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ABSTRACT 

Extraction and Purification of Biologically Active Metabolites from Rhodococcus sp. 

MTM3W5.2 

by 
 

Mohrah Ali Alenazi 
 

 
Rhodococcus has been recognized as a potential antibiotic producer. Recently, a strain of 

Rhodococcus sp. MTM3W5.2 was isolated from a soil sample collected in Morristown, 

Tennessee and was found to produce an inhibitory compound which is active against other 

related species. The purpose of this research is to extract, purify and analyze the active 

metabolite. The compound was extracted from RM broth cultures and purified by preliminary 

fractionation of crude extract through a Sephadex LH-20 column. Further purification was 

completed using semi-preparative reversed phase column chromatography. Final purification 

was obtained using multiple rounds of an analytical C18 HPLC column. Based on the results 

achieved in the UV-Vis spectroscopy and high-resolution mass spectroscopy, the two desired 

compounds at a retention time of at 57 and 72 min could be polyketides with the molecular 

formulas C52H78O13 and C19H32O1N1/C13H34O1N1, respectively. 
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CHAPTER 1 

INTRODUCTION 

Antibiotics History 

 Penicillin was discovered by Alexander Fleming in 1928. However, it was not used as a 

treatment at that time. In 1940, it had been showed that penicillin was helpful to cure bacterial 

infection. Lately in 1940, penicillin had been reported as a resistance antibiotic.1 As a result, 

several studies were conducted to modify the chemical properties of penicillin to avoid cleavage 

via penicillinases. Introduced in 1937, sulfonamides were the first effective antimicrobials. 

Although they proved to be somewhat successful, their therapeutic use was reduced because of 

the development of certain mechanisms of resistance. These resistance mechanisms were 

reported in the latter part of the 1930s.2 The wide use of antibiotics led to resistant strains 

capable of reducing the activity of the drug.3 Another antibiotic known as streptomycin was 

introduced in 1944 for tuberculosis (TB) treatment. However, there was an increase in the mutant 

strains of Mycobacterium tuberculosis and subsequent resistance of the therapeutic 

concentrations of streptomycin during patient treatment.4 In the 1960s, there was no longer a 

problem with TB treatment. However, in the 1980s the disease returned with acquired immune 

deficiency syndrome (AIDS) patients and appeared in drug-resistant forms. Also, there were 

another types of gram-negative bacteria such as Enterobacteriaceae.5 There were several 

resistances in other new classes of antibiotics that were discovered and introduced into clinical 

practice after penicillin and streptomycin, as shown in figure 1.4  
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Figure 1. History of discovery antibiotics and antibiotic resistance development (used with 

permission from Davies, J.).4 

Antibiotics Resistance 

Recently, the use of antibiotics in the treatment of common bacterial infections has not 

been effective due to antibiotic resistance. 6 The high rate of antibiotic use in hospitals, 

agriculture, and communities in developed countries has contributed immensely to sustained 

resistant strains, causing shifts to more expensive and more broad-spectrum antibiotics.7 Most 

antibiotic resistance arises due to mutations in microbes and the selection pressure which kills 

susceptible bacteria, causing antibiotic-resistant bacteria to survive and multiply.2 A genetic 

mutation in Penicillin-binding proteins (PBPs), which are a group of proteins that have binding 

affinity to an antibiotic such as a β-lactam, could lead to bacterial resistance. The binding 

between β-lactam and PBP will inhibit cell wall biosynthesis in bacteria. If there is a mutation in 

PBP, that could reduce the affinity of the antibiotic for its target this leads to resistance.8 Other 

antibiotic resistances are due to bacterial resistance because of an increased concentration of 

metabolites antagonizing the drug action and the formation of adaptive-drug inactivating 



15 
 

enzymes.9 Some resistant strains of bacteria produce an enzyme called β-lactamase. This enzyme 

cleaves the β-lactam ring of penicillin and causes antibiotic resistance.9 In addition, other 

bacterial pathogens, related to epidemics of human diseases, have developed into multidrug-

resistant (MDR) forms after antibiotic use. In the 20th century, a version of a major pathogen 

known as M. tuberculosis was identified as multidrug-resistant in most parts of the world. The 

combination of anti-TB drugs was helpful for tuberculosis treatment several years ago, but they 

became multidrug-resistant for many reasons.4 The overuse of antibiotics without a limitation  

has caused  a selective pressure  on M. tuberculosis, starting  from mono-drug resistant to 

multidrug resistant, extensively drug resistant and eventually totally drug resistant, because of 

sequential accumulation of resistance mutations.5 Studies showed that spontaneous mutation is 

the major cause of antibiotic resistance in M. tuberculosis. It has been observed over the past 50 

years that there is a strong correlation between antibiotic use in the treatment of bacterial 

infections and antibiotic resistance development.4 One of the most prominent examples is β-

lactamases and the β-lactam class of antibiotics. Mycobacterium tuberculosis is resistant to β-

lactam drugs. After the antibiotic penetrates the cell wall, the antibiotic could be cleaved by the 

enzyme and become ineffective.5  

Managing Antibiotic Use 

An effective approach to fight against antibiotic resistance requires effective training of 

new personnel and the implementation and investment of antibiotic stewardship programs, 

encouraging pharmaceutical companies to conduct more research on antibiotic resistance and 

discovery of new antibiotics.10,11 Also, in the developing and underdeveloped countries with poor 

health systems, factors such as the provision and management of adequate infrastructure, 

sufficient funds, implementation of new infection control policies and investigation of records 
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should be ensured.12 While health agencies control these new policies in hospitals and 

communities, the national ministries of health should be responsible for the enforcement of other 

beneficial policies concerning antibiotic resistance in the health sector.13 Also, the role of 

physicians in the advocacy for control of antibiotic resistance can ensure practical input to the 

national task force. Moreover, the national task force can play a role by involving the major 

ministries that take part in drug discovery such as pharmaceutical industries and education and 

agricultural sectors. Other effective measures can be enforced by regulating, reviewing and 

customizing national antibiotic policies and providing potential funding agencies for 

underdeveloped countries through global partnerships.14  

Antibiotics Produced From Natural Products  

Natural products have been identified as good sources of many active ingredients of 

medicines. This led to the wide use of natural products in drug discovery over the years until 

synthetic drugs were produced.15 Several years ago, medicinal plant extracts and their natural 

products were screened for antimicrobial and antibacterial properties, and this showed that many 

such plants are primary sources of antibiotics. Due to their therapeutic properties, several studies 

reported that medicinal plants can be considered an effective source of antibiotics when the main 

goal is to control or heal the body from microbial invasions. 16 According to current surveys, 

roughly 60% of the current anticancer and antibiotic drugs are derived from medicinal plants. 

Studies have shown that natural ecological community preserves the stability of antibiotic 

resistance. Since ancient times, medicinal plants have been used to develop more effective drugs 

as they have proven therapeutic characteristics. For example, the medicinal herb Nigella sativa 

has been used in traditional medicine to treat many health conditions, such as asthma, 

gastrointestinal problems and high blood pressure. Given its wide use, scientists have examined 
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its antioxidant functions on treating difficult health problems such as cancer and autoimmune 

diseases.17 However, the overuse of broad-spectrum antibiotics in agriculture and hospitals 

resulted in the selective pressure on resistant populations.18,19 Several studies have discussed the 

importance of natural products in drug discovery. The effectiveness of natural products is better 

than the varieties of successful drugs from synthetic compounds. There is an increasing demand 

for the inclusion of natural chemical products in drug discovery. 20 

Currently, the major source of most leads from natural products is extracted from either a 

microbial source or plant source. Previous publications, which discussed the screening of 

bioactive compounds in the world’s natural products, showed that only a small quantity is 

available for use in drug production. However, the collections of more extensive plants and the 

culturing of microbes could be important in the production of several new chemicals in drug 

discovery assays. Currently, terrestrial actinomycetes fungi have been a main source of 

microorganisms. These fungi are very useful with the discovery of their species unique to the 

marine environment and with their ability to produce new bioactive metabolites chemically. In 

addition, cyanobacteria are another important source of bioactive compounds from the marine 

environment. They have increased the demand for production of chemically new bioactive 

metabolites in drug discovery.20 Recently, an extensive screening approach for the discovery of 

natural product was reported. Other improved approaches, such as methodology for the 

identification of antibiotics, cheminformatic approaches, and production of strains, have also 

been developed. Novel genomic-type approaches have been very useful in finding small 

molecules with antibacterial activity. In the future, this approach will be a promising avenue for 

the identification of novel opportunities.21 Natural products have spurred many advances in 

organic chemistry, thus, promoting new developments in synthetic methodologies and enhancing 
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the production of analogues of the original lead compound with improved therapeutic 

properties.22-23 Natural product scaffolds have been identified with chemical structures which 

have been very important as well as the basis for drug discovery. These scaffolds have been used 

as important cores of compound libraries such as flavonoids, terpenoids, polyketides, and 

alkaloids which are all produced by combinatorial techniques.24,25  

Secondary Metabolites 

Secondary metabolites are organic compounds with variable chemical structures that 

have been synthesized by varieties of strains of microbial species. Antibiotics are a very common 

type of secondary metabolites that have been very economical in drug discovery, while other 

classes of secondary metabolites have also been useful for their biological activities. Secondary 

metabolites are synthesized due to their ability to provide protection to microbes from biological 

stimulus or harm, including humans, insects, plants and even other microorganisms.26 Secondary 

metabolites are compounds that are not directly involved in normal growth and are not required 

for plant growth but are vital for reproduction in humans. They are limited in occurrence and 

likely restricted to a certain taxonomic group genus, species or family and are present in smaller 

quantities than primary metabolites.12 Secondary metabolites have been divided into three main 

groups based on their biosynthetic origins: 

