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ABSTRACT 

 

 

Role of Nanoparticles in Voltammetric Signal Enhancement Exhibited by Layer-by-Layer Gold 

Nanoparticle-Modified Screen-Printed Carbon Electrodes (SPCEs) 

by 

Ben Kwasi Ahiadu 

 

Screen-Printed Electrodes (SPEs) have found wide use as sensing platforms due to their simple 

fabrication, customizability in terms of geometry and composition, and relatively low cost of 

production. Nanoparticles have been incorporated in or interfaced with SPEs in order to improve 

sensor response or provide electrocatalytic capabilities. Though nanomaterial-modified SPEs are 

becoming increasingly common sensing platforms, the benefits provided by nanomaterials are 

often determined through voltammetric studies with common redox probes, such as ferricyanide. 

However, recent reports have documented the ferri-/ferrocyanide redox couple to be an 

unreliable system for characterizing some carbon-based electrodes due to the dependence of its 

electrochemical response on electrode surface effects unrelated to electroactive surface area. In 

the current studies, we have investigated the voltammetric responses of ferricyanide and other 

redox probes on bare and gold nanoparticle (AuNP)-modified screen-printed carbon electrodes to 

determine the potential role of AuNPs in improving sensor response through electrochemical 

signal enhancement.  
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CHAPTER  1 

INTRODUCTION 

Biosensors and Biomarkers 

There has been an ever-increasing demand for simple, fast, accurate, and low-cost 

analytical devices, especially in the field of healthcare, where improvements in such tools and 

platforms can result in more accessible, affordable, and effective diagnoses and treatment 

strategies.1 One class of analytical devices that is particularly important to health-related 

diagnostics is biosensors.  Biosensors are analytical devices that make use of biological 

recognition elements like antibodies, aptamers, or complimentary nucleic acid sequences to 

capture and quantify biomolecules (e.g. proteins, nucleic acids, metabolites, etc.) present in 

biological samples (e.g. urine, blood, serum, etc.).1,2 Such biomolecules that can be objectively 

measured and are found to be related to disease state or immune response are called biomarkers 3 

and can be used to help diagnose and predict disease progression.  

In biosensors, the biorecognition event (i.e. capture of biomarker through use of 

recognition agent) is converted (usually through enzymatic or chemical reaction) to an 

interpretable analytical signal that is proportional to the amount of the biomarker present in the 

sample.4,5 Concentrations of biomarkers in a patient’s sample can be used to determine the 

presence or severity of a disease state in the patient. Detection and quantification of biomarkers 

can therefore provide information about normal or pathogenic processes, or pharmacological 

responses to medical interventions.4      
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Electrochemical Biosensors and Screen-Printed Electrodes 

     Biosensors based on measurement of electrochemical signals, known as electrochemical 

biosensors, are particularly appealing due to the relatively low cost, ease of operation, and lack 

of maintenance associated with electrochemical instrumentation.6 Electrochemical biosensors 

employ electrodes, usually modified with a recognition agent specific for the analyte (the 

biomolecule of interest), and the presence of the analyte at the electrode surface is measured 

through an electrochemical reaction that generates a signal in the form of an electric current or 

difference in electric potential. A variety of electrochemical strategies for biosensing have been 

described and continue to be developed, enabling relatively simple design and implementation of 

systems capable of sensitive measurements required for clinical applications.5,7 

Screen-printed electrodes (SPEs), which are produced by depositing a mixture of metal or 

carbon particles and a polymeric binder (i.e. conductive ink or paste) through a stencil onto an 

insulating polymer or ceramic substrate (Figure 1), have emerged as particularly promising 

platforms for electrochemical biosensing. Development of SPEs began in the 1990s,4 and their 

application as sensing platforms has continued to garner much interest due to their low cost of 

fabrication, ease of mass production, and ability to be customized through use of different 

conductive inks, and geometric patterns defining electrode size and placement.4 Conductive inks 

and pastes for printing these electrodes are commercially available,8 and several manufacturers 

also offer screen-printed electrodes prepared from various inks and sometimes with customizable 

geometric specifications.9  
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Figure 1:An illustration of the basic manual screen-printing process used to make screen-printed 

electrodes. A) Conductive paste is deposited on a stencil that features the desired design. B) The 

stencil is placed on top of the substrate (usually an insulating polymer film or ceramic material) 

and a squeegee is used to force ink over the surface of the stencil and onto the substrate below. 

C) The screen-printing process results in the deposition of the conductive paste onto the substrate 

in a pattern that has been defined by the stencil. 

  

Screen-printed electrodes have been employed in many electrochemical applications, 

ranging from clinical and environmental analyses,10,11 to energy conversion and storage 

devices.12 For example, screen-printed electrodes have been used in determination of organic 

pollutants such as hydroquinone and catechol in water samples, and measuring pH.9  They have 

also been used as DNA-based electrochemical platforms for patient diagnoses.13   

The most prominent commercial use of screen-printed electrodes is found in glucose 

biosensors, which have dominated the $ 5 billion-per-year diabetes monitoring market over the 

past three decades.2 The devices consist of glucose oxidase-modified screen-printed electrodes 

coupled with portable amperometric meters that measure current associated with the enzymatic 

reaction of glucose with glucose oxidase which generates hydrogen peroxide, an 

electrochemically active molecule that is involved in many biosensing strategies. The 

electrochemical signal generated in the course of oxidizing hydrogen peroxide produced from the 

enzymatic reaction is proportional to the amount of glucose present.6 Glucose biosensors are 

compatible with blood sample volumes as small as 0.5- 10 µL, and the resulting signals are 
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generated within 5- 10 s.2  However, nanomaterial modified screen-printed electrodes have been 

investigated as potential replacements for enzyme-modified electrodes due to the relative lack of 

stability of enzymes.2,14  

Nanomaterial-Modified Screen-Printed Electrodes. 

