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ABSTRACT 

Study of 2,5-Diaminoimidazolone, a Mutagenic Product of Oxidation of Guanine in DNA 

by 

Hannah Catherine Janson Pollard 

 

 

 

2,5-diaminoimidazolone (Iz) is an important product of a 4-electron oxidation of guanine. The 

present research focuses on the mechanisms of formation of Iz via pathways initiated by guanine 

oxidation by one-electron oxidants (OEOs) generated by X-ray radiolysis in aqueous solutions. 

The kinetics of formation and yields of Iz in reactions of native highly polymerized DNA with 

different OEOs have been compared using an HPLC-based quantitative analysis of low-

molecular products generated from the reaction of DNA-bound Iz with primary amines. 

Mechanisms of Iz formation in DNA have been investigated including oxygen and superoxide 

dependence as well as the hypothesis that 8-oxo-G, another product of guanine oxidation, is not a 

major precursor to Iz. Results indicate Iz is produced in significant quantities in DNA from 

guanine oxidation and the efficiency of its formation correlates with the reduction potential and 

selectivity of a given OEO.  
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CHAPTER 1 

 

INTRODUCTION 

 

Oxidative Stress and DNA 

 Oxidation of biological molecules is necessary for the survival of aerobic organisms, as it 

has been shown to promote cellular signaling and other important processes. However, excessive 

oxidation of molecules may result in a condition of oxidative stress, which can potentially harm 

the organism. Species capable of inducing oxidative stress are called reactive oxygen species 

(ROS) and include: the hydroxyl radical (•OH), the superoxide radical (O2
•-), hydrogen peroxide 

(H2O2), nitric oxide (NO), among others. Oxidative stress is the result of an imbalance between 

the production of ROS and the body’s ability to remove the species or repair the resulting 

damage. 

 While ROS are by-products of normal metabolic processes, the overproduction of ROS in 

the human body has been associated with several diseases and conditions including various 

cancers,1 stroke,2 respiratory diseases,3 aging,1 inflammatory diseases,1,2 and even 

neurodegenerative diseases such as Huntington’s disease,4 and Alzheimer’s disease.5,6 This 

overproduction of ROS may be the result of both internal and external factors. Internal factors 

include abnormal metabolism, infection, and pathological conditions.7-9 External factors include 

environmental pollution,5 UV light,10 and ionizing radiation.11,12 
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 Since deoxyribonucleic acid (DNA) is the major hereditary molecule for most biological 

organisms, damage to the DNA structure due to oxidative stress plays an important role in all 

major pathologies associated with oxidative stress. Oxidative damage to DNA due to oxidative 

stress has been thoroughly investigated. In particular, the effect of ionizing radiation has been of 

particular interest as an important source of oxidative stress in aerobic organisms.13-15 This 

radiation damage to DNA can occur via two routes: direct- and indirect-type damage. Direct-type 

damage is due to direct ionizations of DNA. An initial event in direct damage is the removal of 

an electron from DNA (ionization), which leads to the production of DNA electron-loss centers 

(holes). The electron then rapidly attaches to DNA to form electron-gain centers. Indirect-type 

damage, which is a dominating process in vivo, forms radicals in the surrounding medium, which 

then attack the DNA. Ionization of water or biomolecules creates oxidative substances including 

various ROS such as the hydroxyl radical, hydrogen peroxide, and the superoxide radical.  

 

Types of Oxidative Damage to DNA 

 DNA consists of two major components, a deoxyribose (5-carbon sugar) attached to a 

phosphate group (commonly referred to as the sugar-phosphate backbone) and four nucleobases 

(adenine, guanine, thymine, and cytosine). Interactions with ROS can produce a number of 

oxidative modifications in DNA including damage to the deoxyribose component of the sugar-

phosphate backbone, base modifications, single- and double-strand breaks, and DNA-protein or 

DNA-DNA crosslinks.1 Under normal metabolic conditions, oxidative damage to DNA is 

typically repaired by cellular mechanisms. However, during oxidative stress the number of DNA 

lesions is too large to be handled properly by cellular repair machinery and therefore, some DNA 

modifications are left unrepaired. These unrepaired lesions are believed to be the cause of many 
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of the diseases and conditions listed above. In the case of cancers, the oxidative damage to DNA 

is believed to lead to the activation of oncogenes and the inactivation of tumor suppressor genes, 

resulting in unregulated cell growth.16 

 Damage to DNA occurs when ROS attack the DNA at either the deoxyribose-phosphate 

(sugar damage) or the nucleobase (base damage). It has been estimated that 2/3 of the damage 

occurs at the nucleobases while sugar damage accounts for the remaining 1/3 of total damage.17  

 

Base Damage 

 DNA bases have lower reduction potentials as compared to the DNA-sugar phosphate 

backbone, and therefore they are more vulnerable to ROS attack. The base with the lowest 

standard reduction potential is guanine (G) and thus it is the primary base damage target. 

Reaction with a ROS results in a one-electron oxidation intermediate guanine radical cation 

(G•+). Positive charges formed in DNA due to this process are commonly referred to as 

holes.18,19 Additionally, it is assumed that any holes formed in DNA as a result of its oxidation 

eventually end up at guanines because of charge migration in DNA.20-22 This has been accounted 

for by the predominance of guanine degradation products over those of other nucleobases. 

Guanine has a standard reduction potential of +1.29 V19, which is considerably lower than for 

other native DNA nucleobases. Reduction potentials of DNA nucleosides are reported in Table 

1, where E˚ values are reported at pH 7 vs. normal hydrogen electrode (NHE).  
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Table 1: Relative Standard Reduction Potentials for Nucleobases19 

DNA Nucleoside E°, V 

Guanosine 1.29 

Adenosine 1.42 

Thymidine 1.7 

Cytosine 1.6 

. 

 

Sugar Damage  

 In addition to base damage, ROS can also abstract hydrogen from one of the five carbon 

positions present in 2′-deoxyribose, resulting in a 2′-deoxyribosyl radical.  Experimental data 

suggest that DNA damage occurs via a combination of three competing pathways: C1′, C4′, and 

C5′ sugar hydrogen abstraction by ROS.23-25 Structures of all possible radicals formed by 

hydrogen abstraction from 2′-deoxyribose are shown in Figure 1.  
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Figure 1: The structures of deoxyribosyl radicals formed via hydrogen abstraction23: a) C1′-

radical; b) C2′-radical; c) C3′-radical; d) C4′-radical; e) C5′-radical 

 

Mechanisms of Guanine Oxidative Damage 

 Guanine in DNA has been found to undergo two major pathways of oxidation, which 

result in a large number of intermediate and final products. However, mechanisms of their 

formation are not fully understood. The two pathways are via: 1) double-bond attachment with 
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formation of free-radical adducts, as in one possible reaction of guanine with hydroxyl radical 

(see Figures 2 and 3), and 2) reactions with one-electron oxidants (OEOs) (see Figure 4). As the 

hydroxyl radical is abundant in all living organisms, the mechanisms by which this species reacts 

with the guanine base have been studied more intensely than the alternative oxidation reactions.  

 

Reaction of Guanine with Hydroxyl Radicals 

 The first proposed pathway involves the attack of the hydroxyl radical (•OH) on one of 

two guanine carbons, C4 or C8, to form a G(C4-OH)• or G(C8-OH)• adduct, respectively. The 

hydroxyl radical will preferentially attack the C8 carbon of the purine ring forming the 

intermediate G(C8-OH)• which can either be further oxidized to form 2′-deoxy-8-oxo-7,8-

dihydroguanosine (8-oxo-G)26,27 or reduced to form 2,6-diamino-4-hydroxy-5-

formamidopyrimidine (FapyG)28,29 as shown in Figure 2.  

 

  

Figure 2: Mechanisms of guanine oxidation by hydroxyl radical at the C8 position30 
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If the hydroxyl radical attacks the C4 carbon in guanine, the C4-OH adduct radical, 

G(C4-OH)•, is formed. This neutral radical (G•), which can then undergo further oxidation 

reactions, is formed following a dehydration reaction.31 According to Raoul et al.31, this neutral 

radical can further react with molecular oxygen, although this reaction is believed to be slow 

with a rate constant of ≤102 M-1 s-1.32 

 

  

Figure 3: Mechanism of guanine oxidation by hydroxyl radical at the C4 carbon 

 

Reaction of Guanine with One-Electron Oxidants 

The second proposed pathway involves reactions of guanine with various OEOs such as 

carbonate radical anion (CO3
•-), selenite radical anion (SeO3

•-), sulfate radical anion (SO4
•-), or 

dibromide radical anion (Br2
•-). While SO4

•- is a strong oxidant (Eº = +2.43 V) and will readily 

oxidize any DNA base, the carbonate, selenite, and dibromide radical anions are weaker oxidants 

(Eº = +1.59, +1.77, and +1.60 V, respectively) and will selectively oxidize guanines in DNA.33,34 

With a high standard reduction potential of +1.90 V at neutral or acidic pH, the hydroxyl radical 

is capable of acting as an OEO, although its reactivity as an OEO is observed much less often 

than hydrogen abstraction reactions. This is explained by the fact that reactions involving direct 

electron transfer to the hydroxyl radical typically occur through the formation of three-electron 
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bonded intermediate complexes. Such reactions are typically slow due to a high activation 

energy during the formation of the activated complex.15  

In the reaction with an OEO, guanine undergoes a one-electron oxidation to form the 

guanine radical cation (G•+). This resulting radical cation is highly unstable and therefore 

undergoes further reactions. Hypothetical reactions of G•+ are summarized in Figure 4. One 

hypothetical pathway is the fast deprotonation of G•+ to form G(-H)• or simply G•.35,36 Electron 

spin resonance studies have shown that the unpaired electron on the radical cation is mostly 

localized on the N2, N3, and C8-H while the deprotonation of the G•+ occurs via dissociation of 

the N-H1 proton, resulting in the G(N1-H)• radical. This neutral radical will then undergo a 

series of one-electron oxidation reactions resulting in a number of different products including 8-

oxo-G. Alternatively, the radical cation, as it is a strong electrophile, can directly react with 

water to form G(OH)• adducts whose hypothetical reactions were reported above (see Figures 2-

3).36 The reaction schemes for the one-electron oxidation reactions of guanine are summarized 

below in Figure 4. In neutral pH solutions consisting of free nucleosides or single-stranded DNA 

the deprotonation of the G+• radical dominates, and thus 8-oxo-G is not efficiently formed. In 

double stranded DNA, the slightly cationic character of G-C base-pairs reduces the rate of 

release of the protonation and thus the 8-oxo-G lesions can be more efficiently produced.37 
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Figure 4: Two possible oxidation mechanisms of guanine oxidation by one-electron oxidants 

 

The guanine radical cation, G•+, can also undergo additional nucleophilic reactions that 

give rise to DNA-protein and DNA-DNA crosslinks.1 These crosslinks are believed to be 

genotoxic if left unrepaired. 

 

8-oxo-G as a Biomarker for Oxidative Stress 

8-oxo-G has been utilized in recent years as an effective biomarker for oxidative stress. 

Elevated levels of 8-oxo-G has been found in the lungs of people working or living in 

environments with high levels of asbestos fibers,38,39 diesel exhaust particles,40 and urban 

polluted areas which all caused an increase in lung cancer morbidity and cardiopulmonary 

mortality.41 Because of its low reduction potential, 8-oxo-G is susceptible for further oxidation, 

which results in the formation of various stable products (Figure 5). All these products of 8-oxo-

G oxidation are additional potential biomarkers of oxidative stress. 
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Figure 5: Chemical structures of various products of 8-oxo-G oxidation 

 

Formation Reactions of Imidazolone  

The focus of the present study is on the guanine oxidation product 2,5-diamino-4H-

imidazol-4-one (imidazolone, or Iz). Iz is thought to be formed via a large number of pathways 

including reactions with ionizing radiation and OEOs. However, mechanisms of Iz formation 

remain poorly understood. Hypothetical pathways of formation of Iz described in the literature 

are discussed below. 

 

Guanine Reaction with Superoxide 

Misiaszek et al. reported the neutral guanine radical (G•) could react with another reactive 

species, the superoxide radical anion (O2
•-), to ultimately form stable guanine oxidation 

products.42 The superoxide radical is an important biological intermediate formed from normal 

metabolic activity which is typically rapidly deactivated in vivo by superoxide dismutase (SOD) 



28 

 

into less reactive H2O2 and O2.
43-45 In addition, O2

•- can be formed from the reaction of dissolved 

molecular oxygen and electrons generated from ionization reactions.46 The reported minor 

product of this reaction is 8-oxo-G and the major product is Iz, which subsequently hydrolyzes 

into 2,2,4-triamino-5(2H)-oxazolone (oxazolone, or Oz).31 The low concentrations of 8-oxo-G 

indicates either a low reaction yield relative to Iz or a further oxidation of 8-oxo-G after it has 

been formed. The reaction scheme is shown in Figure 6.  

 

Figure 6: Reaction scheme of the oxidation of guanine radical by superoxide42 

 

In this reaction, the guanine radical undergoes tautomerization into a carbon C5-centered 

radical. Following the addition of superoxide, a 5-hydroperoxide unstable intermediate is 

formed. This intermediate undergoes a series of complicated reactions and rearrangements that 

involves the addition of a water molecule, loss of CO2, loss of formamide, and finally a 

rearrangement of the purine ring into Iz, as shown in Figure 7. Under normal conditions, the 

major products of the guanine radical oxidation reaction are the 8-oxo-G lesions where the 

superoxide radicals are not necessary.42  
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Figure 7: Mechanism of oxidation of guanine radical by superoxide which results in formation 

of Iz42 

 

Guanine Reaction with Singlet Oxygen 

 Guanine in DNA can also be oxidized with singlet oxygen (1O2). 
1O2 can be generated 

either through the photodynamic effects of Type II photosensitizers47-49 or as a side-product of 

myeloperoxidase reactions.48,50 This overall 2-electron oxidation reaction is less common then 

other oxidation reactions for guanine because this reaction requires two individual one-electron 

oxidation steps with singlet oxygen. Guanine reacts with singlet oxygen to eventually form 8-

hydroperoxy-dG. This hydroperoxide can then be reduced to form 8-oxo-G. Following the 

addition of a second singlet oxygen molecule, the intermediate 4,5-endoperoxide is formed 

which will rearrange into 5-dihydroperoxy-8-oxo-G. Eventually, the stable product of Oz will be 

formed from the hydrolysis of Iz.51 Additionally, Iz has been reported as a minor product from 

the direct reaction of G with singlet oxygen.52 
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Guanine Reaction with Molecular Oxygen 

According to Schmidt-Ullrich et al., the neutral guanine radical can react with molecular 

oxygen to form Iz.12 If the hydroxyl radical attacks the C4 carbon in guanine followed by a 

dehydration reaction, a neutral radical (G•) is formed (Figure 3). This neutral radical will 

subsequently react with molecular oxygen to form Iz. Figure 8 shows the proposed mechanism 

of this reaction by Cadet et al.53 

 

  

Figure 8: Mechanism of guanine radical reaction with molecular oxygen, resulting in the 

formation of Iz54  

 

Oxidation of 8-oxo-G into Iz 

Several studies have proposed that Iz is a major product of oxidation of 8-oxo-G by 

various oxidants including superoxide, singlet oxygen, peroxynitrite, and by photooxidation in 

the presence of photosensitizers.55-58 A proposed mechanism of the oxidation of 8-oxo-G by 

singlet oxygen can be seen in Figure 9. Kino et al. reported that 8-oxo-G, an oxidation product of 
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G and •OH can be further oxidized into Iz via long-range hole migration. Photoirradiated samples 

of DNA solutions indicated that the amount of 8-oxo-G initially increased with decreased 

concentrations of G, then decreased with the formation of Iz. While this evidence suggests that 

the 8-oxo-G can be further oxidized into Iz, the mechanism still remains poorly understood.58 

 

   

Figure 9: The proposed mechanism of the oxidation of 8-oxo-G by singlet oxygen which results 

in the formation of Iz51 

 

Reactivity of Iz 

Hydrolysis of Iz  

Iz is inherently unstable; it is readily hydrolyzed to form Oz (Figure 10). Raoul et al. 

reported that in neutral aqueous solutions, Iz is hydrolyzed through the incorporation of one 

molecule of water into Oz with a half-life of 147 min at 37˚C.31 This conversion of Iz into Oz 

has been used to quantify the amount of Iz in oxidatively damaged DNA.  
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Figure 10: Mechanism for the hydrolysis of Iz into Oz57 

 

While 8-oxo-G has been utilized as a biomarker for oxidative stress, it has a low 

reduction potential and will undergo further oxidation reactions. Because Oz is a stable end 

product of DNA oxidation, it could potentially be used as another biomarker for oxidative 

stress.57 Matter et al. reported successful quantitative analysis of Oz both in vitro and in vivo by 

isotope dilution-capillary HPLC-ESI-MS/MS.57  

 

Iz Reaction with Primary Amines 

The reaction between Iz and primary amines with a general formula RNH2 can compete 

with the hydrolysis of Iz. This reaction involves the nucleophilic substitution at C5 of the 

imidazolone ring. As a result of this reaction, a low-molecular weight free amino-derivatized Iz, 

(AIz) is released from DNA (Figure 11). The reaction was observed to take place with a number 

of amine derivatives, including methyl, ethyl, and n-propylamines, ethanolamine (EA), and γ-

aminobutyric acid (GABA). In addition, this reaction can occur with polyamines or polypeptides 

that contain primary amino groups, such as spermine, histones, or polylysine.59 
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Figure 11: Reaction scheme for Iz with a generic primary amine, resulting in an abasic site and a 

free-amino derivatized Iz  

 

Biological Properties of Iz 

The UV-Vis spectrum for the monomeric form of Iz, 2-amino-5-[(2-deoxy-β-D-

erythropentofuranosyl)-amino]-4H-imidazol-4-one or dIz, is shown below in Figure 12. The 

spectrum for AIz is almost identical to that of dIz and therefore was used to authenticate 

chromatographic peaks of AIz collected during the present research. In contrast, the spectrum for 

dOz is quite different, as Oz exhibits an open-ring configuration or a non-conjugated ring 

structure (not shown). 
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Figure 12: UV-Vis spectrum for dIz 

 

DNA Mutations as a Result of DNA Oxidation  

Damage to DNA by ROS can result in cellular death or mutagenesis.14,15 Point 

mutations, such as specific base changes and frameshifts have been reported as well as large 

scale rearrangements of the genome. It has been reported that various guanine oxidation products 

are mutagenic and can lead to DNA modifications. These mutations frequently occur at 

important oncogenes. For example, the guanine → cytosine base transversion is frequently at 

codons 12 and 13 of the Ras oncogene;60,61 however, the oxidative lesion that causes this base 

mutation is not known.  