 1. Nitrogen-containing alkaloids and sulphur-containing compound  

2. Flavonoids and allied phenolic and polyphenolic compounds  

3. Terpenoid.27 

Alkaloids 

Alkaloids are a class of chemical compound that are naturally occurring and mostly contain a 

basic nitrogen atom. Also, alkaloids include some related compounds with neutral and weak acid 
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properties. In addition to nitrogen, carbon, and hydrogen, they also contain sulfur and oxygen. 

Rarely, alkaloids have other elements such as phosphorus, chlorine, and bromine. Alkaloids are 

produced by a wide range of organisms like animals, fungi, bacteria, and, primarily, by plants as 

secondary metabolites. Most of the alkaloids are toxic to other organisms, and it is extracted by 

using an acid-base. However, alkaloids have different pharmacological effects and have a long 

history in treatment.28 For instance, it has been shown in several studies that alkaloids extracted 

from herbal substances have anti-proliferative and anti-metastatic properties when they were 

used in different types of cancer treatment. This success in cancer treatment has led to use some 

alkaloids, such as camptothecin and vinblastine in the development of anti-cancer drugs. In 

addition, another successful progress has been noted when berberine, type of the alkaloids was 

used in the treatment of metabolic syndrome. Therefore, the use of these alkaloids seems to be 

promising in these treatments.29 Alkaloids have a great diversity in their biochemical botanical 

origin, in pharmacological action, and in chemical structure.30 Thus, there are several approaches 

for classifying alkaloids. They can be classified by: 

I. Chemical structures: According to the nature of the nitrogen-containing structure 

classification, alkaloids are organized based on a common, typically heterocyclic, 

nucleus, such as indole, pyrrolidine, isoquinoline, quinazoline, and pyrrolizidine.31  

II. The natural origin: Another way to classify the alkaloids is to use their botanical taxa in 

which the alkaloids are extracted such as Solanaceae, Amaryllidaceae, Annonaceae and 

Rutaceae alkaloids. 31 

III. Biosynthetic pathway: Alkaloids are divided by their common molecular precursors, 

according to the biosynthetic pathway of alkaloids used to construct the molecule.32,33 

Thus, they include three main types of alkaloids: 
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a. True alkaloids are derived from amino acids and contain a heterocyclic ring with 

nitrogen such as L-histidine, L-ornithine, and L-lysine.32  

b. Protoalkaloids are derived from amino acids, but nitrogen is not a part of a 

heterocyclic ring like L-tyrosine and L-tryptophan. 33 

c. Pseudoalkaloids are not derived from an amino acid, for example, solanidine, 

caffeine, capsaicin, and ephedrine as shown in figure 2.32  

 

Figure 2. Some examples of pseudoalkaloids.32 

Terpenoids 

The terpenoids, sometimes called isoprenoids, are one of the most diverse classes of 

natural plant products. They range in structure from a straight chain (linear) to polycyclic 

molecules, and they range in size from the five-carbon hemiterpenes to natural rubber. 

Terpenoids are derived from thousands of isoprene units. Thus, all terpenoids are synthesized via 

the condensation of isopentenyl diphosphate (IPP), and its allylic isomer, dimethylallyl 
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diphosphate (DMAPP) (Figure 3).12 Based on the number of five-carbon units present in the core 

structure, terpenoids are classified as monoterpenes (C10), sesquiterpenes (C15), diterpenes 

(C20), sesterterpenes (C25), triterpenes (C30), and tetraterpenes (C40). 31 Current research has 

found that these terpenoids can be used for therapeutic purposes as they demonstrate a broad 

range of biological activities such as anti-cancer, anti-inflammatory, and anti-malarial. After this 

important discovery, the use of terpenes has been increased to treat a diversity of infectious and 

microbial diseases including viral and bacterial. 34 

 

Figure 3. The structure of IPP and its isomer DMAPP.31 

Phenylpropanoids 

Phenylpropanoids are a large group of natural products that contain six members of an 

aromatic ring. In the late 19th century, the structures of various simple phenylpropanoids, which 

are common plant products, were established such as a 3, 4-dihydroxycinnamic acid (caffeic 

acid), 4-hydroxycinnamic acid (coumaric acid) and Cinnamic acid as shown in figure 4. The 

phenylpropanoids are biosynthesized by the shikimate pathway which is found in plants and 

microorganisms. The shikimate pathway provides an unorthodox way to form aromatic 

compounds, especially the aromatic amino acids such as l-tyrosine, l-tryptophan, and l-

phenylalanine. The major difference between aromatic rings that are biosynthesized by this route 

and those of polyketide aromatic rings are their oxygenation pattern. 31,35  During the last few 

years, more research has been conducted to examine the biological activities of 

phenylpropanoids. These studies showed that phenylpropanoids have protective effects against 
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infections, stressors, and air pollutants. 36 It has been also found in recent studies that plant-

derived phenylpropanoids have great effects for human health. These protective effects were 

found to be associated with their antioxidant, anti-cancer, and anti-inflammatory properties. It 

has been also suggested that phenylpropanoids have great impacts on reducing the risk of heart 

diseases, cancer, and osteoporosis because the active compounds in phenylpropanoids act as an 

estrogen agonist via the estrogen’ receptors. 37 

Cinnamic Acid 4-hydroxycinnamic acid (Coumaric Acid)
3,4-dihydroxycinnamic acid (caffeic acid)

OH

O

OH

O

HO

OH

O
HO

OH

                   

Figure 4. The examples of Phenylpropanoids.31  

Polyketides 

Polyketides are a large group of natural products that are produced from different sources 

including fungi, bacteria and, to a lesser extent, plants. Most of the recent studies have been 

conducted on polyketide biosynthesis.38 The first factor is their biological and pharmacological 

activities, such as antifungal, anticholesterol, antibacterial, antiparasitic, antifungal, anticancer, 

and immunosuppressive properties.38-39 It is also driven by the enormous commercial value of 

these natural products which remain the most successful candidates for new drug 

discoveries. The other factors, which have been considered in much current research, are the 

mechanism, catalytic reactivity, and exceptional structure of PKSs, which provide an 

unprecedented opportunity to investigate the molecular mechanisms of molecular recognition, 

protein-protein interaction, and enzyme catalysis. Finally, the extraordinary diversity and the 
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usability of polyketide synthases permit the production of new compounds which are hard to 

access through other ways.40  

Polyketides are synthesized from a repetitive decarboxylative Claisen condensation 

between a thioesterified malonate derivative and an acyl thioester.39 The polyketide synthesis 

processes are like the synthesis of fatty acid, but polyketides differ from fatty acids due to the 

diversity in their structures and differences in the fatty acid synthesis and the post-PKS 

modification. Moreover, the variety of the chemical structure of polyketides which causes the 

diverse bioactivities as well.41 Many polyketides are originated from the Actinomycete bacteria, a 

gram-positive soil bacterial, particularly, members of the genus Streptomyces and the genus 

Rhodococcus. 42 

 

Figure 5. Examples of polyketide secondary metabolites.43  
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Polyketides Syntheses (PKSs) 

The vast structural diversity of polyketides arises mostly from multifunctional enzymes. 

