiments 

    1H-NMR, 13C-NMR, DEPT-135, and 2D-NMR experiments including Heteronuclear Single-

quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple Bond Coherence (HMBC), 

Correlation Spectroscopy (COSY) spectrum were carried out for each sample on the specific 

instrument indicated below. The samples were prepared in a 5mm NMR probe unless otherwise 

noted. Chemical shift values were measured in parts per million (δ, ppm). The splitting patterns 

of proton signals were also designated as follows: singlet (s), doublet (d), a doublet of doublets 

(dd), a doublet of the doublet of doublets (ddd), triplet (t), the quartet (q), and the multiplet (m). 

 

DM-002 

Sample was prepared and experiments performed at Eastman Chemical Company, Kingsport, 

TN on a Bruker Ultraspin 500 MHz Spectrophotometer (1H 600 MHz; 13C 125 MHz). 
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Table 3. NMR Prameters for Sample DM-002 

Experiment Number of Scans Relaxation Delay (s) 

1H 192 15.0 

13C 3500 2.00 

DEPT-135 3500 2.00 

1H,1H-COSY 16 1.48 

HSQC  30 1.50 

HMBC 88 1.50 

 

RT.58 

  Sample was shipped and prepared at the David H. Murdock Research Institute, 

Kannapolis, NC. 1D and 2D NMR experiments were performed on a Bruker Biospin II 600 MHz 

spectrophotometer (1H 600 MHz; 13C 150 MHz). 

 

Table 4. NMR Parameters for Sample RT.58 

Experiment Number of Scans Relaxation Delay (s) 

1H 512 1.00 

13C 16384 2.00 

DEPT-135 8192 2.00 

1H,1H-COSY 64 1.48 

HSQC  64 1.50 

HMBC 128 1.50 
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Sample was also prepared at Eastman Chemical Company using a Wilmad Labglass 5mm 

Bruker CD3OD Shigemi tube set and 1D and 2D NMR experiments performed on a Bruker 600 

MHz spectrophotometer (1H 600 MHz; 13C 150 MHz). 

 

Table 5. NMR Parameters for Sample RT.58 Prepared in Shigemi Tube Set 

Experiment Number of Scans Relaxation Delay (s) 

1H 1024 10 

13C 10,000 2.00 

1H,1H-COSY 32 1.48 

HSQC  64 1.50 

HMBC 128 1.50 

 

Spectral analysis was interpreted and completed using MestReNova x64 software. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

DM-002 

As previously reported, the exact mass of sample DM-002 equated to 318.1481 amu. This 

converts to an exact chemical formula of C19H18N4O. Using the following formula: 

Degree of unsaturation (U) = C+1-[1/2(H+X-N)]  

The degree of unsaturation was determined to be 13. Analysis of the 1H proton spectra 

(Appendix A) integration confirmed the presence of 18 unique protons, thus agreeing with the 

calculated molecular formula. The peaks in the range of 7.0 ppm and 8.2 ppm indicate the 

presence of 9 aromatic protons.  

Table 6. NMR Spectroscopic Data for DM-002 Sample (500MHz, CDCl3) 

ID # 
H, mult (J in 

Hz) 
C carbon COSY HMBC 

1 8.56    126.36 (17), 55.42(9) 

2 8.51,s  157.69 CH═C  134.51(16), 128.11(4) 

3 7.99 131.39 
CH─C 7 165.90(13), 136.73(15), 

132.32(6) 

4 7.82 128.11 CH─C 5 157.70(2), 130.72(5) 

5a, 5b, 5c  7.44, s 
130.72, 

128,72 

CH═C 4 
128.11(4) 

6 7.44, t 132.32 CH═C 8 136.73(15), 131.39(3) 

7 7.19,  123.71 CH═C 3, 6 126.37(17), 120.69(8) 

8 7.02 120.69 CH═C 6 126.37 (17), 123.71(7) 

9 4.40, td 55.42 
CH─C* 11  157.47(14), 47.29(10), 26.06(11), 

23.45(12) 

10a, 10b 3.77 47.29 
CH2─C 12 55.42(9), 26.06(11), 47.29(10) 

23.45(12) 

11a, 11b 3.04, s, 2.17, m  26.06 
CH2─C 9, 12 157.47(14), 55.42(9), 47.29(10), 

23.45(12) 

