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ABSTRACT 

 

Waste from agricultural processing provides material from which bio-based fuels 

and products can be extracted and produced in biorefineries. However, transport, 

processing, and production from these sources is not yet cost-effective for mass 

production. Co-product strategies that create valuable by-products need to be developed 

and implemented for biorefineries to become viable.  

High surface area activated carbon fibers for energy storage purposes were 

produced and characterized as part of a co-product strategy for dried distiller’s grains 

(DDG) and soy-based biorefineries. The data shows that hydrolysis is necessary to 

produce carbons from both DDG and soy hulls with sufficient surface areas. Carbon 

surface area from hydrolyzed DDG reached 1700 m2/g and from hydrolyzed soy hulls 

reached 1300 m2/g. Average pore size width was 2.92 nm for DDG and 2.20 nm for soy 

hulls. In comparison, carbons from non-hydrolyzed DDG and soy hulls had surface areas 

of 10 m2/g and 690 m2/g, and average pore size widths of 9.53 nm and 2.67 nm. The 

physical manifestation of these numbers was visualized with SEM and TEM imaging.  

Double layer supercapacitors made from the carbons showed capacitances of 100 

F/g, the expected value for standard supercapacitors made with activated carbon 

materials. When implemented as a carbon layer in perovskite solar cells, the device was 

not efficient, but when used as an additive in the ZrO layer, photo conversion efficiencies 

improved from 9 to 12%. When used with specific solvent and oil mixtures, the carbons 

can be efficiently deposited on membranes and used to trap hydrogen gas in their pores 

for low pressure storage, benefiting applications such as hydrogen powered vehicles. 
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Techno-economic analysis showed that carbonization processes with a max yield of 42% 

can achieve profits that aid in biorefinery costs and that this revenue increases with larger 

capacity throughput. The analysis projects that these profits will vary from approximately 

$3.7 million for 25,000 tonnes of DDG processed per year to $87 million for a plant that 

processes 500,000 tonnes of DDG per year.  
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I. INTRODUCTION 

 

 Biorefineries are taking a more prevalent role in society as humanity looks to 

plants to provide bio based products, commodities, and liquid fuel replacements. Many 

biomass sources, including corn, grasses, sorghum, soy, hemp, kenaf, coconut, plantain, 

and a variety of others have all shown promise as product precursors in a biorefinery 

setting. However, the extraction and refining of the materials to obtain precursors are 

difficult to complete as compounds such as lignin, cellulose, and hemicellulose require 

high temperatures and pressures to process. In order to create biorefineries that are 

economically viable, techno-economic analyses have pointed toward the production of 

value-added co-products as ways to create added income that supplement the high 

expense that comes with processing biomasses in this way. These co-products ideally add 

little capital or operating costs, but are high-value in the market; allowing for revenue 

that off-sets the overall cost of the refinery. The way these products are produced also has 

a large impact on the viability of the co-product strategy. Therefore, simple processes 

with little energy or materials costs ultimately benefit the most.  

 In an attempt to resolve this, research has explored the potential array of co-

products that can come from leftover biomass after initial fermentation and distillation. 

One co-product involves the separation of a nutrient-rich and fiber-rich fraction. The 

nutrient-rich fraction can be sold for a small profit back to the agricultural industry. 

Extraction processes that break-down and remove hemicellulose from the remaining 

fiber-rich fraction in the form of five carbon sugars such as xylose and arabinose are 

another option that has been explored. Through a simple, relatively low temperature, and 

ambient pressure hydrolysis, these sugars can be extracted and utilized in a variety of 
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situations. These include as precursors to biofuels and precursors for biodegradable green 

plastics. The sugars can also be used as is, if processed in a way that allows for food-

grade classification. The result of this hydrolysis is a stripped down, carbon-rich cellulose 

structure that could also provide a high-value co-product if taken advantage of properly. 

 Activated carbons are becoming one of the top materials choices when it comes to 

energy storage and power devices due to their stability, durability, and conductivity. High 

efficiencies have been shown in devices such as supercapacitors and photovoltaics. This 

is extremely helpful to the renewable energy cause as it could allow for storage of 

renewably produced electricity, solving one of the major issues that has stifled renewable 

energy implementation for many years. Carbons are also being investigated for their use 

in solid-state hydrogen storage modules that could provide on-board hydrogen fuel. In 

this application, vehicular explosion and weight of the vehicle would be drastically 

reduced compared to current liquid and pressurized gas designs. All of these properties 

have increased their inherent value as more information is obtained from observation and 

application of carbons in energy applications.   

In the past, activated carbons were made industrially from anthracite precursors, a 

non-renewable source that requires mining of fossil fuels like coal. Paper and pulp 

industries have also used their mill products as precursors for activated carbons. Even 

more recently, lignocellulosic biomasses have been implemented as activated carbon 

precursors due to their structural qualities that yield carbons that can be tailored to fit 

specific needs. These needs often involve a high charge capacity, quick charge/discharge 

cycles, multiple cycle stability, and energy density when packed with a fuel source. This 
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use of biomass is almost always a direct conversion from the biomass source directly into 

activated carbons, providing carbon as the only product.  

The focus of this research was to create a high-value co-product in the form of 

activated carbon using residual biomass (dried distiller’s grains and soy hulls) from a C-5 

sugar extraction refinery process. Specific objectives included characterization of the 

residual biomass before and after hydrolysis, material characterization of the carbons 

produced using both pre- and post-hydrolysis biomass, economic analysis of the impact 

on biorefinery costs, and application of the carbons in energy storage and power devices. 

These devices included supercapacitors, perovskite solar cells, and hydrogen storage.  To 

accomplish these goals, a standard carbon production procedure was synthesized from 

published production methods that focused on creating materials with small pore sizes 

and high surface areas. Procedures were implemented that produced the desired 

characteristics for energy storage applications. The resulting carbons were then analyzed 

for surface areas, pore size distribution, adsorption capabilities, and elemental 

composition. Techno-economic models were developed to determine the impact of 

production and sale of activated carbons in a large-scale biorefinery using these corn and 

soy fibers as precursor materials.  
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(1) 

II. REVIEW OF LITERATURE 

 

A. THE CHEMICAL STRUCTURE OF BIOMASS 

 

Biomass, organic material that is derived from plants or animals, as an energy source 

has become a key staple in the fight against using fossil fuels [Kirk-Othmer, 2007]. 

Biomass can either be used as is, or through processing and refining. This is typically in 

the form of heat through the burning of biomass or fuel alcohols via fermentation of 

storage and structural sugars. These sugar compounds and proteins are abundant in 

biomasses in the forms of long polymer chains that comprise the structure of the plant. 

These chains are formed via the following photosynthesis reaction. 

 

𝐶𝑂2 + 𝐻2𝑂 + 𝑙𝑖𝑔ℎ𝑡 + 𝑐ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 → (𝐶𝐻2𝑂) + 𝑂2  

 

The carbohydrates produced are an example of energy conversion in that plants can 

produce high-energy compounds from a photochemical process with low conversion 

efficiency. Regardless, the compounds made are mainly lignin, cellulose, and 

hemicellulose. Lignin is a protein chain that provides the “glue” of the plant structure, 

nestled between the cell walls formed from the other two compounds. It also permits and 

assists in the vascular conduction of water throughout the plant system. Cellulose is the 

main structural component of the majority of plants. It is a straight chain, crystalline 

material made up of hundreds to thousands of D-Glucose rings linked in polymeric form. 

Cellulose provides the main structure for the cell wall in green plants. In conjunction with 
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cellulose, hemicellulose, made of varying levels of glucose, arabinose, xylose, mannose, 

and dextrose, is another high bond energy compound. This material, like cellulose, forms 

long chains, but is typically branched [Campbell, 2013]. Current biofuels research 

focuses on the extraction and processing of biomass in order to obtain and utilize the 

energy stored in the chemical bonds of these various compounds. However, their material 

strength can make both processing and refining difficult.    

  

B. INTEGRATED BIO-REFINERY CONCEPTS AND ECONOMICS 

 

Biomass as a source of fuel is dependent on the sugar content of the fiber being used. 

In most fuel ethanol cases, starches within the corn are the target. This is similar to 

beverage alcohol production in that enzymes are used to break down starch chains, 

followed by a fermentation process, and then refinement by distillation to produce 

ethanol not suitable for drinking, but rather as an additive to car engines. This has many 

inherent problems, the biggest concern being the use of a nutritional food product as car 

fuel. In creating fuel ethanol, there is a decline in available food source corn, driving up 

prices for both as demand continues to increase due to an increasing global population 

[Kazi, 2010]. Therefore, many refineries are attempting to ferment sugars from ligno-

cellulosic biomasses that are not used as food products and are instead from sustainable, 

agricultural plant sources. According to some studies, enough lingo-cellulosic biomass is 

grown cost-effectively and environmentally sustainably to ferment 50 billion gallons of 

fuel annually [Perlack, 2005]. Most models look at wood as the main source of this 

biomass. However, in theory, all plant sources in one form or another can provide the 
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sugars and compounds needed for fuel production, allowing current models to expand 

beyond that of soft and hard woods. Ligno-cellulosic biomass typically comes with the 

added benefit of being a waste product from a preceding process. For example, dried 

distillers grains (DDG) from corn ethanol plants and beverage alcohol distilleries in 

addition to soy hulls from soy processing are lingo-cellulosic materials that can be 

utilized to produce biofuels.  

While this employment of lingo-cellulosic waste materials aids in reducing the 

use of food crops, there are still issues that need to be overcome when it comes to the 

mechanical and chemical processing of the biomass. First, there are potential material 

losses due to pre-processing. This processing is important as it removes sand, dirt, and 

other materials that could be harmful to the refinery process. This can be split into three 

main categories. Fiber preparation loss encompasses losses of material as it is being baled 

or loaded for transportation. Removal of residual grain and other unusable biomass 

portions adds to this processing reduction. Finally, there is a storage loss that removes 

material as it is stored. The constant shuffling of material leads to loosened and smaller 

material components being left behind. Overall, these losses can result in a 25% 

reduction in initial material mass [Hurter, 2007]. Another consideration that adds to the 

overall cost of bio-refineries is the availability of the varying sources of biomass. While 

sustainable biomass numbers are relatively high, approximately 194 million dry tons per 

year [Hurter, 2007], the concentration of these materials and resultant need to transport 

them cross country leads to increased processing cost. Not only would the refinery need 

to pay for the fuels costs, but as discussed previously, losses due to transportation can 

reduce the overall amount that is actually transported [Hurter, 2007]. Therefore, locally 
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available, sustainable biomass materials would be the best type of material as it would 

reduce all of these pre-processing costs by eliminating extensive transportation and 

storage needs.  

While this focus on local sustainability can reduce some expenses, there are many 

factors that need to be considered when looking at equipment and utility expenses (Figure 

2.1). When processing materials that contain lignin (lingo-cellulosic biomass), high 

pressures and temperatures are required to extract any beneficial chemicals from the 

material for biofuel production. These increased processing values can add to the overall 

production cost, driving up prices of the finished fuels [Kazi, 2010]. 40-70% of the total 

production cost is dependent on the biomass transportation and processing alone 

[Cardona, 2007; Solomon, 2007]. 

 

TABLE I  

FEEDSTOCK COMPOSITION AND PROCESS CONDITIONS [Sierra, 2008] 

Biomass Feedstock Residence Time Temperature Pressure 

Low Lignin Content (12-18%) 1-2 Hours 100-120 ˚C 1-2 atm 

Medium Lignin Content (18-

24%) 
~ 30 days ~ 55˚C 1 atm 

High Lignin Content (>24%) ~ 2 hours ~ 150 ˚C 15 atm 
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FIGURE 2.1 - Cost breakdown of bio-refinery processing [Fonseca, 2014] 

  

Therefore, selection of biomass based on composition is also a key component of 

creating a bio-refinery that is effective at reducing the overall cost of the production of 

biofuels. Materials with inherently less lignin are able to release their sugars and fuel 

products with minimal effort. This is indicated by reductions in process temperatures and 

pressures (Table I). Corn stover from fuel ethanol plants is considered a good choice for 

refinery because of its low lignin content and high hemicellulose content compared to 

other agricultural crops produced and processed in the same volumes. This would apply 

to any material that is used locally that contains relatively low amounts of lignin. In 

places that produce lots of waste corn fiber, like Louisville, KY, distillery waste becomes 

an effective feed stream for a hemicellulosic, five carbon sugar refinery due to its 

abundance and low initial cost. Many of the aforementioned references presented the idea 

of co-products as a potential method for lowering costs and improving the overall 
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economics of the system. This was mainly denoted in one of two forms. The first is as an 

energy source to help power generators and boilers to run the equipment. While it does 

help with utility costs, the energy density is not comparable to natural gas and coal. It is 

also still voluminous, making the transport and burning of it as fodder inefficient in the 

long run. The second method involves selling the leftover fiber back to farmers as animal 

feed at a relatively low value. Thus, creating additional co-products from a process or 

producing higher value co-products can provide a return that provides a sustainable 

income source. This then relieves initial investment costs and continuous expenditures 

such as salaries and raw materials costs. 