A growing number of electrochemical sensors are based on screen-printed electrodes 

modified with or composed of various nanomaterials, including metal nanoparticles, carbon 

nanotubes, and graphene.15,16  The intense interest in these nanostructured electrodes stems from 

their beneficial electrochemical properties such as large surface area-to-volume ratio, improved 

electron transfer kinetics, and electrocatalytic properties compared to electrodes prepared from 

bulk materials of similar composition.2,15 Screen-printed electrodes (SPEs) modified with 

nanomaterials such as Prussian blue and platinum nanoparticles,16 as well as those composed of 

graphene-based conductive ink are commercially available.10 Such electrodes can also be 

prepared by incorporating nanomaterials into inks or depositing the nanoparticles onto SPEs 

through adsorption or electrodeposition. 

One simple and effective method of modifying screen-printed electrodes with 

nanomaterials is known as the layer-by-layer (LbL) technique. 10,17,18 This method, which makes 

use of electrostatic interactions between layers of oppositely charged materials, has been widely 

used in modifying and changing the surface functionalities of bulk electrodes.11,15,17 This 

technique serves as a fast, simple and effective way of fabricating micro- or nanostructured 

electrodes. In making sensors and biosensors through LbL method, charged polymers like 

polystyrene sulfonate, poly(diallyldimethylammonium chloride) (PDDA), phthalocyanine 

tetrasulfonate, or poly(allylamine hydrochloride) are used13 to help adsorb oppositely charged 

semiconductors, enzymes, metallic materials or carbon-based nanomaterials (like nanospheres, 
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carbon nanotubes, nanorods, or graphene sheets) onto an electrode.12,19 Nanomaterial-modified 

electrodes prepared through the LbL technique have been reported to possess improved 

electrochemical properties including enhanced sensitivity and better electron transfer kinetics, 

compared to electrodes composed of bulk material analogs.10,17  

One common way of verifying and quantifying benefits of nanoparticle modification 

involves comparison of electrochemical signals associated with common redox probes like 

ferricyanide using bare (unmodified) and nanoparticle-modified electrodes.7,8,10 Nanoparticle-

modified electrodes typically exhibit larger currents attributed to redox probe oxidation or 

reduction compared to unmodified or bare electrodes. This increase in signal is interpreted as an 

increase in electroactive surface area, which is the available portion of the working electrode that 

can participate in the electron transfer.  Improvement in electrochemical signal and by extension 

electroactive surface area is rationalized by the well-documented large surface area-to-volume 

ratio of nanomaterials compared to bulk materials and thus attributed to the presence of the 

nanostructures on the electrode surface.8  

A previous report demonstrated, by using ferricyanide as a redox probe, that the 

electroactive surface area of screen-printed carbon electrodes (SPCEs) could be increased by 

102% by modifying the electrodes with glutathione-capped gold nanoparticles (GSH-AuNPs) 

through the LbL technique using polycation poly(diallyldimethylammonium) (PDDA).10 

However, recent reports20,21 involving measurements of ferricyanide response using other 

carbon-based electrodes have cast doubt on the origin of the electrochemical signal increase that 

is currently attributed to the effects of the nanomaterials. These studies have basically attributed 

increases in electrochemical signals and variations in electron transfer kinetics to the surface 
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sensitivity of ferricyanide rather than the presence of nanomaterials, as results with other redox 

probes failed to show the same kinds of signal enhancement as those obtained with ferricyanide. 

Research Objectives 

In this work, the role of nanoparticles in electrochemical signal enhancement is 

investigated through characterization of bare and LbL-prepared GSH-AuNP-modified SPCEs 

using cyclic voltammetric responses of common redox couples ferri-/ferrocyanide (Fe(CN)6
3-/4-), 

ferrocene-/ferrocenium methanol (FcCH2OH/FcCH2OH+) and hexaamineruthenium(III)/(II) 

(Ru(NH3)6
3+/2+). The effect of redox probe selection for electrode characterization and function 

of the polycationic PDDA layer used to adsorb GSH-AuNPs through LbL technique onto the 

SPCE surface are also addressed. The additional information provided by measurements of 

multiple redox probes enables more thorough comparison of bare and modified SPCEs in a way 

that leads to an improved understanding of the effects nanoparticles have on electrochemical 

signal for these particular LbL-prepared SPCEs.  Results here may also extend to other 

nanomaterial-modified SPEs and carbon-based electrodes as voltammetric response of 

ferricyanide is a common (and sometimes the only) method employed in comparing bare 

(unmodified) and modified electrodes. Results of these studies have recently been published in 

the Journal of the Electrochemical Society,15 and reuse is permitted here under the Creative 

Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/). 
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 CHAPTER 2 

EXPERIMENTAL  

Materials 

All chemicals were used as received from the manufacturer. Potassium ferricyanide and 

sodium borohydride were obtained from Fisher Scientific. Hexaamineruthenium(III) chloride 

was acquired from Strem Chemicals. Potassium chloride, ferrocenemethanol and an aqueous 

solution of 20% (w/w) PDDA (average molecular weight range 200,000-350,000) were procured 

from Sigma Aldrich. L-glutathione and tetrachloroaurate(III) trihydrate were purchased from 

Alfa Aesar. Graphite ink (C2050106D7) and Ag/AgCl paste (C2051014P10) used for printing 

the electrodes were purchased from Gwent Electronic Materials Ltd in Pontypool, UK. All 

aqueous solutions were prepared with 18.2 MΩ.cm ultrapure water, which was obtained by 

passing deionized water through a Millipore Synergy purifier. 