12a, 12b 2.06, m  23.45 
CH2─C 10, 11 157.47(14), 55.42(9), 47.29(10), 

26.06(11) 

13  165.90 qC   
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  Analysis of the 13C spectra, Appendix B, gave rise to a total of 17 unique carbons and 

identified two sets of identical carbons at 128.72ppm and 128.11ppm as indicated by the doubled 

peak intensity. Comparison between the 13C and DEPT-135 spectra indicated the presence of five 

quaternary carbons due to the lack of signal in the DEPT-135. This comparison also gave rise to 

the presence of three methylene carbons (sp3 -CH2-).  

  Analysis of the HSQC spectra (appendix E) identified each directly bonded 1H-13C, 

identifying ten methine (sp2 CH) olefinic protons. Comparing the HSQC to the DEPT-135 also 

confirms the previously identified three methylene carbons, each of which are diastereotopic. 

The doublet H(10 a,b) at  3.77, which correlates to the multiplet H(12 a,b) at  2.06. H(12 a,b) 

in the COSY spectrum (Appendix D) then further correlates to the singlet H(11a) at  3.04 and 

multiplet H(11b) at  2.17. This large splitting in the chemical shift would indicate the localized 

presence of a stereogenic center. Proton H(9) at  4.40 is determined to be a sp3 methine through 

comparison of the integration as well as the positive phasing in both the DEPT-135 and HSQC 

spectra.   

  In the COSY spectrum, the doublet H(3) at  7.99 correlates with triplet H(7) at  7.19. 

Proton H(7) further correlates to doublet H(8) at  7.02. HMBC spectra shows a correlation 

between H(3) with carbons C(13) at  165.90, C(15) at  136.73, and C(6) at 132.32. C(15) at  

136.73 and C(13) at  165.90 can both be identified as quaternary carbons when comparing the 

13C and DEPT-135 spectra. There are also three other identifiable quaternary carbons; C(14) at  

157.47, C(66) at  134.51, and C(17) at  126.37, for a total of five quaternary carbons.  

14  157.47 qC   

15  136.73 qC   

16  134.51 qC   

17  126.37 qC   
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  The overlapping of peaks of H(5) and H(6) at  7.45 in the 1H were distinguished using 

the HSQC spectrum which identified three unique direct C-H linkages. Identical aromatic 

protons H(5a,b) at  7.45 are directly linked to C(5a) at  130.72, while aromatic proton H(5c) is 

bonded to C(9b) at  128.72. Proton H(6), also aromatic at  7.45, is directly bonded to C(6) at  

132.32.  

  Proton H(7) correlates in the COSY to aromatic proton H(3) and (8) and further 

correlates in the HMBC to carbon C(17) at 126.37 and C(8) at  120.69. Proton H(8) also 

displays a COSY correlation with H(7) and further correlations in the HMBC to carbonyl carbon 

C(13) at  165.90 and quaternary carbon C(15) at  136.73. 

  Protons H(10)-H(12) are all methylene protons, H(10) shows COSY correlation with 

H(12) and further correlates to carbons C(9) at  55.42, C(11) at  26.06 and C(12) at  23.45 in 

the HMBC. Proton (11a,b) are diasterotopic and correlate in the COSY to H(9) and H(12) and 

further correlate to carbons C(14) at  157.47, C(9) at  55.42, C(10) at  47.29, and C(12) at  

23.45 in the HMBC. The final methylene H(12) correlates to protons H(10) and H(11) in the 

COSY and further correlates to carbons C(14) at  157.47, C(9) at  55.42, C(10) at  47.29 and 

C(11) at  26.06 in the HMBC. Carbons 13-17 are all quaternary carbons.  
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(1)                                               (2)                                                     (3) 

 

Figure 13: Structural Fragments deduced from each DM-002 spin system 

  Each fragment deduced from the 1H,1H-COSY spectra can be seen in figure 13 as bold 

blue connections. The spin systems created from HMBC spectra can be seen as each uniquely 

colored set of arrows.  

  When the individual spin systems are pieced together, it can be concluded that the 

hypothesized structure of DM-002 is supported by the spectral data collected from the 1D and 

2D NMR analysis. The structure of DM-002 can be seen below in figure 14.   