Fonseca et. al [2014] discuss a concept to create an integrated bio-refinery process 

using dried distiller’s grains from distilleries as the initial raw material. Knowing that the 

material contained a high hemicellulose concentration, they designed a selective 

hydrolysis process to remove hemicellulose from the corn fiber biomass. This 

hemicellulose could then be converted to xylose sugar and xylo-derivatives for biofuel 

use in jets and as a green precursor in plastic production. This process was also shown to 

greatly increase the surface area of the fiber. Lupitskyy et. al [2014] designed 

experiments to show that the fiber after the hydrolysis has 113% higher fat content, 15 % 

higher digestible nutrients, and 15% higher digestible energy. This work suggested that 

these co-product side streams could be added to animal feed to improve feed quality, 

allowing for effective cost-utilization of DDG for bio-refinery purposes. 

Bio-refineries have recently been a major focus of development, with funding 

coming from the Department of Energy’s Biorefinery Technology Office [DOE, 2017]. 

These integrated systems are defined as refineries that, “use novel technologies and 
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diverse biomass feedstocks…” and are invested in with the goal of achieving quantity 

and quality parity with fossil fuel producers. Some examples of these kinds of 

biorefineries are listed in Table II. 

 

TABLE II  

A SELECTION OF INTEGRATED BIOREFINERIES WITH DETAILS REGARDING 

THEIR OPERATION [data from DOE, 2017] 

Name Location Technology Feedstock Product(s) 

Biofuel 

Capacity 

(gal/yr) 

Amyris 
Emeryville, 

CA 
Biochemical 

Sweet 

Sorghum 

Renewable 

Hydrocarbons 
1,370 

Emerald 

Biofuels 

Plaquemine, 

LA 

Thermochemi

cal-HEFA 

Corn oil, food 

processing 

waste, animal 

fats, greases 

Renewable 

Hydrocarbons 
82 million 

POET 
Emmetsburg, 

IA 
Biochemical Corn cobs Ethanol 20 million 

Sapphire 
Columbus, 

NM 
Algae Algae 

Renewable 

Hydrocarbons 
1 million 

 

 

As can be seen from the table compiling data from the Department of Energy, 

there are many types of biorefineries currently in use. However, most of them adhere to 
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one of three types of processing. A Biochemical process typically describes an enzymatic 

system that utilizes microbes for the digestion of starches and celluloses for conversion 

into usable chemical forms [Kirk-Othmer, 2007]. Thermochemical processes typically 

involve the breaking down of compounds such as lignin, cellulose, and hemicellulose into 

their respective chemical compounds using a combination of heat and chemical 

treatment, typically acid [Kirk-Othmer, 2007]. The final type mentioned above, algal 

systems, take advantage of the biology of algae to create a multitude of products, ranging 

from oils to sugars for fermentation [Savaliya, 2013]. Regardless of what is used for 

processing the biomass, the other observation of note is the varying sources of biomass 

that are used. All are non-food materials that would otherwise not be disposed of, 

allowing for more cost-effective production of biofuels in the long run. While all of the 

above are considered integrated systems, there are no details about the ability to 

implement them into current biomass processing facilities which would allow for easy 

transportation and the creation of co-products “in-house” like the refinery described by 

Fonseca et. al [2014].     
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C. CARBON FORMS 

 

  Carbon is found naturally in two forms, diamond and graphite (Figure 2.2) 

[McEnaney, 1999].  

 

 

 

FIGURE 2.2 - Carbon allotropes in the form of a) diamond crystal lattice and b) graphite [Pauling, 

1947] 

 

While helpful for cutting, writing, and decoration, these forms are not heavily used in 

the field of renewable energy. On the other hand, synthetic carbons such as activated 

carbons and nanotubes are both useful for energy storage purposes. These synthetic types 

are also easily produced from carbon-rich precursors including plant and animal matter 

[Pierson, 1993]. Thus, biomass waste streams are a popular option when it comes to 

activated carbon production. Overall, the majority of synthetic carbons typically fall 

between amorphous (disorganized) carbons and graphitic (highly organized) carbon. This 

spectrum of organization allows most carbons to be modified depending on the properties 

that are required for the various applications in which the carbon will be used [Pandolfo, 

2006]. Because most synthetic activated carbons lie in between graphite and amorphous 
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allotropes in terms of structure, they have characteristics of both the amorphous and 

graphitic carbon types. This means that activated carbon materials can be both conductive 

and have a higher porosity that is necessary for many energy storage applications. Most 

of the carbons used in these various energy applications are formed through heat 

treatment in an inert atmosphere to allow for carbonization [Pandolfo, 2006; Carrott, 

2007]. This process eliminates organic matter and volatile compounds leaving behind a 

carbon structure that is porous and typically has high surface areas [Pandolfo, 2006].  

 

D. METHODS OF CARBONIZATION AND ACTIVATION 

 

Carbonization and activation have been extensively studied in an attempt to fine-tune 

the properties of resulting carbons for various applications. Activation, in its most basic 

form, can best be described as a process that is used to increase the surface area of a 

carbon source (coal, tar pitch, biomass, etc.). These sources are chosen based on 

considerations such as price and availability. This increase in surface area correlates to an 

increase in pore density and distribution. These characteristics can then be taken 

advantage of in a wide range of applications from filtration to energy storage. Any 

mechanism that is used to carbonize and activate carbon must therefore eliminate mass 

within the structure to develop the free spaces that will be taken advantage of in 

application [Do, 1995].  

There are two main activation processes that have been described extensively in 

carbon research, physical and chemical activation. Physical activation involves the 

removal of carbon mass and expansion of the physical structure, using gases as a medium 
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to force the structure to open [Do, 1995]. In most cases, the initial material is either a 

previously made carbon or the material is first charred in order to create surface variation 

that the chosen activating gas can permeate [Wang, 2012]. This is then heated to higher 

temperatures in the presence of the activating gas, typically CO2 or N2 where the agent 

can force its way into the carbon and physically inflate the material. The gases forcing 

their way through the material creates pores and channels that increase the surface area. 

Chemical activation, on the other hand, uses activating agents that dehydrate-such as 

hydroxides, mineral acids, and metal salts-to create the surface area required of activated 

carbon materials. This method also has inherent benefits due to its mechanism of 

activation. These include: lower activation temperatures, higher yields, increased pore 

distribution, a one-step process, and the porosity can be fine-tuned for specific purposes 

by changing the atmospheric and experimental conditions [Linares-Solano, 2002]. When 

it comes to choosing which activation agent to use, there are many options to consider. In 

the case for developing materials for energy storage-which require smaller pore 

structures-hydroxides are usually used as they have been shown to create narrower pore 

sizes while maintaining high surface areas [Do, 1995; Lillo-Rodenas, 2003; Wang 2012; 

Yoon, 2004]. KOH has also been shown to produce narrower pores and requires a lower 

reaction temperature than NaOH, leading to its use in more studies in order to save 

energy in large-scale applications of carbonization [Wang, 2012].  

The mechanism of hydroxide activation, while used frequently, is still not understood 

to the extent that many would like due to the complexity of the joint carbonization and 

activation process. This complexity becomes common-place when using biomass 

precursors whose physical characteristics can vary from plant to plant, which can result in 
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a wide distribution depending on the local source of fiber available to producers. A 

general overview describes that the process begins as a solid-solid reaction and then 

transitions into a solid-liquid reaction once it is at a high enough temperature [Wang, 

2012]. The three main mechanisms proposed to explain the activation reaction are as 

follows:  

1. The carbon structure is etched by the various redox reactions that occur due to the 

presence of KOH interacting with carbon to form metallic potassium, potassium 

carbonate, and carbon monoxide. This is generally considered the main instigator 

of pore formation, the actual “chemical activation” component of the system.  

2.  A sort of physical activation occurs where water and carbon dioxide formed in 

the dehydration of the KOH and reduction of potassium carbonate physically 

expand the pores formed as part of the chemical activation. In this respect, 

chemical activation is still very much a physical process. However, the assistance 

of the chemical components to cause actual chemical change to the material in 

combination with the physical aspects is what allows for the better yields and 

lower activation temperatures.  

3. Metallic potassium formed throughout the process intercalates into the carbon 

structure as the material becomes plastic at elevated temperatures. This metallic 

potassium then becomes a part of the final carbon product and is removed when 

the material is washed (Figure 2.3). At this point in the process, the material has 

hardened and therefore cannot return to its original shape, leaving the spaces that 

the potassium deposited in completely open and able to contribute to the overall 

surface area [Wang, 2012]. This forces the need for an extra processing step when 
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compared to physical activation; however, it is considerably minimal compared to 

the benefit of higher yields. 

 

 

 

FIGURE 2.3 - Intercalation of KOH into the carbon structure [Wang, 2012] 

 

Ample research has also been performed to show trends of surface areas with change 

in atmospheric and other experimental conditions [Do, 1995]. As would be expected in a 

system like this, surface area increases with the addition of more activating agent [Do, 

1995]. Other trends that deal more with the fine-tuning of the pore structure (in KOH 

activation) include temperature, which show that an increase in temperature corresponds 

to an increase in surface area and micropore volume [Do, 1995]; an important 

consideration when carbons are ultimately being produced for use in energy storage 

applications. These factors are all explored when developing an activation process such 

as the one used in this particular research. 
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E. ACTIVATED CARBONS FROM BIOMASS IN SUPERCAPACITORS 

 

Supercapacitors are becoming one of the leading devices for electrical energy storage 

and power due to their rapid storage and release abilities, in addition to their high energy 

density compared to similar storage devices [Pandolfo, 2006]. Supercapacitors are 

efficient because of their highly-reversible charge-storage capabilities. This leads to 

longer cycle-lives and rapid charge and discharge cycles that can provide disbursement of 

stored energy on demand-an issue with collecting renewably sourced energy directly into 

the grid [Shukla. 2001]. The primary capacitor type currently under investigation are 

electrochemical double layer capacitors (EDLCs). Stability, lifespans (up to 500,000 

cycles) [Andrieu, 2000], and ease of use have led to the EDLC becoming the most 

extensively industrialized form of supercapacitors. Its effectiveness compared to standard 

capacitors comes from the small distance between the electrodes in the device and the 

increase in charge storage that arises from the surface area of the electrode. Because of 

this surface area requirement, electrode materials that are stable, have high-surface areas, 

and are conductive are the best materials to use in EDLCs. 

EDLCs work by using the concept of double layer capacitance which was proposed 

and studied by von Helmholtz in the 19th century [Helmholtz, 1853]. This theory involves 

the adsorption of charges onto surfaces positioned very close together to store energy in 

the form of charge separation. This was first used for electrical energy storage by General 

Electric in 1957 [Becker, 1957] which used carbon electrodes and an ionic liquid as its 

electrolyte. Later, in 1966, it was recognized that this storage was actually occurring in 

the double-layer, spurring research into making these capacitors more efficient 

[Rightmire, 1966]. As described previously, EDLCs are constructed by taking two 
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(2) 

(3) 

electrodes made from a porous material and are separated by an electrolyte and an ion-

permeable material that allows for charge to pass through the medium. Because each 

electrode is considered a capacitor, there are two capacitances taken into consideration 

making the overall capacitance equivalent to the sum of the two individual capacitances 

[Andrieu, 2000]. 

 

1

𝐶𝑐𝑒𝑙𝑙
=

1

𝐶1
+

1

𝐶2
 

 

Each electrode has its own double layer capacitance which can be represented by the 

following equation; 

 

𝐶𝑑𝑙 =
𝜀𝐴

4𝜋𝑡
 

 

Where ε is the dielectric constant, A is the surface area of the electrode, and t is 

the thickness of the electrical double layer [Shukla, 2000] (Figure 2.4). The above 

formula shows exactly which aspects researchers need to target when trying to improve 

device storage capabilities. Increasing surface area of the electrode materials while 

decreasing the distance between the electrodes leads to higher energy storage potentials. 