As the 8-oxo-G lesion mimics the thymine nucleobase, it can pair with the adenine 

leading to a GC →TA transversion.62 Additionally, Sugiyama et al. reported that Iz can pair with 

a guanine molecule leading to a GC → CG base transversion.58 The frequency of this 

transversion is reportedly higher during conditions of oxidative stress. Furthermore, the authors 

reported that guanine was the only nucleobase to be incorporated opposite both Iz and C. These 
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base pair mutations are summarized in Figure 13. As Iz is supposed to be a significant product 

formed via the pathway initiated by the one-electron oxidation of guanine37,54, its role in in vivo 

mutagenesis might be considerably higher than previously believed and it is believed to be at 

least at mutagenic as 8-oxo-G.  

 

 

Figure 13: DNA base transversions for 8-oxo-G (GC → TA) and Iz (GC → CG) 

  

 It was proposed that Oz, like 8-oxo-G, results in G → T transversions63, and to some 

extent G → C transversions.64 It was shown that Oz-containing DNA in E. coli predominately 

produced G→ T transversions with the mispairing occurring ~10-fold more transversions than 8-

oxo-G.63 While there is experimental evidence that the Iz and Oz lesions are produced in 

significant quantities under biological conditions, there is still little information about these 

lesions in living cells. Yu et al. reported the yield of Oz formed in solutions of calf thymus DNA 
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treated with peroxynitrite as the OEO to be ~1 per 105 bases, approximately 20% of 8-oxo-G 

yield.56 In addition, they reported that the frequencies of G→ T transversions for Oz were found 

to be ~95%, which is considerably higher than the frequency of similar transversions for 8-oxo-

G lesions (~7%).56 Tretyakova et al. reported in vivo data with 4-5 Oz lesions per 107 normal 

guanines (approximately 10% of 8-oxo-G lesions) in the livers of diabetic or control rats.57 

Proposed base pairing structures of Oz are shown below in Figure 14.  

 

  

Figure 14: Proposed structures for Oz mutagenic base pairings: G:C  T:A63 and G:C  C:G65  
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Quantitative Analysis of DNA Damage Products using HPLC 

Several methods of quantification of DNA damage products have been developed 

including HPLC analysis with photodetection or electrochemical detection,66 enzyme-linked 

immunosorbent assay (ELISA),67 GS-MS,68 and HPLC-MS.69 Although electrochemical 

detection is very sensitive, it lacks specificity and requires intense sample preparation. The 

ELISA method is simple and sensitive, but lacks the selectivity required for determining 

products. For example, an ELISA study cannot distinguish between 8-oxo-dG and 8-oxo-dGMP, 

and therefore the accuracy of ELISA has been questioned.70 GC-MS has excellent sensitivity and 

selectivity but requires intense sample preparation, making it impractical for large sample 

testing. 

 

Quantification of Sugar-Damage Products 

The Roginskaya research group has elaborated upon an HPLC-based method of 

quantification of low-molecular-weight products (LMP) released as a result of DNA damage. 

Initially, the focus was on quantification of LMP released during oxidative damage to DNA 2′-

deoxyribose ring (sugar). Oxidized DNA sugar lesions tend to undergo fragmentation of the 2′-

deoxyribose ring during heat and/or catalytic treatment. This fragmentation produces a strand 

break, a free DNA base, and a distinctive LMP product. HPLC-based quantification of the DNA 

sugar damage at the C4′ position is based on the reaction of oxidized DNA with primary amines 

in neutral or slightly acidic solutions that results in N-substituted 5-methylene-Δ3-pyrrolin-2-

ones (Lac).71-74 The proposed mechanism of Lac formation under these conditions is shown in 

Figure 15. 
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Figure 15: Reaction of C4′-oxidized abasic site with primary amines, which results in the 

formation of Lac 

  

DNA deoxyribose oxidative damage at the C1′ results in the formation of 5-methylene-2-

furanone (5-MF). Irradiation of DNA results in an oxidized abasic site, and release of 5-MF from 

irradiated DNA was achieved through heat treatment at 90°C in the presence of polyamines and 

divalent metal cations. Oxidation through the C1′ pathway, and subsequent formation of 5-MF, 

are believed to contribute significantly to total overall sugar damage (up to ~72%).24 

Deoxyribose oxidative damage to the C5′ results in 5′-aldehydes which are known to release 

furfural (Fur). Like the C1′ pathway, this release is catalyzed by Lewis acids like polyamines.25 
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The majority of free radical damage to the sugar-phosphate moiety results in the 

destabilization of the glycosidic bond and subsequent FBR. Therefore, the amount of FBR 

measured in an irradiated DNA system could serve as an internal benchmark for the total damage 

inflicted to the sugar-phosphate backbone.72 

 

Quantification of 8-oxo-G 

Since its discovery, 8-oxo-G has been employed as an effective biomarker for oxidative 

stress. Several methods of quantitative analysis have been utilized including urine analysis75,76 as 

well as HPLC-based techniques.75-78 HPLC with electrochemical detection has been identified as 

a sensitive and reliable tool. Derrick Ampadu-Boateng in his MS thesis research in the 

Roginskaya research group utilized an HPLC-based method of 8-oxo-G quantification with 

spectrophotometrical detection.79 In this method, DNA was completely hydrolyzed by boiling in 

concentrated formic acid which resulted in a nearly quantitative release of all nucleobases, 

including modified bases (such as 8-oxo-G), which can then be analyzed by HPLC.79 

 

Quantification of Iz 

Iz is inherently unstable as it readily hydrolyzes to form Oz31 (see Figure 9), making 

understanding its mechanisms of formation and its quantitative analysis even more difficult. The 

premise that the reaction of Iz with primary amines can successfully compete with the hydrolysis 

of Iz into Oz has allowed for the quantification of Iz through HPLC analysis.  

 

Roginskaya et al. first reported a LMP released upon treatment of oxidatively damaged 

DNA with primary amines in neutral or slightly acidic solutions at moderate temperatures 
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(<70°C).72 The retention times of the products were dependent on the structure of the amine and 

the UV-Vis spectrum was similar to that of dIz (Figure 12).  

This product was later identified as 2-amino-5-alkylamino-4H-imidazol-4-one (AIz), a 

derivative of Iz. A hypothetical mechanism of its formation is shown in Figure 16. The DNA 

lesion initially produced upon release of AIz is a 1-amino substituted deoxyribose residue which 

is further hydrolyzed to form an abasic site. Reactions with a number of primary amines revealed 

the presence of AIz among the products of DNA damage by hydroxyl radicals as well as various 

OEOs. Unlike Iz, the C-N glycosidic bond in Oz is stable towards hydrolysis at neutral pH and 

does not contribute to the production of AP sites.80 

  

Figure 16: The competing reactions of Iz: hydrolysis into Oz and reaction with primary amines 

to form AIz. 

 

 

Biogenic and Model OEOs Used in the Present Study 

 Various OEOs were utilized throughout the present research to compare the production of 

DNA oxidation damage products, specifically Iz. Each was selected based on four main criteria:  
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1. High standard reduction potentials of these radical anions indicating their strong capability 

of oxidizing guanine in DNA (i.e. larger than +1.29 V)  

2.  Radiolysis of aqueous solutions generates hydroxyl radicals and solvated electrons with 

high yields. Ideally, a desired OEO should be a product of reactions with participation of 

both the hydroxyl radical, and a solvated electron and a precursor to a given OEO, which 

will ensure maximal conversion of these reactive species into the desired product and 

minimal impact of undesired side reactions such as attack of •OH on DNA.  

3.   Minimal contributions of other side reactions, which can obscure the results.  

4.   Presence of conventional method(s) to generate a given OEO.  

Reduction potentials of OEOs used in the present study are shown below in Table 2.   

 

Table 2: Standard Reduction Potentials of Various OEOs15 

Couple Eo/V 

SO4
•-/SO4

2- +2.47 

•OH/ H+, H2O +1.90 

SeO3
•-/ SeO3

2- +1.77 

Br2
•-/ 2Br- +1.60 

N3
•/N3

- +1.30 

 

Hydroxyl Radical  

The hydroxyl radical (•OH) is a versatile and reactive ROS studied in the present 

research. It is one of the most abundant ROS found in living organisms and it is continuously 
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formed via the Haber-Weiss reaction, or from the reaction of ferric ions and the hydroxyl anion, 

without any additional redox agents.81 

Hydroxyl radicals can also be generated via radiolysis of water through ionization or 

excitation of water. (The symbol γ represents ionizing radiation).  

    H2O + γ → H2O
•+ + e‾  (ionization)           (1.1) 

                   H2O → H2O
*(excitation)                   (1.2) 

The ionized or excited water molecule then undergoes further reactions to produce the hydroxyl 

radical:  

               H2O
•+ + H2O → H3O

+ + •OH                   (1.3) 

                                     H2O* → H• + •OH              (1.4) 

Three major reactions of •OH have been identified. These are: addition to double bonds, 

hydrogen abstraction, and electron transfer.15 The hydroxyl radical will react readily with 

carbon-carbon double bonds at close to diffusion-controlled rates, but it is regioselective due to 

its electrophilic nature. There is a high driving force for H-abstraction in saturated hydrocarbons, 

where the bond-dissociation energy between the carbon and hydrogen is much weaker than the 

HO-H bond bond-dissociation energy.15 The hydroxyl radical has a high standard reduction 

potential of +2.73 V in basic solutions and +1.90 V in acidic or neutral solutions. In spite of such 

a high standard reduction potential, electron transfer reactions with the hydroxyl radical occur 

less often than the double-bond addition and hydrogen-abstraction reactions, likely due to the 

fact that direct electron transfer to •OH proceeds via unstable intermediate complexes and hence 

cannot kinetically compete with the double-bond addition and hydrogen-abstraction reactions.15 
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Dibromide Radical Anion  

Hydroxyl radicals may react with halide or pseudohalide ions at close to diffusion-

controlled rates, thereby forming a three-electron-bonded adduct radical. These adducts may 

decompose into •OH and the halide radical which can complex with another halide, forming a 

dihalogen radical anion (such as Br2
•-).15 This is the case for the dibromide radical anion. 

Because the initial reaction is very fast, and the formation constant of Br2
•- is large, hydroxyl 

radicals produced during radiolysis of water in the presence of bromide are nearly quantitatively 

converted into Br2
•-. The reactions, as well as their respective rate constants or equilibrium 

constants, are summarized below.15,82 

              Br‾ + •OH → BrOH•‾  (k = 1.1x1010 M-1s-1)                                   (1.5) 

 BrOH•‾ → Br• + OH‾ (k = 4.2x106 M-1s-1)        (1.6) 

                              Br• + Br‾ ⇌ Br2
•‾  (K= 3.9x105)             (1.7) 

 

The dibromide radical anion, with its standard reduction potential of +1.60 V is capable of 

selectivly oxidizing both purine nucleobases, guanine and adenine. 

 

Sulfate Radical Anion  

The sulfate radical anion (SO4
•-) can be formed from persulfate, S2O8

2- either 

photolytically, or through reaction with eaq
- or H•.46,83 

           S2O8
2‾ + hv → 2SO4

•‾     (1.9) 

                  S2O8
2‾ + eaq‾ → SO4

•‾+ SO4
2‾  (k = 1.2x1010 M-1s-1)     (1.10) 

 

 S2O8
2‾ + •H → SO4

•‾ + HSO4‾   (k=1.4x107 M-1s-1)       (1.11) 
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Sulfate radical anions are the strongest oxidant shown in Table 2 (Eo = +2.47 V) and thus react 

non-selectively with all DNA bases, similar to the hydroxyl radical. As the sulfate radical anion 

is electrophilic in nature, it will preferentially add to the electron-rich position of a substrate. In 

addition, the sulfate radical anion can abstract hydrogen from the deoxyribose with the C4' 

pathway of abstraction dominating over the C1' and C5' pathways. H-abstraction occurs less 

often with the sulfate radical than with the hydroxyl radical, although the explanation for this still 

remains unclear.59  

 

Selenite Radical Anion  

The selenite radical anion (SeO3
•-) can be produced radiolytically upon reduction by eaq

- 

of the selenate anion or oxidation by •OH or the selenite anion:84 

                        SeO4
2‾ + eaq‾ → SeO3

•‾  (k = 1.4x109 M-1s-1)       (1.12) 

                   SeO3
2‾ + •OH → SeO3

•‾ + OH‾   (k = 3.5x109 M-1s-1)      (1.13) 

 

The selenite radical anion can also be produced by oxidation of the hydroselenite ion with •OH.84  

      HSeO3‾ +•OH → SeO3
•‾ + H2O  (k = 1.6x108 M-1s-1)   (1.14) 

 

With a relatively high redox potential of +1.77 V, the SeO3
•- is expected to react with 

nucleobases less selectively than Br2
•-. 

Azide Radical 

The azide radical (N3
•) can be produced in the reaction of the hydroxyl radical with the 

azide anion.85   

N3‾ + •OH → OH‾ + N3
•   (k = 1.25x1010 M-1s-1)    (1.15) 
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With a reduction potential only slightly higher than guanine (+1.30 V vs. +1.29 V), it has a 

boundary potential to oxidize G in DNA, but it is difficult to predict whether it is really capable 

of this oxidation. 

 

Biologically Relevant OEOs 

While the current research mostly focuses on Iz formation in model systems, there are 

biologically relevant OEOs located or formed in close proximity to DNA in the cell nucleus, 

including the carbonate radical anions and transition metal cations, first of all, Fe3+ and Cu2+ 

ions. These species are capable of oxidizing guanine. 

The carbonate radical anion (CO3
•-) is an important ROS that is produced in vivo by the 

one-electron oxidation of CO2 or bicarbonate, a major component of an organism’s physiological 

buffer. With a reduction potential of CO3
•-/CO3

2- = 1.59 V, the carbonate radical anion will 

selectively oxidize guanine, although it is believed to be a slow hydrogen-abstractor as well.86 

Although CO3
•- is an abundant biologenic ROS, the present research did not focus on the 

oxidation of guanine by CO3
•-. In the present study, ROS were produced by X-ray radiolysis of 

aqueous solutions and Josh Moore demonstrated in his MS thesis that CO3
•- are not efficiently 

formed by this method as the rate constant between bicarbonate and hydroxyl radicals is slow (k 

= 1.0 x 107 M-1s-1) (Reaction 1.16).23 Carbonate radical anions are much more efficiently formed 

through photolysis methods. 