 

Figure 14: Confirmed structure of sample DM-002  
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RT.58 

  Once the pure Rhodococcus sp. MTM3W5.2 RT.58 was obtained, a systematic 

approach was taken to determine the molecular structure. Beginning with the HRMS, an exact 

mass of  a molecular formula of C52H78O13 was determined, from this formula a degree of 

unsaturation is calculated to be 14. The spectrometric data is consolidated below in table 7. 

 

 

Table 7. NMR Spectroscopic Data for Sample RT.58 (600 MHz, Methanol-d4 

Proton # 
H, mult (J in 

Hz) 
C Carbon COSY (H↔H) HMBC(H→C) 

1 6.74, dd  153.66 - 

unsaturated 

5.86 (6), 2.49 (25) 
167.10 (52), 121.52 (6), 80.16, 

18.31 (41) 37.06 (27) 

2 6.34, dd  128.67 CH═C 5.98 (5), 5.36 (10) 
137.14 (50), 128.90 (5), 29.59 

(32) 

3 6.06, t  133.35 CH═C 5.42 (8)  132.23 (4), 40.60 (30) 

4 6.03, d  131,17 CH═C 5.39 (9)  

5 6.00, d  128.90 CH═C 6.35 (2) 
39.06 (37), 71.72 (21), 134.61 

(10) 

6 5.86, d  121.52 CH═C 6.72 (1) 167.10 (52) 37.06 (27), 18.31 (41) 

7 5.57, dd  66.90 CH═C 1.77 (34) 
165.93 (52), 61.76 (48), 43.78 

(25) 

8 5.47, dd  138.86 CH═C 6.05 (3), 2.29 (30) 132.38 (3), 131.17 (4) 

9 5.39, dd  134.30 CH═C 6.051 (4) 131.17 (4) 

10 5.35, td  134.61 CH═C 6.35 (2), 2.20 (32) 128. 36 (5), 70.48 (22), 46.19 (32) 

11 5.24, dd  128.34 CH═C 2.29(28)  78.68 (15)  

12 4.09, t 73.87 CH─O   

13 4.08, dd 78.16 CH─O   

14 4.05, d  71.36 CH─O 1.29 (40)  

15 3.82, d  78.68 CH─O  
137.88 (51), 128.34 (11), 80.28 

(17) 

16 3.79, d  85.78 CH─O 2.39 (27) 71.36 (14), 4.89 (44) 

17 3.69, t 80.28 CH─O   

18 3.58, t  78.86 CH─O 3.38 (20a)  

19 3.55, m 83.00 CH─O  18.89 (42), 19.13 (43), 

      

C

O
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20a,/20b 3.48, t / 3.41, m 73.27 CH2─O 2.20 (29) 78.86 (18), 47.48(29) 

21 3.39, d  71.72 CH2─O  128.90 (5), 32.30 (30), 11.30 (35) 

22 3.35, m 58.58 CH─C   

23 3.30, m 58.44 CH─C   

24a,/24b 2.89, m / 2.83, t 44.79 CH2─C   

25 2.49, m  42.68 CH─C  98.61 (49), 61.76 (48), 66.90 (7) 

26a,/26b 2.41, m / 2.25 m  27.79 CH2─C  98.61 (49), 61.76 (48) 

27 2.39, d   37.06 CH2─C   

28 2.29,m 41.53 CH─C 
6.75 (1), 3.77 (16), 

1.12 (41) 
121.52 (6), 85.78 (16) 

29 2.20 47.48 CH─C  78.68 (15) 

30a,/30b 2.19, m, / 1.40, s 32.30 CH2─C   

31a/31b 2.10, m / 1.30, m 38.86 CH2─C 138.86(8)  

32a,/32b 1.77, m  / 1.39 m 29.59 CH2─C 
5.36 (10), 3.35(22), 

1.41 (34) 
58.58 (22) 

33a/33b 1.77 dd / 1.66, m 18.90 CH2─C  61.76 (48),  

34a/34b 1.79, m /1.41, m 28.30 CH2─C  61.76 (48), 98.62 (49) 

35 1.71, s 11.30 CH3─O  137.14 (50) 