Even with this diversity, all polyketides are biosynthesized in the first stage by a mechanism 

which is analogous to fatty acid synthesis.44 Polyketides are synthesized by successive rounds of 

decarboxylative Claisen condensation of a starter unit, most commonly acetyl-CoA with an 

extender unit, typically malonyl-CoA. After that, the repetitive decarboxylative Claisen 

condensation results in an extension of the polyketide carbon chain, and it may undergo 

additional modifications.39 The polyketide synthase (PKS) is a multifunctional enzyme that is 

responsible for catalyzing these condensation reactions. The PKS involves a set of catalytic 

domains, organized into functional units called modules. Each domain has a specific catalytic 

function that is required for chain elongation.45 These domains, which are obligatory for the 

biosynthesis of polyketides, include: 

I. Acyltransferase (AT) domain is responsible for selecting the specific extender unit from 

the CoA pool and loading on to the acyl carrier protein (ACP) domain. 

II. Ketosynthase (KS) domain catalyzes the decarboxylative Claisen condensation with 

upstream intermediate to extend the polyketides chain. 

III. Acyl carrier protein (ACP) domain is a carrier in the intermediate which is connected by 

a thioester, tethered to the phosphopantetheine cofactor of the acyl carrier protein. 46 

The remaining reductive domains (ketoreductase [KR], dehydratase [DH], and 

enoylreductase [ER]) may occur to produce a different degree of reductions and may result in β-

keto, β-hydroxy, α, β-alkene, or entirely reduced intermediates. After these processes have been 

completed, the ACP domain of one module can mediate the successful transfer of the 

intermediate to the next module in the assembly line of the polyketide. Finally, the terminal 
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thioesterase (TE) domain is responsible for separating the compound from the ACP region of the 

final module then releasing the polyketide compound.46 Commonly, the number of modules that 

are required for synthesis of the polyketide compound are identical to the number of precursors 

which are combined onto the polyketides.39  

The polyketides’ and fatty acids’ biosynthesis are connected mechanistically and frequently 

using the same precursor molecules. Still, there are some differences between polyketide and 

fatty acid biosynthesis which are the type and the number of acyl precursors that are used in the 

extension of the polyketide chain, the cyclization of the final products, and the position and 

extent of keto-group reductions. 47 

Polyketides can generally be classified into three types: I PKS, II PKS, III PKS. Type I PKSs 

are multifunctional enzymes that consist of several enzymatic domains which arrange into 

modules. Each of them contains a group of distinct, non-iterative acting activities which are 

responsible for stimulating one cycle of polyketides’ extension chain, such as 6-

deoxyerythromycin B synthase. Moreover, the term type II PKSs indicates multienzyme 

complexes that contain a single set of iteratively acting activities such as tetracenomycin.40 

Furthermore, type III PKSs are also known as chalcone syntheses like PKSs. They are mostly 

distributed in plants and have recently been characterized from microorganisms as exemplified 

by tetrahydroxy chalcone.48,49 Type I and II PKSs use an acyl carrier protein (ACP) domain to 

direct the growth of polyketide intermediate and to activate the acyl CoA substrates, while type 

III PKSs are utilized as an ACP independent mechanism. 49 
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Bacterial Type I Modular Polyketide Synthase 

 A classic bacterial Type I PKS is the modular 6-deoxyerythronolide B synthase (6-DEB) 

from Saccharopolyspora erythraea and is responsible for synthesis of the aglycone core of the 

clinically significant macrolide antibiotic erythromycin A.48 The modular PKS assembles seven 

precursors that contain one propionyl-CoA starter unit and six (2S)-methylmalonyl-Coenzyme A 

(CoA) extender units on to 6-DEB.39 This PKS has three large DEBS proteins which are 

comprised of two functional subunits, and these subunits are called modules. Each module 

consists of three domains ketosynthase (KS), acyltransferase (AT) and acyl carrier protein (ACP) 

which are required to stimulate one cycle of chain elongation. Also, there are variable sets of 

domains that include: ketoreductase (KR), dehydratase (DH) and enoyl reductase (ER) with 

modification of the keto functional group. The biosynthesis of polyketides begins with DEBS 1 

which is fronted by loading didomains (AT and ACP) that accept the precursor propionate from 

propionyl-CoA; whereas, DEBS3 terminates with a thioesterase (TE) through off-loading, and 

then cyclization of a fully-formed heptaketide intermediate to provide 6-DEB as shown in figure 

6.43 Once the product is released from the complex by a thioesterase, the 6-deoxyerythronolide B 

is subsequently modified through a tailoring enzyme to provide the finalized macrolide antibiotic 

structure.48  
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Figure 6. Organization of the Modular PKS, 6-Deoxyerythronolide B Synthase (DEBS).50 

The Genus Rhodococcus 

Rhodococcus equi is a pathogen that has been identified in animals and humans. It was 

originally discovered in horses by Magnusson. Friedrich Wilhelm Zopf was the first German 

botanist and mycologist to use the term genus Rhodococcus in 1891, which was then revived and 

redefined in 1977 to accommodate the rhodochrous complex. The rhodochrous complex was 

known to consist of a number of strains that did not belong to the established genera Nocardia, 

Corynebacterium and Mycobacterium.51 Rhodococcus is a gram-positive bacterium that belongs 

to the phylum of Actinobacteria and the family of Nocardiaceae under the order of 

Actinomycetales. The genus Rhodococcus is aerobic, mycolate-containing, nonsporulating, and 

nocardioform with similarities to Mycobacterium and Corynebacterium.52 Among the 18-major 

lineage domains of bacteria, the phylum Actinobacteria is one of the largest taxonomic units, 

including five subclasses and 14 suborders.53 The most abundant sources of actinomycetes are 
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terrestrial and marine environments, such as sediment from the deep sea, soil, insects and marine 

invertebrates and plants. In extreme environments, actinomycetes can also be found in hyper-arid 

desert soil and cryophilic regions.54 The cell envelope of Rhodococcus equi consists of 

glycolipids, polysaccharides, and mycolic acids which makes it different from other gram-

negative and gram-positive bacteria. Due to the mycolic acids in the cell wall, Rhodococcus 

equi resists less available oxygen or high acidic types of environmental stresses. Its strong wall 

acts as a barrier for hydrophilic molecules and contains porins in the cell wall that support the 

necessary molecules for life. R. equi thrives on manure and degrades a wide variety of aromatic 

and organic compounds.  Rhodococci is of great interest in research due to a broad range of 

metabolic and enzymatic faculties. Rhodococcus multiply inside of a host by reproducing inside 

of macrophages.55,56  Recently, research has discovered over 40 species that have been classified 

under the genus Rhodococcus.57 Moreover, a new classification of the genus of rhodococci has 

been reclassified with new genera and new species such as R.zopfii, R.roseus, R.percolates, and 

R. opacus. In addition, other new species have also been combined and transferred to other 

established genera such as R. chubuensis and R. aichiensis to Gordonia, and R. chlorophenolicus 

to Mycobacterium. 58 

Pathogenic Rhodococcus 

The Rhodococcus genus has been classified into two pathogenic species, namely R. 

fascians and R. equi. R. fascians is a plant pathogen that causes leafy gall disease in both 

gymnosperm and angiosperm plants,59 while R. equi is the causative agent of foal pneumonia 

(rattles) and mainly infects three-month-old foals.  Nevertheless, its wide host range periodically 

infects humans with an impaired immune system, especially in those undergoing 

immunosuppressive therapy and in AIDS patients. Also, animals such as pigs and cattle are 
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infected with the wide host range of R. equi.60 R. fascians, and R. equi. are economically 

significant as the former is a major pathogen of tobacco plants and the latter is endemic on 

several stud farms around the world.61  

The Importance of Rhodococcus in Industry 

 Rhodococcus is the most industrially important genus of actinomycetes. They produce 

many different applications, including bioactive steroids, fossil fuel biodesulfurization and the 

production of acrylic acid and acrylamide, which is the most commercially successful 

application of a microbial biocatalyst.62 Due to its impressive range of metabolic activity, the 

Rhodococcus genus can degrade a wide range of environmental pollutants and transform or 

synthesize compounds that have potentially useful applications.63 Furthermore, the genus 