      HCO3
¯  + •OH → H2O + CO3

•-   (k = 1.0 x 107 M-1s-1)     (1.16)      

CO3
•- oxidizes guanine with a slow rate constant of 1.5-3.0 x 107 M-1s-1.87 The oxidation of 

guanine by carbonate radical anions leads to the formation of sprioiminodihydantion (Sp), 

guanidinohydantion (Gh) (see Figure 5 for structures). The Sp lesions are considered the terminal 
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products of G and 8-oxo-G oxidation by the carbonate radical anion. In addition, Shafirovich et 

al. reported that the oxidation of the single guanine yields intrastrand cross-linked oxidation 

products.88  

Fe2+ has the capacity to reduce molecular oxygen to superoxide radical (Reaction 1.17), 

which can then react with DNA.5 

Fe2+ + O2 → Fe3+ + O2
•‾              (1.17) 

 

In addition, in vitro experiments confirmed the production of hydroxyl radicals via the Fenton 

Reaction (Reaction 1.18).5 

      Fe2+ + H2O2 → Fe3+ + •OH + OH‾              (1.18) 

 

It has been established that oxidative damage to DNA is enhanced by iron and copper 

cations. In the absence of transition metals, such as iron and copper, DNA is relatively non-

reactive with oxidants such as H2O2.
38 The products of reactions between DNA, iron, and 

oxidants are not fully known but include strand breaks, modified bases, DNA-protein cross-links, 

and modified bases.89,90  

The cupric ion (Cu2+) can be reduced to cuprous ion (Cu+) which is capable of catalyzing 

the formation of reactive hydroxyl radicals via the Fenton Reaction (Reaction 1.19) 

Cu+ + H2O2 → Cu2+ + •OH + OH‾        (1.19) 

 

Studies have also confirmed that copper is capable of inducing DNA strand breaks and 

oxidation of bases via oxygen free radicals.91 
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Specific Aims 

The overall aim of the current research was to test the hypothesis that DNA-bound 

imidazolone (Iz), a product of four-electron oxidation of guanine in DNA, is formed in 

significant quantities as a result of oxidizing of guanine by various one-electron oxidants (OEOs) 

and to get an insight into the mechanisms of its formation. The first goal of the current research 

was to optimize the reaction conditions to study the kinetics of Iz accumulation in reactions of 

native polymerized DNA in aqueous solutions with the following OEOs:  hydroxyl radicals 

(•OH), dibromide radical cation (Br2
•-), sulfate radical anion (SO4

•-), selenite radical anion 

(SeO3
•-), and azide radical (N3

•)  

Using experimental conditions optimized in Goal 1, the kinetics of Iz formation by the 

OEOs mentioned in Goal 1 have been studied. The relative yields of Iz and other characteristic 

LMPs of DNA damage have been compared for each OEO. 

Secondly, experiments have been performed to test: i) if the formation of Iz is dependent 

on the presence of the superoxide radical anion or molecular oxygen and ii) the hypothesis that 

8-oxo-G is not a major precursor of Iz. 
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CHAPTER 2 

 

EXPERIMENTAL METHODS 

 

Instrumentation, Glassware, and Other Materials 

Instrumentation 

A Prominence High Performance Liquid Chromatograph (from Shimadzu) equipped with 

an autosampler, degasser, column oven, and a photodiode array (PDA) detector was used as the 

major instrument for product separation and analysis. The HPLC was equipped with an 

analytical column from Phenomenex GeminiTM (C18, reversed phase, 250 mm x 4.6 mm, 5m). 

A Cary 100 Bio UV-Visible Spectrophotometer (from Agilent) was used to determine 

concentration of samples, sample analysis, and as a check for complete DNA precipitation. A 

Phillips X-ray tube with a tungsten anode, courtesy of Dr. David Close (Department of Physics 

and Astronomy, East Tennessee State University) was used as the source of radiation. Other 

instrumentation used in the research included a water bath, oven, vortex mixer, microcentrifuge, 

spin-vacuum system, and laboratory electronic balance (all from Fisher Scientific).  

 

Glassware and Other Materials 

Glassware and materials such as beakers, volumetric flasks, graduated cylinders, Pasteur 

pipettes, glass vials, graduated pipettes, pipette tips, graduated mixed plastic centrifuge tubes 0.5 

mL/1.5 mL, centrifuge tubes 15 mL/50 mL, and magnetic stirrers used extensively throughout the 

experiments were purchased from Fisher Scientific. HPLC inserts (200 µL) from Fisher Scientific 
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were used to reduce the volume of solution required for HPLC analysis. Quartz cuvettes (50 µL) 

were used for spectrophotometric measurements.  

 

Reagents 

Deoxyribonucleic Acid 

Highly polymerized salmon testes DNA sodium salt was purchased from Sigma-Aldrich 

Chemical Company. 

 

Other Reagents 

Reagents used in this study were purchased from Sigma-Aldrich or Fisher Scientific. 

Sodium bromide was used to produce Br2
• - by radiolysis. Potassium persulfate was used to 

generate SO4
•- by radiolysis and as an electron scavenger in dibromide systems. Sodium selenate 

or sodium hydroselenite were used to generate SeO3
•- by radiolysis. Sodium azide was used to 

generate N3
•.  Ethanolamine (EA) and sodium acetate were used in the reaction for quantification 

of Iz. Absolute ethanol and protamine sulfate were used to precipitate DNA. 1-methyl cytosine 

(1MeC) was used as an internal standard to determine concentration of products generated from 

the oxidation of DNA. Tricholoroacetate (TCA) was utilized as an electron scavenger to test the 

dependence of AIz formation on superoxide.  
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HPLC Solvents  

HPLC-grade acetonitrile (from VWR), HPLC-grade water (from Fisher), and ammonium 

acetate (ACS grade from Fisher) were used for preparation of HPLC solvents. 4 M stock solution 

of ammonium acetate was prepared by dissolving 154 g of ammonium acetate in 500 mL HPLC 

grade water. From this stock solution, 40 mM ammonium acetate was prepared for the HPLC 

aqueous mobile phase and stored at 4˚C. The HPLC organic mobile phase, 80% v/v 

acetonitrile/water, was prepared by mixing 4 volumes of pure HPLC grade acetonitrile with 1 

volume HPLC grade water.   

 

Buffers and Solutions 

HPLC-grade water was used for preparation of all stock solutions. 1 M stock solutions of 

potassium dibasic phosphate K2HPO4 and potassium monobasic phosphate KH2PO4 (both from 

Sigma) were mixed in a 1:1 ratio to make a 1 M phosphate buffer, pH 6.9. This was diluted to 10 

mM phosphate buffer, pH 6.9 to mimic physiological conditions in the DNA sample solutions.  

Preparation of DNA Solutions. 10 mM DNA stock solution was prepared by dissolving 

36 mg salmon testes DNA salt (average MW per nucleotide = 360 g/mol) in 10 mL of 10 mM 

phosphate buffer, pH 6.9. The solution was stored at 4˚C overnight and then the solution was 

homogenized by gentle stirring. The stock solution was stored at 4˚C. 

Other Stock Solutions. 2 M Ethanolamine (EA) used in the reaction for quantification of 

Iz. 1 M sodium acetate was added to the stock of EA to maintain pH close to neutral.  A 

saturated solution of protamine sulfate from salmon testes was used for the precipitation of 

DNA. 1 M solution of NaBr was prepared by dissolving 2.573 g NaBr in 25 mL distilled water.  
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1 M solution of NaN3 was prepared by dissolving 0.650 g NaN3 in 10 mL distilled water. 1 M 

solution of Na2SeO4 was prepared by dissolving 1.889 g Na2SeO4 in 10 mL distilled water. 2 M 

solution of NaHSeO3 was prepared by dissolving 3.02 g NaHSeO3 in 10 mL distilled water. 0.1 

M solution of K2S2O8 was prepared by dissolving 0.2703 g K2S2O8 in 10 mL distilled water. This 

solution was stored at 4ºC. When needed, it was brought to room temperature and stirred to 

dissolve the crystals. 50 mM solution of 1MeC was produced by dissolving 2.503 g 1-methyl 

cytosine in 10 mL distilled water. 2 M solution of TCA was prepared by diluting a 6 M TCA 

solution with distilled water. 

 

Gases 

Argon gas (100% purity) and molecular oxygen gas (USP) provided by Airgas were used 

for sample purging.  

 

Methods of Generation of OEOs 

Generation of OEOs by X-Irradiation of Solutions 

Preparation of Reaction Solutions. In a typical experiment, a master solution containing 

appropriate amounts of 10 mM salmon testes DNA (ST DNA) in 10 mM phosphate buffer, pH 

6.9 and stock solutions of additives were made as described in Table 3.   
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Table 3: DNA and OEO Solution Concentrations  

Stock 

Solutions 
OEO Formation reactions 

Final 

Concentrations 

of Additives 

 •OH 
H2O + γ → H2O

•+ + e‾ 
H2O

•+ + H2O → H3O
+ + •OH  

- 

1 M NaBr Br2
•- 

Br‾ + •OH → BrOH•‾  
BrOH•‾ → Br• + OH‾ 

Br• + Br‾ ↔ Br2
•‾ 

100 mM NaBr 

1 M NaBr 

0.1 K2S2O8 
Br2

•-  
100 mM NaBr 

10 mM K2S2O8 

1 M 

Na2SeO4 
SeO3

•- SeO4
2‾ + eaq‾ → SeO3

•‾ 100 mM Na2SeO4 

2 M 

NaHSeO3 
SeO3

•- HSeO3‾ +•OH → SeO3
•‾ + H2O  100 mM NaHSeO3 

0.1 M 

K2S2O8 
SO4

•- S2O8
2‾ + eaq‾ → SO4

•‾ + SO4
2‾ 10 mM K2S2O8 

1 M NaN3 N3
• N3‾ + •OH → OH‾ + N3

• 100 mM NaN3 

 

X-Irradiation of Reaction Solution. 210 μL aliquots of the master solution were placed 

into glass vials. The samples were irradiated at room temperature from the bottom with X-ray 

from a Philips tube with a tungsten anode with doses from ~ 0.1 kGy to ~ 4 kGy (10 s to 6 min), 

with each experiment containing a non-irradiated control sample. An X-ray tube with tungsten 

anode operated at 55 kV is characterized by a continuous emission spectrum with the onset at 

about 10 keV, a maximum around 30 keV, and a sharp cutoff at 55 keV, which corresponds to 

the maximum energy of the electrons striking the target. The tube was run at 20 mM which 

produced a dose of 10.9 Gy/s, as previously determined by Fricke dosimetry.23 

Post-Irradiation Sample Treatments. After irradiation, typically 190 μL of each solution 

was transferred to a 1.5 mL plastic tube and 10 μL (5% by volume) of 2 M EA in 1 M sodium 

acetate was added (final concentrations of EA were 0.1 M). The solutions were heated for 30 min 
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at 45˚C to complete the reaction of Iz with EA, thus converting DNA-bound Iz into a key LMP 

amino-imidazolone (AIz). After heating, the tubes were cooled on ice for 1 min and then 

centrifuged to collect the condensate. 30 μL (15% by volume) of saturated protamine sulfate was 

added to the side of each tube and then vortexed immediately for approximately 30 s. As a result, 

DNA precipitate was formed. The samples were placed on ice for 15 min to ensure more 

complete DNA precipitation and then centrifuged for 2 min. 150 μL of the supernatant was 

collected into HPLC vials fitted with 200 μL HPLC inserts. The samples were analyzed by 

HPLC with an injection volume of 100 μL.  

 

Superoxide Dependence Experiments  

The dependence of superoxide was experimentally tested by adding persulfate (for Br2
•- 

systems) or TCA (for •OH systems). These species act as electron scavengers, thus suppressing 

the formation of superoxide which is formed from the reaction of molecular oxygen with 

solvated electrons. For Br2
•- systems, a master solution containing ~9 mM ST DNA, 100 mM 

NaBr, and 10 mM K2S2O8 was made from 10 mM stock solution of ST DNA in 10 mM 

phosphate buffer, pH 6.9, 1 M stock solution of NaBr, and 0.1 M stock solution K2S2O8. For •OH 

systems, a master solution containing ~9 mM ST DNA and 20 mM TCA was made from 10 mM 

stock solution of ST DNA in 10 mM phosphate buffer, pH 6.9, and 2 M TCA. 210 μL aliquot 

samples were then treated as previously described.  
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Oxygen Dependence Experiments 

A master solution was prepared containing 9 mM ST DNA and either 100 mM NaBr 

(final concentration), 100 mM NaBr and 10 mM K2S2O8 (final concentrations), or no additives 

(to generate hydroxyl radicals) using 10 mM stock solution of ST DNA in 10 mM phosphate 

buffer, pH 6.9, 1 M stock solution of NaBr, and 0.1 M stock solution K2S2O8. 250 μL aliquots 

were placed into vials with slightly open screw caps and bubbled either for ~20 min to saturate 

with argon gas or ~10 min to saturate with oxygen gas. Argon and oxygen saturated samples 

were treated as previously described. 

 

Generation of Pre-Oxidized DNA  

A master solution containing 9 mM ST DNA and 100 mM NaBr (final concentrations) 

was prepared from 10 mM stock solution of ST DNA in 10 mM phosphate buffer, pH 6.9 and 1 

M stock solution of NaBr. Half of the solution (1-1.5 mL) was X-irradiated at ~3 kGy in a 10 mL 

glass beaker covered with aluminum foil to generate pre-oxidized DNA (Ox-DNA). As shown in 

Figure 17, the dose of 3 kGy is located in a plateau region of the dose-dependence curve for 8-

oxo-G formation. 
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Figure 17: Yields of 8-oxo-G as a function of dose for 10 mM concentration of salmon testes 

DNA (in nucleotides). DNA solutions were irradiated in the presence of 100 mM NaBr79 

 

200 µL aliquots of irradiated (Ox-DNA) or non-irradiated control (Ctrl-DNA) solutions 

were placed into 1.5 mL plastic centrifuge tubes. Absolute ethanol (EtOH) was added to each 

sample in a 30:70 v/v ratio of DNA: EtOH and vortexed immediately to precipitate DNA. 

Samples were kept on ice for 15 min for complete precipitation and then centrifuged for 5 min. 

Supernatants were removed and the precipitates were washed twice with 500 µL 70% aqueous 

ethanol. Supernatants were removed and then spin-dried until precipitates were dry. DNA 

solutions were reconstituted by adding appropriate amounts of 10 mM phosphate buffer, pH 6.9 

and 100 mM NaBr (final concentration), if used. Ctrl-DNA and Ox-DNA samples were treated 

as previously described with varying doses of X-irradiation, followed by treatment with EA, and 

then saturated protamine sulfate. 115 μL of the supernatant was collected into HPLC vials fitted 

with 200 μL HPLC inserts. The samples were analyzed by HPLC with an injection volume of 

100 μL. 
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HPLC Analysis 

For all HPLC analysis, a two-solvent system was used: 40 mM aqueous ammonium 

acetate buffer was designated as solvent A, and 80% v/v aqueous acetonitrile was designated as 

solvent B. The column was equilibrated for a minimum of 30 min with 100% solvent A, 

followed by a conditioning run (no sample) injection. The flow rate was 1 mL/min, the column 

temperature was maintained at 30°C, and samples in the auto-sampler tray were kept at 4°C. 

Optical measurements were performed by a two-lamp photodiode array (PDA), consisting of a 

deuterium lamp for the UV wavelength range, and a tungsten filament lamp for visible 

wavelengths.  

 Linear acetonitrile (solvent B) gradients were applied to elute the products from 0% to 

20% over 15 min, which corresponds to a linear increase of acetonitrile from 0% to 16%. Then 

the concentration of acetonitrile was increased to 40% for 2 min to wash the column. After 20 

min from the beginning of the run, PDA detection was ceased, and the system was returned to 

100% solvent A and equilibrated for 10 min until the next injection (Figure 18). 

 

Figure 18: HPLC solvent analysis linear gradient of acetonitrile solvent for a typical sample 

analysis  
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Quantification of HPLC Chromatograms  

Products were identified based on comparisons of retention times with authentic samples 

and UV spectra at 254 nm. 1-methyl cytosine (1MeC) was utilized as an internal standard for the 

quantification of low-molecular products (LMPs) during the initial stages of current work. Using 

the known concentration of 1MeC in each reaction solution, the concentration of respective 

products, [X], can be calculated using Equation 2.1 derived from the Beer-Lambert law. Products 

included both those from guanine oxidation (AIz) and sugar damage (free bases: guanine (G), 

adenine (A), cytosine (C), thymine (T), as well as lactam (Lac)). 

      
𝐴𝑥𝐴1𝑀𝑒𝐶 = 𝜀𝑋𝑙[𝑋]𝜀1𝑀𝑒𝐶𝑙[𝑀𝑒𝐶] = 𝜀𝑋[𝑋]𝜀1𝑀𝑒𝐶[𝑀𝑒𝐶]         (2.1) 

 

AX is the area under the assigned chromatographic peak of product X, A1MeC is the area 

under the chromatographic peak of 1MeC, εX is the molar extinction coefficient of product X, and 

ε1MeC is the extinction coefficient for 1MeC. Equation 2.1 can be rearranged into Equation 2.2, 

which can be easily used to calculate the concentration of any product. 