36a,/36b 1.71, m / 1.44 m 39.06 CH2─C   

37 1.67  24.68 CH─C  128.90(5) 

38 1.61 27.43 CH─C 1.02 (42), 0.94(43)  

39 1.60, m 42.59 CH─C 3.87 (15), 3.71 (17) 77.14 (17) 

40 1.29, m 30.81 CH2─C 0.87 (44), 4.05 (14)  

41 1.10, t  18.31 ─CH3 2.29 (28) 41.53 (28), 80.27 (16), 152.68 (1) 

42 1.02, d  18.89 ─CH3 1.68 (38) 19.13 (43), 33.41 (38), 83.00 (19) 

43 0.94, d  19.13 ─CH3 1.68 (38) 19.13 (43), 33.41 (38), 83.00 (19) 

44 0.87, t 4.89 ─CH3 1.29 (40) 30.81 (40), 71.36 (14),  

45 0.83, dd 17.34 ─CH3 2.29 (30) 40.64 (30), 71.72 (21), 138.86 (8) 

46 0.49, d  13.63 ─CH3 1.29 (40) 78.68 (15), 80.27 (17), 39.09 (40) 

47 q 53.20    

48 q 61.76 
 

  

49 q 98.61 
 

  

50 q 137.15 
 

  

51 q 137.88 
 

  

52  q 165.92 
 

  

C

C
O

C
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C

C

O C
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  The 1H-NMR shows a clear set of olefinic protons in the 5.25-7.0ppm range as well as 

seven distinct sharp methyl peaks in the upfield 0.5-1.75ppm region. The 1.5-4.0 ppm region is 

complicated with many overlapping and unresolved peaks, making the determination of each 

proton integration difficult. For this reason, the HSQC must be used to separately each unique 

proton signal by pairing it with its corresponding carbon atom. The 13C spectra showed a total of 

52 unique carbons, therefore agreeing with the molecular formula calculated from the HR-MS.   

 

 

 

Figure 15:HSQC of RT.58 showing each proton-carbon pair as well as the hybridization of each.  
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  These observations are confirmed by the HSQC spectra. The HSQC identifies 16 unique 

methine groups in the 1.25-4.20ppm region. The HSQC also gives rise to the presence of 12 sp3 

methylenes in the 1.25-3.50ppm region, this is confirmed by the negative phasing of the DEPT-

135 y-axis.  

  A total of 72 protons can be observed in the 1H and HSQC spectra. The hybridization of 

each proton-carbon pairing can be seen color coded in figure 15. This accounts for 11 sp2 

methines, 16 sp3 methines, 24 sp3 methylene protons, and 21 sp3 methyl protons. The remaining 

6 protons to be assumed as hydroxy protons within the structure, due to the exchangeability of 

the hydroxyl proton in the MeOD solvent.  

  Strong correlation between the 1H, 1H-COSY and HMBC also suggest  that proton H(1) 

at  6.74 to be in the β-position of an α,β-unsaturated carbonyl, most likely in the form of an 

ester as a lactone ring, commonly associated with polyketide species.39  Assuming a total of 13 

oxygen atoms from the calculated chemical formula, removing the 6 hydroxyl oxygens as well as 

the 2 oxygens contributing to the lactone ring ester from the total count leaves 5 remaining 

oxygens to be accounted for, which can be assumed to be in the form of ether linkages.  

  The doublet of doublets H(1)  6.74 has a COSY correlation with proton H(6)  5.86 and 

with proton H(25) at  2.49. H(1) further correlates with carbons C(52) at  167.10, C(6) at  

121.52, C(41) at  18.31 and C(28) at  41.53. Due to these correlations in the HMBC of H(1) to 

C(52) at  167.10 and that C(52) is a quaternary carbon with a chemical shift typical of a 

carbonyl ester, it is believed that C(1) is the carbonyl carbon of the lactone ring.  