Preparation of SPCEs 

Electrodes in these studies were prepared in-house by manual screen-printing through use 

of 200 mesh nylon screens and conductive graphite and Ag/AgCl pastes. The screen was coated 

with a diazo photo emulsion,15 and allowed to dry overnight in the dark. Patterns of the working, 

counter and reference electrodes, contact pads, and conductive paths connecting electrodes to the 

contact pads (Figure 2) were designed using a computer graphics program (Macromedia 

Fireworks MX), and printed on acetate tracing paper using a desktop inkjet printer. The electrode 

design consisted of three 2 mm x 5 mm (width x length) graphitic contact pads connected to 

electrodes through 1 mm x 20 mm conductive paths. A circular 2 mm diameter carbon working 

electrode was designed to be at the end of the center conductive path between 2 mm wide arc-

shaped carbon counter and Ag/AgCl reference electrodes (Figure 2). 
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The acetate paper patterns were positioned on top of the diazo photo emulsion-coated 

screen and under a piece of transparent glass (8 in x 10 in). The screen was then placed in a 

cabinet that was covered with a black paper on the inside, where it was exposed (for 7 minutes) 

to light from a 150 W clear incandescent bulb that was located 18 inches above the screen. This 

was to cure the coating on all parts of the screen except the electrode patterns. The uncured diazo 

photo emulsion that defined the electrodes, conducting paths, and contact pads was then flushed 

out using cold tap water, and the screen was air-dried.  

Graphite ink was forced through the screen using a squeegee (Figure 1B) and transferred 

onto a polyimide or cellulose acetate film (Figure 2). This produced the working and counter 

electrodes, contact pads, and conductive paths that connect the electrodes to the contact pads. 

The printed ink was cured in an oven at a temperature of 60 οC for 30 min. Afterwards, the 

reference electrode was also printed on top of the third conducting path by forcing Ag/AgCl ink 

through the screen onto the acetate sheet. Curing was again done in the oven at 60 οC for 30 min. 

Kapton tape was placed over conductive paths to provide insulation and help define 

working electrode area (Figure 2). A digital camera was used to obtain images of ten screen-

printed electrodes so that the geometric surface areas of the working electrodes could be 

measured using ImageJ software.22 The average geometric surface area of the electrodes was 

found to be 2.52 (±0.29) x 10-2 cm2 (n = 10). 
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Figure 2: Images of screen-printed carbon electrodes. A) An illustrated exploded view design 

and B) photographic image of a screen-printed carbon electrode on cellulose acetate with 

conductive paths covered with yellow polyimide (Kapton) tape. Reproduced with permission 

from Reference 14. 

 

Synthesis of Glutathione-Capped Gold Nanoparticles 

Glutathione-capped gold nanoparticles (GSH-AuNPs) were synthesized based on a 

previous report.10 In a fume hood, aqua regia (3 HCl: 1 HNO3) was used to rinse glass vials and 

transfer pipettes to be used in the preparation. Glassware was then rinsed with copious amount of 

ultrapure water, and dried in an oven. A plastic spatula was used to transfer 19.7 mg of hydrogen 

tetrachloroaurate (III) trihydrate (HAuCl4
.3H2O) into one of the oven-dried vials, and 7.7 mg of 

L-glutathione was also added, followed by 3.5mL of a 14.4% (v/v) acetic acid and methanol 

mixture. In a fume hood, the resulting gold(III) chloride mixture was placed on a magnetic stirrer 

and mixed for 5 min. 30 mg of sodium borohydride (NaBH4) was quickly dissolved in 1.5 mL 

ultrapure water and this solution was added dropwise to the gold solution while stirring, 

changing its color from bright yellow to brown immediately.  

The mixture was stirred for 2 h, after which the suspension of glutathione-capped gold 

nanoparticles (GSH-AuNPs) was split equally into two 50 kDa MW cut-off filter centrifuge 

tubes. Centrifugation was carried out at 2150xg (where g is the standard acceleration due to 

gravity) for 8 min using a VWR Clinical 100 centrifuge. The liquid collected at the bottom the 

tube was discarded, and the GSH-AuNPs were resuspended in ultrapure water and centrifuged 

again. This process was repeated two more times after which the GSH-AuNPs were resuspended 
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in 20 mM HEPES buffer (pH 8). After centrifugation was completed, the supernatant was 

discarded, and GSH-AuNPs were resuspended in HEPES buffer. Centrifugation and 

resuspension was repeated four times until a clear supernatant solution was obtained. The GSH-

AuNPs were finally resuspended in 1.5 mL HEPES buffer. The resuspended particles were 

diluted 10-fold using HEPES buffer, and a UV-vis spectrum was taken using a Shimadzu 1700 

UV-vis spectrophotometer to estimate the size of the particles.10,23  

Layer-by-Layer Modification of SPCEs 

SPCEs are often pretreated to remove any adsorbed species and better expose conductive 

graphite particles.24,41 In the present studies, SPCEs were pretreated according to a previous 

report.32 SPCEs were placed in a solution of 0.5 M H2SO4, and a linear voltammetric sweep was 

performed from -1.2V to +1.5 V vs. Ag/AgCl using a CHI instruments potentiostat (CHI 400). 

The electrodes were then rinsed with ultrapure water and air-dried. This was followed by 

depositing the GSH-AuNPs on the SPCEs through LbL method as previously described.10,25  

Using a micropipette, 2 µL of 2 mg/mL solution of PDDA in 50 mM sodium chloride 

was deposited onto the working electrode. After 20 min, the PDDA-modified electrode was 

rinsed with ultrapure water and dried using nitrogen gas. A micropipette was then used to deliver 

2 µL of GSH-AuNP suspension onto the PDDA-modified working electrode. After 20 min, it 

was rinsed with ultrapure water to remove any excess or loosely bound GSH-AuNPs and dried 

with nitrogen gas.  