    [𝑋] = [1𝑀𝑒𝐶] 𝐴𝑋𝐴1𝑀𝑒𝐶 𝜀1𝑀𝑒𝐶𝜀𝑋      (2.2) 

       

The extinction coefficients for AIz, Lac, and 1MeC were previously experimentally 

determined by the Roginskaya research group in 40 mM ammonium acetate, pH 6.9. These 

extinction coefficients are summarized in Table 4.  
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Table 4: Extinction Coefficients for DNA Damage Products 

Product Molar extinction coefficient (ε) at 254 nm, M-1cm-1 

AIz 15,000 

Lactam 8,700 

1MeC 4,300 

Adenine (A) 11,990 

Guanine (G) 9,280 

Thymine (T) 6,690 

Cytosine (C) 5,070 

 

1MeC gave unreliable and inconsistent data for many experiments when used as in 

internal standard and for this reason it was not used for all experiments. Instead, areas of the 

peaks were calibrated using known concentrations of 1MeC and then a recalculation coefficient 

‘k’ was used to convert peak areas into concentrations. Four samples of 4.67 μM 1MeC were 

analyzed via HPLC and the average area under the 1MeC peaks at 254 nm was measured to be 

1.23 x 105. By using the average area for 1MeC, the known extinction coefficient for 1MeC, as 

well as respective coefficients for various products, a recalculation coefficient ‘k’ was calculated 

for each product using Equation 2.2. Recalculation coefficients are shown in Table 5.  
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Table 5: Recalculation Coefficient ‘k’ For Each Product 

Product k 

C 3.22 x 10-5 

AIz 1.09 x 10-5 

G 1.76 x 10-5 

T 2.44 x 10-5 

A 1.36 x 10-5 

Lac 1.88 x 10-5 

 

Using the recalculated extinction coefficient, the concentration of each product was 

calculated using Equation 2.3. 

  [𝑋] = 𝐴𝑟𝑒𝑎𝑋 ∗ 𝑘𝑋         (2.3) 

Concentrations of major products for each OEO (in µM) were plotted against dose (in 

kGy). The linear portions of the dose response plots were analyzed using linear regression for 

each product and were used to determine respective radiation chemical yields (in nmol/J) using 

the fact that:  

 (2.4) 

             

and the assumption that the density of each solution is equivalent to the density of water (1 g/mL 

= 1 kg/L). Therefore, as shown in Equation 2.5, the slope of the plot is equivalent to radiation 

chemical yields of products (in nmol/J) 

   𝑆𝑙𝑜𝑝𝑒 = 𝜇𝑀𝑘𝐺𝑦 = 𝜇𝑚𝑜𝑙𝐿 𝑘𝑔𝐽 11000 = 𝑛𝑚𝑜𝑙𝐽         (2.5) 

 

        

kGy = kJ of radiation energy 1 

         kg of matter 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

The Effect of the Nature of the Oxidant on the Production of Iz 

 Hydroxyl radicals, •OH, and solvated electrons, eaq
-, are efficiently generated via the 

indirect effect during radiolysis of water with the radiation chemical yields of 265 nmol/J.15 •OH 

and eaq‾ are reported to react with DNA with similar second-order rate constants of 2.5 x 108 M-

1s-1 and 1.4 x 108 M-1s-1, respectively.15 The solvated electron also reacts with oxygen in the 

solution to form superoxide with a close to diffusion controlled rate constant of 1.9x1010 M-1s-1 92 

OEOs studied in the present work (Br2
•-, SeO3

•-, SO4
•-, and N3

•) were produced by X-irradiation 

of aqueous solutions of ST DNA in the presence of corresponding anions (Br‾, SeO4
2- or 

HSeO3‾, S2O8
2-, and N3‾). The assumption of all the experiments described in this section is that 

since these anions react with •OH or eaq‾ significantly faster than •OH or eaq‾ react with DNA, 

these species, when present in significant concentrations in the solution (e.g. 100 mM), will 

successfully compete with DNA for the hydroxyl radicals or solvated electrons and will 

successfully scavenge •OH or eaq‾. As a result of the reactions of these anions with •OH or eaq‾, 

the above-mentioned OEOs can be, at least theoretically, formed with high yields and selectivity.  

 Reaction solutions containing 9 mM DNA in 10 mM phosphate buffer, pH 6.9 and 

typically 100 mM of additives containing anions of OEOs were prepared following protocols 

described in Chapter 2. These reaction conditions roughly mimic physiological conditions, with 

nearly physiological pH and ~0.2 mM of dissolved oxygen in air-saturated solutions at room 

temperature. The solutions were X-irradiated at a 10.9 Gy/s dose rate for doses ranging from 0 to 
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~4 kGy. Following irradiation, samples were heated with EA to convert DNA-bound Iz into a 

key LMP amino-imidazolone (AIz), followed by addition of saturated protamine sulfate to 

precipitate DNA. Solution supernatants were analyzed by reverse phase HPLC to quantify the 

yield of each respective product. Each chromatogram is labeled with the 4 DNA nucleobases (C, 

G, T, and A), 1MeC (when used), AIz, and C4ˊ-sugar damage product lactam (Lac).  

 Chromatographic peaks were analyzed as discussed in Chapter 2. Replicate experiments 

(duplicate or triplicate) using the same conditions were performed and average concentrations for 

each of the aforementioned LMPs were calculated. For each experiment, yields of AIz, Lac, and 

total FBR (free base release) which is a sum of yields of all four nucleobases released from DNA 

were plotted as a function of radiation dose and the data were compared for different OEOs as 

discussed below.  

 

Hydroxyl Radical 

The hydroxyl radical, (•OH), is a highly reactive species; in the absence of scavengers it 

reacts non-selectively with DNA with both the nucleobases and at the deoxyribose moiety. While 

•OH will preferentially react through H-abstraction of the deoxyribose, resulting in FBR and Lac, 

it is believed that the hydroxyl radical also reacts with the double bonds in guanine to form the 

G(OH)• adducts, which then produce a neutral G• radical, a precursor it Iz. A representative 

chromatogram for this system, indicating all oxidative damage products, is shown below in 

Figure 19. Dose response curves for each LMP are shown below in Figure 20 and radiation 

chemical yields are shown in Table 6.  
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Figure 19: Representative chromatogram showing peaks for LMPs of DNA damage by hydroxyl 

radicals produced by X-irradiation of 9 mM DNA solution in 10 mM phosphate buffer, pH 6.9 at 

0.69 kGy. 1MeC was added into the solution as an internal standard. 

 

a) b)  

Figure 20: Dose dependence of the yields of a) major LMPs and b) AIz alone as a result DNA 

oxidation by •OH. Reaction conditions are the same as indicated in the previous figure 
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As it may be seen from the dose response curve in Figure 20b, AIz accumulates linearly 

during practically all ranges of the radiation doses used, while dose response curves of Lac and 

FBR plateau off at higher doses as seen in Figure 20a. Relative contribution of AIz to the overall 

damage of DNA by •OH is low, only ~ 4%, (Table 6), indicating that •OH does in fact react 

primarily though H-abstraction rather than with guanine.  Our method of post-irradiation 

treatment of the samples with EA has been optimized for the quantitative analysis of Iz based on 

the yields of AIz. These conditions are not optimal for quantification of characteristic LMPs of 

2-deoxyribose damage by •OH, i.e. FBR and Lac. Nevertheless, radiation chemical yields of 

FBR and Lac in the present experiment (44.4 and 19.1 nmol/J, respectively, see Table 6) 

approach those described in an earlier work of Roginskaya research group (51.0 and 18.1 nmol/J, 

respectively).72 

 

Dibromide Radical Anion 

 Br2
•- produced in 100 mM solution of NaBr. Unlike •OH or SO4

•-, Br2
•- is a very 

inefficient hydrogen abstractor15 and hence no production of FBR or Lac is expected in its 

reaction with DNA provided that •OH undergo 100% conversion into Br2
•- via Reactions 1.5-1.7. 

However, as a representative chromatogram in Figure 21 shows, while AIz is the major product 

in this system, free base release and production of Lac also occur. Dose response curves (Figure 

22) show that all products of DNA damage by Br2
•- accumulate linearly up to doses of ~ 4 kGy, 

which is quite a high dose for aqueous solutions of DNA.  
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Figure 21: Representative chromatogram showing peaks for LMPs of DNA damage by Br2
•-. All 

conditions are the same as described in the legend for Figure 19 except the reaction solutions 

also contained 100 mM NaBr 

 

Figure 22: Dose dependence of the yields of major LMPs and as a result DNA oxidation by Br2
•- 

Reaction conditions are the same as indicated in the previous figure  

 

There are two possible explanations why free base release and production of Lac occur in 

this system: 1) due to the presence of residual amounts of hydroxyl radicals because of an 

incomplete conversion of •OH into Br2
•- or 2) because of the presence of superoxide (O2

•-) 
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produced via the reaction of solvated electrons (eaq‾) with molecular oxygen. While superoxide 

itself reacts with DNA slowly, with k < 1 x 10-6 M-1 s-1,93 it might participate in recombination 

reactions with DNA peroxyl radicals, which, in turn, are the products of reactions of carbon-

centered radicals at deoxyribose or nucleobases moieties. Since superoxide is produced in large 

amounts during radiolysis in oxygenated solutions and is a long-lived ROS, the role of such 

reactions might be significant. However, little is known about the role of superoxide in processes 

of DNA oxidative damage.15 

 While it is difficult to selectively scavenge hydroxyl radicals without scavenging other 

reactive species to test the first hypothesis, the second hypothesis was tested by using a 

superoxide-free system. 

 

Br2
•- produced in 100 mM solution of NaBr and 10 mM K2S2O8. Solvated electrons (eaq

-) 

are responsible for the production of superoxide in X-irradiated solutions via Reaction 3.1.92 

O2 + eaq‾→ O2
•‾  (k = 1.9 x 1010 M-1 s-1 in H2O)      (3.1)  

 

 

As oxygen may be required for the production of Iz, the only way to generate a 

superoxide-free system is to remove the electrons. S2O8
2- will scavenge essentially all electrons 

via Reaction 1.10 which has a diffusion-controlled reaction rate constant, while bromide will 

react with •OH to produce Br2
•-, as before. In addition, the sulfate radical anion will also produce 

Br2
•- by oxidizing Br‾ (Reaction 3.2) which yields Br2

•‾ (Reaction 1.7). So, in this system the 

expected yield of Br2
•- is doubled as compared to the solution containing only Br‾.94 

           SO4
•‾ + Br‾ → Br• + SO4

2-   (k = 3.5 x 109 M-1 s-1)                 (3.2) 
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As seen in the representative chromatogram shown below in Figure 23, the major product 

is AIz and almost no sugar damage products were observed (other than small amounts of adenine 

and even less of thymine). This indicates that in this system Br2
•- is essentially the only reactive 

species responsible for the DNA damage detected.  

 

Figure 23: Representative chromatogram showing peaks for LMPs of DNA damage by Br2
•-. All 

conditions are the same as described in the legend for Figure 19 except the reaction solutions 

also contained 100 mM NaBr and 10 mM K2S2O8 

 

These experiments produced impressive results. The radiation chemical yield for Iz was 

the highest obtained for any reaction (3.54 nmol/J as obtained from the slope of the linear 

regression line for the experimental data points after the lag period) and, in addition, almost no 

sugar damage products were observed (~0.5 nmol/J), resulting in a relative yield of AIz/FBR ~ 

696%. Dose response curves for each LMP are shown below in Figure 24.   
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Figure 24: Dose dependence of the yields of major LMPs and as a result DNA oxidation by Br2
•-

. Reaction conditions are the same as indicated in the previous figure  

 

The dose dependence curve for Iz in Figure 24 shows a pronounced lag period, indicating 

that Iz formation occurs via a sequential reaction A → B → Iz, where B is an unknown 

intermediate product or products, and A is unknown precursor, which most likely in this system 

is G•+. The presence of a lag period in accumulation of Iz indicates that the reaction rate constant 

for the first step, k1, is not much lower than the reaction rate constant for the second step, k2.
95 

This is in contrast to the Br‾ alone system, which produces a much more linear dose dependence 

curve for AIz. Comparison of the data obtained for two systems, Br‾ alone and a mixture of Br‾ 

and S2O8
2- indicates that the latter system provides a cleaner method of generation of Br2

•- by X-

ray radiolysis of aqueous solutions because the effects of undesired free radicals (•OH and O2
•-) 

have been minimized.  
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SeO3
•-, 1) radiolysis of selenate (SeO4

2-) solution and 2) radiolysis of the hydroselenite (HSeO3‾) 

solution. 

 

 Selenite Radical Anion via SeO4
2-. The reaction of selenite formation via the selenate 

anion does not use hydroxyl radicals (Reaction 1.12), thus the resulting DNA solution contains 

both SeO3
•- and •OH. Therefore, products obtained in this system can be expected to be a 

cumulative result of DNA oxidation of the two OEOs: selenite radical anion and hydroxyl 

radicals. A representative chromatogram for this system, indicating all oxidative damage 

products, is shown below in Figure 25. 

 

 

Figure 25: Representative chromatogram showing peaks for LMPs of DNA damage by SeO3
•-. 

All conditions are the same as described in the legend for Figure 19 except the reaction solutions 

also contained 100 mM Na2SeO4 

 

As expected, this system generated high yields of AIz (4.66 nmol/J), which is believed to 
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properties of SeO3
•- are not described in the literature, comparison with a similar radical anion, 

SO3
•-, which abstracts hydrogen from ethanol with a reaction rate constant of lower than 2 x 103 

M-1s-1 96, allows one to assume that the selenite radical anion species is also a much less effective 

hydrogen abstractor than •OH. Therefore, the sugar damage products (FBR and Lac) are 

expected to be mostly the result of hydrogen abstraction from deoxyribose moiety by the 

hydroxyl radicals. However, the yields of FBR and Lac are lower than that of •OH alone 

indicating that the parent selenate anion may act as a weak scavenger of •OH (k = 4.2x105 M-1s-1 

).97 Dose response curves for each LMP are shown below in Figure 26. 

 

a)  b)  

Figure 26: Dose dependence of the yields of a) major LMPs and b) AIz alone and as a result 

DNA oxidation by SeO3
•- (generated from SeO4

2-). Reaction conditions are the same as indicated 

in the previous figure 

 

Because the yields of products by hydroxyl radicals are known, the yield of AIz by 

selenite radical anions alone can be estimated by the difference in the yields of AIz in the 

systems generating upon radiolysis of both hydroxyl radicals and selenite radical anions and of 
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hydroxyl radicals only (see Table 6). This approach gives a value of radiation chemical yield 

production of AIz by selenite radical anions alone of ~2.9 nmol/J. 

 

Selenite Radical Anion via HSeO3
-. The approach of generation of selenite radical anions 

from hydroselenite anions, HSeO3‾, was theoretically promising as the hydroselenite anions 

participate in two reactions: 1) the reaction with solvated electrons to convert the hydroselenite 

anions into poorly reactive selenium oxide radical anions, and 2) the reaction with hydroxyl 

radicals to produce the selenite radical anions (Reactions 3.5-3.6), therefore both solvated 

electrons and hydroxyl radicals are removed in this system.98 

 HSeO3‾ + eaq‾ → SeO2
•‾ + OH‾  (k = 1.7 x 109 M-1s-1)                 (3.5) 

 

  HSeO3‾ + •OH → SeO3
•‾ + H2O   (k ≈ 3 x 108 M-1s-1)      (3.6) 

 

A representative chromatogram for this system indicating all oxidative damage products 

is shown below in Figure 27. 
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Figure 27: Representative chromatogram showing peaks for LMPs of DNA damage by SeO3
•-. 

All conditions are the same as described in the legend for Figure 19 except the reaction solutions 

also contained 100 mM NaHSeO3 

 

As shown below in the dose response curves for LMP, SeO3
•- is more selective to 

production of AIz than •OH, as the radiation chemical yield of AIz was ~0.98 nmol/J, with an 

AIz/FBR of 34.5%. However, the presence of Lac and FBR in large relative amounts indicates 

that most likely not all hydroxyl radicals are scavenged by the hydroselenite anion.  
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a) b)  

Figure 28: Dose dependence of the yields of a) all major LMPs and b) AIz alone as a result 

DNA oxidation by SeO3
•- (generated from HSeO3

-). Reaction conditions are the same as 

indicated in the previous figure 

 

Thus, the approach of using HSeO3
- to generate SeO3

•- appears unsuccessful because the 

reaction between hydroxyl radicals and hydroselenite is too slow (k ≈ 3 x 108 M-1s-1) to 

successfully compete with the reaction of hydroxyl radicals with guanines in DNA (k ≈ 8 x 109 

M-1s-1), so the conversion of hydroxyl radicals into selenite radical anions is incomplete. An 

attempt to push the reaction of hydroselenite with hydroxyl radical was made by increasing the 

concentration of hydroselenite from 100 mM to 200 mM, however this resulted in the actual 

decrease in yield of AIz. This indicates that in this system the observed release of AIz is due 

primarily from the oxidation of guanine by the hydroxyl radicals left in solution, rather than by 

the selenite radical anions. Figure 29 below shows the dose response curve for AIz production 

for solutions containing 100 mM and 200 mM HSeO3
-.  
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Figure 29: Dose dependence of the yields of AIz and as a result DNA oxidation by SeO3
•- 

(generated from HSeO3
-) from 100 mM or 200 mM HSeO3

-. Reaction conditions are the same as 

indicated in the previous figure 

 

Sulfate Radical Anion 

The sulfate radical anion, SO4
•-, has a high reduction potential of +2.43 V and is capable 

of oxidizing all four nucleobases. As shown in Roginskaya’s research group recent publication, 

sulfate radical anions are also fairly efficient hydrogen abstractors.59 Radiolysis of aqueous 

solution of 10 mM persulfate anions produces both sulfate radical anions (through the solvated 

electron channel) and hydroxyl radicals as seen in Reactions 1.9-1.11. Persulfate anions are 

relatively inefficient scavengers of hydroxyl radical, k = 1.2 x 107 M-1s-1.92 As of yet, there is no 

reliable method to produce sulfate radical anions only (for example, the formate anion, widely 

used as a hydroxyl radical scavenger15 will not only scavenge hydroxyl radicals but sulfate 

radical anions as well). Therefore, production of AIz is a result of oxidation of guanine by both 

hydroxyl radicals and sulfate radical anions. A representative chromatogram for this system, 

indicating all oxidative damage products, is shown below in Figure 30.  
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Figure 30: Representative chromatogram showing peaks for LMPs of DNA damage by SO4
•- 

(and •OH). All conditions are the same as described in the legend for Figure 19 except the 

reaction solutions also contained 100 mM K2S2O8 

 

 The yields of LMPs are supposed to be a cumulative result of DNA damage by both 

hydroxyl radicals and sulfate radical anions.  Dose response curves for each LMP are shown 

below in Figure 31. 
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a) b)  

Figure 31: Dose dependence of the yields of a) major LMPs and b) AIz alone and as a result 

DNA oxidation by SO4
•- (and •OH). Reaction conditions are the same as indicated in the previous 

figure 

 

Because the yields of products by hydroxyl radicals are known, and the contribution of 

the reaction between persulfate and hydroxyl radicals is low, the yield of AIz by sulfate radical 

anions alone can be estimated by the difference in the yields of AIz in the systems generating 

upon radiolysis of both hydroxyl radicals and persulfate radical anions and of hydroxyl radicals 

only (see Table 6). This approach gives a value of radiation chemical yield production of AIz by 

sulfate radical anions alone of ~3.3 nmol/J.  