  The doublet of doublets of proton H(2) at  6.34 has COSY correlations with protons 

(H5) and H(10) at  5.98 and 5.36, respectively. H(2) also correlates with quaternary carbon 

C(50) at  137.15, C(5) at  128.90, and C(32) at  29.59 in the HMBC. The doublet proton H(5) 
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also correlates with carbons C(37) at  24.68, C(21) at  71.72 and C(10) at  134.61 in the 

HMBC.  H(10) further correlates with proton H(32) at  2.20 in the COSY. H(32) at  2.20 then 

further correlates with protons H(22) at  3.35 and H(34b) at  1.41 in the COSY as well as with 

carbon C(22) at  58.58 in the HMBC. Proton H(34b) further correlates in the HMBC with 

quaternary carbons C(48) at  61.76 and C(49) at  98.62.  

  Triplet proton H(3) has a COSY correlation with proton H(8) at  138.86. H(8) at  

138.86 then further COSY correlates with proton H(30) at  2.29. Proton H(3) also shows a  

correlation with carbons C(4) at 132.23 and C(30) at  32.30 in the HMBC.  

  The doublet proton H(4) shows a COSY correlation with H(9) at  5.39, this correlation 

is confirmed by the cross peak of H(9) with H(4) in the COSY as well as with the HMBC cross 

peak of H(9) with carbon C(4) at 131.17. No further correlations are detected for proton H(4) or 

H(9) in the COSY or HMBC.  

  The doublet of doublets H(7) at  5.57 shows a COSY correlation with proton H(34) at  

1.77. H(7) then further correlates with quaternary carbon C(52) at  165.92, C(27) at  37.06 and 

C(41) at  18.31.  

  Proton H(11) at  5.24 correlates in the COSY with H(28) at  2.29. H(11) then shows 

further correlation with carbon C(15) at  78.68.  

  Protons H(12) at  4.09, H(13) at 4.08, and H(17) at  3.69 do not show any correlations 

in the COSY or HMBC spectrums. Proton H(14) at  4.05 shows a COSY correlation with 

proton H(40) at  1.29. H(40) then shows further COSY correlation with proton H(44) at  0.87. 

This correlation is also reflected in the HMBC of proton H(44) with carbons C(40) at 30.81 and 

C(14) at  71.36.  
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  Proton H(15) at  3.82 shows no correlations in the COSY but does show HMBC 

correlations with quaternary carbon C(51) at  137.88, C(11) at  128.34 and C(17) at  80.28. 

  Proton H(16) at  3.79 displays a COSY correlation with proton H(28) at 2.29. H(16) 

then further correlates with carbons C(14) at  71.36, and methyl carbon C(44) at  4.89.  

  Proton H(18) at  3.58 shows a COSY correlation with diastereotopic proton H(20a) at 

3.48.  

  Proton H(19) does not show any COSY correlations but does show HMBC correlations 

with carbons C(42) at  18.89 and C(43) at  19.13.  

  Proton H(20) shows COSY cross peak with proton H(29) at  2.20 and further correlates 

with carbons C(18) at  78.86 and C(29) at  47.48. Proton H(29) shows further HMBC 

correlations with C(15) at  78.68 in the HMBC.  

  Proton H(21) at  3.39 does not show any COSY correlations but does display HMBC 

correlations with carbons C(5) at  128.90, C(30) at  32.30 and C(35) at  11.30. 

  Protons H(22) at  3.35, H(23) at 2.30,  H(24) at  2.89 and H(27) at 2.39 do not show 

any correlations within the COSY or HMBC spectrums.  

  Protons H(25) at  2.49 and H(26a,b) at  2.41 and 2.25 do not show any COSY 

correlations however both show HMBC correlations with quaternary  carbons C(49) at 98.61 and 

C(48) at 61.76, in addition to H(25) also showing HMBC correlation to carbon C(7) at  66.90.  

  Proton H(28) at  2.29, in addition to the COSY correlations to H(1) at  6.75 and H(16) 

at 3.77 also shows COSY correlation to proton H(41). H(28) also displays HMBC correlations 

to carbons C(6) at  121.52 and C(16) at  85.78.  
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  Protons H(30a,b) at  2.19 and 1.40, respectively, H(36ab) at 1.71 and  1.44 do not 

show any COSY or HMBC correlations 

  Protons H(33a,b) at  1.77 and 1.66 along with H(34a,b) at  1.79 and 1.41 do not show 

any COSY correlations but do both show HMBC correlations with carbon C(48) at  61.76, 

along with H(34ab) also showing HMBC cross peak with carbon C(49) at  98.61.  