Rhodococcus has several enzymes that allow them to perform numerous chemical reactions and 

make them useful in environmental and industrial biotechnology. As a result, the mycolic acid-

containing outer membrane of rhodococci may allow them to degrade a wide range of 

hydrophobic pollutants.63  

Antibiotics Derived from the Genus Rhodococcus   

There are around 23,000 antibiotics discovered in microorganisms, and about 10,000 of 

them have been isolated from actinomycetes, such as the genus Rhodococcus. Thus, recently, the 

genus Rhodococcus has been regarded as a potential antibiotic producer. 63 

The first antimicrobial compound was from Rhodococcus sp. Mer-N1033 in 1999. Chiba, 

et al., discovered five novels cyclic tetrapeptides which strongly exhibit antifungal activity 

against Candida albicans.64 However, they did not show antibacterial activity. The five novel 

compounds were named rhodopeptin C1, C2, C3, C4, and B5, which were isolated from 
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Rhodococcus sp. Mer-N1033. This producing organism strain Mer-N1033 was isolated from a 

soil sample that was taken from Mt. Hayachine, Prefecture, Japan. The components of these five 

rhodopeptins are α-amino acids and a lipophilic-β-amino acid. The rhodopeptins were extracted 

as white powders or colorless solids, and they were soluble in methanol, acetic acid, dimethyl 

sulfoxide and water. The five structures of rhodopeptins are shown in figure 7.64 

 

Figure 7. The structure of rhodopeptin C1, C2, C3, C4, and B5.64  

 

The second antimicrobial compound produced by Rhodococcus jostii K01-B0171 in 2007 

(by lwatsuki). This strain was extracted from a soil sample and collected in Yunnan, China. Also, 

this strain of R. jostii was discovered to produce two anti-mycobacterial peptides, and they were 

named lariatin A and B. Both lariatin A and B inhibit the gram-positive Mycobacterium 

smegmatis, and lariatin A also showed growth inhibition against Mycobacterium tuberculosis. 

The components of these lasso peptides structures are 18 and 20 amino acids with a linkage 

between the α-amino group of Gly 1 and the γ-carboxyl group of Gly 8 (Figure 8). Both lariatin 
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compounds were isolated as a pale powder, and they were soluble in methanol, water, and 

DMSO.65  

 

Figure 8. Structure of Lariatins A and B.65 

In 2008, another research group, Kitagawa and Tamura, screened around eighty 

Rhodococcus strains for antibiotic-producing ability, which were acquired from Japanese and 

German culture collections. They used Corynebacterium, Sinohizonium, Pseudomonas, 

Eschericcoli, Arthrobacter, Streptomyces, and Rhodococcus as test strains for the first screening. 

They found fourteen Rhodococccus erythropolis strains and one Rhodococcus globerulus strain, 

which showed inhibition in at least one of the test strains. These 15 producing strains of 

Rhodococcus were then extensively screened by using 52 test strains. Consequently, the 15 

strains of Rhodococcus exhibited antibiotic activity against the gram-positive indicator strains, 

but they did not exhibit activity against most of the gram-negative indicator strains. These 15 

strains were classified into three groups according to their antibiotic spectrum:  

I.    Group 1 contained five strains (R01-R05), which exhibited antibiotic activity against a wide 

range of gram-positive bacteria, 

II.    Group 2 was comprised of three strains (R06-R08), which produced antibiotics against the 

genus Rhodococcus and some other gram-positive bacteria. 
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III.    Group 3 consisted of seven strains (R09-R015), which exhibited antibiotic activity, 

especially against Rhodococcus erythropolis. 66 

Kitagawa and Tamura continued in their research and worked on the structure and 

characteristics of the Group 1 antibiotic-producing strains. They have isolated a new quinoline 

antibiotic called aurachin RE from the Rhodococcus erythropolis JCM 6824 strain. The aurachin 

RE structure is very similar to the antibiotic aurachin C, which was isolated from gram-negative 

myxobacterium, Stigmatella aurantiaca Sga 15 (Figure 9). Both antibiotics exhibited antibiotic 

activity against gram-positive bacteria. Aurachin RE appeared as a gray-brown powder, and it 

was soluble in ethyl acetate, methanol, ethanol, methyl cyanide, and DMSO.67  

 

Figure 9. The structures of aurachin RE.67 

In 2008, research by Kurosawa, et al., isolated two antibiotics named rhodostreptomycin 

A and B from the culture broths of Rhodococcus fascians 307CO strain (Figure 10). They 

showed excellent antibiotic activity against a wide range of gram-negative and gram-positive 

bacteria such as Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Streptomyces 

padanus, and Helicobacter pylori. The activity of rhodostreptomycin (B) was stronger than 

rhodostreptomycin (A), and that suggests the effect on the biological activity and the difference 

in the stereochemistry. These two antibiotics biosynthesize in Rhodococcus, following horizontal 

gene transfer from the Streptomyces. The two antibiotics were described as two isomers of a new 
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class of aminoglycosides and differed in structure from actinomycins and polypeptide antibiotics 

that are produced through Streptomyces. 68 

 

Figure 10. The isomers of rhodostreptomycin (B) rhodostreptomycin (A).68  

Rhodococcus sp. MTM3W5.2 

 A strain of Rhodococcus was discovered in 2011 and was isolated from a soil sample 

collected in Morristown, Tennessee. This strain exhibited a good inhibition against Rhodococcus 

erythropolis and other Rhodococcus species. The strain was named MTM3W5.2. It was able to 

produce this inhibitory compound and was found to be similar to Rhodococcus manna.  When 

the MTM3W5.2 strain was grown in agar plates colonies appeared to be white, but later on, that 

changed to a yellow as they started to age (Figure 11). The compound was initially generated at 

about 150C, and then later it was also produced at a slightly higher temperature, approximately 

200C.57 The gene cluster that is required to produce the inhibitor molecule was found to be 

similar to a polyketide synthase gene cluster from Streptomyces.69   
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Figure 11. The colonies of Rhodococcus sp. MTM3W5.2. 57 

Research Objectives 

 Natural products have been good sources of several active ingredients in commercial 

medications. Also, they have created many advances in drug discovery, and their effectiveness is 

better than other successful drugs from a set of synthetic compounds.11,15 Recently, the bacterial 

genus Rhodococcus has been discovered to produce bioactive secondary metabolites, especially 

the strain MTM3W5.2, which has been found to produce the inhibitor molecule that is active 

against other related species.69 The specific aim of this study is to identify the bioactive 

compound produced by Rhodococcus sp. MTM3W5.2. The research objective will be to extract 

the active metabolite in Rhodococcus by first using the solvent extraction method which was set 

forth by Pushpavathi Manikindi. Then it was per-fractionated crude extract by using the size 

exclusion chromatography, isolating the inhibitory compound by using semi-preparative (RP-

HPLC), and purifying the inhibitory compound by using an analytical HPLC column. A final 

research objective will be to analyze the pure compound by employing high-resolution mass 
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spectrometry and analyzing the UV-Vis spectra to provide information about the presence of the 

conjugated system in the compound. 
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CHAPTER 2 

EXPERIMENTAL METHODS AND MATERIALS 

Reagents 

The reagents and solvents that were used in this study for purification and 

characterization of the inhibitory compound are discussed in detail below. 

HPLC Solvents 

In the purification and analysis of the inhibitory compound, it is necessary to use two 

different mobile phases; solvent A and solvent B. During this research, water was solvent A, 

which was obtained from the ElgaPURELABUHQ water purification system. Solvent B was 

HPLC-Grade acetonitrile (CH3CN) throughout most of HPLC purification methods. Also, some 

HPLC separation methods used HPLC-Grade methanol (CH3OH). HPLC-Grade 2 propanol, 

DMSO, chloroform, and ethanol were also used to dissolve the crude extract of Rhodococcus sp. 

MTMW5.2 and then dilute the sample before it was injected into the HPLC system. 

Reversed-Phase HPLC Buffer  

Throughout this research, two different types of buffers were used to enhance the separation 

of the active compound during the reversed-phase HPLC purification: 

I.    Ammonium formate (HCOONH4) was used in a concentration of 20 mM, which was 

prepared by dissolving 0.63 g of ammonium formate in 5 mL of dH2O and adding 495 mL of 

dH2O to a volume of 500 mL. 

II.    Ammonium hydroxide (NH4OH) was used in concentrations of 0.01% and 0.005%.  The 

0.01% ammonium hydroxide was made by diluting 200 μL of 50% stock hydroxide 
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ammonium hydroxide with 1 L of dH2O. 

Other Solvents and Reagents 

The n-butanol solvent was used in the liquid-liquid extraction methods of the 

Rhodococcus sp. MTMW5.2 broth culture to get the inhibitory compound from the cultures. The 

size exclusion chromatography (SEC) method used HPLC-Grade methanol as a mobile phase. 

To dissolve the inhibitory compound before the HPLC analysis, dimethyl sulfoxide (DMSO), 

ethanol, 2-propanol, and chloroform were added.   