 

Azide Radical 

As expected, the azide radical, N3
•, does not produce measurable yields of AIz, as shown 

below in the representative chromatogram (Figure 32).  
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Figure 32: Representative chromatogram showing peaks for LMPs of DNA damage by N3
•. All 

conditions are the same as described in the legend for Figure 19 except the reaction solutions 

also contained 100 mM NaN3 

 

Because the azide radical has a reduction potential only slightly higher than that of 

guanine (+1.30 V vs. +1.29 V), it is likely not capable of effectively oxidizing the guanine to 

form AIz. The mechanism of formation of residual amounts of FBR and Lac in this system is not 

clear. Most likely, it is the result of action of hydroxyl radicals remaining in the solution due to 

their incomplete scavenging by the azide anion. Dose response curves for the residual sugar 

damage products, FBR and Lac, are shown below in Figure 33. The results found in Figure 33 

are from a singular pilot experiment and no error bars are associated with the data.  
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Figure 33: Dose dependence of the yields of FBR and Lac as a result DNA oxidation by N3
•. 

Reaction conditions are the same as indicated in the previous figure 

 

Representative chromatograms for all solutions under these experimental conditions, with 

samples X-rayed at the dose of 0.69 kGy are shown in Figure 34, which allows for a more 

accurate comparison of absolute yields of AIz. 
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a) b)    

c) d)    

e) f)   

 

Figure 34: Representative chromatograms for each OEO, X-irradiated at a dose of 0.69 kGy: a) 

•OH b) Br2
•- c) Br2

•- (Br‾ + S2O8
2-) d) SeO3

•- via SeO4
2- e) SeO3

•- via HSeO3
- f) SO4

•-  
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Radiation chemical yields (in nmol/J) were calculated from the slopes of the linear 

regression as described in Chapter 2. The value of the slope for FBR is normalized to 100% and 

the relative yield for each damage product is expressed as the ratio of slope values of the product 

and the total FBR. The yields of each damage product were normalized to yield of FBR because, 

as previously mentioned in Chapter 1, the total yield of FBR is an excellent internal benchmark 

of the total damage inflicted to the sugar-phosphate backbone. A representative graph for 

solutions with •OH as the oxidant is shown in Figure 35.  

 

 

Figure 35: Radiation chemical yields (in nmol/J) of major DNA oxidation damage products for 

solutions with •OH as the oxidant determined from linear regression analysis of dose dependence 

curves at low doses 

 

The radiation chemical yields and relative yields for each damage product are 

summarized in Table 6.  
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Table 6: Radiation Chemical Yields and Relative Percentage Yields for DNA Damage Products 

OEO 
Iz     

(nmol/J) 

Relative 

Percentage 

Yield of Iz 

Lac         

(nmol/J) 

Relative 

Percentage 

Yield of Lac 

FBR     

(nmol/J) 

•OH 1.78 4.01% 19.1 42.9% 44.4 

Br2
•- 

(Br‾ only) 
0.620 56.5% 0.362 29.2% 1.24 

Br2
•- 

(Br‾ + S2O8
2-) 

3.54b) 696% 0 0% 0.509b) 

SeO3
•-           

(via SeO4
2-) 

4.66  

2.88     

(SeO3
•-   

only)a)  

14.2% 

 
14.7 44.8% 32.8 

SeO3
•-          

(via HSeO3
-) 

0.978 34.5% 1.20 42.4% 2.83 

SO4
•-  

5.12 

3.34       

(SO4
•- only)a) 

12.8% 18.2 45.5% 40.0 

N3
• 0 0% 0.261 22.9% 1.14 

a) Calculated by subtracting the radiation chemical yield of AIz in the reaction of DNA with •OH. 

b) Estimated based on the slope of the linear part of the regression line to experimental points 

obtained after the lag period. 

 

As expected, the OEOs which oxidize guanine selectively (Br2
•- and SeO3

•-) resulted in 

the largest relative yields of AIz. Br2
•- is selective towards the production of Iz with AIz/FBR ~ 

7.0 in the X-rayed Br‾ /S2O8
2- solutions. The data in the X-rayed Br‾ /S2O8

2- solutions seemed to 

produce a cleaner system of producing AIz, i.e. one where the contribution of undesirable free 

radicals, such as hydroxyl radicals and superoxide, is minimized. This is indicated by the lack of 

sugar damage products, FBR and Lac, the very large AIz relative percentage yield (~696%), as 
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well as the largest absolute yield for any single OEO (~3.54 nmol/J). Br‾ solutions still produced 

a reasonably large relative yield of AIz, but the results are obscured due to the presence of other 

oxidants that can also produce AIz. The approach of generation of SeO3
•- by radiolysis of 

solutions containing HSeO3‾ turned out to be unsuccessful because a slow reaction between 

HSeO3‾ and •OH results in an incomplete scavenging of •OH. The majority of AIz produced in 

this system is assumed to be a result of DNA oxidation by •OH. 

Radiolysis of solutions containing selenate or persulfate anions apparently produces a 

mixture of OEOs (SeO3
•- together with •OH and SO4

•- together with •OH, respectively) therefore 

the contribution of individual OEOs is unclear. Despite having the largest absolute yields of AIz, 

the relative yield of AIz for both of these systems was much smaller than that of the Br2
•- 

systems, indicating that at the DNA is oxidized non-selectively. While hydroxyl radicals have a 

large reduction potential and are very reactive, they have very low selectivity towards the 

production of Iz, with an AIz/FBR~ 0.037. They primarily react through H-abstraction from the 

deoxyribose, as visualized by free base release and production of Lac. N3
• produces essentially 

no AIz, most likely due to not having a high enough reduction potential to successively oxidize 

guanine (+1.29 V).   

 

The Effect of Superoxide on Production of Iz 

Shafirovich et al. reported that Iz is produced by the reaction of the guanine radical with 

superoxide.34 However, there has been accumulating evidence based on data from the 

Roginskaya research group’s experiments that superoxide is not necessarily required for the 

production of Iz in DNA. The hypothesis is that the formation of Iz in DNA can be preceded by 

the reaction of guanine radical or guanine radical cation with molecular oxygen.  
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As shown in Reaction 3.1, solvated electrons (eaq
-) are responsible for the production of 

superoxide in X-irradiated solutions. As oxygen may be required for the production of Iz, the 

only option to prevent the production of superoxide is to remove the electrons from the reaction 

system. By adding electron scavengers such as persulfate or trichloroacetate (TCA) to the 

reaction solution, the production of superoxide is suppressed. DNA can also react with solvated 

electrons (Reaction 3.7), but relatively slowly as compared with the reactions of solvated 

electrons with molecular oxygen and scavengers such as persulfate of TCA which have 

diffusion-controlled reactions rate constants.99  

DNA + eaq‾ → products  (k = 1.0 x 108 M-1s-1 in H2O, pH 6.5)           (3.7) 

 

Persulfate 

 The results of the experiments in X-rayed solutions of 100 mM NaBr and 10 mM K2S2O8 

have been earlier described in this chapter (see Figures 23-24). Although it was expected that the 

yields of AIz would be doubled for solutions containing persulfate, as the Br2
•- is formed from 

two separate channels, the absolute yields of AIz for solutions containing Br‾ with persulfate 

(~3.5 nmol/J) were significantly higher than for the Br‾ alone system (~0.70 nmol/J). This 

indicates the superoxide may actually suppress the formation of Iz through some unknown 

mechanism. Overall, the data support the hypothesis that superoxide is not required for the 

formation of Iz in systems containing Br2
•- as the OEO, as when superoxide formation is 

suppressed through the addition of persulfate, AIz is still produced in significant quantities. 
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Trichloroacetate 

For systems containing •OH as the oxidizing species, trichloroacetate (TCA) was selected 

as an electron scavenger. TCA, through dissociative electron capture, is an efficient scavenger of 

electrons (Reaction 3.8).100   

     CCl3COO‾ + eaq‾ → •CCl2COO‾+ Cl‾    (k = 8.5 x 109 M-1 s-1 in H2O)       (3.8) 

 

The resulting free radical rapidly reacts with oxygen to form a peroxyl radical anion (Reaction 

3.9), which is believed to be poorly reactive under ambient conditions and does not participate in 

further transformations: 

   •CCl2COO‾ + O2 → •OOCCl2COO‾  (k ~ 1.0 x 1010 M-1s-1)                     (3.9) 

When using a concentration of 20 mM of TCA, the ratio of rates for Reaction 3.8 to 3.1 

(the formation of superoxide) is approximately 45, assuming the concentration of dissolved 

oxygen in air-saturated solutions is ~0.2 mM. Therefore, the production of superoxide is 

practically suppressed in solutions containing 20 mM TCA. In addition, TCA, at least at these 

concentrations, does not efficiently scavenge •OH since its reaction constant is estimated as 

lower that 6 x 107 M-1 s-1 in H2O at pH 6.2.101 Therefore, we can assume the formation of Iz in 

these systems is a result of the reaction of oxidative damage to DNA by •OH. Dose response 

curves for LMP produced in solutions with and without TCA are shown below in Figure 36: 
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a) b)  

Figure 36: Dose dependence of major DNA oxidation products for DNA solutions containing a) 

DNA with 20 mM TCA and b) DNA only 

 

 Linear regression analysis of AIz formation produced radiation chemical yields for DNA 

solutions of ~1.8 nmol/J and DNA solutions with TCA of ~2.5 nmol/J. The slight increase in the 

yield if AIz in superoxide-free systems indicates the possibility that superoxide suppresses the 

formation of AIz. Dose response curves for AIz formation are shown below in Figure 37.   

a) b)  

Figure 37: Dose dependence for AIz production for DNA solutions containing a) DNA with 20 

mM TCA and b) DNA only 
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Based on the data collected from the previous experiments, it can be concluded that in 

superoxide-free systems, AIz is still efficiently produced, therefore AIz formation is not 

dependent on the presence of O2
•-.  Both systems showed an increase in the yield if AIz in 

superoxide-free systems indicating the possibility that superoxide suppresses the formation of Iz, 

although the mechanism by which this would occur still remains unclear.  

 

The Effect of Oxygen on the Production of Iz 

It is well known that many reactions of oxidative damage to DNA are sensitive to gassing 

conditions and that many are absolutely dependent on the presence of molecular oxygen.15 It is 

believed that the formation of Iz from its precursors is oxygen-dependent. Therefore, studying 

the effect of molecular oxygen on the production of Iz by various OEOs could shed light on the 

mechanisms of formation for Iz. In addition to the conditions of naturally aerated solutions (air-

saturated solutions, with the concentration of dissolved oxygen of ~0.2 mM at room temperature) 

routinely used, two more gassing conditions were tested: oxygenated solutions (saturated with 

oxygen gas, with concentration of dissolved oxygen of ~1 mM) and deoxygenated solutions 

(purged with argon gas). 

Experiments on the effect of oxygen have been performed to confirm whether the 

presence of oxygen affects the process of Iz formation. These experiments were performed for 

the systems generating •OH or Br2
•- as the OEO. 10 mM of salmon testes DNA in 10 mM 

phosphate buffer, pH 6.9 either with 100 mM NaBr with or without 10 mM K2S2O8, for Br2
•-, or 

without any additives for •OH. In addition, ‘Oxygenated’ samples were saturated with O2 gas for 

~10 min and ‘Deoxygenated’ samples were saturated with argon gas for ~20 min. Immediately 

following saturation, samples were X-rayed and then treated as previously described.  
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•OH with and without Oxygen  

 The yields of all products of DNA damage by hydroxyl radicals were drastically 

decreased in deoxygenated solutions and the production of Iz was practically completely 

suppressed (Figure 38). Therefore, as expected, formation of Iz in DNA by hydroxyl radicals is 

absolutely dependent on oxygen, which is also the case for 8-oxo-G.79 Representative 

chromatograms (Figure 38) and dose dependence curves (Figure 39) are shown below.  

a) b)  

Figure 38: Representative chromatogram showing peaks for LMPs of DNA damage by •OH for 

solutions saturated with a) argon and b) oxygen. All conditions are the same as described in the 

legend for Figure 19  
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a) b)  

Figure 39: Dose dependence of major DNA oxidation products for DNA saturated with a) argon 

and b) oxygen 

  

Figure 40 focuses on the dose dependence curves for AIz for solutions under each of the 

gassing conditions. Clearly the mechanism by which Iz is produced from hydroxyl radicals is 

dependent on oxygen, as the yield of AIz is suppressed when oxygen is removed and increased 

when solutions are saturated in oxygen.  
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a) b)  

c)

Figure 40: Dose dependence of AIz formation by hydroxyl radicals for DNA solution saturated 

with a) argon, b) oxygen or c) all tested gassing conditions  

 

Br2
•- with and without Oxygen 

While one might hypothesize that production of Iz via the reaction of dibromide radical 

anions with DNA is also oxygen-dependent, our experimental data showed this is not necessarily 

true. The absence of oxygen did not completely suppress AIz formation as it was the case for the 

hydroxyl radicals (Figures 38-40) and it appears the mechanism by which Iz is formed is 

different for NaBr DNA solutions containing persulfate.  
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Br2
•- produced in 100 mM solution of NaBr. As previously discussed, DNA solutions 

containing only NaBr produce AIz as well as products of sugar damage (FBR and Lac). It was 

proposed that these products are a result of oxidation from superoxide. As shown below in 

representative chromatograms (Figure 41) and dose response curves (Figure 42), DNA solutions 

which have been deoxygenated produce more FBR and Lac than those which have been 

saturated with oxygen, indicating that the mechanism of sugar damage is suppressed in the 

presence of oxygen. In contrast, the yields of AIz increase in the presence of oxygen, indicating 

they mechanism by which AIz is formed through this system may be oxygen-dependent.  

 

a) b)  

Figure 41: Representative chromatogram showing DNA damage products for DNA solutions X-

irradiated in the presence of 100 mM NaBr, saturated with a) argon and b) oxygen; dose 0.69 
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a) b)  

Figure 42: Dose dependence curve for DNA damage product formation for DNA solutions X-

irradiated in the presence of 100 mM NaBr that have been saturated with a) argon or b) oxygen 

 

As shown below in Figure 43, the relative yields of AIz decrease when DNA solutions 

are saturated with argon (~0.3 nmol/J) as compared with those under normal air (~0.62 nmol/J) 

or saturated with oxygen (~0.67 nmol/J). In contrast, we see a suppression in the yields of FBR 

and Lac in oxygenated samples. One possible explanation is that in oxygenated samples, 

molecular oxygen can compete with hydroxyl radicals for solvated electrons, producing 

additional superoxide, which reacts with DNA much more slowly (Reaction 3.1). In this 

scenario, the hydroxyl radical is free to react with Br‾, eventually resulting in the formation of 

additional Br2
•-, which explains the slight increase in the yield of AIz. In deoxygenated solutions, 

the hydroxyl radical reacts with solvated electrons more quickly than Br‾, resulting in less 

formation of Br2
•-, and consequently AIz. However, the radiation chemical yields of AIz under 

air-saturated (~0.62 nmol/J) and oxygen saturated (~0.67 nmol/J) solutions are very similar, 

especially when considering the standard deviation of the solutions, so it is also possible that 
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oxygen-saturated solutions and air-saturated solutions produce approximately the same yield of 

AIz.    