  Proton H(38) at 1.61 shows COSY correlations to two sets of methyl protons, H(42) at  

1.02 and H(43) at  0.94.  

  Protons H(41)-H(46) are all sp3 methyls, with H(41) showing COSY correlation to H(28) 

at  2.29 and HMBC correlations to carbons C(28) at   41.53, C(16) at   80.27, and C(1) at  

153.66. H(42) and H(43) show identical COSY and HMBC correlations with both COSY to 

proton H(38) at 2.29 and HMBC to carbons C(38) at  33.41, C(43) at  19.13 and C(19) at  

83.00. H(44) shows a COSY cross peak with proton H(40) at  1.29 and HMBC cross peaks with 

carbons C(40) at  30.81 and C(14) at  71.36. H(45) displays a COSY with H(30) at   2.19 and 

HMBC cross peaks with C(30) at  40.64, C(21) at  71.72 and C(8) at C(8) at  138.86. H(46) 

displays a COSY cross peak with H(40) at 1.29 and HMBC cross peak with C(15) at  78.68, 

C(17) at  80.28, and C(40) at   30.81.  

  The combination of each spin fragment into a spin system begins to piece together the 

molecular structure of RT.58. A few possible structural fragments are displayed below in figure 

16. Each color represents a spin system developed from each COSY correlation and each arrow 

represents a long-range HMBC correlation. 
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Figure 16:Possible partial spin systems for RT.58 

 

   Although the HMBC gives insight into neighboring identities of each unique proton, it is 

not sufficient to give complete evidence of a full structure. This is due to the very low sample 

concentration of the NMR sample itself in MeOD, this concentration is limited due to the low 

amount of purified RT.58 sample available. This limited sample quantity in combination with the 

instability of large molecular weight natural products make elucidation of a complete structure 

for RT.58 extremely difficult. It is theorized that the stability of larger molecular weight natural 

products is extremely volatile in comparison to lower molecular weight natural products, 

especially when taking into consideration the many trials of the purification process that must 

take place to provide an adequately clean natural product species.40  
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  Attempts were made to improve signal strength by increase the number of scans of the 

HMBC analysis however, due in context to the inherently low sensitivity of the HMBC 

experiment itself, no improvement were observed in the quality of long-range signals needed to 

fully elucidate RT.58. 

  Another technique is to use a different NMR tube that is highly specific to both low 

sample concentrations and solvent effects. A Shigemi tube was obtained and the sample was 

reanalyzed on a 600 MHz spectrophotometer. The workings of a Shigemi tube can be seen below 

in figure 17.  

 

Figure 17 :Typical Shigemi tube apparatus 

  Shigemi tubes are specific for the type of instrument (e.g. Bruker, Varian) as well as for 

the solvent that the sample will be dissolved in. The typical NMR tube requires approximately 

0.5-0.75 mL total volume to assure proper sample height when inserted into the instrument.41 

https://www.thomassci.com/Laboratory-Supplies/Tube-Filters/_/Shigemi-Advanced-NMR-microtube-assembly-matched-with-D2O-Shigemi-BMS-005TB-bottom-L-8-mm
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A shigemi tube provides a bottom length of the specific solvent in a pure layer on the bottom of 

an outer tube, the sample is then dissolved and transferred into the tube. An inner tube, 

sometimes referred to as a plunger, that has a top layer of pure solvent is then inserted into the  

outer tube, forming a complete air tight seal with the middle layer of dissolved sample.42 This 

provides a more concentrated sample at the proper coil height when placed into the instrument.  

  Unfortunately, when RT.58 was reanalyzed using a Shigemi tube, no improvements were 

observed in the signal strength of the long range HMBC signals. This could be due in part to the 

loss of sample during transitions between tubes as well as the instability effect of the natural 

product itself.  

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

Conclusions 
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  The identity of the synthesized natural product DM-002, a Pyrrolobenzodiazepine (PBD) 

alkaloid was confirmed to be the desired structure through the use of 1D and 2D NMR 

techniques. The integration of 1H NMR spectrum exactly matched the predicted number of 

protons as calculated by the molecular formula, provided by HR-MS. Each proton was uniquely 

identified using HSQC and each hybridization of carbon determined. The use of HMBC long 

range correlations made possible the connections of each spin fragment by providing correlations 

to quaternary carbon and heteroatoms. The complete structure of DM-002 is confirmed to be that 

of which is depicted in figure 13.  