Electrochemical Measurements 

A computer-controlled CHI 400 electrochemical analyzer, operated in a potentiostatic 

mode, was used to carry out all electrochemical measurements. A solution of 0.1 M potassium 

chloride (KCl) containing a common redox probe, i.e. 1 mM potassium ferricyanide, 0.5 mM 
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ferrocenemethanol or 1 mM hexaamineruthenium(III) chloride, was poured into a 10-mL beaker. 

A bare or modified SPCE was placed in the solution, and cyclic voltammetric (CV) 

measurements were then carried out at scan rates of 10-200 mV/s. Electrodes were rinsed with 

water between successive experiments with different redox probes. Currents measured for each 

redox probe were converted to current densities by normalizing by the geometric surface area of 

the individual electrode that was used for each experiment. 
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CHAPTER 3 

RESULTS 

Characterization of GSH-AuNPs 

 The size of the GSH-AuNPs was determined by UV-Vis spectrophotometry as 

previously described. 23 The UV-vis spectrum of the GSH-AuNPs gave a characteristic 

absorbance peak due to surface plasmon resonance26 at 515 nm (λSPR) (Figure 4), indicating the 

particles to be less than 30 nm in diameter.23, Since absorbance at λSPR (ASPR) is known to 

decrease in relation to absorbance at other wavelengths in a manner that is dependent on particle 

size, the diameter of AuNPs smaller than 35 nm can be estimated through the ratio of absorbance 

at 515 nm to absorbance at 450 nm (ASPR/A450) as described in a previous report.23 The size of 

the particles was found to be 5 nm using this estimate. Though this estimate is based on a model 

developed from the match between theoretical absorbance of bare spherical gold nanoparticles 

and experimental absorbance data for citrate-capped gold nanoparticles,23 it has been widely 

employed in literature27 and at least one previous report showed no significant effect of capping 

agent on nanoparticle size for glutathione- and citrate-capped metal nanoparticles.28 Most 

importantly, the 5 nm particle size estimated is in agreement with particles synthesized by the 

same protocol and characterized by UV-Vis spectroscopy and transmission electron microscopy 

(TEM) in a previous report.25  
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Figure 3: Absorption spectrum of GSH-AuNPs in 20 mM HEPES buffer (pH 8.0). Characteristic 

absorption peak is found at 515 nm. 

 

 

Determination of Extent of Coverage of GSH-AuNPs 

To directly estimate electroactive surface area of GSH-AuNPs incorporated on SPCEs, 

CVs of bare and modified SPCEs were obtained in 0.5 M H2SO4 (Figure 4). These CVs 

exhibited an anodic peak centered at +1.25 (± 0.010) V and cathodic peak at 0.66 (± 0.025) V vs. 

Ag/AgCl that were consistent with the oxidation of gold and reduction of gold oxide, 

respectively.19,30 No noticeable peaks were observed on bare or PDDA-modified SPCEs. 

Complete oxidation of a monolayer of gold or reduction of gold oxide corresponds to a charge of 

400 µC cm-2.29 The charge associated with the reduction peak of GSH-AuNPs was thus used to 

estimate the electroactive surface area that can be attributed to gold.30 In this manner, the 

electroactive surface area provided by GSH-AuNPs on the GSH-AuNP/PDDA-modified SPCEs 

was found to be 1.69 (±0.34) x 10-2 cm2. This surface area represents only 67 (±9) % of the 

geometric surface areas of the SPCEs, which suggests incomplete surface coverage of GSH-
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AuNPs or incomplete electron transfer between GSH-AuNPs and the underlying SPCEs.

 

Figure 4: Representative CVs of bare (dashed blue line), PDDA-modified (dotted black line) and 

GSH-AuNP/PDDA-modified (solid red line) SPCEs in 0.5 M H2SO4. Arrow indicates direction of 

scan. Scan rate is 100 mV/s. 

 

Cyclic Voltammetric Studies of Common Redox Probes Using Bare, PDDA- and GSH-

AuNP/PDDA-Modified SPCEs 

The electrochemical responses of bare, PDDA-modified and GSH-AuNP/PDDA-

modified SPCEs were measured using three common redox probes to determine the effect of 

surface modification on electrochemical response. The Fe(CN)6
3-/4 redox couple produced a pair 

of peaks centered at 0.1223 V vs. Ag/AgCl as expected (Figure 5).15 Similar to a previous 

report,10 GSH-AuNP/PDDA-modified SPCEs exhibited lager peak currents and smaller peak 

separations between cathodic and anodic peaks compared to the bare SPCEs. However, there 

was little difference between peak currents associated with the reduction of Fe(CN)6
3- using 

PDDA-modified and GSH-AuNP/PDDA-modified SPCEs. Interestingly, Fe(CN)6
3-/4- typically 
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produced a couple of extra peaks using PDDA-modified electrodes (Figure 5) that were not 

observed with either bare or GSH-AuNP/PDDA-modified SPCEs. These extra peaks were 

visible using 7 out of 10 PDDA-modified SPCEs, with the rest (3 out of 10 PDDA-modified 

SPCEs) not showing these additional peaks (Figure 6). Contrary to the responses of Fe(CN)6
3-/4-, 

there were no significant differences in the responses of Ru(NH3)6
3+/2+ (Figure 7) or FcCH2OH/ 

FcCH2OH+ (Figure 8) using bare and modified SPCEs. 