While these can be manipulated fairly easily, there are inherent materials issues that can 
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build resistivity to charge transfer including resistance between the electrode and the 

collector, diffusion resistance of ions in small pores, and electrolyte resistance [Burke, 

1995]. Therefore, materials that can satisfy the surface area necessities and lower 

resistivity within the cell are the most promising to use. Activated carbon is one such 

material due to its relatively high conductivity, high surface area, stability, tunable pore 

distribution, low cost, and ease of production. Carbons made from biomass present an 

even better material as they create energy devices from renewable sources instead of 

coals and anthracites. 

 

 

 

FIGURE 2.4 – Diagram of a standard EDLC [Wang, 2012] 
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Much research has been performed in attempting to create carbon materials for 

energy storage from biomass materials. Rice husks have been successfully synthesized 

into standard activated carbon samples and implemented into supercapacitors with 

capacitances up to 198.4 F/g [Van, 2013]. Different parts of peanut shells, the inner, 

lignin-rich layer, and the outer shell have been carbonized and activated separately to 

create hybrid capacitors that rival current lithium ion devices [Mitlin, 2014]. Tobacco 

stems have been shown to create effective carbons for energy storage without the need 

for additional activation chemicals; simple pyrolysis suffices to create the desired 

material [Beguin, 2015].  Highly graphitic carbon materials with low surface area have 

been produced from banana peels, allowing for easier charge passage in energy 

applications [Loftabad, 2014]. Carbon nanosheets with properties similar to graphene 

have been produced hydrothermally using hemp as the biomass precursor, ushering in a 

new realm of graphitic material production from biomass [Wang, 2013]. In the majority 

of the cases presented, the biomass streams in use were typically wastes from biomass 

processing. However, there were no other steps between waste product and carbon 

material. From a biorefinery standpoint, there is very little information available of the 

benefits or detriments to carbon production when the waste fiber is first processed for 

useful biofuel chemicals.  

 

F. ACTIVATED CARBONS FOR HYDROGEN STORAGE 

 

The United States, along with the rest of the world, is looking for options to transform 

its energy sector. In order to do this, the Department of Energy has gathered specific 
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statistics that have allowed for analysis regarding the energy usage of the United States. 

A 2006 study shows that 20 million barrels of oil are used in the U.S. each day. Two-

thirds of this amount is used for transportation alone. Of the total oil used, 55% is 

currently imported from other nations and is expected to reach 68% by 2025 [DOE, 

2006] Therefore, in an attempt to reduce dependence on foreign oil as well as transform 

the energy sector, oil substitutes are currently being researched to eliminate petroleum 

completely. Hydrogen has become a strong contender for the transportation sector [DOE, 

2005]. Many of the reasons for its popularity as an oil replacement include the ease of 

manufacture using renewable energy sources including: wind, biomass, hydro, solar, and 

geothermal. It also contains approximately three times the amount of energy of gasoline, 

120 MJ/kg vs. 44 MJ/kg (however, volume based situations show a different story) 

[Satyapal, 2007]. This in combination with carbon sequestration from current power 

plants that burn coal allow for a large source of hydrogen that, if combined with the 

proper infrastructure, could provide large amounts of cost-effective, clean energy for 

future transportation needs.  

These reasons inspired the Department of Energy to establish hydrogen goals for 

2015 that included overcoming the following three barriers [Satyapal, 2007]. 

1. Vehicles running on hydrogen fuel must have a driving range greater than 300 

miles (500 km) while meeting all packaging, cost, and performance requirements. 

2. Fuel cell system cost must be below $30 per kilowatt while still maintaining 

durability and performance. 
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3. Hydrogen production and delivery must be competitive with gasoline and 

therefore price must fall between $2.00 and $3.00 per gallon of gasoline 

equivalent. 

Another issue that needs to be taken into consideration is whether or not re-fueling 

would be through reversible on-board storage systems or regenerable off-board storage 

systems. These systems would influence how hydrogen would be put into the car. In the 

case of reversible systems, hydrogen could be charged to the vehicle similar to current 

gasoline mechanisms. Off-board systems would require whatever materials or fuel 

system is being used to be removed from the vehicle and recharged with hydrogen before 

being used again [Ahluwalia, 2011; Graetz, 2008].  

Many perspectives on how these goals can be met have since arisen. Two options 

would be to store it as a gas or in its liquid form and have it inserted directly in a tank 

without any form of storage other than tank itself. Liquid hydrogen, while providing 

more energy per volume and driving range than its gaseous counterpart, is subject to boil 

off, leading to cost increases and cycle inefficiencies [Satyapal, 2007].  Since liquefaction 

also requires a large amount of energy [Zuttel, 2004], compressing the gas and using it in 

a similar fashion to propane is often the proposed method of non-external material 

hydrogen use. In order to store it as a gas, pressures of up to 10,000 psi must be used to 

allow for optimum storage in a cylinder [Utigikar, 2005]. Pressures this high increase the 

potential mechanical energy extensively and therefore can create a substantial failure in 

the case of a tank rupture [Stephenson, 2004]. In order to prevent this, specialized tanks 

would have to be created to support the hydrogen system. These tanks, in an attempt to 

prevent rupture and hydrogen attack, would most likely be very costly; making it difficult 
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for the system to keep to the standards set by the DOE. Research is currently being 

performed on carbon fiber tanks to accomplish this goal, but costs have not been 

encouraging due to the amount of fiber required to make them safe [Quantum Report, 

2005]. In order to make hydrogen a fuel supported by the public, there must be absolute 

confidence in its safety and utility.  

This problem is being deciphered and solved by researching solid materials that can 

be placed in tanks to adsorb or combine with hydrogen [Satyapal, 2007]. These materials 

can then allow hydrogen to be stored and used in vehicles at ambient temperatures and 

pressures, eliminating the need for costly, rigid tanks. The three major categories of 

storage materials are as follows: metal hydrides, high surface area sorbents/carbon-based 

materials, and chemical hydrogen storage materials.  Metal hydrides, while useful in 

temperature ranges (25-120 °C) [Sandia, 2005] and pressures (1-10 atm) required for on-

board hydrogen storage, have too low of a gravimetric capacity to be effective for long-

range driving. Chemical storage requires high pressures and low temperatures in order to 

release stored hydrogen. For example, ammonia compounds are often named as a 

possible medium, but the energy required to store hydrogen in the chemical system 

makes it far too costly [Satyapal, 2007]. Materials that provide the kinetics needed for 

this kind of hydrogen storage and are relatively easy to produce are activated carbon 

adsorbents [Satyapal, 2007]. For this work, the focus is on the use of said carbon 

adsorbents as it allows for fast hydrogen kinetics and lower binding energies than metal 

hydrides [Satyapal, 2007]. Therefore, there is a lower risk of large temperature increases 

during charging and discharging, reducing the risk of explosion during fueling. This 

advantage has also led to experiments binding transition metals to highly-structured 
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carbons like fullerenes to give the benefit of both the carbon storage and the catalytic 

assistance from the metal ions. As none of these have been able to effectively create 

hydrogen powered vehicles, the DOE is still looking for new ideas and opportunities 

when it comes to hydrogen storage [NAP, 2004]. 

  

G. ACTIVATED CARBONS FOR USE IN PEROVSKITE SOLAR CELLS 

 

Metal halides were useful compounds that were being produced as early as 1893 

[Wells, 1893]. However, their structure was not fully understood until crystallographic 

studies were performed on the halides by Christian Moller in 1958 [Moller, 1958]. His 

studies showed that the metal halides formed a perovskite structure, one that involved 

two cations differing in size with an anion that had the ability to bond to both (Figure 

2.5). 

 

 

 

FIGURE 2.5 – Crystal structure of cubic metal halide perovskites [Graetzel, 2014] 
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 In this case, cesium, lead, and a halide were the components of the perovskite studied by 

Moller. He also noticed that the perovskite metal halide was photoconductive, meaning 

that it behaved like other semiconductors. Eventually, the cesium was replaced with a 

more stable and less toxic cation, methylammonium [Weber, 1978]. Due to its astounding 

optical and electronic properties, the material has been thoroughly investigated in the past 

couple of decades for its use in solar devices, especially Methylammonium Lead Iodide 

(CH3NH3PbI3). This perovskite is a semiconducting crystal that contains a direct bandgap 

of 1.55 eV, making it optimal for various photovoltaic devices. This band gap 

corresponds to an onset absorption of 800 nm, which provides excellent absorption across 

the entire visible spectrum [Ponseca, 2014]. Weak binding energies of 0.030 eV, small 

effective masses of electron-hole pairs, and longer carrier-diffusion lengths rivals that of 

many indirect semiconductors (silicon) of which the most efficient solar cells are 

currently produced [Mitzi, 2001; Stoumpos, 2013; Xing, 2013; Stranks, 2013]. Once 

these properties were explored and developed, they were implemented into combination 

dye-sensitized solar cells, using the perovskite as a sensitizer similar to Ruthenium dyes 

that were being used at the time. The initial results were disheartening, reaching a minor 

3.8% PCE [Kojima, 2009], but one of the main reasons for this was the instability of the 

crystal in the liquid electrolyte. While structurally sound in dry conditions, perovskites 

degrade quickly in humidity and liquids [Spiccia, 2015] Eventually, to solve this 

problem, the liquid electrolyte was replaced with a solid hole transport layer that 

facilitated the exchange of photo generated electron/hole pairs. The replacement of the 

liquid electrolyte with this solid layer, called spiro-MeOTAD, doubled previous 
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efficiencies and also improved stability beyond initial tests. This was the birth of the 

solid-state mesoscopic solar cell (Figure 2.6). 

 

 

FIGURE 2.6 – Diagram of a mesoscopic perovskite solar cell [Graetzel, 2014] 

 

   

In these devices, perovskite was deposited on layers of mesoscopic TiO2 as a way to 

promote direct electron injection to electrodes made of gold and silver. As time has 

progressed, so has the design, moving from mesoscopic to planar layers of perovskite and 

other materials, including carbons for the counter-electrode [Graetzel, 2014; Mei, 2014]. 

This planar structure allows for simpler processing, reducing costs of an expensive 

construction. Eventually, layers of material deposited onto glass substrates became the 

standard for solid-state devices, resulting in efficiencies as high as 12.8% and high 

stability [Mei, 2014]. Mei et. al also introduced solid-state devices that used a layer of 

carbon for the counter electrode with perovskite deposited directly into the carbon layer, 

improving contact (Figure 2.7). 
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FIGURE 2.7 – Screen printable perovskite solar cell with carbon counter electrode [Mei, 2014] 

 

  Before the deposition, the cell layers are screen-printed, allowing for quick, 

efficient manufacturing. These cells also showed improved stability as the hydrophobic 

nature of the carbon counter-electrode prevented moisture from damaging the perovskite. 

While not the most consistent in terms of manufacturing effective cells, carbon layer 

solid-state devices have exceeded that of dye-sensitized cells while also removing 

expensive materials from the structural design. Continued research would focus on 

optimization of electron transport through the device, stability, and continued 

improvement in materials replacement; thus, lowering the overall cost of manufacturing 

and operation. 

 

H. OTHER APPLICATIONS OF CARBONS MADE FROM BIOMASS 

PRECURSORS 

 

While not tested in this work, activated carbons from biomass precursors are used in a 

variety of pollution control applications not described previously. One of the most 
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utilized is the use of activated carbons as filtration media for pollutant removal from 

aqueous and gaseous phases in both industrial and domestic purposes [Dias, 2007; Kirk-

Othmer, 2007]. Multiple studies have shown the effectiveness of carbons made from 

agricultural waste for the removal of color compounds such as Congo red and methylene 

blue [Karagoz, 2008; Namasivayam, 2002], large compounds that are often used to 

model pollutants in aqueous environments. Additional studies have investigated the use 

of these biomass carbons and charcoals on effectively removing actual pollutants that are 

typically encountered in industry. These include the removal of lead (II) ions with 

carbons made from gopher spurge (Euphorbia rigida) [Gercel, 2007], the removal of 

phenols with carbons made from sawdust [Hameed, 2008], and the removal of ethyl 

carbamate-a compound prevalent in alcoholic beverages and soy sauce-using charcoal 

[Bae, 2009]. 

The rectification of stack emissions from various industrial plants has led to an 

investment into carbon capture technologies that often use carbons in their filtration 

matrix [Mohamed, 2013]. Modified carbons from lignocellulosic biomasses have been 

investigated to remove sulfur compounds (SOx), nitrogen compounds (NOx), hydrogen 

sulfide gas, and other volatile organic compounds [Mohamed, 2013]. This has the 

potential to expand into wide-spread use if industry sees value in producing carbons from 

the various biomasses that can be found in their area. These would be beneficial not only 

for their ability to reduce and control pollution, but also potentially utilizing biomass 

waste streams that otherwise have no purpose. 