  In the case of RT.58, many partial spin systems were developed and confirmed through 

the use of 2D NMR analysis. The main evidence of which being an alpha-beta unsaturated ester, 

most likely of which in the form of a macro-lactone, common for various polyketide synthase 

derivatives. It was determined that there were no aromatic protons or carbons in the structure. 

Due to the complicated and overlapping of the 1H the use of HSQC was needed to uniquely 

identify each proton, which successfully identified 72 unique protons. The combination of 13C 

and HSQC data confirmed the presence of 52 carbon atoms, confirming the molecular formula 

predicted from HR-MS to be correct. From this, it could be deduced that the remaining 6 protons 

must come from a hydroxy (-OH) functional group on the basis that these are exchangeable in 

the MeOD solvent and that no amine (-NHx) functional groups were identified in the mass 

spectroscopy.  

  Through analysis of the HSQC the hybridization of each carbon atom was determined 

and identified with the species containing; seven sp3 methyl groups (-CH3), eleven sp2 methines 

(-CH=C-), sixteen sp3 methines (-CH-C-), and twelve sp3 methylenes (-CH2-C) eight of which 

are diastereotopic.  
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  The HMBC provided information needed for the connectivity of spin fragments through 

the correlation of quaternary or heteroatoms, however, the long-range correlations that are 

needed to connect every fragment were not obtained for two reasons: i.) limited purified sample 

quantity led to an inadequate sample concentration in the NMR sample. ii.) the high molecular 

weight of 911.5490 [M+H] + of the natural product leads to an unstable product thus affecting 

the spectral signals and intensity overtime.  

  The use of a specialized Shigemi NMR tube in hopes to improve sample concentration 

proved to be ineffective in providing higher signal strength in the HMBC spectrum. Increased 

scans and longer analysis times also proved to be ineffective in providing an increase in the long-

range signals needed for complete elucidation.  

 

Future Work 

  More work is needed in order to provide an adequate sample for complete structural 

elucidation: 

i.) Continued efforts around the extraction, isolation, and purification processes could 

provide more purified RT.58 sample which in turn could increase sample 

concentration of a future complete spectral analysis.  

ii.) Complete 1D and 2D spectral analysis at an external facility at higher resolution (e.g. 700 

or 800 MHz NMR spectrophotometer instrument) could yield higher resolution and 

signal strength in the poorly sensitive HMBC experiment to provide longer range 

couplings needed for elucidation. 
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iii.) Studies around the stability of the purified RT.58 could lead to advances in the storage 

and handling of the final product in order to prolong the desired species to be used for 

spectral analysis.  

iv.) Studies focusing on the growth and isolation of RT.58 crystals could lead to the ability to 

analyze via X-ray crystallography in order to provide an absolute configuration of the 

species. If this effort is successful, a retrosynthetic pathway could then be analyzed 

and proposed as a novel route to obtaining purified RT.58 sample. This could in turn 

lead to an alternative means other than isolation and purification of a meniscal amount 

of naturally available material.   
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APPENDICES 

Appendix A: 1H spectra of DM-002 
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Appendix B: 13C Spectra of DM-002 
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Appendix C: DEPT-135 of DM-002 
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Appendix D1: COSY of DM-002 
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Appendix D2: COSY of DM-002 
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Appendix E: HSQC of DM-002 
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Appendix F: HMBC of DM-002 
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Appendix G1: 1H Spectrum of RT.58 
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Appendix G2: 1H Spectrum of RT.58 
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Appendix G3: 1H Spectrum of RT.58 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

62 

 

Appendix H:13C Spectrum of RT.58 
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Appendix I:DEPT-135 of RT.58 
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Appendix J:COSY of RT.58 
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Appendix K: HSQC of RT.58 
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Appendix L: HMBC of RT.58 
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Appendix M: 1H Spectrum of RT.58 Shigemi 
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Appendix N: 13C Spectrum of RT.58 Shigemi 
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Appendix O: COSY of RT.58 Shigemi 
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Appendix P: HSQC of RT.58 Shigemi 
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Appendix Q: HMBC of RT.58 Shigemi 
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