 

Figure 5: Representative CVs of 1 mM Fe(CN)6
3-/4- in 0.1 M KCl on bare, 7 out of 10 PDDA-, 

and GSH-AuNP/PDDA-modified SPCEs. Arrow indicates direction of forward scan. Scan rate = 

100 mV/s. 
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Figure 6: Representative CVs of 1 mM Fe(CN)6
3-/4- in 0.1 M KCl on bare, 3 out of 10 PDDA-, 

and GSH-AuNP/PDDA-modified SPCEs. Arrow indicates direction of forward scan. Scan rate = 

100 mV/s. 

 

Figure 7: Representative CVs of 1 mM Ru(NH3)6
3+/2+ in 0.1 M KCl on bare, PDDA- and GSH-

AuNP/PDDA-modified SPCEs. Arrow indicates direction of forward scan. Scan rate = 100 

mV/s. 
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Figure 8: Representative CVs of 0.5 mM FcCH2OH in 0.1 M KCl on bare, PDDA-modified and 

GSH-AuNP/PDDA-modified SPCEs. Arrow indicates direction of forward scan. Scan rate= 100 

mV/s. 

As depicted in representative CVs (Figures 5-8), average peak current densities (Table 1) 

and peak-to-peak separations (Table 2) show that the only significant differences between 

electrochemical responses of bare and modified electrodes are found when Fe(CN)6
3- is used as 

the redox probe. CV responses of Fe(CN)6
3-/4- using bare SPCEs exhibited smaller average peak 

current density (138 µA cm-2) and larger average peak separation (217 mV) compared to either 

PDDA- or GSH-AuNP/PDDA-modified SPCEs.  There were no significant differences (95% 

confidence level) between average CV responses of Fe(CN)6
3-/4- using PDDA- and GSH-

AuNP/PDDA-modified SPCEs, and no significant differences between bare and modified SPCEs 

using the other two redox probes. Overall, average peak current densities varied by up to 15% 

and average peak separations varied by as much as 27% among similarly prepared electrodes 

using each redox probe. These variations in current densities and peak separations as well as the 
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inconsistent extra peaks observed on PDDA-modified SPCEs with ferricyanide (Figures 5-6) 

may be due to the uneven distribution of conductive graphite particles in the polymeric binder or 

inconsistencies in the manual screen-printing process.  

 

Table 1: Average peak current densities (jp) of forward voltammetric scans of the redox probes 

each in 0.1 M KCl with the bare, PDDA- and GSH-AuNP/PDDA-modified SPCEs at a scan rate 

of 100 mV/s. 

 jp (µA cm-2) for Various Redox Probes 

SPCE Modification 1 mM Fe(CN)6
3- 0.5 mM FcCH2OH 1 mM Ru(NH3)6

3+ 

None (Bare) 138 (± 18) -126 (± 6) 214 (± 29) 

PDDA 233 (± 22) -129 (± 8) 215 (± 32) 

GSH-AuNP/PDDA 213 (± 26) -122 (± 13) 223 (± 23) 

 

 

Table 2: Average peak-to-peak separations (ΔEp) for the redox probes each in 0.1 M KCl with 

the bare, PDDA-modified and GSH-AuNP/PDDA-modified SPCEs at a scan rate of 100 mV/s. 

 ΔEp (mV) for Various Redox Couples 

SPCE Modification Fe(CN)6
3-/4- FcCH2OH/FcCH2OH+ Ru(NH3)6

3+/2+ 

None (Bare) 217 (± 49) 90 (± 17) 109 (± 29) 

PDDA 133 (± 30) 94 (± 17) 113 (± 25) 

AuNP/PDDA 136 (± 34) 102 (± 18) 117 (± 32) 

 

Electroactive Surface Areas of SPCEs 

Cyclic voltammetric (CV) data can be used to estimate electroactive surface area,7,8,10,15 

an important factor that helps determine electrode sensitivity as electrochemical signal involving 
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charge and current are proportional to electrode area. This estimation is typically done using 

Randles-Sevcik equation at 25 οC (eqn. 1).7,8,10  

      ip = (2.69×105)n3/2AD1/2Cv1/2
                                                                           (1) 

Where A denotes the electroactive surface area (in cm2), ip is the peak current (in amperes), n is 

the number of electrons involved in the redox process, D represents the diffusion coefficient of 

the redox probe (in cm2 s-1), C denotes the bulk concentration (in mol cm-3) of the electroactive 

species, and v is the scan rate (in V s-1). For these studies, D was taken to be 7.60 x 10-6 cm2s-1 

for Fe(CN)6
3-, 8.43 x 10-6cm2s-1 for Ru(NH3)6

3+, and 7.80 x 10-6 cm2s-1 for FcCH2OH based on 

literature values.9,15 

Since the SPCEs exhibited peak-to-peak separations larger than 59 mV (Table 2), the 

modified version of Randles-Sevcik equation (eqn. 2) was used to estimate the electroactive 

surface area7,8,15  for bare, PDDA-modified and GSH-AuNP/PDDA-modified SPCEs.  

ip = (2.69×105)n3/2AD1/2Cv1/2K(Λ, α)                                                                     (2) 

Where K(ᴧ, α), determined from a work of Matsuda and Ayabe,31,32 is a function that depends on 

dimensionless parameters α, which is the electron transfer coefficient, taken to be 0.5 for the 

redox probes used in these studies,9,33 and the rate parameter ᴧ. The rate parameter ᴧ is related to 

another parameter ψ (eqn. 3), which is determined from peak-to-peak separation values from CV 

measurements through Nicholson’s work.31,32  

Λ = 𝜋1/2𝜓                                                                                                                         (3) 

 Using the CV results obtained with Fe(CN)6
3-/4-, the average electroactive surface area 

calculated for the bare SPCEs was significantly smaller than the electroactive surface areas of the 