Activated carbon is also used as a heterogenous catalyst support in aqueous and 

gaseous systems. As described previously, the mechanical properties of the material 
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allow for excellent durability in both high temperatures and chemical environments. This, 

in combination with their porous structure that can support and spread large amounts of 

catalyst over its surface, creates an ideal interface that allows for increased conversion 

[Juntgen, 1986]. Wang et.al [2013] demonstrate an effective use of activated carbons 

from straw to catalyze the esterification of oleic acid with methanol. Knowing this, future 

research into carbons for the catalysis of biodiesel production could prove to be 

beneficial for renewable liquid fuels production.    
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III. EXPERIMENTAL 

 

A. EXPERIMENTAL PLAN 

 

The temperature for carbon activation was set to 950 °C [Do, 1995] to provide the 

pore size distribution wanted. Carbonization tests were performed to determine the 

effectiveness of the process and the effect of concentration of activating agent on the 

resulting surface areas. This was accomplished by varying the concentrations of KOH 

added to the biomasses in mass ratios of 0:1 KOH to biomass, 0.17:1, 0.17:1 fluffed, and 

1:1. All of the fibers used in these tests were post-hydrolysis fibers. Once these results 

were obtained, the concentration was fixed.  

Qualitative fiber was characterized so that differences in the pre and post-

hydrolysis fibers could be denoted and to predict the effect of the hydrolysis on surface 

area. This was performed using SEM imaging. This qualitative imaging could help 

predict the eventual surface areas of the carbons made as there is a known correlation 

between precursor surface structure and carbon material surface area.  The carbons were 

then analyzed. The carbons were prepared with both pre and post-hydrolysis DDG fibers 

and soy hulls and then characterized via BET for surface area and pore sizes, SEM, TEM, 

and EDAX for structure and chemical composition, and Raman spectroscopy for bond 

structure and order. All of these values help in determining the physical structure of the 

material, which could then be compared to literature values and (in the case of BET and 

Raman) compared to industrial samples.  

To see the potential for the carbons in energy storage applications, devices that 

use carbons effectively were chosen for testing. The first application chosen was use in 

supercapacitors. In this case, the effect of concentration or surface area was also 
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investigated. Therefore, the four samples prepared for the concentration tests were used 

as electrode materials for EDLCs. They were then tested using a voltammeter, providing 

data on the charge and discharge cycles and capacitance to determine the effectiveness of 

a supercapacitor. The highest surface area carbons were then used in perovskite solar 

device applications where solar efficiency determined the effectiveness of the material. 

Once it was found that they could not work as designed by Mei et. al [2014] due to 

combustion at high temperatures, they were used as spacers in other parts of the cell and 

efficiency was measured again. This provided additional insight into the stability of the 

material. These results led to cleaning experiments using 1 M mineral acids of mono and 

diprotic varieties to wash the carbons after activation to see if the wash would remove 

any functional groups that could be impeding performance. Heating tests were then 

performed to see if the stability at high temperatures improved with the cleaning.  

Hydrogen storage was explored next and control carbons were used in dispersal 

tests on PTFE membranes for a solid-state adsorbent module. Hexane was mixed with 

differing concentrations of both mineral and sunflower oil to see which solvent 

combinations created the most effective carbon layers. These oil to hexane ratios were 

1:0, 3:1, 1:1, and 1:3. The qualitative results of these tests gave insight into the validity of 

a solid-state module. Finally, techno economic analysis was performed to determine the 

monetary value of the carbons made and their potential impact on bioprocessing.  
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B. MATERIALS 

 

1. Dried Distiller’s Grains 

Dried Distiller’s Grains are leftover materials form ethanol production. In this work, 

they were obtained from the Brown-Forman Corporation (Louisville, KY) after 

distillation and drying. They were then prepared as described in the procedures. 

Composition of the DDG by mass: 32.7% protein, 12% fat, 51.7% neutral detergent fiber, 

and 2.01% ash.  

2. Soy Hulls 

Soy hulls were obtained from Owensboro Grain Company (Owensboro, KY). 

They were used as is for pre-hydrolysis testing or hydrolyzed as described for the DDG 

for post-hydrolysis testing. No sonication or separation was involved with the soy hulls.  

3. MWV Control Carbon 

The control carbon was obtained from MeadWestVaco (Richmond, VA). The 

carbon was wood-derived with a surface area of 1230 m2/g and an average pore width of 

3.620 nm. 

4. Potassium Hydroxide 

Activating agent in the form of potassium hydroxide was used for all the samples 

based on literature results. This was obtained from Sigma-Aldrich at 99% purity.  

 

C. EQUIPMENT 

 

DDG was screened through a No. 20 sieve (0.85 mm opening) to separate the fiber-

rich and nutrient-rich fractions. The fiber was then soaked in water and sonicated with a 
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UP200S transonic homogenizer with a 40 mm diameter probe (Hielscher Ultrasonics, 

Germany). This was then de-watered using a No. 40 mesh screen. Soy hulls were brought 

in as is and required no additional equipment for pre-treatment. Both biomasses were 

hydrolyzed in a 6 L percolation reactor with liquid recirculation (M/K Systems Inc, 

Peabody, MA, Figure 3.1). 

 

 

 

FIGURE 3.1 – Percolating reactor used for hydrolysis 

 

Carbons were processed in a MTI GSL-1500X tube furnace with a mullite tube in 

ceramic boats to create as inert of an environment as possible (Figure 3.2). Pre and post-

hydrolysis fibers and carbons were analyzed via SEM using a Vega 3 Tescan (Figure 3.3) 

and TEM using a Tecnai G2 F30 (Figure 3.4). These provided the imaging and 

diffraction patterns that helped determine physical characteristics. The Tecnai system was 

also used for the single-line EDAX run with accompanying software providing the 
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chemical counts.  BET surface analysis was performed using a Micromeritics Tri-Star 

3000 (Figure 3.5) which provided the isotherms and surface areas for analysis and 

comparison. Software used for the analysis was also provided by Tri-Star. Raman 

Spectroscopy was performed using a Renishaw inVia Raman Microscope and provided 

Raman spectra that could be used to determine the order of the carbon materials. 

 

 

 

FIGURE 3.2 – Tube furnace used to produce the carbon materials 
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FIGURE 3.3 – SEM microscope used for imaging 

  

 

FIGURE 3.4 – TEM microscope used for imaging and EDAX analysis 
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FIGURE 3.5 – BET surface analyzer used for surface area and pore size analysis 

 

Supercapacitor testing required the use of an Arbin Instruments Supercapacitor 

Testing System (Figure 3.6) to perform cyclic voltammetry. Accompanying software 

provided the user interface to obtain the data. Current–voltage characteristics of the 

carbon devices were measured with a solar simulator composed of light source and a 

digital source meter (Keithley Model 2400). The light source was a 450 W xenon lamp 

(Oriel) equipped with a Schott K113 Tempax sunlight filter (Praezisions Glas & Optik 

GmbH) to match the emission spectrum of the lamp to the AM 1.5G standard. Before 

each measurement, the light intensity was calibrated by a Si reference diode equipped 

with an infrared cut-off filter (KG-3, Schott). All measurements were conducted using a 

nonreflective metal aperture of 0.16 cm2 to define the active area of the device and avoid 

light scattering through the sides.  
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FIGURE 3.6 – Supercapacitor testing system used for cyclic voltammetry to measure 

supercapacitor qualities  

 

 

D. EXPERIMENTAL PROCEDURE 

 

1. SEPARATION AND CLEANING OF THE BIOMASS FRACTION 

The first step was to prepare the biomass for potential hydrolysis via the separation of 

the fiber-rich and nutrient-rich fraction. This was first described for DDG by Lupitskyy 

et. al (2014). When treated in this manner, the fiber-rich fraction was kept for hydrolysis 

due to higher levels of hemicellulose in the material. This fraction was then treated in one 

of two ways depending on the need.   

i. Pre-hydrolysis samples: Distillers grains were screened using a No. 20 (0.85mm 

opening) sieve. The coarse fraction from the screening was used for hydrolysis purposes. 

The coarse fiber was then mixed with 1 L of water and sonicated for 30 minutes at 200 W 
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power using a transonic homogenizer with a 40 mm diameter probe. It was then 

dewatered using a 40 mesh screen.   

ii. Post hydrolysis samples: After drying, the de-watered DDG fibers were hydrolyzed 

in a 6 L percolation reactor with liquid recirculation (M/K Systems Inc, Peabody, MA). 

The samples used in this work were hydrolyzed at 120 ˚C using 0.4% sulfuric acid 

concentration. The remaining residual fiber was then dried in an oven at 110 ˚C until. 

 

2. ACTIVATING AGENT IMPREGNATION 

The second step was to mix the precursor material and the activating agent. In 

most studies involving the production of activated carbon materials, solid activating agent 

was added directly to the precursor stream as a mixture. To ensure even distribution of 

the activating agent, the required mass of KOH was dissolved in solution and then mixed 

and dried as described below.  Five grams each of soy and corn fibers from pre-

hydrolysis as well as post-hydrolysis were mixed with a KOH solution consisting of 

desired concentration of KOH and 15 mL of deionized water. For example, 5 g of KOH 

in solution would yield a 1:1 ratio with 5 g of grains. They were then mixed using a 

vortex mixer until they formed a thick paste. This paste was then allowed to dry at 80˚C.  

 

3. CARBONIZATION 

The dried, impregnated samples were placed in a ceramic boat placed in the 

center of a tube furnace. This was then sealed with end caps that contained hoses to allow 

for the utilization of an ultra-pure nitrogen blanket. The tube was pressurized to 10 kPa 

above atmospheric pressure and the furnace was started.  The programmed ramp rate was 
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10˚C/minute until 500˚C and then was increased to 20˚C/minute up to the final 

temperature of 950˚C where it held for one hour. The sample was then allowed to cool 

naturally under the Nitrogen blanket before removing it from the furnace. The samples 

were washed thoroughly with deionized water in a paper filter and air dried. 

 

4. SURFACE AREA ANALYSIS AND MATERIAL CHARACTERIZATION 

The samples were analyzed using a BET surface area analyzer using nitrogen gas 

as the adsorbed gas at 77.3 K. The samples were degassed before the analysis at 160˚C 

for two and a half hours, then placed in the machine which submerged the tubes with the 

samples in liquid nitrogen. Samples were imaged with a Scanning Electron Microscope 

(SEM) to show the differentiation in pore size, fiber structure, and surface defects for 

both post and pre-hydrolysis biomass and carbon samples. Transmission Electron 

Microscopy (TEM) with a combination of a single line EDAX analysis was performed to 

look at graphitization and composition of the sample. Raman spectroscopy was 

performed to determine spectra of each sample.  

 

5. SUPERCAPACITOR PREPARATION AND MEASUREMENTS 

Electrochemical measurements were conducted for the use of ACs in a 

supercapacitor structure (EDLC). For this, the electrodes were prepared using the various 

surface area ACs prepared after activation with varying ratios of KOH. The electrode 

materials for both the cathode and anode were prepared using 90 wt% active material 

(ACs) with 2 wt% AB (acetylene black) and 8% PVDF (Polyvinylidene fluoride) binder 

distributed in NMP (N-Methyl-2-pyrrolidone) solvent. The well-mixed slurry was coated 
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onto an aluminum foil using the doctor blade method. The electrodes were then dried at 

180 ˚C for 3 hours under vacuum. These were transferred to a glove box and a standard 

2032 configuration coin cell was then constructed with the electrodes. The separating 

layer was asbestos and the electrolyte was 1.5 M TEAPF6-PC (Tetraethylammonium 

hexafluorophosphate in propylene carbonate) solution. Cyclic voltammetry was then 

performed using a supercapacitor testing system. Charge and discharge cycling was 

conducted for 1000 cycles between 0 and 3.5 V at a current density of 500 mA/g. The 

data was then graphed and used for calculations as described in the results and discussion 

section.   