Bacterial Strains 

 Rhodococcus sp. MTMW5.2 is a bacterium discovered in 2011, which was used during 

this study. It was provided by Dr. Bert C. Lampson’s research lab in the Department of Health 

Sciences at East Tennessee State University. The strain of Rhodococcus sp. MTMW5.2 was 

isolated from a soil sample collected in Morristown, Tennessee, and it was a wild-type strain 

which generated the antimicrobial compound.57 A strain of Rhodococcus erythropolis IGTS8 

was also used as a sensitive indicator to determine the antimicrobial activity throughout the 

purification step of the compound. 

Types of Growth Media 

Rich Medium (RM) 

 During this study, a rich medium was used for the growth of the MTM3W5.2 bacterial 

strain. The RM broth was prepared by mixing the following components: 
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Material                       Amounts 

dH2O                            500 mL 

Glucose                        5 g 

Nutrient Broth              4 g 

Yeast extract                0.25 g 

These components were then stirred and autoclaved at 121 0C for 20 minutes. The agar plates 

were also used in this study by adding the same ingredients and adding 7.5 g of Bacto™ agar. 

The RM was autoclaved at 121 0C for 20 minutes and then was cooled to 55 0C in a hot water 

bath. Once the agar was cooled, the medium was poured into 100 mm x 15 mm polystyrene 

Fisherbrand Petri dishes. They were then allowed to cool at room temperature and solidify 

overnight on a bench top. After that, the RM agar plates were stored at 4 0C for upcoming use.69 

Mueller-Hinton Medium (MH) 

During the zone inhibition assay, the MH agar was used to estimate the activity of the 

crude extract of the MTM3W5.2 strain, the fractions taken throughout the SephadexLH-20 

column chromatography, and the HPLC. The MH agar plates were prepared by mixing 19.5 g of 

Difco™ Mueller-Hinton agar into 500 mL of dH2O with heating. After the medium was 

autoclaved at 121 0C for 20 minutes, the medium was cooled to 55 °C in a water bath. Once the 

agar had cooled, it was poured into sterile Petri dishes (100 mmx 15 mm polystyrene, 

Fisherbrand). The MH agar plates were left to cool overnight on a bench top. The solidified MH 

agar was stored at 4 0C for upcoming use.64  
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Extraction Method 

The production of secondary metabolites varies depending upon the type of culture 

medium and the cultivation of the specific microorganisms. Thus, it was imperative to use a 

culturing method of the Rhodococcus sp. MTM3W5.2 bacterial strain that would guarantee 

adequate production of the active metabolite of interest; therefore, the method for culturing was 

adopted from Manikindi.70 It was critical that the solvent selected for the extraction method be 

able to obtain a sufficient amount of the inhibitory compound and to make multiple rounds of 

purification and analysis. The solvent chosen for use depended upon the polarity. The extraction 

method used was adopted from Pushpavathi Manikindi.70 

The RM Broth Culture Extraction Method of MTM3W5.2 Metabolites 

 According to work by Ward,69 the production of the inhibitory compound takes place in a 

stagnant broth culture of the Rhodococcus sp.MTM3W5.2. 2000 mL of RM culture broth was 

divided into four different 2 L flasks, each containing 500 mL of RM broth. The MTM3W5.2 

seed culture was prepared by adding 10 mL of RM broth culture into a test tube, and it was 

inoculated with the bacteria. The seed culture was then incubated at 27 °C for 48 hours under 

constant shaking. After that, 2.5 mL of the seed culture was added to each flask. The flasks were 

then incubated and grown at 20 °C for two weeks. After two weeks, the cultures were then 

transferred into centrifuge bottles and were centrifuged at 6000 rpm for 10 minutes. The 

supernatant was transferred back into the flasks, and the cells were eliminated. Then 100 mL of 

n-butanol was added into each flask and shaken in an incubator at 100 rpm for 30 minutes. When 

shaking was done, the broths were transferred into separatory funnels and left to settle. After the 

organic layer was separated from the aqueous layer, the bottom aqueous layer was transferred 

back into the flask. The top organic layer which is comprised of the n-butanol remained.  50 mL 
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of n-butanol were then transferred into each flask that contained the aqueous layer, and then the 

flasks were shaken again for 30 minutes. The solution was added back into the separating funnel, 

and the organic layer was conserved. The aqueous layer was eliminated. The n-butanol extract 

was then evaporated using a fume hood. The result was a dried n-butanol extract which had been 

recovered from the broth culture. 

 

Figure 12. The extraction of the crude sample from a liquid RM broth culture  
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Zone of Inhibition Test for Antimicrobial Activity 

The zone inhibition assay was used in this study to detect whether the compound had 

been isolated throughout the n-butanol extraction and to identify which fractions contained the 

active metabolites in the SephadexLH-20 column and HPLC. This test was made by soaking 

paper with the antimicrobial compound and then placing it into an agar plate that had been 

inoculated with a sensitive indicator bacterium. If the compound were found to be inhibitory, 

then it would stop the growth of the indicator bacterium around the disk forming zone inhibition.  

The zone of inhibition test is described in the following steps:  First, the seed culture of 

the sensitive indicator bacterium was prepared by adding 2 mL of RM broth culture into a 10 mL 

test tube. A well-formed and isolated colony of the indicator bacterium was chosen from an agar 

plate of Rhodococcus erythropolis IGTS8. The colony of the indicator strain was used to 

inoculate the RM broth into a test tube by adding the cells using a sterile loop. The seed culture 

was then placed in a shaking water bath for 18 hours at 27 °C. The appropriate turbid seed was 

obtained and was then used to inoculate the MH plates that were used for the zone inhibition test. 

Afterward, the MH agar plate was inoculated by plunging a sterile cotton swab onto the 

adjusted turbid Rhodococcus erythropolis IGTS8 seed culture. This swab was rotated many 

times and was pressed on the inside wall of the test tube above the liquid level to eliminate the 

unneeded liquid. Then the MH agar plate was inoculated by swiping the swab over the entire 

agar surface.  

After that, the compound was added to sterilized autoclaved paper disks, which were 

made from thick Whatman blotting paper GB004 using a standard hole puncher. The paper disks 

were labeled using a lead pencil, and then each disc was soaked with 25 μL of the crude n-
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butanol or the SephadexLH-20 fractions or HPLC column fractions. Once the disks completely 

absorbed the liquid, another 25 μL of the compound was added to each disk. The volume of the 

HPLC fractions was low, which indicated a higher concentration of the compound in the 

fractions. To ensure that the resolution of the zone of inhibition was adequate to detect which 

fractions contained the active compound, 25 μL was added to the paper disks.   

The paper disks were dried and then transferred onto the MH agar plate, which was 

previously inoculated with the indicator strain. Each disk was placed at enough distance to 

ensure that zone inhibition would develop, and each was pushed down to ensure that the disks 

were completely in contact with the agar surface. Afterward, the plates were left to grow at room 

temperature for two days before testing the plates for activity (Figure 2.2). Finally, the bacterial 

lawn appeared on the final plates without the existence of the individual colonies. If the 

individual colonies had appeared, the inoculum would not have been concentrated enough, and 

the test would have needed to be repeated. The zone inhibition was observed as a circular area 

around each paper disk in which there was no bacterial growth. 
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Figure 13. The zone inhibition assay step for testing the antimicrobial activity 

Chromatographic Methods 

In this study, several chromatographic steps were used to ensure that a highly pure 

inhibitory compound was obtained. The chromatographic methods are described below from the 

initial purification of the crude extract to the final purification of the compound. 

Size Exclusion Chromatography (SEC) 

Size exclusion chromatography, also called gel filtration (GF), was used to ensure better 

separation of the compound in the crude extract. Separation of molecules occurs according to 

their size as measured by how they pass through the pores of the stationary phase. The large 

molecules cannot penetrate the pores of the medium, and they flow quickly through the 

stationary phase, causing them to be eluted first. The small molecules can easily penetrate the 

pores of the medium, and they flow slowly, causing them to elute out of the column later. Due to 

its unique physico-chemical properties, SephadexLH-20 was selected to purify the secondary 
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metabolites using an organic solvent as a mobile phase. SephadexLH-20 is prepared by 

hydroxypropylation of cross-linked Sephadex G-25 dextran. This LH-20 has both hydrophilic 

and lipophilic characteristics, which make it swell in aqueous solution and organic solvents. 

SephadexLH-20 provides extremely high-resolution separation of the compound in the crude 

extract with short elution and substantial recovery of the compound of interest. Size exclusion 

chromatography depends on an isocratic elution by using a constant mobile phase to elute the 

compounds in the crude extract. During this study, the size exclusion chromatography method 

was used and was termed SephadexLH-20 chromatography, based on the medium used. 