 

 

Figure 43: Dose dependence curve for AIz formation for DNA solutions X-irradiated in the 

presence of 100 mM NaBr that have been saturated with argon, oxygen, or air 
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with solvated electrons and molecular oxygen with solvated electrons is approximately 10, which 

means most likely molecular oxygen cannot compete efficiently for the solvated electrons.  

 

a) b)  

Figure 44: Representative chromatogram showing DNA damage products for DNA solutions X-

irradiated in the presence of 100 mM NaBr and 10 mM K2S2O2, saturated with a) argon and b) 

oxygen; dose 0.69 kGy 
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a) b)  

Figure 45: Dose dependence curve for DNA damage product formation for DNA solutions 100 

mM NaBr and 10 mM K2S2O8, saturated in a) argon and b) oxygen 

  

The sugar damage product Lac, also began formation at higher doses in oxygen-saturated 

solutions, indicating the mechanism by which Lac is formed in the persulfate/dibromide system 

is oxygen dependent. In the persulfate/dibromide system, the yield of AIz increases in 

deoxygenated solutions (~4.4 nmol/J) as compared to air-saturated solutions (~3.5 nmol/J) and 

oxygenated solutions AIz (~2.1 nmol/J), where AIz formation appears to be suppressed.  

Because the formation of AIz was suppressed in solutions saturated with oxygen, it is possible 

there is a competing reaction, although the mechanism of formation of Iz in dibromide systems 

still remains unclear. Dose response curve for each gassing condition is shown below in Figure 

46.  
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Figure 46: Dose dependence curve for AIz formation for DNA solutions X-irradiated in the 

presence of 100 mM NaBr and 10 mM K2S2O8, saturated with argon, oxygen, or air 

 

It must also be stated that the formation of 8-oxo-G (a proposed precursor to Iz) by 

dibromide radical anions was also suppressed in oxygenated solutions as compared to 

deoxygenated DNA solutions.79 This provides evidence for the hypothesis that guanine is first 

oxidized into 8-oxo-G, which then is further oxidized into Iz.  

 

The Effect of Pre-Oxidized DNA on the Production of Iz 

Several studies have proposed Iz to be one of the major products of further oxidation of 

8-oxo-G by various oxidants including superoxide, singlet oxygen, peroxynitrite, and by DNA 

photooxidation in the presence of photosensitizers.55-58 Kino and Sugiyama provided 

experimental evidence that Iz is produced from 8-oxo-G by photooxdiation of double-stranded 

oligonucleotides containing 8-oxo-G lesions linked to anthraquinone as a photosensitizer.58 

Despite this evidence, mechanistic aspects of this pathway remain unknown.  
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However, experimental data of the Roginskaya research group indicate that 8-oxo-G is 

not necessarily a major precursor of Iz. Iz accumulates linearly during DNA oxidation by the 

majority of OEOs employed in this study except for the dibromide radical anions produced in the 

absence superoxide. In the meantime, as Derrick Ampadu-Boateng showed in his Masters thesis 

research, the kinetic curve of 8-oxo-G accumulation by all OEOs he studied has a sigmoid shape, 

with fast accumulation of 8-oxo-G during the initial period of its formation and a steady-state 

period during later times.79 As shown in Roginskaya et al.’s recent publications, 8-oxo-G is a 

dominant product generated in ST DNA by sulfate and carbonate radical anions, with the relative 

ratio of [8-oxo-G]: [FBR] = 6.8 for SO4
•- 59 and [8-oxo-G]: [FBR] ~ 2 x 103 for CO3

•- .102 Thus, 

one can assume formation of 8-oxo-G in high concentration during the initial period of the 

oxidation reaction, which, in turn, increases the rate of formation of further products. 

In order to test the hypothesis that 8-oxo-G is not a major precursor to AIz, DNA was 

pre-oxidized to first form DNA containing 8-oxo-G (“Ox-DNA”). Solutions containing DNA 

and 10 mM NaBr were X-rayed for 3 kGy. The choice of the X-ray dose was based on its 

location in the middle of the plateau in the dose-response curve of 8-oxo-G by dibromide radical 

anions so reproducible results can be expected at this dose.79 This Ox-DNA can then be treated 

along with control (‘Ctrl-DNA’) to compare the amount of AIz, FBR, and Lac produced. Both 

pre-oxidized and control samples of ST DNA were treated with 100 mM NaBr (to produce Br2
•-) 

or without (to produce •OH).  

The kinetic curves of formation of AIz can provide information on mechanism of 

formation of AIz when considering two different possible scenarios:  

(i) Iz is formed predominately from 8-oxo-G. In this mechanism, G•+ or G• are converted to 

the intermediate 8-oxo-G which then can generate many different products, including Iz. 
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In this scenario, a dose-dependence curve of formation of AIz from pre-oxidized DNA is 

expected to have a linear shape, as shown below in Figure 47a. Non-zero initial 

concentrations of AIz can be expected because of the presence of pre-formed Iz as an 

immediate precursor to AIz as well as pre-formed 8-oxo-G as a precursor to Iz.  

(ii) 8-oxo-G does not play a significant role as Iz precursor. In this mechanism, Iz is formed 

from another precursor, which, in turn, is an intermediate product of oxidation of 

guanine. Then a dose-dependence curve of formation of AIz from pre-oxidized DNA is 

expected to have a lag period as shown in Figure 47b. Non-zero initial concentrations of 

AIz are still expected because of the presence of pre-formed Iz as an immediate precursor 

to AIz plus possibly the presence of a yet unknown precursor accumulated during the pre-

oxidation step.  

a) b)  

Figure 47: Theoretical kinetic curves for the mechanisms of a) 8-oxo-G is a precursor to Iz and 

b) 8-oxo-G is not a precursor to Iz 

 

 

 

[A
Iz

],
 A

rb
it

ra
ry

 U
n
it

s

Dose, Arbitrary Units

[A
Iz

],
 A

rb
it

ra
ry

 U
n
it

s

Dose, Arbitrary Units



97 

 

Pre-oxidized DNA X-irradiated in the presence of 100 mM NaBr 

Pre-oxidized and control samples of ST DNA were X-irradiated in the presence of 100 

mM NaBr (to produce Br2
•-). The dose response curves for AIz production for both sets of 

samples are shown below in Figure 48.  

 

Figure 48: Dose dependence curve for AIz formation for control (Ctrl-DNA) and pre-oxidized 

(Ox-DNA) DNA solutions X-irradiated in the presence of 100 mM NaBr 

 

As expected, the Ox-DNA samples show a non-zero initial concentration of AIz at a dose 

of 0 kGy due to the accumulation of Iz lesions during the production of the pre-oxidized DNA, 

which is then released during heat treatment with EA. Both kinetic curves of AIz production in 

the Ox-DNA and Ctrl-DNA samples have pronounced lag periods. Furthermore, the shapes of 

both kinetic curves are very similar to each other and to the S-shaped curve described in 

hypothesis ii (8-oxo-G is NOT a precursor to Iz). This indicates that AIz is likely formed from 

the same mechanisms in both control and pre-oxidized DNA.  
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Pre-oxidized DNA Treated without NaBr 

Pre-oxidized and control samples of ST DNA were X-irradiated without NaBr (to 

produce •OH). The dose response curves for AIz production for both sets of samples are shown 

below in Figure 49. Again, as in the case with the reaction of pre-oxidized and control DNA with 

Br2
•-, both dose dependence curves for the Ox-DNA and Ctrl-DNA samples have similar shapes 

and show a lag period. As expected, initial concentration of AIz in Ox-DNA samples for this 

series of experiments is about the same as for the series with Br2
•-. 

 

 

Figure 49: Dose dependence curve for AIz formation for control (Ctrl-DNA) and pre-oxidized 

(Ox-DNA) DNA solutions X-irradiated in the absence of NaBr 

 

The kinetic curves for AIz formation of Ox-DNA solutions containing •OH have a less 

pronounced S-shaped curve when compared to solutions containing Br2
•-. Since significantly 

lower doses are required for formation of AIz by the hydroxyl radicals than by the dibromide 

radical anions, kinetic curves in the case of •OH do not reach the plateau state. It has already 
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•-. Nonetheless, they 
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both appear to be the result of a sequential reaction A → B → C, where A is guanine, C is Iz, 

and B is an unknown intermediate. One likely mechanism of Iz formation for the •OH system 

involves the reaction of the guanine radical with molecular oxygen, which seems reasonable, as 

the mechanism of Iz formation in the •OH system is absolutely oxygen-dependent. The 

mechanism of Iz formation in the Br2
•- system (and in the case of other OEOs) remains unknown 

and requires further investigation.  
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CHAPTER 4 

 

CONCLUSIONS 

 

Damage to the DNA molecule due to oxidative stress has been a major area of study over 

the last several decades. The focus of previous research has been primarily directed towards the 

reactions of DNA with hydroxyl radicals, as they are the most reactive and biologically relevant 

ROS. However, recent studies of DNA oxidation have indicated that reactions of OEOs with 

guanine produce significant amounts of oxidative damage products, thus shifting the focus to 

these reactions and away from hydroxyl radicals. While 8-oxo-G has primarily been studied as 

an oxidative damage product of guanine and used widely as a biomarker for oxidative stress, 

there is accumulating evidence that other products of guanine oxidation are also formed in 

significant quantities. In particular, Iz, a product of 4e‾ oxidation of guanine in DNA, has been 

named as one such product. Iz, as well as its hydrolysis product Oz, have the potential to serve as 

biomarkers of oxidative stress. As 8-oxo-G, Iz, and Oz, are mutagenic, it is important to further 

understand the mechanism of their formation to predict their potential biological impacts. From 

the experimental data described in Chapter 3, the following conclusions regarding mechanisms 

of formation of Iz have been made: 

 

1. Iz is produced in significant quantities in DNA as a result of guanine oxidation and the 

efficiency of its formation correlates with the reduction potential and selectivity of a 

given OEO. OEOs studied in the present research include •OH (+1.90 V), SO4
•- (+2.47 

V), SeO3
•- (+1.77 V), Br2

•- (+1.60 V), and N3
• (+1.30 V). While hydroxyl radicals have a 
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large reduction potential and are very reactive, they have very low selectivity towards the 

production of Iz, with an AIz/FBR~ 0.037. They primarily react through H-abstraction 

from 2-deoxyribose, as visualized by free base release and production of Lac after 

treatment with EA. Br2
•- is selective towards the production of Iz with AIz/FBR ~ 7.0 in 

the X-rayed Br ‾ /S2O8
2- solutions. The data in the X-rayed Br‾ /S2O8

2- solutions seem 

more reliable than in the X-rayed Br‾ solutions since in this system the contribution of 

undesirable free radicals, such as hydroxyl radicals and superoxide, is minimized. 

Radiolysis of solutions containing selenate or persulfate anions produces a mixture of 

OEOs (SeO3
•- together with •OH and SO4

•- together with •OH, respectively) and therefore 

the contribution of individual OEOs is unclear. In theory, because the contribution of •OH 

alone to the yield of AIz is known, the contribution due to the OEO could be estimated 

using the difference in the radiation chemical yields of OEOs and •OH alone. However, 

this approach does not account for possible side reactions between OEOs and therefore is 

only used as an approximation. The approach of generation of SeO3
•- by radiolysis of 

solutions containing HSeO3‾ turned out to be unsuccessful because a reaction between 

HSeO3‾ and •OH which results in the formation of SeO3
•- is too slow and results in an 

incomplete scavenging of •OH. N3
• produces essentially no AIz, most likely due to not 

having a high enough reduction potential to successively oxidize guanine (+1.29 V).   

2. Experimental data suggest that formation of Iz is not dependent on superoxide. The 

formation of superoxide was suppressed through the addition of electron scavengers such 

as persulfate (for the Br2
•- system) or TCA (for the •OH system), both of which react with 

the solvated electrons faster than dissolved oxygen present in air-saturated solutions. The 

absolute yields of AIz for solutions containing Br‾ with persulfate (~3.5 nmol/J) were 
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significantly higher than for the Br‾ alone system (~0.70 nmol/J), indicating that 

superoxide may actually suppress the formation of Iz. Similarly, absolute yields of AIz 

solutions containing TCA (~2.5 nmol/J) were higher than DNA solutions without TCA 

(~1.8 nmol/J), although we see a smaller increase when compared to the Br2
•- system. 

Based on the data collected in this study, it can be concluded that in superoxide-free 

systems, AIz is still efficiently produced, and therefore Iz formation is not dependent on 

the presence of O2
•-. 

3.  Experiments were conducted to test whether the formation of Iz is dependent on oxygen 

for Br2
•- and •OH systems. DNA solutions were saturated with argon gas to purge the 

solutions from oxygen or saturated with oxygen gas, and then compared to air-saturated 

solutions (concentration of dissolved oxygen is ~ 0.2 mM at room temperature). As 

expected, data showed that the hydroxyl radical system is absolutely oxygen dependent 

as yields of all products drastically decreased in deoxygenated solutions and the 

production of AIz was practically completely suppressed. The oxygen dependence of the 

Br2
•- system was reliant on whether or not persulfate was added to the Br‾. Although the 

formation of Iz was not completely suppressed in solutions containing only Br‾, like in 

•OH solutions, the relative yields of AIz did decrease when DNA solutions are saturated 

with argon (~0.3 nmol/J) as compared with those under normal air (~0.62 nmol/J) or 

saturated with oxygen (~0.67 nmol/J). However, the presence of sugar damage products 

(FBR and Lac) indicates that a second oxidizing species is present in these solutions 

which could also be affected by gassing conditions. By comparison, in the 

persulfate/dibromide system, the yield of AIz increased in deoxygenated solutions (~4.4 

nmol/J) as compared to air-saturated solutions (~3.5 nmol/J) and oxygenated solutions 
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AIz (~2.1 nmol/J), where AIz formation appears to be suppressed.  Suppression of AIz 

formation in solutions saturated with oxygen in this system points to the occurrence of a 

competing reaction with participation of molecular oxygen, although the mechanism of 

formation of Iz in dibromide systems still remains unclear. These data strongly support 

the hypothesis that Iz is formed via different mechanisms when using Br2
•- or •OH, where 

production of Iz by Br2
•- is most likely not dependent on the presence of oxygen (and is 

possibly even suppressed by its presence), but is absolutely dependent on oxygen when 

produced by •OH-mediated DNA oxidation.  

4. A hypothesis that 8-oxo-G, a well-known biomarker of oxidative stress, does not play a 

significant role as a precursor to Iz has been experimentally tested. “Pre-oxidized” DNA, 

or Ox-DNA was generated by X-ray radiolysis of DNA solutions containing 100 mM 

NaBr, which produced ~2.5% 8-oxo-G and ~0.5% Iz in place of guanine, as estimated in 

our earlier studies. Ox-DNA samples and non-irradiated Ctrl-DNA samples were 

subjected to further radiolysis in order to compare the kinetics of Iz formation from Ox-

DNA and Ctrl-DNA. The two kinetic scenarios: i) 8-oxo-G IS a precursor, and ii) 8-oxo-

G is NOT a precursor theoretically correspond to two distinctively different dose 

dependence curves of Iz formation. Both assume that Iz is a product of a sequential 

reaction A → B → Iz, where B is an unknown intermediate product, and A is unknown 

precursor, which can be G•+ or G•, or one of their products. The first hypothesis, where 8-

oxo-G plays the role of B, would produce a sigmoid-shape curve (or linear if saturation is 

not attained) and the second hypothesis, where some unknown precursor different from 

8-oxo-G plays the role of B would produce an S-shaped curve (or a parabola-shaped if 

saturation is not attained). Experimental data dose response curves for both Br2
•- and •OH 
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systems show S-shaped dose-dependence curves which indicates that mostly likely 8-

oxo-G is NOT a major precursor to Iz.  

5. One of the possible hypotheses on the mechanism of Iz formation is that it occurs via the 

pathway initiated by oxidation of the guanine radical by molecular oxygen. This 

hypothesis seems reasonable at least for the mechanism of formation of Iz in the reaction 

of DNA with hydroxyl radicals, which is absolutely oxygen-dependent. However, 

formation of Iz by Br2
•- in the absence of molecular oxygen and, moreover, negative 

influence on the oxygen presence on the yield of Iz, indicate, that there might be 

alternative mechanisms of Iz formation. Different shapes of dose response curves for •OH 

and Br2
•- support the hypothesis that Iz is formed in these systems via different 

mechanisms.  

 

To summarize, Iz is formed in significant quantities by the reaction of guanine with 

various OEOs and the mechanism of formation of Iz is appears to be different, at least in the Br2
•- 

and •OH systems. The mechanism does not appear to be dependent on the presence of superoxide 

but is dependent on the presence of molecular oxygen, at least in the hydroxyl radical system. 

One possible mechanism of Iz formation involves the oxidation of guanine by molecular oxygen. 