PDDA- and GSH-AuNP/PDDA-modified SPCEs (Table 3). The calculated average electroactive 

area of bare SPCEs was also smaller than the average geometric surface area of 2.52 (±0.29) x 
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10-2 cm2. The presence of PDDA on the SPCEs caused a 61% increase in estimated electroactive 

surface area while the GSH-AuNP deposition resulted in a 54% increase in estimated surface 

area over the bare SPCEs according to measurements based on Fe(CN)6
3-/4-. Though the 

electroactive surface areas of the bare SPCEs determined with the use of Fe(CN)6
3-/4- were 

different from the areas of the PDDA-and AuNP/PDDA-modified electrodes, the calculated 

surface areas of the PDDA- and AuNP/PDDA-modified SPCEs using Fe(CN)6
3-/4- were similar 

to one another, and to those obtained with FcCH2OH/ FcCH2OH+ and Ru(NH3)6
3+/2+ redox 

couples. There were also no significant differences in the surface areas of bare and modified 

SPCEs when FcCH2OH/FcCH2OH+ and Ru(NH3)6
3+/2+ redox couples were used (Table 3).  

 

Table 3: Electroactive surface areas of bare, PDDA-modified and GSH-AuNP/PDDA-modified 

SPCEs with the various redox couples in 0.1 M KCl supporting electrolyte.   

 A (cm2) for Various Redox Couples 

SPCE 

Modification 

1 mM 

Fe(CN)6
3/4- 

0.5 mM 

FcCH2OH/FcCH2OH+ 

1 mM 

Ru(NH3)6
3+/2+ 

None(Bare) 1.81(±0.44)x10-2 2.81(± 0.35) x10-2 2.81 (± 0.49) x10-2 

PDDA 2.84(±0.44)x10-2 2.87 (±0.49) x10-2 2.80(± 0.55) x10-2 

AuNP/PDDA 2.71(±0.37)x10-2 2.79 (± 0.49) x10-2 2.71 (± 0.50) x10-2 

 

Determination of Roughness Factor of Bare SPCEs 

Another measurement used to characterize SPCEs is the roughness factor (RA),7,15 which 

corresponds to the ratio of electroactive surface (A) area to the geometric surface area (Ageo) of 

the electrode (eqn. 4). 

                     RA = A Ageo⁄                                                                                                               (4) 
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Inks used for printing SPCEs contain conductive graphite particles and polymeric binder(s) 

dispersed in electrochemically inert solvents.7,12 These binders (e.g. polyvinyl chloride (PVC), 

polyvinyl acetate (PVA), etc.)7,12 are nonconductive or electrochemically inactive. As the name 

suggests, they serve as adhesives to hold the conductive graphite particles together at tunneling 

distances.12,31 The relative amounts of these binding materials to the conductive particles in the 

ink can determine the electrochemical properties of the electrodes printed from the inks, as there 

are some parts of the electrodes that are electrochemically active while others are 

electrochemically inactive. Thus, the roughness factor can essentially be taken to be a measure of 

the “real” electroactive surface area of the electrodes.7,33  

Converting these RA values of the bare electrodes to percentages, the electroactive 

surface areas obtained from FcCH2OH/ FcCH2OH+ and Ru(NH3)6
3+/2+ results gave very similar 

percent RA values of 113 (±5)% and 110 (±10)%. The RA value obtained for bare SPCEs from 

the Fe(CN)6
3-/4- results was significantly smaller than those determined from FcCH2OH/ 

FcCH2OH+ and Ru(NH3)6
3+/2+ measurements. However, the RA value of 71 (±10)%, for bare 

SPCEs calculated from the Fe(CN)6
3-/4- results falls within the 39-79% RA values7 reported for 

similar measurements for commercially available SPCEs using Fe(CN)6
3-/4-.  

Determination of Heterogenous Electron Transfer Rate Constants 

The proportions of conductive graphitic particles and nonconductive polymeric binders in 

inks used in printing SPCEs can affect the rate at which electrons are transferred between 

electroactive samples and the electrodes.7,33 Similar electrodes have been previously 

characterized by their heterogeneous electron transfer rate constants (k0) using the Nicholson 

method (eqn. 5).32    

k0 = ψ(πDO
1−αDR

αnfv)1/2                                                                                      (5) 
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Where ψ represents the same kinetic parameter introduced in eqn. 3. Do and DR are diffusion 

coefficients of oxidized and reduced species, respectively, while f corresponds to 
F

RT
 where F 

(96485.333 C/mol), R (8.314 J K-1mol-1) and T (in K) are Faraday’s constant, the Universal Gas 

Constant, and temperature, respectively. DO values for Fe(CN)6
3- and Ru(NH3)6

3+ were the same 

as D values listed above that were used to calculate electroactive surface area, while DR values 

for Fe(CN)6
4- and Ru(NH3)6

2+ were 6.5 x 10-6 cm2 s-1   and 1.19 x 10-5 cm2s-1, respectively, based 

on literature.25,34,35 For FcCH2OH and FcCH2OH+, Do = DR = 7.80 x 10-6 cm2s-1.7,9,35  

Using an ambient temperature of 25 oC ( 298.15 K), Faraday’s constant of  96,485C, and 