Procedure. 28.78 g of Sephadex LH-20 dry powder was transferred into a 250 mL 

beaker and swollen in excess methanol for two hours. Every 30 minutes, the beaker was shaken 

to take out any air bubbles that might be trapped in the medium. The swollen slurry was 

transferred to the chromatographic column through a glass rod to fill the column completely, 

without any air bubbles forming. After transferring the medium to the column, the top of the 

column was linked to the solvent reservoir and the methanol solvent was allowed to flow through 

the column with atmospheric pressure. After making sure that the column was tightly packed 

with Sephadex resin, the valve was closed. The dried n-butanol extract was reconstituted in 10 

mL of isopropanol and was shaken for 4 hours at 100 rpm in a floor incubator. Then the extract 

was added to the Sephadex column and eluted with methanol as a mobile phase. To ensure 

uniform elution of the active compound was achieved, the pressure was connected to the column 

until the flow rate reached about 2.5 mL/min. The eluate was collected in 15 fractions of 50 mL, 

and they were then tested for antimicrobial activity. Fractions which contained the antimicrobial 

activity were pooled and dried under a fume hood. 
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High-Performance Liquid Chromatography (HPLC) 

 HPLC is a powerful method for separation and purification of natural products, which 

yields an excellent separation in a short time. HPLC operates under high pressure to push the 

mobile phase and the sample through the small stationary phase. The use of small particles in the 

stationary phase provides more surface area and higher resolution of the peaks of the separation 

than other liquid chromatography techniques. The Shimadzu LC-10 AS HPLC instrument was 

used in this study to purify the antimicrobial compound. The HPLC system was equipped with 

solvent systems, a sample injection valve, a detector, a controller, and a computer to control the 

system and display results.  

Solvent System. The LC-10 AS HPLC instrument was supplied with a two-solvent 

system: solvent A and solvent B, which allowed it to use the gradient method of sample elution. 

The two solvents were pumped into one column using two pumps, A and B, which provided a 

maximum pressure of 5000 psi, which permitted the solvents and the sample to pass through the 

column. During the experiment, the range of solvent pressure was set between 1200 to 4500 psi. 

Detectors. A UV-Vis detector is the most common detector because most organic 

compounds show a chromophore capable of absorbing in the UV wavelengths. In the current 

work, the LC-10 AS HPLC was equipped with an ultraviolet detector (SPD-10 A), which was set 

at 25 nm and allowed to detect the organic analytes.   

Controller and Temperature. A Shimadzu LC-10 AS HPLC instrument was controlled by 

a SCL-10 AVP system, which is capable of managing the time programs used in this study. In all 

HPLC purification methods, the temperature was retained at 25 °C. 
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Vacuum Degassing. Although some modern HPLC instruments are supplied with internal 

solvent degassers, the instruments used did not contain these. Therefore, it was important for the 

HPLC grade solvents to use a vacuum degasser in order to remove all excess air inside the 

solvents. During the HPLC purification methods, air bubble formation can cause problems with 

analyte detection and solvent delivery. To accomplish this methodology, solvents were carefully 

placed inside an HPLC solvent container with a stir bar. After that, a vacuum method was 

applied manually, and the solvents were stirred under the vacuum until all air was removed from 

the solvents. 

The Analytical Column Used in HPLC. The columns used in the HPLC differed in 

internal diameter and length, and they were selected to use in this study according to their 

favorable properties, which helped in increasing the separation and the efficiency of the HPLC 

purification method. A semi-preparative Hamilton polymeric reversed-phase-1 column was used 

in the primary purification of the active fractions that were eluted through a Sephadex LH-20 

column. The length of the column was 250 mm, and the internal diameter was 21.2 mm. This 

column was filled with poly styrene-divinyl benzene with a particle size of 12 µm and 20 µm 

and a pore size of 100 Å. Because of the larger particle size, the number of the theoretical plates 

of the column decreased, which permitted the mobile phase flow to increase while decreasing the 

pressure of the solvent.74 For additional purification, a Kinetex® phenyl hexyl 100 Å analytical 

column with a length of 250 mm and an inner diameter of 4.6 mm was selected. This column 

was filled with hexyl attached to phenyl with trimethylsilyl endacpping with a pore size of 100 Å 

and a particle size of 5 µm. A Kinetex® 5µm EVO C18 100 Å analytical column with a pore 

size of 100 Å and a particle size of 5 µm was used to conduct multiple rounds of HPLC 

purification. The length of the column was 150 mm and the inner diameter was 4.6 mm. A guard 
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column in this study was retrieved from Phenomenex (Torrance, CA, USA) and was used to 

eliminate the dust particles and contaminants that were derived from the solvents. This kept the 

HPLC instrument from being damaged, disposed of the presence of the ghost peaks, and raised 

the purity of the antimicrobial compound.74 

Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) 

 Reversed-phase HPLC is the most common type of HPLC used in the separation mode.71 

In this study, RP-HPLC was used to isolate the antimicrobial compound. RP-HPLC has a non-

polar hydrophobic stationary phase and a moderator polar solvent as a mobile phase. The elution 

from the sample is based on the increasing polarity; the high polar compounds elute first, and the 

non-polar compounds elute later.72 As a result, the non-polar (hydrophobic) molecules in the 

mobile phase tend to absorb to the non-polar stationary phase and the polar molecules in the 

mobile phase pass through the column and elute first.  

This illustrates that water is the weakest solvent and the most polar because it repels the 

hydrophobic molecules into the stationary phase more than other solvents. Thus, it causes longer 

retention times.73 The polar organic modifier, which is a less polar and stronger solvent, causes it 

to no longer repel the analyte in the stationary phase, to spend less time in the stationary phase, 

and to elute through the column earlier.73  

Gradient Method 

 A gradient elution method was used during all HPLC purification methods to provide 

higher separations of the components of the sample that were subjected to the HPLC instrument. 

The gradient elution method contains two or more mobile phases, and they differ in their 
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compositions and polarity. This method uses separate solvent pumps of the HPLC system to 

change the ratio of solvents A and B in the mobile phase gradually over time. Changing the 

mobile phase composition during the time program leads to a better separation of the 

components of the sample, decrease the time of separation, and without column contamination. 

By increasing the concentration of the solvent, this method ensures that all components of the 

sample eluted from the column without losing the sample.  

Solvents Used as the HPLC Mobile Phase 

 During this study, the solvents that were used as the  HPLC mobile phase were chosen 

according to their appropriateness to the RP-HPLC. The water was selected to be solvent A, and 

acetonitrile was used as solvent B during most of the HPLC purification. The reason for selecting 

water as solvent A is that water is miscible, chemically non- reactive, with low viscosity, low UV 

absorbance, and better solubility, while the HPLC-grade acetonitrile was selected based on its 

good polarity and solvent strength. At times, 20 µM ammonium formate was selected to be  a 

solvent buffer during this study, and it was added to water in the primary method development. 

Also, ammonium hydroxide was chosen to be used as a buffer in water and acetonitrile at 

different times through the HPLC purification. Both solvent buffers were used to enhance the 

separation of the sample components. Since the HPLC method was partially developed using a 

trial and error approach, various combinations of solvents and buffers were utilized until the 

required purity of the compound was obtained. 

Elution Method Employed in Semi-Preparative HPLC. The mixture of active fractions 

eluted from the Sephadex LH-20 column was subjected to initial purification through the semi-

preparative column. The elution method used two solvents: water (solvent A) and acetonitrile 
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(solvent B) without buffers. The column was stabilized for 45 minutes with 80% water (solvent 

A) and 20% acetonitrile (solvent B) before injecting the sample. The flow rate of the solvent was 

4.00 mL/min and was maintained through the time program. After the column had been 

stabilized, the 1 mL of the sample was injected. The ratio of solvent was conserved at 80:20 for 

3.20 minutes. Then the concentration of solvent B was increased from 20 to 100% from 3.20 to 

63.20 minutes, which was maintained from 63.20 minutes until the time the program was 

finished at 83.20 minutes. After that, the column was allowed to wash with acetonitrile for 30 

minutes. All peaks were collected and then tested for activity. The active peaks were combined. 

The time program used for the semi-preparative HPLC elution method is shown in table 1. 