 

6. PEROVSKITE SOLAR DEVICES 

a. Paste Preparation 

Titanium Oxide and Zirconium Oxide pastes were prepared as described by Graetzel 

et. al [Graetzel, 2007]. 6 grams of TiO2 powder was mixed with 1 mL of acetic acid and 

ground in a mortar for 5 minutes. 5 x 1 mL portions of water were added to the paste and 

ground for 1 minute each before the next portion was added. 15 x 1 mL portions of 

ethanol were added to the paste and ground for one minute before the next portion was 

added. 6 x 2.5 mL portions of ethanol were added and ground for 1 minute before the 

next portion was added. This paste was transferred to a beaker with 100 mL ethanol and 

stirred for 1 minute on a stir plate. The solution was then sonicated with an ultrasonic 

horn (2 seconds work + 2 seconds rest) 30 times and stirred again for another minute. 20 

grams of terpineol was then added to the solution. This solution was then stirred with a 

magnetic tip for 1 minute and sonicated in the same manner as before. It was then stirred 
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again for an additional minute. 30 grams of 10% ethyl cellulose solution in ethanol was 

added to the solution. The solution was stirred for 1 minute, sonicated as previously 

described, and stirred for an additional minute. This entire stir/sonicate/stir procedure was 

then repeated two times making the solution go through the previous stir/sonicate/stir 

method a total of three times. The ethanol was then evaporated using a rotary evaporator 

and ground in a three roll miller. This procedure was also done with both ZrO, standard 

carbon, and the biorefinery carbons produced. ZrO paste was also made with 10 wt.% 

biorefinery carbon.  

 

b. Device Preparation and Testing 

Standard-Perovskite solar devices were manufactured in the manner described in Mei 

et. al [Mei, 2014]. Clean FTO (Fluorine-doped tin oxide) glass was used as the substrate. 

The glass was placed on a hot plate and sprayed with suspended TiO2 nanoparticles and 

sintered at 450 °C for 15 minutes. The glass was removed from the hot plate and allowed 

to cool. The glass was then screen printed with TiO2 paste, sintered at 450 °C for 30 

minutes, cooled, and then screen printed with ZrO paste. The cell was sintered again at 

450 °C for 30 minutes and the carbon paste was screen printed onto the cell. This was 

then sintered at 450 °C and transferred to a case when cooled. Once cooled, perovskite 

was deposited onto the carbon layer via drop-casting and then put in a desiccator to dry. 

Once dry, contacts were applied to the glass and the cell’s performance was measured 

using a standard 1.5 AM, 1 sun lamp. 
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c. Zirconium Layer Exfoliation 

Devices were made with the 10% carbon-infused ZrO to see if the sintering process in 

combination with the volatility of the biomass carbons could increase the ZrO surface 

area and there increase the conductivity of the overall device. These cells were 

manufactured and tested in the same manner as described previously.  

 

d. Effects of Washing with Inorganic Acids on Carbon Sintering 

Biorefinery carbons were washed in 1 molar solutions of HCl, H2SO4, and HNO3 by 

stirring the carbon material in them for approximately 30 minutes. The acids were then 

disposed of and the carbons were washed two more times with clean DI water. They were 

then oven dried at 90 °C until completely dry. Carbon pastes were made from the varying 

carbons as described previously and they were doctor bladed onto clean FTO glass, using 

Scotch tape as a boundary. They were then sintered on a hot plate at 350 °C in air for 30 

minutes. The masses of the clean glass and the glass with the carbon layer were measured 

before and after sintering. The relative weight loss was then calculated and compared to 

the weight loss of a paste made from uncleaned carbons.  

 

7. CARBON LAYER FORMATION FOR HYDROGEN STORAGE 

MODULES 

The biorefinery carbons were tested for effective deposition onto a membrane for 

hydrogen storage module production. MWV control carbons were mixed in varying 

combinations and ratios of solvents and binders and run through a vacuum funnel through 

a PTFE membrane to deposit a layer of carbon on the surface. This carbon suspension 
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was always 2% carbon by mass, but the masses of the solvents and binders varied. 

Initially, solvents including ethanol, isopropanol, and toluene were used as they could 

allow for evaporation of the solvent and thus not inhibit the pores for hydrogen storage. 

Once it was found that solvents alone would not work, different types of oils were used in 

differing ratios with solvents to form a binding solution that would also disperse the 

carbons evenly. The ratios tested were 1:0, 1:1, 3:1, and 1:3 ratios of mineral oil to 

hexane and the same ratios of sunflower oil to hexane. The differing viscosities allowed 

for process comparison. They were then qualitatively analyzed for their ability to form an 

even layer that settled appropriately on the membrane. 

 

8. TECHNOECONOMIC ANALYSIS 

The effect of carbon production on industrial bioprocessing was considered by 

analyzing costs of materials and energy into carbon production in addition to profits 

made from selling the carbons at market prices. DDG amounts were varied to see the 

effect of throughput on profit. Prices for materials were compiled using the Louisville 

Water Company, Alibaba, and the USDA as references. Energy prices were based on 

industrial values for the Louisville area. Total residual fiber into the system for carbon 

production alone ends up being approximately 1/5 of the total input as the fiber rich 

fraction is approximately 35% of the material, and approximately 40% of that fiber is 

removed in the form of xylose during the hydrolysis process. Parameters for operation 

included temperatures and pressures as described in the carbonization procedure, 350 

operating days at 22 hours per day, and three shifts with one operator each at $100,000 

per operator per year for salary and benefits. Initial capital equipment cost was not 
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included in these calculations. Additional parameters including the individual prices of 

the materials, heat capacities used, and calculations performed can be found in Appendix 

A. Some special considerations include the use of the self-sustaining pyrolysis 

temperature. When it comes to biomass pyrolysis, there is a specific temperature at which 

the exothermic nature of the reaction is able to sustain the heating of the material to that 

temperature. 600 °C is the lower end of a range described by Idris et. al [2016] for the 

maximum self-sustaining pyrolysis temperature. Therefore, energy calculations were 

based on the heat input required to heat the volume of nitrogen in the system above the 

600 °C mark and the initial start-up for 10 tonnes of material. Recovery of materials such 

as the nitrogen gas and pyrolysis oil were considered. The pyrolysis oil was assumed to 

heat the dryers necessary for the processing.   
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IV. RESULTS AND DISCUSSION 

 

A. GENERAL DISCUSSION AND OVERVIEW 

 

Up until this point, biomasses from a variety of resources have been used to create 

activated carbons, but never in the context of a biorefinery operation. Creating value-

added co-products from a biorefinery makes an integrated system that is both sustainable 

and profitable for the parent company. Therefore, the experiments here were completed 

not only to create a useful energy storage product from sustainable resources, but also to 

denote the effects of biorefinery processes on the creation of that co-product. Literature 

indicates that residual biomasses are typically converted to activated carbon materials 

directly if they are indeed taken advantage of in this manner. On the other hand, biofuels 

manufacturers producing ethanol and plant sugar streams typically burn their residual 

biomass streams for process heat or sell them back to farmers for animal feed. There is no 

indication in the literature that these processes have been combined previously to create 

an integrated bio-refinery that could further environmentally-conscious production of 

energy storage materials while improving biorefinery economics. Producing carbons with 

this material can give insight into the effect of hydrolysis and other biofuel treatments on 

the precursor material and its carbon-production potential. This information can then be 

used to assess different biomasses for their integrated bio-refinery potential.  

A diagram delineating the conversion of biomass waste streams to carbons is 

presented in Figure 4.1. The simple flow diagrams compare the processing as is typically 

done in industry currently to that of an integrated biorefinery.  
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(a) 

 

(b) 

FIGURE 4.1 - A comparison of standard process steps in the (a) direct conversion of 

biomass to high surface area carbon as compared to (b) conversion to activated carbon as 

part of a C5 integrated biorefinery process. 

 

 The benefits of this integrated system can result in a plethora of different products 

and sources of revenue, in addition to the biofuels produced. The only limit to the variety 

of products is the type of biomass used. Figure 4.1 (b) presents a C5 refinery using DDG, 
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however, this integrated refinery concept for the creation of multiple co-products could 

be applied to any biomass that is available. One simply must decide which products they 

would like to produce from the biomass available to them. This makes the concept 

transferrable to any geographic location and therefore applicable in many different 

agricultural processing plants. In the case presented here, the value-added co-products are 

meant to assist with costs associated with bioethanol production and beverage alcohol 

distillation by creating revenue streams from animal feed, activated carbon, and biofuels. 

The focus of this thesis looks at the production of the activated carbons, the 

characterization of the fibers pre and post-activation, the use of these carbons in energy 

storage applications, and their potential revenue based on material balances, energy 

balances, and equipment costs. 

  

B. MATERIAL CHARACTERIZATION 

 

1. Fiber Characterization 

Fonseca et. al [2014] described the effects of hydrolysis on DDG fibers in their 

discussion of the C-5 biorefinery concept. In this work, to corroborate as well as explore 

hydrolysis effects on materials other than DDG, SEM imaging of the biomass fibers both 

pre and post-hydrolysis was performed to show the qualitative differences between pre 

and post-hydrolysis fibers for both DDG and soy. These images are shown in Figure 4.2 
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(a)  (b) 

(c)  (d) 

FIGURE 4.2 - SEM images showing differences in surface structure between (a) pre and 

(b) post-hydrolysis DDG fibers and (c) pre and (d) post-hydrolysis soy hulls. 

 

In the case of both the DDG and the soy, there are dramatic differences in surface 

morphology. The pre-hydrolysis fibers (Figure 4.2 a and c) both show relatively flat, 

smooth surfaces with the DDG looking like pressed sheets of paper and the soy forming 

an amorphous, fluid structure. The post-hydrolysis fibers for both biomass types showed 

an increased surface structure. This surface structure can best be described in both the 

DDG and the soy as a dehydrated form of the initial fiber. The fiber appears to shrivel 

and gain texture along cell boundaries as denoted by the organized ridges in the images. 

This is due to the acid activation during the hydrolysis process and removal of the 
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hemicellulose and other structural compounds from the original fiber. This increase in 

surface texture allowed us to predict, based on literature analysis, that the carbons made 

from post-hydrolysis fibers would have higher surface areas than the carbons made from 

the pre-hydrolysis fibers. 

 

2. BET Theory 

To accurately measure the surface areas of different solids, the Brunauer-Emmett-

Teller theory has become the standard for technical instruments to do so. While BET is 

the most utilized theory by technical instruments, it is originally derived from the 

Langmuir surface theory. Solids have a lattice structure, like any crystal, and therefore 

have definite spaces to which gases can adsorb [Langmuir, 1918]. Langmuir surface area 

is then based on the adsorption of atoms on the surfaces of solids. The model is 

kinetically derived, using the rates of adsorption and desorption for each individual space 

on the surface. A fraction of the rates can then be derived, allowing for prediction of the 

fraction of spaces covered at differing concentrations. This is directly related to pressure 

as the system is assumed to be ideal. To measure surface area, the volume of gas 

adsorbed at different relative pressures can be used along with the contact angle of the 

adsorbed gas to estimate a surface area. In the case of Langmuir surface areas, this only 

considers the volume necessary to form a monolayer on the solid. In the case of BET 

surface area, the model allows for adsorption to occur beyond the simple monolayer 

[Brunauer, 1938], taking into consideration the fact that adsorption occurs in multiple 

layers with gas molecules building on each other. Thus, BET surface area would be more 

accurate for surfaces on which multi-layer adsorption occurs. However, it should be 
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noted that solids such as activated carbons can have advanced adsorption due to 

micropores. This indicates that BET surface areas could be an overestimation, but are still 

included in this work for comparative purposes [Rouquerol, 2007]. Equation 5-1 presents 

the BET equation as derived by Brunauer, Emmett, and Teller.   
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In Equation 4, P is the equilibrium pressure, Po is the saturation pressure of the gas at 

that specific temperature (77 K in the case of Nitrogen), vm is the volume of the 

monolayer, and c is described in Equation 5. 

 

 

𝑐 = exp⁡(
𝐸1−𝐸𝐿

𝑅𝑇
)  

 

 

In the formula for the constant, E1 is the heat of adsorption for the first layer, and EL 

represents the heats of adsorption for the subsequent layers that deposit on top of the first. 

This can be re-arranged to yield isotherms that can indicate the porosity of materials 

based on the shapes of the curves. Surface area analyzers work by analyzing the amount 

of gas that is required to reach specific equilibrium pressure points along a spectrum from 

(4) 

(5) 
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P/Po=0 to P/Po=1, or the saturation pressure. The machine, knowing the volume that is 

required to reach those equilibrium pressures, can then plot the volume adsorbed at those 

pressures, and theories regarding the isotherm shape can then be applied to the resulting 

data. From these isotherms, empirical models can fit the data and provide surface areas of 

the solid. This is done by an integration of the surface knowing the volume of gas added 

and the mass of the material in the system. 