Universal Gas Constant of 8.314 J K-1mol-1 along with the stated D values, it was observed that 

neither the presence of PDDA nor GSH-AuNPs on the SPCEs seem to have influenced the 

electron transfer rate constants of  FcCH2OH/FcCH2OH+ and Ru(NH3)6
3+/2+, as no differences in 

rate constants were observed between  the bare, PDDA-modified and GSH-AuNP/PDDA-

modified SPCEs with the two redox probes. With FcCH2OH/FcCH2OH+, the rate constant 

determined was 6.8 (±2.1) x 10-3 cm2 s-1 while a value of 4.1 (±1.7) x10-3 cm2 s-1 was obtained 

with Ru(NH3)6
3+/2+. The mean k0 for Fe(CN)6

3-/4- for the modified SPCEs was 2.9 (±1.2) x 10-3 

cm2 s-1 while it was 1.2 (±0.25) x 10-3 cm2 s-1 for the bare SPCEs. Electron transfer rate constant 

values ranging from 1.67x 10-5 to 8.3 x 10-3 cm2 s-1 values have been reported for Fe(CN)6
3-/4- 

with other screen-printed carbon electrodes.9,36  
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CHAPTER 4 

DISCUSSION 

Nanoparticle-modified SPCEs have been extensively utilized as biosensing platforms.2,10 

The increase in electroactive surface area provided by the inclusion of nanomaterials on SPCE 

surfaces is often cited as an important factor in explaining the improvements in electrochemical 

responses that have been documented for nanoparticle-modified SPCEs compared to bare 

(unmodified) SPCEs.10,37 For example, Chikkaveeraiah et al. recently reported that LbL 

modification of SPCEs using PDDA and 5 nm GSH-AuNPs leads to an improvement of 102% in 

electroactive surface area compared to that of the unmodified (bare) SPCEs.10   These GSH-

AuNP/PDDA-modified SPCEs have been employed in sandwich-type electrochemical 

immunoassays for various protein biomarkers related to prostate cancer and oral cancer.10 One 

aspect of the design of GSH-AuNP/PDDA-modified SPCEs that has been used to help explain 

their success as sensing platforms is the large electroactive surface area provided by the inclusion 

of GSH-AuNPs, which leads to an increase in electrochemical response compared to unmodified 

SPCEs.10 However, electroactive surface areas were determined through CV measurements of 

Fe(CN)6
3-/4- using bare and GSH-AuNP/PDDA-modified SPCEs. 

Recent reports have documented Fe(CN)6
3-/4- response on other carbon-based electrodes 

and demonstrated that electrochemical signal enhancement typically attributed to increase in 

electroactive surface area is more likely the result of surface effects that are unrelated to 

electroactive surface area. For instance, cyclic voltammetric studies of Fe(CN)6
3-/4- with highly 

oriented pyrolytic graphite (HOPG) electrodes suggested that the redox probe was sensitive to 

electrode surface charges, resulting in poorer kinetics of the electron transfer process between the 

redox probe and electrodes.20 Other studies with graphene nanoflake electrodes also reported the 
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dependence of electrochemical properties of Fe(CN)6
3-/4- on pH of the measuring environment 

and on electrolyte concentrations.21  

The results of these current studies, similar to those reported for Fe(CN)6
3-/4- using HOPG 

and graphene-modified electrodes, suggest that caution must be exercised when interpreting CV 

responses of Fe(CN)6
3-/4- on SPCEs and their relationship to electroactive surface area. The 

studies carried out by Chikkaveeraiah et al.10 seem to have overlooked the potential role of the 

PDDA layer underlying the 5 nm GSH-AuNPs, in enhancing the peak currents associated with 

ferricyanide, hence ended up associating the signal increase entirely with the GSH-AuNPs on the 

SPCEs.   

In the current studies, the voltammetric responses of PDDA-modified and GSH-

AuNP/PDDA-modified SPCEs with Fe(CN)6
3-/4- were very similar (Figures 5 and 6), indicating 

that the previously observed signal enhancement10 documented between bare and GSH-

AuNP/PDDA-modified SPCEs for this same system cannot be attributed to the presence of 

GSH-AuNPs as previously thought. The peaks for Fe(CN)6
3-/4- obtained using bare SPCEs were 

widely separated and exhibited low peak currents, while the modified SPCEs produced smaller 

peak-to-peak separations with higher peak currents. Large peak separations of Fe(CN)6
3-/4- have 

also been reported for commercially available bare SPCEs,8  HOPG,34 and graphene-modified 21 

electrodes. 

Voltammetric peak separations of Fe(CN)6
3-/4- using other gold and platinum SPEs have 

similarly been documented to be dependent on electrode surface structure.38,39 For instance, large 

peak-to-peak separation values have been reported for Fe(CN)6
3-/4- on bulk screen-printed gold 

and platinum electrodes.38,39 Upon electrodeposition of a layer of gold nanoparticles onto gold 

screen-printed electrodes, however, the peak separation for Fe(CN)6
3-/4- decreased from 300 mV 
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to 90 mV,38 indicating that relative amounts of conductive particles and nonconductive 

polymeric binders in screen-printing inks may also play an important role in determining the 

electrochemical properties of screen-printed electrodes. The importance of relative amounts of 

ink contents have been demonstrated by using Ru(NH3)6
3+/2+ with SPCEs that were produced 

from customized graphite inks with varying graphite and binder compositions.40 Electrodes 

prepared from inks having higher percentages of conductive graphite particles exhibited smaller 

peak-to-peak separations than those made from inks with lower percentages of the conductive 

particles distributed in large amounts of polymeric binders.40 

In addition to modification with nanoparticles, electrochemical properties of SPCEs can 

also reportedly be improved by treating the electrode surface with organic solvents like N,N-

dimethyl formamide (DMF) 18 or mechanical polishing.24 For example, treatment of SPCEs with 

DMF reportedly resulted in enhancing the electroactive surface area by 57-fold compared to the 

geometric surface area of the electrodes when CV measurements were based on Fe(CN)6
3-/4- 

response.35 Interestingly, more modest increases in electroactive surface areas (≤ 1.38-fold) have 

been documented for similarly treated SPCEs when CV measurements were based on 

Ru(NH3)6
3+/2+, capasaicin, and dihydronicotinamide adenine nucleotide.41 Also, peak currents of 