Table 1. The time program for the semi-preparative HPLC elution method 

Time Module Action Value   
0.20 Controller Start  
3.20 Pumps Pump B Conc.  20 
63.20  Pumps Pump B Conc. 100 
83.20 Pumps Pump B Conc. 100 
83.20 Controller Stop   

Elution Method Used in Medium Size HPLC Column. The combined active peaks that 

were obtained from the semi-preparative HPLC were subjected to medium size HPLC column 

for purification. The column was stabilized with a solvent ratio of 20:80 (acetonitrile/water) for 

45 minutes before injecting the sample. The flow rate of the solvent was 2.00 mL/min. After 

stabilization of the column, a 500 µL sample was injected into the column. The solvent flow rate 

was maintained at 2.00 mL/min through the time program. The concentration of solvent B was 

increased from 20% to 100% from 3.20 minutes to 63.20 minutes, and it was maintained from 

63.20 until 93.20 at 100% concentration. All collected peaks were subjected to testing for 

activity. Then all fractions containing peaks that eluted at a similar time were combined. The 
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time program for the gradient elution method used through the medium size HPLC column is 

shown in table 2. 

Table 2. The time program for gradient elution method used during the medium size HPLC column 

Time Module Action Value   

0.20 Controller Start  
3.20 Pumps Pump B Conc.  20 
63.20  Pumps Pump B Conc. 100 
93.20 Pumps Pump B Conc. 100 
93.20 Controller Stop   

Final HPLC Analysis. The antimicrobial compound peaks were eluted from the medium 

size HPLC column, which showed the activity against the indicator bacteria, and were subjected 

to the final purification. The antimicrobial compound was then subjected to multiple rounds of 

HPLC, conducted using the Kinetex 5µm EVO C18 100 Å analytical column. The column was 

stabilized for 45 minutes using 30% acetonitrile (solvent B) and 70% water (solvent A) before 

injecting the sample. The flow rate of the solvent was 1.2 mL/min and was maintained through 

the time program. A 200  µL of the sample was injected into the column. The 30% concentration 

of solvent B remained from the start until 45.20 minutes,  at which time the concentration of 

solvent B was increased to 100% from 45.20 to 75.20 minutes. The 100% concentration of 

solvent B was maintained until the time program was ended at 95.20 minutes. All fractions 

containing peaks that eluted at similar times in the final purification, are combined and then 

subjected to multiple rounds of the same final purification method until the required purity was 

obtained.  The time program that was used for the analytical HPLC purification is shown in the 

table 3. 
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Table 3. The time program was used during the analytical HPLC purification of the compound 

Time Module Action Value   
0.20 Controller Start  
45.20 Pumps Pump B Conc.  30 
75.20  Pumps Pump B Conc. 100 
95.20 Pumps Pump B Conc. 100 
95.20 Controller Stop   

Structural Elucidation Methods 

The methods used in this research to determine the structure of the antimicrobial 

compound produced by Rhodococcus sp. MTM3W 5.2 are described below. 

Ultraviolet-Visible Spectroscopy (UV-Vis) 

 UV-Vis spectra were conducted using the Carey 8454 UV-Vis spectrophotometer. The 

UV-Vis absorbance was measured by packing 1 mL of quartz cuvettes, which were used with a 

path length of 1 cm and a compound that was dissolved in acetonitrile. The UV absorbance was 

recorded at wavelengths from 210 nm to 400 nm. The acetonitrile was utilized as a blank against 

which the UV absorbance was recorded. 

  

High-Resolution and Low-Resolution Mass Spectrometry (MS) 

The high-resolution mass analysis was performed using a Bruker maXis II mass 

spectrometer. The pure sample at a retention time of 57 minutes was dissolved in a mixture of 

water and acetonitrile with a percentage of 50:50 and with 0.1% formic acid. The sample was 

ionized using electrospray (ESI) in a positive mode, and the mass of the compound was 

determined using time flight mass spectrometry. The pure sample at a retention time of 72 
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minutes was subjected to high- and low-resolution mass spectrometry in the Georgia Institute of 

Technology Bioanalytical Mass Spectrometry facility. The sample was ionized using 

electrospray (ESI) in a positive mode.  
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CHAPTER 3 

RESULTS AND DISCUSSION  

Extraction Method 

 The large batch of RM broth cultures proved successful in the growth of the Rhodococcus 

MTM3W5.2 bacteria under stagnant growth conditions where enough active antimicrobial 

compound of interest was obtained for purification and characterization. Alcohols are the most 

common solvent used to efficiently extract bioactive compounds from the bacterial cultures.75 

The extraction method was done using n-butanol as a solvent. n-Butanol is not highly soluble in 

water and forms an organic layer, which helped to extract the compound simply using a 

separatory funnel. Due to the moderate polarity of the antimicrobial compound, the n-butanol 

crude extraction was effective, and it reduced the extraction of undesirable compounds that have 

higher or lower polarity. The aqueous layer that separated from the RM broth cultures was tested 

for antimicrobial activity against the sensitive indicator bacteria during the extraction process, 

and it did not show any activity. This result showed an efficient extraction method of the crude 

n-butanol to obtain the greatest number of antimicrobial compounds of interest. The zone 

inhibition plate was used to detect each of the n-butanol extracts, and they showed antimicrobial 

activity against the sensitive indicator bacterium Rhodococcus erythropolis IGTS8. The n-

butanol extract was then dried and reconstituted in isopropanol. Then it was subjected to 

Sephadex LH-20 column chromatography for further purification. The zone inhibition of the n-

butanol crude extract that was obtained is shown in figure 14.   
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Figure 14. The zone inhibition plate of the crude n-butanol extract showing the antimicrobial 
activity against the indicator bacterial strain 

Sephadex Chromatography 

 Sephadex LH-20 column chromatography gave a better preliminary purification of the 

antimicrobial compound with a minimal loss of the antimicrobial compound of interest. Since the 

Sephadex LH-20 column chromatography separated the molecules in the crude extract based 

on their size, the relative size of the antimicrobial compound could be determined. Thus, the 

large size of the compound of interest could not fit in the pores of the Sephadex media, which 

caused it to pass more quickly than the small molecules that were found in the crude extract. 

During the study, fifteen large fractions were eluted early and quickly through the column with 

methanol as an eluting mobile phase. Fractions 3, 4, and 5 had antimicrobial activity which was 

confirmed by the zone inhibition plates. Active fractions were dried under the fume hood and 

combined by adding a minimum amount of isopropanol and methanol. The zone inhibition plates 

of Sephadex LH-20 fractions are shown in figure 15. 
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Figure 15. The zone inhibition plates of the Sephadex LH-20 fractions. Among the 15 fractions 
collected from Sephadex column, fractions 3, 4 and 5 were active while other fractions were not 

active against the indicator bacteria 

 

Semi-Preparative HPLC Purification 

 The second level of purification for the active Sephadex LH-20 fractions was done 

using semi-preparative high-performance liquid chromatography. The active fractions that were 

obtained from the Sephadex column were preliminarily purified using a Hamilton polymeric 

reversed-phase-1 column, and the solvents used were water (solvent A) and acetonitrile (solvent 

B). A gradient elution method was applied with at a 4.00 mL/min flow rate to get a better 

separation of the pooled active Sephadex fractions. After 1 mL of the active Sephadex extract 

was injected, the concentration of solvent B was increased from 20% to 100% over the course of 

63.20 minutes. This concentration was maintained until the end of process of collecting the peaks 

at 83.20 minutes. Several rounds of semi-preparative HPLC were conducted on the fractions, and 

the collected fractions were tested for activity using zone inhibition assay. The fractions that 

showed antimicrobial activity were combined and dried under the fume hood to go to the next 

level by the preparative HPLC column. Due to the peak overlapping and the band broadness of 

the active peaks that was noticed in the chromatogram, the five active peaks 8, 9, 10, 11 and 12 
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that eluted from the column were needed for more purification of the compound. The HPLC 

chromatogram of the semi-preparative purification step is shown in the figure 16. The picture 

represents the zone inhibition plates of the peaks that were collected from the semi-preparative 

HPLC column as well. 

 

Figure 16. The HPLC chromatogram of the semi-preparative purification step, fractions 
8,9,10,11,12 were active while others were non-active, and the picture represent the zone 

inhibition plates of the peaks that were collected from the semi-preparative HPLC 
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Medium Size HPLC Column  

 The pooled active fractions that were eluted from semi-preparative HPLC were subjected 

to medium size HPLC column for purification, using a Kinetex® phenyl hexyl 100 Å analytical 

column. The active fractions that were eluted with water and acetonitrile were used as solvents at 

2.00 mL/min flow rate, and followed the time program outlined in table 2. Several rounds of 

preparative HPLC were conducted on the fractions, which were then tested for activity using 

zone inhibition assay. The resulting chromatogram, obtained during the medium size HPLC 

column, indicated further purification was needed to get better peak resolution and to make 

structural elucidation methods effective. The active peaks that demonstrated the antimicrobial 

activity were eluted continually from 37 to 50 minutes. The HPLC chromatogram of the medium 

size HPLC column is shown  in figure 17. 