The following future works have been proposed which will continue the investigation into these 

mechanisms:  

 

1. The approach of generation of a number of OEOs by radiolysis of aqueous solutions of 

DNA in the presence of additives was often complicated by undesirable side reactions as 

in the case of sulfate radical anions. As it has been experimentally shown by the 
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Roginskaya research group, photochemical generation of such OEOs as carbonate radical 

anions102 and sulfate radical anions59 provides a cleaner method of production of these 

reactive species.  

2. The dependence of oxygen (though saturation with argon or oxygen gas) on the yield of 

Iz will be studied more extensively using more OEOs in order to better understand the 

mechanism of Iz formation.  

3. Experiments aimed at detection of intermediate precursors to Iz will be conducted using 

monomeric Iz (dIz) produced from 2-deoxyguanosine (dG).80 This method allows for 

direct quantitative HPLC analysis of Iz itself and its precursors since all these derivatives 

of dG are low-molecular-weight products as opposed to their analogs in highly 

polymerized DNA. Intermediate products will be isolated by using a semi-preparative 

HPLC column and characterized by using LC-MS. 
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APPENDIX 

 

Plotting Data and Statistical Analyses 

 

Table A.1 LMP Data for X-Irradiated DNA Solutions 

 

Dose 

(kGy) [AIz], µM Mean SD SEM 

0 0 0 0 0 0 0 

0.109 0.261491 0.1121719 0.0830362 0.152233033 0.078167341 0.045129935 

0.218 0.3957354 0.2312653 0.3253214 0.3174407 0.08223505 0.047478428 

0.327 0.7294062 0.3639074 0.4583232 0.517212267 0.154915643 0.089440588 

0.4905 1.1040719 0.4513363 1.0305732 0.8619938 0.291924878 0.168542907 

0.654 1.0547712 0.6783942 1.3704352 1.034533533 0.282886737 0.163324734 

       

Dose 

(kGy) [Lac], µM Mean SD SEM 

0 0 0 0 0 0 0 

0.109 3.3652 2.00737 1.3661396 2.246236533 0.833408078 0.481168378 

0.218 4.5962052 3.5148104 4.6314176 4.247477733 0.518273444 0.299225312 

0.327 8.7094572 4.8182708 5.9995312 6.5090864 1.628919432 0.940457073 

0.4905 10.1494432 5.5745572 11.544516 9.089505467 2.549863136 1.472164168 

0.654 9.6293788 7.3662536 14.544056 10.51322947 2.996231614 1.729875129 

       

Dose 

(kGy) [FBR], µM Mean SD SEM 

0 0 0 0 0 0 0 

0.109 6.726278 6.1939418 4.690213 5.870144267 0.862177013 0.497778131 

0.218 9.6821832 10.7330768 9.0796304 9.831630133 0.92111194 0.531804226 

0.327 17.935348 15.0713736 11.9367134 14.981145 2.577761314 1.488271189 

0.4905 23.732985 18.4078746 21.376766 21.17254187 2.178758181 1.257906622 

0.654 26.0597054 24.2190678 26.8995718 25.726115 1.1194455 0.646312161 
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Table A.2 LMP Data for X-Irradiated DNA Solutions Containing 100 mM NaBr 
Dose 

(kGy) [AIz],µM Mean SD SEM 

0 0 0 0     0 0 0 0 

0.654 0.397196 0.3458243 ND ND ND 0.1453079 0.2961094 0.10867561 0.062743892 

1.308 0.8501128 0.7085654 ND ND ND 0.4826193 0.6804325 0.151341695 0.087377169 

1.962 1.1415025 ND 0.6733366 0.5823434 0.4470199 0.8235386 0.7335482 0.237954524 0.106416498 

2.616 2.2984067 ND ND ND ND 1.1150373 1.706722 0.5916847 0.418384264 

3.924 ND 3.8692929 ND ND ND 2.051271 2.96028195 0.90901095 0.642767807 

          

Dose 

(kGy) [Lac], µM Mean SD SEM 

0 0 0 0 ND ND 0 0 0 0 

0.654 0.0879652 0.176908 ND ND ND 0 0.088291067 0.072222756 0.041697828 

1.308 0.6139516 0.310764 ND ND ND 0 0.308238533 0.250651053 0.144713453 

1.962 1.1635132 ND 0.246186 0.2221784 0.178882 0.2326124 0.4086744 0.378091848 0.169087815 

2.616 1.2064712 ND ND ND ND 0.4264968 0.816484 0.3899872 0.275762594 

3.924 ND 1.2367768 ND ND ND 1.9421904 1.5894836 0.650606559 0.290960098 

          

Dose 

(kGy) [FBR], µM Mean SD SEM  

0 0 0 0 ND 0 0 0 0  

0.654 0.9122418 0.6662928 ND ND 0.1891624 0.589232333 0.36764751 0.259966047  

1.308 2.179455 1.461152 ND ND 0.519302 1.386636333 0.679799693 0.480690973  

1.962 4.0735174 ND 1.0884294 0.9909734 1.2139864 1.84172665 1.29094787 0.645473935  

2.616 4.1546932 ND ND ND 1.2284716 2.6915824 1.4631108 1.034575568  

3.924 ND 3.9291102 ND ND 6.7071684 5.3181393 1.3890291 0.982191896  
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Table A.3 LMP Data for X-Irradiated DNA Solutions Containing 100 mM NaBr and 10 mM 

K2S2O8 

Dose [AIz], µM Mean SD SEM 

0 0 ND 0 0 0 

0.109 0.0618248 ND 0.0618248 0 0 

0.218 0.1374817 0.167141 0.15231135 0.01482965 0.010486146 

0.327 0.243179 0.237424 0.2403015 0.0028775 0.0020347 

0.4905 0.3296923 0.404455 0.36707365 0.03738135 0.026432606 

0.654 0.7673273 0.847028 0.80717765 0.03985035 0.028178453 

0.872 1.0698786 1.2304465 1.15016255 0.08028395 0.056769325 

1.09 2.3685046 2.2533788 2.3109417 0.0575629 0.040703117 

1.308 3.0231041 3.140617 3.08186055 0.05875645 0.041547084 

2.616 ND 7.7880173 7.7880173 0 0 

      

Dose [FBR], µM Mean SD SEM 

0 0 ND 0 0 0 

0.109 0.0516528 ND 0.0516528 0 0 

0.218 0.1061616 0.079002 0.0925818 0.0135798 0.009602369 

0.327 0.1534896 0.099226 0.1263578 0.0271318 0.01918508 

0.4905 0.1611328 0.128112 0.1446224 0.0165104 0.011674616 

0.654 0.2128672 0.202286 0.2075766 0.0052906 0.003741019 

0.872 0.2403528 0.2700008 0.2551768 0.014824 0.010482151 

1.09 0.3737824 0.3566464 0.3652144 0.008568 0.006058491 

1.308 0.4068576 0.478856 0.4428568 0.0359992 0.025455278 

2.616 ND 1.1735712 1.1735712 0 0 
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Table A.4 LMP Data for X-Irradiated DNA Solutions Containing 100 mM SeO4
2- 

Dose [AIz], µM Mean SD SEM 

0 0 0 0 0 0 

0.109 0.2337287 0.1783894 0.20605905 0.02766965 0.019565397 

0.218 0.5079618 0.6178883 0.56292505 0.05496325 0.038864887 

0.327 1.1708671 0.8366404 1.00375375 0.16711335 0.118166983 

0.436 1.4498962 1.350837 1.4003666 0.0495296 0.035022716 

0.545 1.649933 1.7310944 1.6905137 0.0405807 0.028694888 

0.654 1.9953104 1.7845698 1.8899401 0.1053703 0.074508054 

0.8175 2.4244652 2.3610708 2.392768 0.0316972 0.022413305 

0.981 3.7797385 3.117291 3.44851475 0.33122375 0.23421056 

      

Dose [Lac], µM Mean SD SEM 

0 0 0 0 0 0 

0.109 0.8101296 0.9480464 0.879088 0.0689584 0.048760952 

0.218 2.65362 3.1303128 2.8919664 0.2383464 0.168536356 

0.327 5.2408948 4.1981528 4.7195238 0.521371 0.36866497 

0.436 6.860214 5.685684 6.272949 0.587265 0.415259064 

0.545 7.661376 8.1000176 7.8806968 0.2193208 0.155083225 

0.654 9.1026592 7.3882308 8.245445 0.8572142 0.606141974 

0.8175 10.4380044 9.6579736 10.047989 0.3900154 0.275782534 

0.981 14.9123856 10.9909124 12.951649 1.9607366 1.386450146 

      

Dose [FBR], µM Mean SD SEM 

0 0 0 0 0 0 

0.109 3.1633366 3.0466502 3.1049934 0.0583432 0.041254872 

0.218 7.1873856 8.3096566 7.7485211 0.5611355 0.396782717 

0.327 13.2849538 10.4645494 11.8747516 1.4102022 0.997163538 

0.436 16.7927296 14.9725346 15.8826321 0.9100975 0.643536114 

0.545 19.5952728 18.9145548 19.2549138 0.340359 0.240670157 

0.654 20.7318072 19.2383258 19.9850665 0.7467407 0.528025413 

0.8175 23.8827592 22.1688206 23.0257899 0.8569693 0.605968803 

0.981 34.2711942 36.2269156 35.2490549 0.9778607 0.691451932 
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Table A.5 LMP Data for X-Irradiated DNA Solutions Containing 100 mM HSeO3
- 

 

Dose [AIz], µM Mean SD SEM 

0 0 0 0 0 0 

0.327 0.0920505 0.2915205 0.1917855 0.099735 0.070523295 

0.654 0.4586829 0.5766972 0.51769005 0.05900715 0.041724356 

0.981 0.8918925 0.9357105 0.9138015 0.021909 0.015492002 

1.308 1.35814 1.4564907 1.40731535 0.04917535 0.034772223 

1.635 1.6144862 1.4061436 1.5103149 0.1041713 0.073660233 

1.962 2.6026584 1.9315345 2.26709645 0.33556195 0.23727813 

      

Dose [Lac], µM Mean SD SEM 

0 0 0 0 0 0 

0.327 0.1789572 0.4276624 0.3033098 0.1243526 0.087930567 

0.654 0.6339924 0.7480896 0.691041 0.0570486 0.040339452 

0.981 1.0493784 1.1482476 1.098813 0.0494346 0.034955541 

1.308 1.7112136 1.693504 1.7023588 0.0088548 0.006261289 

1.635 2.1037952 1.5911192 1.8474572 0.256338 0.181258338 

1.962 3.3092888 2.0287832 2.669036 0.6402528 0.452727097 

      

Dose [FBR], µM Mean SD SEM 

0 0 0 0 0 0 

0.327 0.5436226 0.9488448 0.7462337 0.2026111 0.143267683 

0.654 1.4566514 1.6814962 1.5690738 0.1124224 0.079494641 

0.981 2.6570382 2.7452212 2.7011297 0.0440915 0.031177399 

1.308 4.0124378 3.8875138 3.9499758 0.062462 0.044167304 

1.635 4.845477 4.1361174 4.4907972 0.3546798 0.250796492 

1.962 7.123186 5.0379056 6.0805458 1.0426402 0.737257956 
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Table A.6 LMP Data for X-Irradiated DNA Solutions Containing 200 mM HSeO3
- 

 

Dose [AIz], µM Mean SD SEM 

0 0 0 0 0 0 

0.327 0.0342369 0.0433166 0.03877675 0.00453985 0.003210159 

0.654 0.1564368 0.1008795 0.12865815 0.02777865 0.019642472 

0.981 0.2054432 0.2281261 0.21678465 0.01134145 0.008019616 

1.308 0.5979304 0.4810824 0.5395064 0.058424 0.041312007 

1.635 0.5335332 0.4872191 0.51037615 0.02315705 0.016374507 

1.962 0.7826418 0.8816901 0.83216595 0.04952415 0.035018862 

      

Dose [Lac], µM Mean SD SEM 

0 0 0 0 0 0 

0.327 0.19646 0.2059916 0.2012258 0.0047658 0.003369929 

0.654 0.4021884 0.2707952 0.3364918 0.0656966 0.046454511 

0.981 0.411814 0.4419692 0.4268916 0.0150776 0.010661473 

1.308 0.8682968 0.7295528 0.7989248 0.069372 0.049053412 

1.635 0.736772 0.7167876 0.7267798 0.0099922 0.007065552 

1.962 0.9475952 1.0693816 1.0084884 0.0608932 0.043057995 

      

Dose [FBR], µM Mean SD SEM 

0 0 0 0 0 0 

0.327 0.4965444 0.55014 0.5233422 0.0267978 0.018948906 

0.654 1.1371404 0.803313 0.9702267 0.1669137 0.118025809 

0.981 1.3887846 1.5649136 1.4768491 0.0880645 0.062271005 

1.308 3.1048136 2.7019192 2.9033664 0.2014472 0.142444681 

1.635 2.9723156 2.9123832 2.9423494 0.0299662 0.021189303 

1.962 4.0778986 4.7918832 4.4348909 0.3569923 0.252431676 
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Table A.7 LMP Data for X-Irradiated DNA Solutions Containing 10 mM K2S2O9 

 

Dose [AIz], µM Mean  SD SEM 

0 0 0 0 0 0 

0.109 ND 0.683267 0.683267 0 0 

0.218 ND 1.280325 1.280325 0 0 

0.327 2.034845 1.640417 1.837631 0.197214 0.139451 

0.491 ND 2.517726 2.517726 0 0 

0.654 3.601665 2.817312 3.209489 0.392177 0.277311 

      

Dose [Lac], µM  Mean  SD SEM 

0 0 0 0 0  0 

0.109 ND 1.912261 1.912261 0 0 

0.218 ND 3.676904 3.676904 0 0 

0.327 5.193124 5.482437 5.337781 0.144657 0.102288 

0.491 ND 9.147873 9.147873 0 0 

0.654 10.11002 11.10625 10.60814 0.498115 0.352221 

      

Dose [FBR], µM Mean  SD SEM 

0 0 0 0 0 0 

0.109 ND 4.706322 4.706322 0 0 

0.218 ND 9.028298 9.028298 0 0 

0.327 12.36959 12.56704 12.46832 0.098726 0.069809 

0.491 ND 19.78376 19.78376 0 0 

0.654 22.67931 24.997 23.83815 1.158847 0.819428 

 

 

 

Table A.8 LMP Data for X-Irradiated DNA Solutions Containing 100 mM NaN3 

 

Dose [AIz], µM [Lac], µM [FBR], µM 

0 0 0 0 

0.1308 0 0.202852 0.8945182 

0.327 0 0.83472 3.652328 
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Table A.9 LMP Data for X-Irradiated DNA Solutions Containing 100 mM NaBr, Deoxygenated 

 

Dose [AIz], µM Mean SD SEM 

0 0 0 0 0 0 

0.654 0.1177418 0.1070816 0.1124117 0.0053301 0.00376895 

1.308 0.2607498 0.327 0.2938749 0.0331251 0.023422983 

1.962 0.7404479 0.5139786 0.62721325 0.11323465 0.080068989 

2.616 0.879521 0.7263215 0.80292125 0.07659975 0.054164203 

3.27 0.8508213 0.6588832 0.75485225 0.6364292 0.450023403 

3.924 1.6484833 1.2652938 1.45688855 0.19159475 0.135477947 

      

Dose [Lac], µM Mean SD SEM 

0 0 0 0 0 0 

0.654 0.7394416 0.8971924 0.818317 0.0788754 0.05577333 

1.308 1.2798288 1.6671464 1.4734876 0.1936588 0.136937451 

1.962 1.9000972 2.0231244 1.9616108 0.0615136 0.043496684 

2.616 2.7109036 2.68464 2.6977718 0.0131318 0.009285585 

3.27 2.515816 2.733144 2.62448 0.108664 0.076837051 

3.924 4.8012004 3.7235656 4.262383 0.5388174 0.381001437 

      

Dose [FBR], µM Mean SD SEM 

0 0 0 0 0 0 

0.654 1.9348312 1.9279538 1.9313925 0.0034387 0.002431528 

1.308 3.7979326 4.6319572 4.2149449 0.4170123 0.294872225 

1.962 5.2289244 6.045948 5.6374362 0.4085118 0.288861464 

2.616 7.4516812 7.2634746 7.3575779 0.0941033 0.066541082 

3.27 7.281299 8.4734572 7.8773781 0.5960791 0.421491574 

3.924 12.4092398 11.0657588 11.7374993 0.6717405 0.474992263 
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Table A.10 LMP Data for X-Irradiated DNA Solutions Containing 100 mM NaBr, Oxygenated 

 

Dose [AIz], µM Mean SD SEM 

0.654 0.3290601 0.4403273 0.3846937 0.0556336 0.039338896 

1.308 0.6881061 0.7955256 0.74181585 0.05370975 0.037978528 

1.962 1.2044827 1.2634408 1.23396175 0.02947905 0.020844836 

2.616 2.0938137 1.7249141 1.9093639 0.1844498 0.130425704 

3.27 1.9317416 2.3444483 2.13809495 0.20635335 0.145913853 

3.924 3.1011481 2.6236191 2.8623836 0.2387645 0.168831997 

      