 

3. Activating Agent Studies 

KOH activation is a complex process that involves multiple reactions taking place 

within and on the surface of the biomass structure. The process also involves 

characteristics of physical activation which including the expansion of the material via 

gas release during heating. This results in three main explanations for change in the 

structure of the material [Lillo-Rodenas, 2003]. Surface area increases due to etching of 

the surface by the various redox reactions that occur between the potassium compounds 

and the increasingly free oxygen atoms available in the fiber structure. Water vapor and 

carbon dioxide result from surface reactions and decomposition of material at high 

temperatures. These vapors increase the pore volume and develop the porosity in a form 

of physical activation. Finally, the material is expanded due to metallic potassium 

layering itself into the structure of the fiber and then is removed during the washing 

process. The resulting material is a less dense, expanded carbon structure with a higher 

surface area that is dependent mainly on the physical structure of the precursor [Lillo-

Rodenas, 2003].   
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To determine appropriate concentrations of KOH to use in the experiments, 

preliminary work was performed with DDG residual fiber to give a data profile that 

demonstrated the effect of concentration of KOH and fluffing of fibers on both surface 

area and pore size. Samples were fluffed to aerate and ensure maximum surface area. 

Four samples were treated and carbonized in the manner described in the procedures at 

KOH to fiber mass ratios of 0:1 (S1), 0.17:1 (S2), 0.17:1 – fluffed (S3), and 1:1 (S4). As 

expected and described in the literature [Frackowiak, 2001], surface area and pore 

volume increased with increased KOH concentration (Table III), while pore distribution 

skewed toward the micropore range with increasing KOH concentration as indicated by 

the micropore volume increase. The non-activated sample shows little to no adsorption in 

any range, representing an almost complete absence of pores. The two carbons activated 

with 0.17:1 mass ratio of KOH both show curves typical of a material with exposed 

micropores where the majority surface area is within those pores. The 1:1 mass ratio of 

KOH yields a curve typical of carbons with mainly mesopores with microporous regions 

in the 1.5-10 nm range [Frackowiak, 2001]. These values are supported by the shape of 

the isotherms presented in Figure 4.3. The isotherms for the control and 0.17:1 ratio 

carbons are mainly linear, showing monolayer development across the entire pressure 

spectrum. This indicates that there is little internal volume; the majority is external. On 

the other hand, the 1:1 sample shows the standard shape of a Type II and Type IV 

isotherm (IUPAC) which indicates a mesoporous/microporous structure, ideal for energy 

storage devices.     

 

 



53 

 

TABLE III  

IMPACT OF KOH CONCENTRATION ON PORE SIZE AND BET SURFACE AREA 

 

Average Pore 

Width (nm) 

BET Surface Area 

(m2/g) 

t-Plot Micropore 

Volume (cm3/g) 

Control DDG – S1 8.39 0.47 0.0004 

0.17:1 KOH to 

DDG – S2 
2.11 774.34 0.342 

0.17:1 KOH to 

DDG Blended – S3 
2.08 744.07 0.329 

1:1 Mass Ratio 

KOH to DDG – S4 
2.92 1705.575 0.233 

 

 

FIGURE 4.3 - Adsorption isotherms from KOH activated carbon samples showing the 

effect of activation agent concentration on Nitrogen uptake at 77 K 

 

Once an optimum KOH to biomass ratio was found, the experiments were repeated 

on both pre and post-hydrolysis fibers.  
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4. Surface Area Comparisons of Carbons form Pre and Post-Hydrolysis Biomasses 

The surface areas of activated carbons produced from pre and post hydrolysis 

fibers are compared in Table 5-2.  The corresponding isotherms are given in Figure 5-4.  

KOH to fiber ratio of 1:1 was used as the activation recipe. 

 

TABLE IV  

SURFACE AREA AND PORE WIDTH DATA COMPARING CARBONS MADE 

FROM PRE AND POST-HYDROLYSIS DDG FIBERS AND SOY HULLS AND 

CONTROL CARBON MADE FROM WOOD (MWV) 

Sample 

(1:1 KOH to 

Grains) 

BET Surface Area 

(m2/g) 

Average Pore 

Width (nm) 

t-Plot Micropore 

Volume (cm3/g) 

DDG: Pre-

Hydrolysis 
10.44 9.533 n/a 

DDG: Post-

Hydrolysis 
1705.58 2.922 0.233 

Soy: Pre-

Hydrolysis 
689.03 2.652 0.213 

Soy: Post-

Hydrolysis 
1316.34 2.202 0.392 

Control: MWV 1226.71 3.620 0.217 

 

 

Pre-hydrolysis fibers were carbonized with KOH mixture, hydrolyzed fibers were run 

as described in the experimental section before being carbonized, and the control sample 

comes from an industrial activation process. 
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As shown in Table IV, the surface areas of carbonized fibers from pre-hydrolysis 

DDG and soy were drastically different.  The AC from pre-hydrolysis DDG is only 10 

m2/g compared to 689 m2/g for soy.  However, the surface area of AC from post-

hydrolysis DDG increased dramatically to about 1700 m2/g compared to a moderate 

value of about 1300 m2/g for post-hydrolysis soy.  This discrepancy is most likely due to 

the less dramatic change in surface structures of the soy after it goes through the 

hydrolysis process (Figure 4.2). The pre-hydrolysis soy already has an intricate and 

defined surface structure, which explains the relatively high surface area of 600 m2/g 

after carbonization.  The change in surface structure of soy seems to only provide enough 

surface change to achieve 1300 m2/g post hydrolysis carbons.  

The corn fiber presents a very different surface structure. Corn fiber in its natural 

state has a tough protective layer that is selectively hydrophobic. As shown in Figure 4.2 

(a), this provides a smooth structure made up of small, rectangular, interlocking units that 

provide a barrier from outside elements in nature [Campbell, 2013]. This can prevent 

development of surface area and, therefore, prevent production of higher surface area 

carbons if the fiber alone is used as a precursor. Figure 4.2 (b) is an image of post-

hydrolysis fiber showing a highly etched surface. The pericarp, being removed, leaves 

behind cellular block structures with obvious depth. This provides a very small surface 

area of .7844 m2/g but high potential to increase due to its jagged surface.  The soy fibers 

present pentagonal cells that form a honeycomb-like structure. This structure and the 

observed lack of an outer protective coating like the DDG would explain the larger 

surface area value for carbonized, pre-hydrolysis soy compared to the DDG.  

 



56 

 

 

FIGURE 4.4 - Adsorption isotherms comparing quantity of Nitrogen adsorbed with each 

carbon sample to the relative pressure at 77 K 

 

The isotherms in Figure 4.4 follow noticeable increases in the slopes of the beginning 

of the isotherms as the relative pressure increases. In the case of the materials with higher 

overall surface areas, the isotherms would follow Type II and Type IV isotherms denoted 

by IUPAC [Thommes, 2015]. This curve is defined as an S-curve with increase in the 

initial range of the relative pressure indicating the presence of micropores. This is 

prevalent in the post-hydrolysis DDG, post-hydrolysis soy, and the MWV control. This 

initial slope is followed by a relatively flat portion that is indicative of the formation of 

the monolayer with a final increase as the equilibrium pressure approaches the saturated 

pressure. This increase is associated with the onset of multi-layer adsorption. The 

hysteresis loop that is present for the DDG and MWV sample indicates capillary 

condensation, indicating a variety of mesopores that cause the nitrogen gas to condense 

into a liquid state due to the constriction of the molecules and the saturation of the gas. 
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The lack of hysteresis in the soy could indicate that the surface area described by it is 

either completely microporous or external. These isotherms predict that both the DDG 

and soy carbons could be used effectively in energy storage devices, but the soy would 

perhaps be more useful as a conductive material whereas the DDG could be more 

effective at physically storing charge. 

  As demonstrated by the data, there was a dramatic increase in the surface area of 

the carbons produced from pre and post-hydrolysis fibers. This is expected knowing that 

the chemical activation process is dependent on the surface structure of the precursor. 

The fibers that had variant and fibrous surface defects provided a good medium for KOH 

to react with the surface. Both residual fibers from DDG and soy were able to produce 

carbons that exceeded 1000 m2/g in terms of surface area as well as maintained an 

average pore size of around 2 nm. This shows that both could be used as a viable fiber 

starting material for AC. More importantly, it opens the door for a wider variety of 

agricultural biomasses to be implemented in activated carbon production. By pre-

processing the fibers, etching the surface while gaining a valuable co-product in xylose, 

biomasses similar to corn and soy that are unable to produce high surface area carbons 

without modification can now be used to create an additional, highly valuable co-product 

that would otherwise not be possible.  

 

5. TEM Studies 

 In order to explore the physical and chemical structure of the activated carbons, 

transmission electron microscopy (TEM), and Raman techniques were used to look at the 

arrangement of the carbon and the types of bonds between the carbons. TEM imaging 
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(Figure 4.5) and corresponding diffraction patterns (Figure 4.6) for carbons derived from 

pre and post-hydrolysis samples are typical of carbon materials. Figure 4.5 shows 

variations in plate structures between the pre and post-hydrolysis DDG and soy.  

 

    

 

FIGURE 4.5 - TEM images showing organization of the carbon structures on the nano-

scale. (a) Carbon from pre-hydrolysis DDG fiber, (b) carbon from post-hydrolysis DDG 

fiber, (c) carbon from pre-hydrolysis soy hulls, (d) carbon from post-hydrolysis soy hulls 
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FIGURE 4.6 - Diffraction patterns of the carbon samples. (a) Carbon from pre-hydrolysis 

DDG fiber, (b) carbon from post-hydrolysis DDG fiber, (c) carbon from pre-hydrolysis 

soy hulls, (d) carbon from post-hydrolysis soy hulls 

 

Both of the pre-hydrolysis samples (Figure 4.5 a and c) show similar graphitic planes, 

as seen toward the edges of the image subject. Both contain larger crystalline sections 

and very little organization in the main sheets of the material. Both also showed two 

circles radiating from the material source (as shown in Figure 4.6 a and c) – a pattern 

expected for carbon materials. The soy, however, show a little more exfoliation than the 

DDG. The post-hydrolysis samples both show fewer crystalline components implying a 

more exfoliated surface than the pre-hydrolysis samples (confirmation of BET surface 

area data). Yet, the soy still shows some non-exfoliated portions that are defined by 

strong organizational lines. This is in comparison to the DDG sample, which appears to 

be almost completely exfoliated. Both contain quite a few layers of graphitic material but 

would still be considered amorphous. Diffraction patterns also showed typical carbon 

characteristics (Figure 4.6 b and d). While both pre and post-hydrolysis carbons showed 
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similar graphitic qualities, the higher level of exfoliation for post-hydrolysis samples 

make them better candidates in energy storage applications. 

 

6. Chemical Composition Studies 

Single line EDAX can provide chemical composition of materials. This composition 

was analyzed to see exactly how pure the material was in terms of its elemental 

composition. Figure 4.7 shows the resulting graphs and areas that were analyzed. 

 

 

FIGURE 4.7 - Single line EDAX analysis of a) carbons made from pre-hydrolysis DDG, 

b) carbons made from post-hydrolysis DDG, c) carbons made from pre-hydrolysis soy 

hulls, and d) carbons made from post-hydrolysis soy hulls 
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As can be seen in the graphical counts provided underneath the images of the various 

carbons, elemental carbon dominates in all four samples ranging from 60-93% of the total 

atom counts. Oxygen and potassium were the next highest counts for the DDG, which 

can be explained by the activating agent used. This could be indicative of the washing 

procedure not being thorough enough and leaving behind residual material or of 

functional groups that result from the redox reactions that take place on the surface. 

Copper and calcium appear in the soy hulls. Calcium is understandable due to the higher 

levels of calcium found naturally in the soy hulls. The presence of copper is due to the 

mount on which the material is placed in the microscope. The presence of the calcium 

elements is minimal compared to the carbon, oxygen, and potassium atoms present in the 

samples. From this data, it can be gathered that there would possibly be some interference 

in charge transfer if the oxygen atoms were indeed part of functional groups.  
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7. Raman Spectroscopy Studies 

 Raman spectra were then obtained to help determine the structure and to compare the 

spectra to samples of commercially available activated carbons.  

 

FIGURE 4.8 - Raman spectra of DDG, soy, and wood (control) carbon samples to 

compare organization of the carbon structure. (a) shows the entire spectrum while (b) 

focuses on the range containing the D and G peaks associated with carbonaceous 

materials 

 

As shown in Figure 4.8 (a), all three of the spectra show traditional peaks found in 

most carbon results from literature. When discussing carbon materials, these spectra are 

divided into 3 main peaks; The G peak, which is found at 1580 cm-1 in disordered carbons 

[Dresselhaus, 2002], the D peak at 1350 cm-1, and the 2D peak which represents an 

overtone of the vibration from the D peak at around 2690 cm-1 [Dresselhaus, 2002]. The 

presence of a D peak in all three samples and a G peak generally represent two different 

characteristics of the carbon structure. The D band representing bonds of disordered 

carbons, and the G band is representative of graphitic bonds. Figure 4.8 (b) shows the D 
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and G bands with Lorentzian curve fits to help remove noise from the data. The intensity 

ratio of the D and G bands calculated for all three samples were 0.21, 0.86, 1.25 for 

wood, DDG, and soy derived ACs respectively. The intensity ratio is related to the 

structure of carbon materials and is calculated using the peak heights of the D and G 

bands (R=ID/IG). The lower the intensity ratio, the lower the disorder of the materials. 