 

Figure 17. HPLC chromatogram obtained in the medium size HPLC column showing the need 
for better peaks resolution 
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Analytical HPLC Purification 

 To isolate the final pure compound, the combined active fractions from the medium size 

HPLC column were employed in multiple rounds of analytical HPLC purification using a 

Kinetex® 5µm EVO C18 100 Å analytical column. The solvents and the time program that were 

used in this purification method were described earlier. The analytical HPLC purification 

provided two compounds of interest, which were obtained at different retention times. The first 

active antimicrobial compound was obtained at approximately 57 minutes, and the second 

compound was obtained at approximately 72 minutes. The 72-minute peak was tested for activity 

and did not show activity against the indicator bacterium while the 57-minute peak showed 

activity against the indicator bacterium. The two compounds were employed in multiple rounds 

of the analytical HPLC column to finally obtain the desired purity of the compound.  

 Finally, it was decided that the two final pure compounds were the 57-minute and 72-

minute compounds, which were pure enough for spectral analysis. This decision was made 

because of obtaining a sharp peak without overlapping, which was indicated by the appearance 

of a shoulder in the peak of interest. As a result, the reversed phase, high-performance liquid 

chromatography was a successful method for purifying the compound of interest. Based on the 

retention time throughout RP-HPLC, the compound eluted at 57 minutes was observed to be 

relatively polar. This conclusion was based on the compound's ability to connect with the 

stationary phase of the Kinetex® 5µm EVO C18 100 Å column previously in the analytical 

HPLC time program. However, this compound was obtained before the mobile phase 

concentration (solvent B) had become 100% acetonitrile, during the time when more non-polar 

compounds were eluted. However, the compound eluted at 72 minutes was observed to be less 

polar because it linked with the stationary phase until the mobile phase reached a much higher 
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concentration of the acetonitrile. The chromatogram representing the 57-minute compound is 

shown in figure 18, while the chromatogram representing the 72-minute is displayed in figure 19. 

Figure 18. HPLC chromatogram of the peak eluted at 57.98 minutes through HPLC purification 
using an analytical column 

 

Figure 19. HPLC chromatogram of the peak eluted at 72.71 minutes through HPLC purification 
using an analytical column and acetonitrile and water as the mobile phase 
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Spectroscopic Characterization  

UV-Visible Spectrum 

 The two pure compounds obtained at 57 minutes and 72 minutes through analytical 

HPLC purification methods were subjected to ultraviolet-visible spectroscopy. The compounds’ 

absorptions over a range of wavelengths were measured using a UV-Vis spectroscopy. The UV 

spectrum of the 57-minute compound demonstrated broad absorption with absorbance maxima at 

277 nm and 327 nm. This illustrates that conjugated systems (a system that connected p-orbitals 

with delocalized electrons in the molecule with alternation of single and multiple bonds), were 

present in the chemical structure of the compound. Most secondary metabolites created by type I 

PKSs, excepting polyenes, are known to contain small conjugated systems, which demonstrate 

the UV absorption bands at approximately 230-300 nm.76 These characteristics absorbed at a 

similar wavelength to the 57-minute compound; this indicated the compound was likely a 

polyketide. The result of the UV spectra of the 57-minute compound is shown in figure 20.  

 

Figure 20. UV spectra of the pure compound eluted at 57 minutes at two concentrations with 
absorbance maxima at 277 nm and 327 nm. The blue line is for a concentration of 160 µg/mL 

and the pink is for a concentration of 80 µg/mL 
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The UV spectrum of the 72-minute compound also demonstrated a strong absorption with 

a maximum at 242 nm, as shown in figure 21. This indicates the presence of some chromophores 

and some conjugated systems in the pure compound, which is less than that found in the 57-

minute compound. The strong UV absorption maxima at 242 nm also indicated that the pure 72-

minute compound could be a polyketide. 

 

Figure 21. UV spectra of the pure compound eluted at 72.72 minutes at two concentrations with 
absorbance maxima at 198 nm and 242 nm. The red line is for a concentration of 160 µg/mL and 

the black is for a concentration of 80 µg/mL 

 
High- and Low-Resolution Mass Spectrum 

 The purified compound obtained at 57 minutes during analytical HPLC purification 

methods was subjected to high-resolution mass spectroscopy. The molecular formula of the 58-

minute compound was found to be C52H78O13. The molecular ion peak of the compound was 

found at m/z 911.54 [M+H]+ , as shown in figure 22. This was determined by “ESI Time of 

Flight Mass Spectrometer”. The degree of unsaturation was found to be 14 according to the 

following equation (1), which determines the total number of rings and π bonds in the 

compound. 
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Eq.1. Degree of unsaturation= C+1-[1/2(H+X-N)] =14 

 

Figure 22. The full mass spectrum of the compound eluted at 57 minutes (A) and the zoomed 
around molecular ion peak at 911.5490 m/z (B) 

 

On the other hand, the purified compound eluted at 72 minutes through analytical HPLC 

purification methods was subjected to both high- and low-resolution mass spectroscopy. The 

molecular formula of the 72-minute compound was found to be C19H32O1N1 and C19H34N1O1. 

The molecular ion peak was found at m/z 290.2480 [M+H] and 292.2636 [M+H] respectively 

(Figures 23-25). This was determined by ESI Fourier Transform Mass Spectrometry. The degree 

of unsaturation for both molecular formulas were found to be 5 and 4 based on equation 1. 
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Figure 23. The low-resolution mass spectrum of the compound eluted at 72 minutes (A) and the 
zoomed around molecular ion peak at 292.3 m/z (B) 

(B) (A) 



64 
 

 

Figure 24. Th full high-resolution mass spectrum of the 72-minutes compound (A) and the 
zoomed around molecular ion peak at 290.2478 m/z (B) 

(A) 

(B) 
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Figure 25. Th full high-resolution mass spectrum of the 72-minutes compound (A) and the 
zoomed around molecular ion peak at 292.2635 m/z (B) 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

Conclusion 

 There is an urgent and important need to identify novel antibiotic compounds to fight 

against antibiotic resistance originating in different pathogenic bacterial species. Interest in the 

genus Rhodococcus has increased due to the discovery of several genes with unfamiliar activity, 

which has led researchers to begin looking at the function of these genes, which could be 

antibiotic producers. Lately, they have discovered many antibiotic compounds that come from 

soil bacteria, and the strain MTM3W5.2 was found to produce a metabolite with inhibitory 

activity against most related species. This study focused on extraction, purification, and analysis 

of the inhibitory compound produced from Rhodococcus MTM3W5.2. The antimicrobial 

compound of interest was isolated from RM broth cultures by using n-butanol, which yields an 

active crude extract. The RM broth extraction method was an effective method because it was 

able to remove the antimicrobial compound from the RM broth. After that, the crude extract was 

purified through a Sephadex LH-20 column, and then it was moved to a second level of 

purification by RP-HPLC using water and acetonitrile as solvents and using a different time 

program. It was determined during this project that the purification process was effective in 

yielding purified compounds with minimal loss of the compound. The desired pure compounds 

were obtained through multiple rounds of analytical HPLC using reversed-phase C18 column.  

 Based on the results obtained through the UV-visible spectra for both pure compounds at 

retention times of 57 and 72 minutes, the absorbance of these compounds indicated the presence 

of conjugated systems, and it was observed that the 72-minute compound had fewer conjugated 
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systems than 57-minutes compound. The absorbance maximum of both compounds was similar 

to that which is seen in polyketides. Thus, there is some evidence to suggest that the inhibitory 

compounds could be polyketides. The molecular composition of the antimicrobial compound at 

57 minutes was found to be C52H78O13 with a mass of 911.5490, while the other compound at 72 

minutes was found to be a mixture of C19H32O1N1 and C19H34O1N1 with a mass of 290.24780 

and 292.2635. Further structural identifications are needed to clarify the structure of both 

compounds, respectively.    

Future Work 

 Due to time constraints, in this project only a preliminary chemical structure of the 

compound was obtained. Further purification will be needed to elucidate the complete structure 

of the compound followed by scaling up the production of the compound using the methods 

described above. It will be important to subject both compounds to 1D and 2D NMR 

spectroscopy to determine the final structure of the compounds. Once the entire structure of the 

antimicrobial compound is discovered, scientists will continue exploring Rhodococcus for new 

antibacterial compounds.  
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