Dose [Lac], µM Mean SD SEM 

0.654 0.1588036 0.6727956 0.4157996 0.256996 0.181723614 

1.308 0.25004 0.7447244 0.4973822 0.2473422 0.174897347 

1.962 0.5650716 0.8447404 0.704906 0.1398344 0.098877852 

2.616 0.9745356 0.9519756 0.9632556 0.01128 0.007976164 

3.27 1.0042772 1.4856888 1.244983 0.2407058 0.170204703 

3.924 1.562374 1.0194864 1.2909302 0.2714438 0.191939752 

      

Dose [FBR], µM Mean SD SEM 

0.654 0.4219614 1.352864 0.8874127 0.4654513 0.329123771 

1.308 0.6011834 1.4195884 1.0103859 0.4092025 0.289349863 

1.962 1.4289852 1.8819872 1.6554862 0.226501 0.160160393 

2.616 2.6655832 2.4008516 2.5332174 0.1323658 0.093596755 

3.27 2.959865 3.6724004 3.3161327 0.3562677 0.251919307 

3.924 4.2017038 2.8406456 3.5211747 0.6805291 0.481206741 
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Table A.11 LMP Data for X-Irradiated DNA Solutions Containing 100 mM NaBr and 10 mM 

K2S2O8, Deoxygenated 

 

Dose [AIz], µM Mean SD SEM 

0 0 0 0 0 0 

0.218 0.1872075 0.1508778 0.16904265 0.01816485 0.012844489 

0.327 0.2955862 0.2992159 0.29740105 0.00181485 0.001283293 

0.4905 0.6032932 0.6448658 0.6240795 0.0207863 0.014698134 

0.654 1.3931726 1.3024301 1.34780135 0.04537125 0.032082319 

0.872 1.3108558 1.652549 1.652549 0.1708466 0.120806789 

1.09 2.4841645 2.3985559 2.4413602 0.0428043 0.030267211 

1.308 3.4581558 3.0928968 3.2755263 0.1826295 0.129138558 

2.616 9.5516482 8.9428069 9.24722755 0.30442065 0.215257906 

      

Dose [FBR], µM Mean SD SEM 

0 0 0 0 0 0 

0.218 0.3573944 0.1984648 0.2779296 0.0794648 0.056190099 

0.327 0.217192 0.2182936 0.2177428 0.0005508 0.000389474 

0.4905 0.4005608 0.3005056 0.3505332 0.0500276 0.035374855 

0.654 0.4245376 0.4437952 0.4341664 0.0096288 0.00680859 

0.872 0.4812224 0.5390768 0.5101496 0.0289272 0.020454619 

1.09 0.7442872 0.7829656 0.7636264 0.0193392 0.013674879 

1.308 1.0150632 0.7777432 0.8964032 0.11866 0.083905291 

2.616 3.1408248 2.70606 2.9234424 0.2173824 0.153712569 
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Table A.12 LMP Data for X-Irradiated DNA Solutions Containing 100 mM NaBr and 10 mM 

K2S2O8, Oxygenated 

 

Dose [AIz], µM Mean SD SEM 

0.218 0.0932277 0.1343861 0.1138069 0.0205792 0.014551692 

0.327 0.1860085 0.2188066 0.20240755 0.01639905 0.011595879 

0.4905 0.3390772 0.2836398 0.3113585 0.0277187 0.019600081 

0.654 0.6377699 0.4931051 0.5654375 0.0723324 0.051146731 

0.872 1.0214935 0.9785257 1.0000096 0.0214839 0.015191411 

1.09 1.3722882 1.1441185 1.25820335 0.11408485 0.080670171 

1.308 1.153591 1.6347711 1.6347711 0.24059025 0.170122997 

2.616 4.6782473 4.6839807 4.681114 0.0028667 0.002027063 

      

Dose [FBR], µM Mean SD SEM 

0.218 0.2459288 0.2495872 0.247758 0.0018292 0.00129344 

0.327 1.8525512 0.1785272 0.1785272 0 0 

0.4905 0.2074408 0.332316 0.2698784 0.0624376 0.04415005 

0.654 0.2247672 0.2721632 0.2484652 0.023698 0.016757017 

0.872 0.3787056 0.3751424 0.376924 0.0017816 0.001259781 

1.09 1.2244488 0.4136712 0.4136712 0 0 

1.308 1.2674114 0.99467 1.1310407 0.1363707 0.096428647 

2.616 2.0473308 1.899316 1.9733234 0.0740074 0.052331134 
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Table A.13 LMP Data for X-Irradiated DNA Solutions, Deoxygenated 

 

Dose [AIz], µM Mean SD SEM 

0 0 0 0 0 0 

0.218 0 0 0 0 0 

0.327 0 0 0 0 0 

0.4905 0 0 0 0 0 

0.654 0.0877777 0.0558407 0.0718092 0.0159685 0.011291435 

0.872 0.0454312 0.1074522 0.0764417 0.0310105 0.021927735 

1.09 0.0747195 0.097337 0.08602825 0.01130875 0.007996494 

1.308 0.0867313 0.112924 0.09982765 0.01309635 0.009260518 

      

Dose [Lac], µM Mean SD SEM 

0 0 0 0 0 0 

0.218 1.5744436 0.7511916 1.1628176 0.411626 0.291063536 

0.327 0.6536384 0.8208832 0.7372608 0.0836224 0.18095506 

0.4905 0.9469748 0.9068556 0.9269152 0.0200596 0.227549154 

0.654 1.304626 1.1179608 1.2112934 0.0933326 0.266055997 

0.872 0.970268 1.5096964 1.2399822 0.2697142 1.075815521 

1.09 1.5488568 1.8052512 1.677054 0.1281972 0.201238489 

1.308 1.7571232 1.8779508 1.817537 0.0604138 0.042719008 

      

Dose [FBR], µM Mean SD SEM 

0 0 0 0 0 0 

0.218 6.2194132 4.448653 5.3340331 0.8853801 0.626058273 

0.327 5.7066244 6.2184426 5.9625335 0.2559091 0.18095506 

0.4905 7.9675648 8.611171 8.2893679 0.3218031 0.227549154 

0.654 10.4067364 9.6542164 10.0304764 0.37626 0.266055997 

0.872 10.0021432 13.045009 11.5235761 1.5214329 1.075815521 

1.09 14.481955 15.0511434 14.7665492 0.2845942 0.201238489 

1.308 15.6045082 16.4543874 16.0294478 0.4249396 0.300477673 
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Table A.14 LMP Data for X-Irradiated DNA Solutions, Oxygenated 

 

Dose [AIz], µM Mean SD SEM 

0.218 0.503907 0.4850173 0.49446215 0.00944485 0.006678517 

0.327 0.5857333 0.7980326 0.69188295 0.10614965 0.075059137 

0.4905 1.0236735 1.1316489 1.0776612 0.0539877 0.038175069 

0.654 1.5419358 1.4802854 1.5111106 0.0308252 0.021796708 

0.872 1.9003496 2.6928668 2.2966082 0.3962586 0.280197143 

1.09 2.7995233 2.7551494 2.77733635 0.02218695 0.015688543 

1.308 3.5289077 2.9246553 3.2267815 0.3021262 0.213635485 

      

Dose [Lac], µM Mean SD SEM 

0.218 7.1195412 6.5603916 6.8399664 0.2795748 0.197689237 

0.327 8.3869244 9.2912796 8.839102 0.4521776 0.319737847 

0.4905 13.0263696 14.1719476 13.5991586 0.572789 0.405022986 

0.654 18.0586408 15.2008152 16.629728 1.4289128 1.010393931 

0.872 19.9708828 24.0444856 22.0076842 2.0368014 1.440236082 

1.09 27.3238072 26.5058004 26.9148038 0.4090034 0.289209078 

1.308 28.26815 24.7394088 26.5037794 1.7643706 1.247598416 

      

Dose [FBR], µM Mean SD SEM 

0.218 12.7877234 11.9902746 12.388999 0.3987244 0.281940727 

0.327 14.819725 17.528096 16.1739105 1.3541855 0.95755375 

0.4905 24.3441712 23.8542678 24.0992195 0.2449517 0.173207008 

0.654 30.3056156 27.1243876 28.7150016 1.590614 1.124733946 

0.872 33.6671362 41.7748254 37.7209808 4.0538446 2.866501007 

1.09 43.1988822 44.2638924 43.7313873 0.5325051 0.376537967 

1.308 48.7976968 41.1979496 44.9978232 3.7998736 2.68691639 
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Table A.15 LMP Data for X-Irradiated DNA Solutions, Not Pre-Oxidized 

 

Dose [AIz], µM Mean SD SEM 

0 0 0 0 0 0 

0.109 0.0399376 ND 0.0399376 0 0 

0.218 0.0604841 0.0417361 0.0511101 0.009374 0.006628419 

0.327 0.109436 0.0674165 0.08842625 0.02100975 0.014856137 

0.491 0.1835233 0.0979365 0.1407299 0.0427934 0.030259503 

0.654 0.1842209 0.1673586 0.17578975 0.00843115 0.005961723 

0.872 0.2917494 0.3159474 0.3038484 0.012099 0.008555285 

1.09 0.5022284 0.3545443 0.42838635 0.07384205 0.052214214 

      

Dose [Lac], µM Mean SD SEM 

0 0 0 0 0 0 

0.109 0.9837664 ND 0.9837664 0 0 

0.218 1.3481856 1.3420756 1.3451306 0.003055 0.002160211 

0.327 2.1542168 1.7271936 1.9407052 0.2135116 0.1509755 

0.491 3.3249868 2.1165416 2.7207642 0.6042226 0.427249898 

0.654 2.9393424 3.536186 3.2377642 0.2984218 0.211016078 

0.872 3.8551468 5.5290612 4.692104 0.8369572 0.591818112 

1.09 6.349606 5.5572988 5.9534524 0.3961536 0.280122897 

      

Dose [FBR], µM Mean SD SEM 

0 0 0 0 0 0 

0.109 1.816824 ND 1.816824 0 0 

0.218 2.4956952 2.4087854 2.4522403 0.0434549 0.030727254 

0.327 4.0964494 3.4032964 3.7498729 0.3465765 0.245066593 

0.491 6.0452248 4.2747112 5.159968 0.8852568 0.625971086 

0.654 5.659472 6.4965122 6.0779921 0.4185201 0.295938401 

0.872 7.990547 10.7254728 9.3580099 1.3674629 0.96694229 

1.09 13.2121884 10.4425138 11.8273511 1.3848373 0.979227846 
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Table A.16 LMP Data for X-Irradiated DNA Solutions, Pre-Oxidized 

 

Dose [AIz], µM Mean SD SEM 

0 0.6798984 0.3268147 1.0177221 0.674811733 0.282084697 0.162861676 

0.109 0.6927604 0.4100035 0.922467 0.675076967 0.209585683 0.12100435 

0.218 0.8284545 0.4649504 0.8023708 0.6985919 0.165552313 0.095581673 

0.327 0.853252 0.6149562 0.6435905 0.7039329 0.106229707 0.06133175 

0.491 0.8154399 0.5917174 0.9205377 0.775898333 0.137121234 0.079166981 

0.654 0.6819585 0.7814428 1.0698241 0.844408467 0.164485941 0.094966002 

0.872 0.9763457 0.764635 0.8936038 0.878194833 0.087114608 0.050295642 

1.09 0.9887172 1.2213341 0.8352452 1.015098833 0.1587202 0.09163715 

1.308 1.222108 1.2042211 1.3066593 1.244329467 0.044674686 0.025792942 

       

Dose [Lac], µM Mean SD SEM 

0 0.3626144 0.3503756 0.4439996 0.3856632 0.041551564 0.023989807 

0.109 1.0216108 1.0771084 1.0964724 1.065063867 0.031726623 0.018317374 

0.218 1.7315552 1.2809004 1.41376 1.4754052 0.189072359 0.109160977 

0.327 2.2311088 1.9915592 1.7647372 1.995801733 0.190419041 0.109938484 

0.491 3.1374004 1.9177316 2.4054412 2.486857733 0.501244773 0.289393805 

0.654 2.7008832 3.5942216 4.1652904 3.4867984 0.602648001 0.347938986 

0.872 3.2529076 2.7135168 4.670014 3.545479467 0.825093549 0.476367982 

1.09 4.277564 5.9886836 4.2331396 4.833129067 0.817301695 0.471869354 

1.308 6.5177908 5.2401052 6.4186396 6.0588452 0.58034997 0.335065211 

       

Dose [FBR], µM Mean SD SEM 

0 0 0.342741 0.1708724 0.171204467 0.139923624 0.069961812 

0.109 1.3554006 1.9516724 3.076337 2.127803333 0.713522764 0.41195256 

0.218 2.5008196 2.7814338 2.712696 2.664983133 0.119424929 0.059712465 

0.327 3.8026778 4.3351388 3.992652 4.043489533 0.220328573 0.110164287 

0.491 5.7889322 4.5227372 5.5668776 5.292849 0.552045409 0.318723565 

0.654 5.4030342 8.3191358 9.21268 7.64495 1.626703241 0.81335162 

0.872 6.358817 7.3198434 11.603137 8.4272658 2.279694621 1.13984731 

1.09 9.6096642 15.1733628 11.709704 12.16424367 2.293998003 1.146999002 

1.308 13.7050372 14.7037946 15.8430454 14.75062573 0.873466134 0.504295908 
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Table A.17 LMP Data for X-Irradiated DNA Solutions Containing 100 mM NaBr, Not Pre-

Oxidized 

 

Dose [AIz], µM Mean SD SEM 

0 0 0 0 0 0 

0.654 0.3054834 ND 0.305483 0 0 

1.308 1.0706634 0.9617942 1.0162288 0.0544346 0.038491075 

1.962 1.4901281 2.1982466 2.1412069 0.35405925 0.250357697 

2.616 2.0056218 2.7922857 2.39895375 0.39333195 0.278127689 

3.27 2.9121421 3.2522657 3.0822039 0.1700618 0.120251852 

3.924 ND 3.7742667 3.7742667 0 0 

      

Dose [Lac], µM Mean SD SEM 

0 0 0 0 0 0 

0.654 0.1377664 ND 0.1377664 0 0 

1.308 0.4045196 0.4398072 0.4221634 0.0176438 0.012476051 

1.962 0.5092544 0.8623748 0.6858146 0.1765602 0.124846915 

2.616 0.5855072 1.13646 0.8609836 0.2754764 0.19479123 

3.27 0.8510948 1.2349344 1.0430146 0.1919198 0.135707792 

3.924 ND 1.4300972 1.4300972 0 0 

      

Dose [FBR], µM Mean SD SEM 

0 0 0 0 0 0 

0.654 0.2033832 ND 0.2033832 0 0 

1.308 1.0047902 1.1814184 1.0931043 0.0883141 0.062447499 

1.962 1.499815 2.3823148 1.9410649 0.4412499 0.312010796 

2.616 1.0027616 2.9171922 1.9599769 1.2399521 0.876778538 

3.27 2.2971132 3.4826658 2.8898895 0.5927763 0.419156141 

3.924 ND 3.9355428 3.9355428 0 0 
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Table A.18 LMP Data for X-Irradiated DNA Solutions Containing 100 mM NaBr, Pre-Oxidized 

 

Dose [AIz], µM Mean SD SEM 

0 0.5015526 1.0792417 0.79039715 0.28884455 0.20424394 

0.654 1.021112 ND 1.021112 0 0 

1.308 1.6542058 2.3389329 1.99656935 0.34236355 0.242087588 

1.962 2.2316333 3.4498173 2.8407253 0.609092 0.430693084 

2.616 3.3034412 4.312912 3.8081766 0.5047354 0.356901824 

3.27 3.576835 4.425727 4.001281 0.424446 0.300128645 

3.924 3.798541 4.9776158 4.3880784 0.5895374 0.416865893 

      

Dose [Lac], µM Mean SD SEM 

0 0.4630628 0.7625092 0.612786 0.1497232 0.10587029 

0.654 0.671348 ND 0.671348 0 0 

1.308 0.6374892 1.1796248 0.908557 0.2710678 0.19167388 

1.962 0.8023276 1.636916 1.2196218 0.4172942 0.295071559 

2.616 1.277648 1.8889676 1.5833078 0.3056598 0.216134117 

3.27 1.1629868 1.925402 1.5441944 0.3812076 0.269554479 

3.924 1.3752012 1.9751656 1.6751834 0.2999822 0.212119448 

      

Dose [FBR], µM Mean SD SEM 

0 0 0.537547 0.2687735 0.2687735 0.190051564 

0.654 0.8291758 ND 0.8291758 0 0 

1.308 1.0375878 1.759446 1.3985169 0.3609291 0.255215414 

1.962 1.4360986 2.7447526 2.0904256 0.654327 0.462679059 

2.616 2.8203066 3.7036524 3.2619795 0.4416729 0.312309903 

3.27 2.5509544 4.303427 3.4271907 0.8762363 0.61959263 

3.924 3.73748 5.0425676 4.3900238 0.6525438 0.461418146 
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