This would indicate that the MWV control sample has the lowest amount of disorder, 

followed by the DDG, and then the soy. For the soy derived sample, presence of a few 

layers of graphene is evident from the appearance of a strong 2D peak, but the layer 

stacking becomes imperfect causing a high intensity ratio, R. The structural parameter, La 

of the fibers is related to the intensity ratio, R as La=C/R, where C is a constant. From our 

Raman results it can be concluded that La is largest for the wood derived sample and 

smallest for soy derived samples. The D and G peaks confirm the carbonaceous nature of 

the carbons from soy, DDG, and wood and their applicability in energy storage 

applications. 

 

C. APPLICATIONS OF CARBONS IN RENEWABLE ENERGY DEVICES 

 

1. Electrochemical Storage in Supercapacitors 

Electrochemical measurements were conducted for the use of ACs in a supercapacitor 

structure. Figure 4.9 (a) shows preliminary results of supercapacitor characteristics for 

both electrodes comprising high surface area AC (produced with 1:1 KOH activation) as 

the active material when the full cell is charged and discharged between 0 and 3.5 V at 

the current density of 500 mA/g.  The electrolyte was 1.5 M TEAPF6-PC 

(Tetraethylammonium hexafluorophosphate in propylene carbonate). 
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FIGURE 4.9 - Electrochemical performance of ACF samples measured in a 2032 coin-

cell configuration system using 1.5 M TEAPF6-PC (Tetraethylammonium 

hexafluorophosphate in propylene carbonate) solution as the electrolyte. (a) Galvanostatic 

charge–discharge curves for sample S4 at 500 mA/g current density during first 6 cycles 

(b) Comparison of cycling performance of various ACF samples at current of 500 mA/g 

(c) capacitance vs. surface area 

 

Near-linear voltage-time relation (discharge) is characteristic of an electric double 

layer capacitance. There is a slight distortion of the curves presumably caused by the 

pseudocapacitance of functional-groups. The discharge curve has a much steeper slope 

than the charge curve, meaning that the discharge occurs over a much shorter time. It 

must follow then that the power that the supercapacitor can provide would be greater than 
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supercapacitors with longer discharge times, as power is a ratio of energy to time. This 

carbon material can also charge and discharge at higher voltages, about 3.5 volts, which 

is higher than many standard devices. This also increases the power that the 

supercapacitor can provide as the power is proportional to the voltage squared (Equation 

6).  

 

𝑃 =

1
2 (𝐶𝑉

2)

∆𝑡
 

 

 

The specific capacitance of the electrode was calculated by the equation, 

 

Vm

tI
C




  

 

where I, t, m, and V are the applied current, discharge time, mass of the active 

material, and the voltage change, respectively. First cycle capacity was found to be ~ 100 

F/g.  Fig. 4.9 (b) compares the supercapacitor performance of the four samples produced 

with varying ratios of KOH (Table III) under same current density (500 mA/g) including 

the non-activated sample as the control (S1). The cycling performance of the AC 

increased dramatically as the surface area increased from S1 to S4. However, it cannot be 

only surface area that affects the capacitance as S3 (~740 m2/g) has a larger integrated 

charge/discharge area than S4 (~1700 m2/g). The capacitance value is seen to range from 

4 F/g to 100 F/g. Fig. 4.9 (c) shows that the capacitance varied linearly with the 

(7) 

(6) 
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concentration of KOH, showing a correlation between the two. This variation of 

capacitance may stem from the fact that it has varying pore sizes compared to the 

triethylamine cation, TEA+ and hexafluorophosphate anion, PF6
- thereby affecting the 

effective accessibility of electrode/electrolyte interface areas. When the pores and the 

ions are able to match effectively, this can allow full utilization to form the double layer 

and contribute to the higher capacity value. Carbons that have high surface areas but low 

capacitances are typically found to be mesoporous materials, which yields poor matching 

between ions and pores in the system. Therefore, it is imperative to properly tune the pore 

size to match the ion size for high capacitances. 

 

2. Carbon Electrode Perovskite Solar Cells 

 The carbons were used to construct perovskite solar cells in the manner described 

by Mei et. al (2014). During this process, sintering of the carbon electrodes occurs to 

solidify the layer onto the structure in addition to removing liquid that could disrupt the 

flow of electrons through the system. As a test, the carbons were screen printed onto FTO 

glass and then sintered at the required temperatures to see if they could hold up to the 

processing effectively. Upon removal of the carbon-coated glass from the sintering 

plates, it was found that the layers were not structurally sound and much of the material 

had burned off at the elevated temperatures. In the case of pure activated carbon, heat 

cannot destroy or burn activated carbons because of its stable form. The only explanation 

for this result is that there are functional groups on the surfaces that allow for oxidation of 

the material. These results would therefore seem to corroborate the pseudo capacitance 

denoted by the curvilinear charge/discharge graphs discussed in the previous section.  
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 In an attempt to use the carbons in other parts of the device, the paste for the 

zirconium layer was made with approximately 10% by mass of the carbons. This was 

then incorporated into the standard construction of the device. Upon sintering of the 

zirconium layer, it was observed that, as in the electrode layer, the carbon in the 

zirconium paste also burned off during the sintering process. The device was completed 

and performance was compared to a standard device without carbon in the zirconium 

layer. Preliminary results showed that the device that had the carbon in the zirconium 

layer had higher photo-conversion efficiencies than the standard cells, increasing from 9-

12%. The explanation for this centers around the removal of the carbon and the resulting 

structure that was left behind when those carbons were burned off. In theory, the 

zirconium layer has a higher surface area due to void space created when the carbons are 

burned off. This could allow for more direct contact and penetration of the perovskite 

through the carbon and into the zirconium layer. This direct connection of the light 

sensitive material to a conducting transport layer could explain the higher efficiencies. 

However, much more research would need to be performed to see if this hypothesis were 

true. 

 To see if the functional groups could be removed, they were washed in varying 

concentrations of inorganic acids and sintered in a similar manner to perovskite devices 

made previously. The differences in the masses of carbon pastes from a control sample 

and carbons washed with inorganic acids were measured before and after sintering. 

Percentage mass lost helped give a metric for how effective the cleaning procedures 

worked. From the preliminary data presented in Table V, cleaning with acids resulted in a 

lower mass loss than just washing with DI water at all temperatures tested. In these trials, 
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changing the sintering temperatures also provided some insight into the temperature 

effect on mass loss. Both sulfuric and nitric acid cleanings led to dramatic decreases in 

mass loss at all sintering temperatures. The nitric acid was the most effective at reducing 

mass losses to only 40 and 35 % (Table 5-3) at the actual sintering temperatures required 

for these specific devices. If the hypothesis about functional groups causing the burning 

of the carbons is true, then this would indicate that the acids removed these volatiles and 

that the resulting material could sinter without any issues and be used as intended in 

perovskite solar cell devices.    

 

TABLE V 

 TABLE INDICATING THE PERCENTAGE CHANGES IN MASS BETWEEN 

CARBONS CLEANED WITH ACIDS AND CARBONS CLEANED WITH DI 

WATER 

Acid Type Temperature 

˚C 

Initial Mass 

(g) 

Mass with Paste 

(g) 

Post-Sintering 

(g) 

% Burned 

Off 

DI Water 300 1.484 1.505 1.486 90 

Nitric Acid  1.53 1.537 1.532 71 

Sulfuric Acid  1.628 1.636 1.63 75 

DI Water 350 1.594 1.598 1.595 75 

Nitric Acid  1.523 1.528 1.526 40 

Sulfuric Acid  1.535 1.541 1.537 67 

DI Water 400 1.584 1.589 1.584 100 

Nitric Acid  1.533 1.55 1.544 35 

Sulfuric Acid  1.527 1.532 1.528 80 

 

This mass change is assumed to be mainly due to loss of moisture and carbon 

material. The larger the percentage difference, the less effective the cleaning procedure at 

removing oxidative groups. 
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3. Hydrogen Storage Applications 

 As described in the literature, solid-state hydrogen storage would be an effective 

way to use hydrogen in vehicles without the need to compress it to high pressures or use 

it as a liquid at extremely low temperatures. The Conn Center is developing a modular 

system that would involve depositing activated carbons onto a membrane and then rolling 

the membrane into a spiral shape. Gas would then flow through the center of the roll and 

would radiate out to fill the voids in the carbon. A variety of dispersion techniques were 

used to determine qualitatively if the deposition of carbons onto a membrane was 

possible. Table VI shows the changing ratios of oil to hexane that were used as the liquid 

in the carbon suspension. It then shows the correlating descriptions of the layers formed 

with each ratio of oil to hexane. 
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TABLE VI  

QUALITATIVE CARBON LAYER FORMATION USING VARYING RATIOS OF 

OIL AND HEXANE TO DISPERSE CARBONS EFFICIENTLY ONTO A PTFE 

MEMBRANE 

 

Ratio 

Oil:Hexane 

by Mass 
   

Oil Type 1:0 3:1 1:1 1:3 

Mineral Oil 

Extremely 

slow filtration 

process with a 

solid carbon 

layer. 

Liquid goes through 

membrane slowly but 

a more solid layer 

forms. Could be good 

for modular storage if 

it has the surface area. 

Carrier solvent filters 

through quickly and 

leaves behind a 

brittle layer that 

doesn't stick well to 

the membrane. 

Precise layer 

is formed 

with minimal 

processing 

time. 

Sunflower 

Oil 

Extremely 

slow filtration 

process with a 

solid carbon 

layer. 

Liquid goes through 

membrane slowly, but 

faster than the 

mineral oil. A solid 

layer forms. Could be 

good for modular 

storage if it has the 

surface area. 

Slower solvent 

filtration compared to 

the mineral oil, also 

leaves a brittle 

carbon layer. 

Precise layer 

is formed 

with minimal 

processing 

time. 

 

 As expected, layers made with higher ratios of oil to hexanes resulted in slower 

processing, but layers that bound well together. This is the expected result of higher 

viscosity solutions that have minimal evaporation. In the case of the 3:1 ratios, the 

solution moves through the membrane more quickly as the solution is thinned by the 

added hexane. The sunflower oil solution passes through more quickly due to its lower 

viscosity and both form a layer that could be stable.  In the 1:1 samples, the layer left 

behind becomes brittle, making it difficult to justify using for a storage module. The layer 

was not flexible enough to deal with membrane bending.  Counter-intuitively, the mineral 

oil suspension filtered faster than the sunflower oil suspension with this ratio. This is 
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most likely explained by the volume of material used as the ratios were maintained, but 

differing overall masses could have affected the filtration. Finally, the 1:3 ratio 

suspensions formed precise layers quickly, and would probably be the best to experiment 

with going forward. Ultimately, the use of a specific ratio would be dependent on the 

surface area of the final module. Intuitively, the pure oil layers would clog pores and 

allow for little if any storage of gas. This surface area would slowly increase as the 

hexane amount increased. However, layers that break are unable to be measured. The best 

option would be to find the ideal ratio, then measure the surface area to see if it is 

justifiable for use in a hydrogen storage module. 