Fe(CN)6
3-/4-  were reportedly increased by 8x for SPCEs that were polished with an agate lapping 

hammer.35 However, in a similar study using Ru(NH3)6
3+/2+, polishing of the SPCEs with 

alumina had no significant effect on the electroactive surface area of the SPCEs, but the 

electrochemical activity of the electrodes toward nitrite was improved by two-fold.35 These 

results indicate that electrochemical response of Fe(CN)6
3-/4-  is influenced by electrode surface 

characteristics that are unrelated to electroactive surface area. 
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In the current studies, there are no significant differences in the voltammetric responses 

of the bare, PDDA-modified and GSH-AuNP/PDDA-modified SPCEs for the Ru(NH3)6
3+/2+ or 

FcCH2OH/FcCH2OH+ redox couples (Figures 7 and 8). With each of the three redox probes used 

in these studies, PDDA-modified SPCEs exhibited peak currents that were similar to those 

obtained with the GSH-AuNP/PDDA-modified electrodes. However, PDDA-modified SPCEs 

typically exhibited extra pre-oxidation and post-reduction peaks for the Fe(CN)6
3-/4-  redox 

couple that were absent when the bare or GSH-AuNP/PDDA-modified electrodes were used 

(Figure 5). Similar secondary waves have been reported for PDDA-modified glassy carbon 

electrodes42 with the Fe(CN)6
3-/4- system, and have been attributed to the Fe(CN)6

3-/4- species that 

are trapped in the polymer on the electrode surface, forming species that are reduced or oxidized 

at slightly different potentials compared to Fe(CN)6
3-/4- that freely diffuses to the electrode 

surface.42  

Even though CVs for GSH-AuNP/PDDA-modified SPCEs in 0.5 M H2SO4 confirmed the 

presence of the nanoparticles on the electrodes, the electroactive surface area attributable to the 

presence of the gold particles on electrodes was smaller than the geometric surface areas of the 

bare SPCEs. The electroactive gold surface area was also smaller than the electroactive surface 

areas of GSH-AuNP/PDDA-modified electrodes determined using the three redox probes. This 

finding directly challenges the previous assertion10 that presence of the GSH-AuNPs on SPCEs 

resulted in the perceived 102% enhancement in electroactive surface area of the electrodes 

compared to the bare SPCEs. 

Ultimately, the results of these studies suggest that LbL modification of SPCEs with 

GSH-AuNPs through the use of PDDA does not result in an increase in the electroactive surface 

area of the electrodes as previously reported.10 The studies indicate that the electroactive surface 
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areas of bare, PDDA-modified and GSH-AuNP/PDDA-modified SPCEs were indistinguishable. 

Though previous reports that attribute the increase in Fe(CN)6
3-/4- response using nanoparticle-

modified SPCEs over bare SPCEs to an increase in surface area provided by the presence of 

GSH-AuNPs on the electrode surface, the increase in electrochemical response of the Fe(CN)6
3-

/4- redox couple instead appears to result from the sensitivity to chemical surface functionalities 

and charges that lead to lower electrochemical response of this particular redox probe on bare 

SPCEs. These findings seem to be consistent with similar determinations made for HOPG and 

graphene-modified electrodes with the ferricyanide redox couple.21,40  

Conclusions 

Caution must be exercised when evaluating the electrochemical benefits of the 

nanomaterials incorporated onto the surface of SPCEs through the use of voltammetric responses 

of Fe(CN)6
3-/4- as is typically done. Though the LbL technique is a simple, fast, and cost-effective 

way to prepare nanostructured SPCEs, the similarities between voltammetric responses of 

common redox probes on PDDA- and GSH-AuNP/PDDA-modified SPCEs suggest that the 

perceived increase in electroactive surface area, previously attributed to the GSH-AuNPs on the 

electrodes, may be more appropriately assigned to the possible role of PDDA in attracting more 

electroactive Fe(CN)6
3-/4- species onto electrode surface leading to an enhanced electron transfer 

between the redox probe and electrode. Even though the results of these studies indicate that the 

nanoparticles provided no enhancement in the electroactive surface areas of the SPCEs for this 

particular system and thus are not expected to provide general signal enhancement for other 

electrochemical species involved in sensing strategies, nanoparticles can provide other benefits.   

Nanomaterials like gold nanoparticles can help control surface functionalities of the 

electrodes and provide sites for modification of the surface with desirable biomolecules or other 
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species. They can provide sites for immobilizing antibodies necessary for biosensing, and they 

can help catalyze redox reactions for some analytes as well.43 The studies completed here help 

provide a more complete description of the role of GSH-AuNPs and PDDA in observed 

electrochemical response for these particular LbL-modified SPCEs. In addition to the specific 

system investigated here, this work may provide a framework for determining the effects of 

nanomaterial modification on electrochemical response for other modified electrodes. Since 

many nanomaterial-modified electrodes are characterized primarily or solely through CV 

measurements with Fe(CN)6
3-/4-, these results should encourage more thorough characterization 

of nanostructured electrodes, which will hopefully lead to more informed design of 

electrochemical sensors.   

Future Work 

As a follow up to these studies, other potential roles of the gold nanoparticles on 

electrochemical properties of LbL SPCEs will be determined. Potential benefits of other 

nanomaterials or combinations of other nanomaterials with GSH-AuNPs in enhancing the 

electrochemical properties of SPCEs will also be explored. Ultimately, the modified electrodes 

will be used for measurements of proteins and DNA related to disease state of patients. 
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