  

D. TECHNO-ECONOMIC ANALYSIS OF CARBONS FROM DDG 

 

Techno-Economic analysis was performed to demonstrate some preliminary revenue 

calculations from activated carbon production. In this particular case, the focus is on the 

carbon activation process specifically, not the biorefinery as a whole, in order to isolate it 

and make it transferrable from process to process.  Table VII shows the profits obtained 

via the production of activated carbons for energy storage uses based on an industry price 

of $4000/tonne.  
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TABLE VII 

 REVENUES FROM CARBON PRODUCTION FOR ENERGY STORAGE DEVICES 

FROM DDG 

DDG 

Entering 

(tonnes/yr) 

Residual Fiber 

(tonnes/yr) 

Profit 

($/yr) 

25000 5000 3770498.09 

50000 10000 8155857.64 

75000 15000 12541217.19 

100000 20000 16926576.74 

125000 25000 21311936.29 

150000 30000 25697295.84 

175000 35000 30082655.39 

200000 40000 34468014.94 

225000 45000 38853374.49 

250000 50000 43238734.04 

275000 55000 47624093.59 

300000 60000 52009453.14 

325000 65000 56394812.69 

350000 70000 60780172.23 

375000 75000 65165531.78 

400000 80000 69550891.33 

425000 85000 73936250.88 

450000 90000 78321610.43 

475000 95000 82706969.98 

500000 100000 87092329.53 

 

An increase in throughput of DDG fiber leads to a linear increase in revenue. In 

each of these cases, that revenue would ideally be used to assist with costs associated 

with the agricultural process to which it would be attached. Depending on the process 

specified, the range of revenue presented above could be used as a good estimate of 

the potential revenues for agricultural processing and biorefinery. For example, the 

initial range between 2,500 to 1 million tonnes of DDG/yr would probably be more 



73 

 

apt for beverage alcohol distillation. The higher amounts could easily be satisfied by 

bioethanol plants in the Midwest. Looking at the lowest initial DDG value, the impact 

can be broken down to see the effects on processing costs at an hourly basis. 

Assuming 50 operating weeks and 22 operating hours per day, the revenue provided 

from the carbons made from 25000 tonnes of DDG per year is approximately $500 

per hour that could go toward lowering the price of the units of material being made. 

The volume of units produced per hour could then be used to calculate the price effect 

per unit, lowering the cost of a gallon of bioethanol or a bottle of bourbon by that 

amount.  
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V. CONCLUSION 

 

 The main objective presented in this work was to create a value-added co-product 

from residual fiber in a C-5 biorefinery process. At a processing temperature of 950 °C, 

increases in activating agent concentration (KOH) led to increased surface areas. 0:1, 

0.17:1, and 1:1 mass ratios of KOH to DDG fiber yielded carbons that had BET surface 

areas ranging from 0.47 m2/g to 1700 m2/g. The pore widths from these samples varied 

from 8.39 nm to 2.08 nm with the addition of KOH. These surface area and pore width 

changes correlated positively with the amount of KOH present in the sample, confirming 

literature data.  

 SEM imaging of the pre and post-hydrolysis fibers showed that there was a 

dramatic surface difference when the C-5 sugars were removed. The resulting carbons 

made from these fibers then showed that the hydrolysis process had a major impact on 

the surface areas of the resulting carbons. Carbons made from pre-hydrolysis DDG only 

reached BET surface areas of 10.44 m2/g while carbons made from post-hydrolysis DDG 

reached as high as 1705 m2/g. The surface areas of the carbons made from pre and post-

hydrolysis soy hulls increased from 689 m2/g to 1316 m2/g. In terms of the pore sizes, pre 

and post-hydrolysis DDG had average pore widths of 9.5 and 2.9 nm respectively while 

pre and post-hydrolysis soy hulls had average pore widths of 2.7 and 2.2 nm respectively. 

These values were improvements over current wood-based industrial carbons.  

 TEM imaging showed that the carbons made from pre-hydrolysis fibers, while 

graphitic in nature, had large crystalline sections and showed lesser organization than the 

post-hydrolysis samples. The diffraction patterns of all four samples radiated out from the 
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material in two circular bands which is expected for carbonaceous materials. Single line 

EDAX showed that carbon was the main constituent of all of the materials with slight 

amounts of oxygen and potassium from the activating agent.  

  In supercapacitors, capacitances increased from 4 F/g to 100 F/g with increasing 

surface area, where 100 F/g is considered a relatively good capacitance for smaller 

electronic devices. Cycling of the samples showed that cycling efficiency increased with 

increasing surface area. However, the data also indicated that this efficiency was not 

directly correlated to surface area and could have more to do with pore size or another 

parameter.  

 Screen-printed layers of carbon that would be used in perovskite devices were 

found to be unstable and burned upon sintering. This quality was then used in the 

zirconium layer of a perovskite device to increase the surface area of said layer. This 

modification increased device efficiency from 9-12% compared to a control. Inorganic 

acids were then used as cleaning solutions, and heat testing on the carbon samples 

showed that cleaning with acids improved heat stability at varying temperatures. Nitric 

acid was found to be the most effective washing agent as the carbons washed with it lost 

only 35% total mass at 400 °C compared to 80% for the carbons washed with sulfuric 

acid and 100% for the carbons washed with DI water alone. 

 A ratio of 1:3 mass of oil to mass of hexane could quickly create an even layer for 

hydrogen storage modules. An increase in oil mass led to slow processing time.  

Techno-economic analysis showed (without initial capital costs) that profits 

ranged from $3.8 million for 5000 tonnes of residual DDG fiber processed annually to 
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$87 million for 100000 tonnes of residual DDG processed annually. This savings could 

directly drive down processing costs. 
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VI. RECOMMENDATIONS 

 

 Optimization of the carbonization procedure in terms of temperature and length of 

time could help improve economics; temperatures as low as 500 °C can be used for 

carbonization purposes with heating times as short as 30 minutes [Wang, 2012]. Some 

time and temperature tests could reduce the overall energy cost, but could also sacrifice 

carbon quality. Cleaning the carbons in an efficient manner or producing carbons in such 

a manner that removes any functional groups that impact the stability of the material 

would be of benefit as well. Some methods are already being explored, including the 

washing of the carbons with an acid solution. Another method to consider would be 

plasma processing, using low energy plasma to remove surface groups. In terms of 

characterization, more detail could be obtained by investigating more biomass species 

that are prevalent in different geographical areas. In theory, the implementation of this 

biorefinery concept before carbonization could prove useful on many forms of biomass 

with high hemicellulose content. Other characterization, such as crystallography or x-ray 

diffraction, could quantify the structure of the carbons more effectively. From these 

methods, the crystal structure could reveal whether the carbons form more of a 3-D or 2-

D structure. This information can then provide better matching of the materials with their 

applications and allow for better tuning of the procedure depending on eventual use. In 

terms of the applications, use of devices that use supercapacitors would be a logical next 

step to the supercapacitor data obtained in these experiments. Hybrid vehicles, consumer 

electronics, and military satellite technology are just a few of the many applications for 

supercapacitors. Comparison to current technology in these applications could then help 

determine whether or not they are worth using in everyday devices. For the perovskite 
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solar cells, removal of functional groups is key. Once a cleaning process is established 

that creates stable carbon materials, the devices could be made with these stable carbons 

and then tested as before. This would ideally lead to working devices. For the hydrogen 

storage modules, work needs to continue to look toward a membrane layer that maintains 

the porosity required to adsorb hydrogen. Modeling with standard CFD would allow for 

simulation of the hydrogen through the membrane apparatus and then physical modules 

could be constructed based on the results from these simulations. The testing of 

temporary binders that would disintegrate at elevated temperatures could also be 

explored. Polymeric materials such as ethyl cellulose could provide the dispersion needed 

for a proper layer and then be removed to yield better surface areas.  Economic analysis 

would need to include estimations of equipment costs and payback periods based on 

capacity. This data would allow for a more thorough cost benefit analysis which could 

help determine the minimum capacity required for a plant to operate this process to 

obtain revenue to aid in their biorefinery economics.  
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APPENDIX A 

Parameters 

Material and Energy 
Balances 

Per Year   

    

 Cost Units  

DDG 100 $/tonne USDA 

KOH 300 $/tonne Alibaba 

Water 0.00203 $/gallon LWC 

    

Energy Balance 30800000 Kwh LG&E 

4000 Watts 0.0682 $/kwh  

350 working days 2100560 $/yr  

22 hours/day    

    

Carbon Yield 0.42   

Carbon Cost 4000 $/tonne Alibaba 

    

Cp Nitrogen 1157 kJ/tonne-K Eng Toolbox 

Cp DDG 1600 kJ/tonne-K Eng Toolbox 

Cp KOH 1170 kJ/tonne-K Eng Toolbox 

    

DDG Density 0.240277 tonne/m3 UGA 

Nitrogen Density 0.0003309 tonne/m3 Peace Software 

At 1.2 atm    

    

    

Start Up Energy Cost Mass 
(tonnes) 

Temperature 
Change 

Heats of Fusion 
(MJ/tonne) 

DDG 10 600 NA 

KOH 10 600 120 

    

Energy Required (kWh) Cost  Pyrolysis Oil is used to  

2666688 181868.1216  Heat any dryers and  

1950048.934 132993.3373  Heaters 

 314861.4589   

    

Operators 3   

$-yr/operator 300000   

Pyrolysis Oil HV 20 MJ/L btg-btl.com 
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Material and Energy Balances based on given parameters 

 

DDG Entering Residual Fiber (tonnes) Volume DDG KOH (tonnes) Water (gallons) $ DDG $ KOH $ Water Materials Cost 

25000 5000 20809.31591 5000 7160000 2500000 1500000 14534.8 4014534.8 

50000 10000 41618.63183 10000 14320000 5000000 3000000 29069.6 8029069.6 

75000 15000 62427.94774 15000 21480000 7500000 4500000 43604.4 12043604.4 

100000 20000 83237.26366 20000 28640000 10000000 6000000 58139.2 16058139.2 

125000 25000 104046.5796 25000 35800000 12500000 7500000 72674 20072674 

150000 30000 124855.8955 30000 42960000 15000000 9000000 87208.8 24087208.8 

175000 35000 145665.2114 35000 50120000 17500000 10500000 101743.6 28101743.6 

200000 40000 166474.5273 40000 57280000 20000000 12000000 116278.4 32116278.4 

225000 45000 187283.8432 45000 64440000 22500000 13500000 130813.2 36130813.2 

250000 50000 208093.1591 50000 71600000 25000000 15000000 145348 40145348 

275000 55000 228902.4751 55000 78760000 27500000 16500000 159882.8 44159882.8 

300000 60000 249711.791 60000 85920000 30000000 18000000 174417.6 48174417.6 

325000 65000 270521.1069 65000 93080000 32500000 19500000 188952.4 52188952.4 

350000 70000 291330.4228 70000 100240000 35000000 21000000 203487.2 56203487.2 

375000 75000 312139.7387 75000 107400000 37500000 22500000 218022 60218022 

400000 80000 332949.0546 80000 114560000 40000000 24000000 232556.8 64232556.8 

425000 85000 353758.3705 85000 121720000 42500000 25500000 247091.6 68247091.6 

450000 90000 374567.6865 90000 128880000 45000000 27000000 261626.4 72261626.4 

475000 95000 395377.0024 95000 136040000 47500000 28500000 276161.2 76276161.2 

500000 100000 416186.3183 100000 143200000 50000000 30000000 290696 80290696 
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Nitrogen Volume 
(m3) 

Nitrogen mass 
(tonnes) 

Energy Input 
(kWh) 

Energy Cost Carbon 
Produced 
(tonnes) 

Carbon Revenue Profit 

41618.63183 13.77160527 1549.126714 105.6504419 2100 8400000 3770498.09 

83237.26366 27.54321054 3098.253427 211.3008838 4200 16800000 8155857.64 

124855.8955 41.31481582 4647.380141 316.9513256 6300 25200000 12541217.19 

166474.5273 55.08642109 6196.506855 422.6017675 8400 33600000 16926576.74 

208093.1591 68.85802636 7745.633569 528.2522094 10500 42000000 21311936.29 

249711.791 82.62963163 9294.760282 633.9026513 12600 50400000 25697295.84 

291330.4228 96.40123691 10843.887 739.5530931 14700 58800000 30082655.39 

332949.0546 110.1728422 12393.01371 845.203535 16800 67200000 34468014.94 

374567.6865 123.9444475 13942.14042 950.8539769 18900 75600000 38853374.49 

416186.3183 137.7160527 15491.26714 1056.504419 21000 84000000 43238734.04 

457804.9501 151.487658 17040.39385 1162.154861 23100 92400000 47624093.59 

499423.5819 165.2592633 18589.52056 1267.805303 25200 100800000 52009453.14 

541042.2138 179.0308685 20138.64728 1373.455744 27300 109200000 56394812.69 

582660.8456 192.8024738 21687.77399 1479.106186 29400 117600000 60780172.23 

624279.4774 206.5740791 23236.90071 1584.756628 31500 126000000 65165531.78 

665898.1093 220.3456844 24786.02742 1690.40707 33600 134400000 69550891.33 

707516.7411 234.1172896 26335.15413 1796.057512 35700 142800000 73936250.88 

749135.3729 247.8888949 27884.28085 1901.707954 37800 151200000 78321610.43 

790754.0048 261.6605002 29433.40756 2007.358396 39900 159600000 82706969.98 

832372.6366 275.4321054 30982.53427 2113.008838 42000 168000000 87092329.53 
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