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ABSTRACT 

 

CO2 Capture on Porous Adsorbents Containing Surface Amino Groups 

by 

 

Odette Amana Esam 

The potential impact of carbon dioxide as a major source of global warming has led to extensive 

research in order to mitigate the greenhouse effect. In this work, four adsorbents were synthesized 

and studied. The adsorbents were obtained by grafting and sol-gel of amino-containing molecules 

such as bis[3-(trimethoxysilyl)propyl]amine as monoamine and [3-(2-aminoethylamino)propyl]- 

trimethoxysilane as diamine on the surface of silica gel. CO2 passed through adsorbents at room 

temperature for its capture, then desorbed at moderate heating, and stored in the form of insoluble 

BaCO3. The adsorbent synthesized by sol-gel synthesis was found to be more efficient due to its 

high content of amino groups. A demonstration experiment on reversible adsorption of CO2 on 

mesoporous modified silica gel was developed. This experiment visualizes a technology of post-

combustion CO2 sequestration from industrial emission gases and its storage.   
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CHAPTER 1 

INTRODUCTION 

Problem of Global Warming 

Global warming is the gradual increase of the temperature of the atmosphere that is great 

enough to cause changes in global climate believed to be caused by an increase in greenhouse 

effect brought about by an increased level of greenhouse gases. There are essentially three factors 

that were suspected to be causing today’s rapid global warming which include: 

1. The sun; 

2. Earth’s reflectivity; 

3. Greenhouse gases. 

          It has been found that the Sun and the Earth’s reflectivity have just a small effect on global 

warming. Hence, all evidence points at greenhouse effect to be the major cause of global warming. 

Greenhouse effect is a natural phenomenon by which greenhouse gases emitted into the 

atmosphere prevent re-emission of heat energy back into space, thereby trapping energy in the 

atmosphere leading to an increase in the earth’s temperature. The main greenhouse gases include 

carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), water vapor, hydrofluorocarbons 

(HFCs), perfluorocarbons (PFCs), and sulphur hexafluoride (SF6) [1].   

          The theory of global warming was first proposed by Svante Arrhenius in 1896. In his theory 

he stated that carbon dioxide (CO2) traps heat from the atmosphere and that the CO2 was produced 

mostly from burning coal and oil; the Earth’s surface emits IR radiation coming from the 

electromagnetic spectrum of sunlight, greenhouse gases such as CO2 and water vapor absorb the IR 

radiation from the Earth’s surface preventing it from being emitted back into the atmosphere. A 

certain amount of greenhouse gases is naturally present in the atmosphere. They capture heat and 
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help to keep the Earth’s surface warm enough for habitation. Hence life on Earth is a careful 

balance of the greenhouse gases in the atmosphere.  

          Before the industrial age in the mid-1700s, there was a balance between the greenhouse 

gases emitted into the atmosphere and the greenhouse gases absorbed in natural water. But after 

this period, large amounts of greenhouse gases have been emitted into the atmosphere through 

deforestation and burning of fossil fuel to run cars, trucks, factories, planes, power plants, etc. 

(Figure 1). 

 

Figure 1. Anthropogenic release of greenhouse gases into the atmosphere [2]  

 

          These gases can last in the atmosphere for nearly a century, accumulating there and creating 

an extra thick blanket around the Earth. Recent reports have also shown that CO2 emissions rose by 

21.8% from 1990 to 2007 largely due to increased generation of electricity and an uptick in 

transportation activities. In the same period, CH4 emission declined by 5% and N2O emission 

dropped by 1%. Better technology and management plans as well as increased collection and 

burning of CH4 gas at landfills accounts for most of the reduction in methane emission. If effective 

majors are not taken to reduce emission of greenhouse gases, the global average temperature will 

increase on a high end by 5.8 ºC and on the low end by 1.4 ºC by the year 2100. Be it at the low or 
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higher end, it will result in changes in climate leading to a rise in sea level as a result of melting 

glacier hence thermal expansion of water; this rise in sea level and changes in the temperature of 

water bodies might lead to hurricanes (Figure 2), tornadoes, flooding, intense storms, more 

pronounced droughts, coastal areas more severely eroded by rising seas, acidic oceans, destruction 

of ecosystems, cause mass extinctions, generate extreme weather, hinder agriculture, spread 

tropical diseases into new areas, displace millions of people. Water shortage and expansion of 

deserts amongst others are also potential risks of global warming [3-5]. 

                

Figure 2. Rescuers check for survivors in New Orleans, Louisiana, after hurricane Katrina [6]. 

  

          According to National Geographic news in March 2013 [7], a recent study has found that 

hurricanes formed in the Atlantic Ocean are expected to gain considerable strength as the global 

temperature continues to rise. Hurricane strength is directly related to the heat of the water where 

the storm forms. This report also says that for every 1 ºC rise of the Earth’s temperature, the 
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number of hurricanes in the Atlantic that are as strong as or stronger than hurricane Katrina will 

increase twofold to sevenfold.  

          There have been recent records of cold weather in some parts of the world which some 

people have used to disprove global warming [8]; this is as a result of people confusing weather 

patterns and climate change. Nevertheless, scientists are no longer debating whether global 

warming is real or not, but thousands of scientists came together in 2007 to form an association 

called Intergovernmental Panel on Climate Change (IPCC). From the findings of this union there is 

a greater than 90% likelihood that the rise in global warming is being caused by human activities 

[1]. The U.S. Global Change Research program suggest that changes made  now will have a bigger 

impact on curbing  global warming than those same changes made at a later date.   

          Carbon dioxide is one of the major and most influential greenhouse gases emitted to the     

atmosphere as a result of human activities; it contributes to over 60% of the greenhouse effect. The 

effect of CO2 on the Earth climate is determined by a combination of two factors: its ability to 

remain in the atmosphere for a long time and to absorb energy radiated from the Earth. Among 

sources of U.S. CO2 emissions, approximately 40% originate from electric power plants.   

                                           Separation of CO2 from emission gases 

          Separation of CO2 is widely practiced, although it is currently done at a relatively small 

scale compared to that required for significant impact on global CO2 emissions [9]. CO2 can be 

separated from other components on the bases of difference in physical and chemical features such 

as molecular weight, solubility, boiling point and reactivity. Generally CO2 capture from power 

plant is classified under the following three broad methods:  
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Post-combustion capture    

          It is the separation of CO2 from mainly N2 in flue gas derived from combustion of fossil 

fuels such as coal, natural gas, or oil in air (Figure 3). CO2 is captured from flue gas after 

      

Figure 3. CO2 capture from power plant flue gases    

                                                        

combustion at low pressure (atmospheric pressure) and low CO2 content (3-20%). It can be applied 

at large power plants such as pulverized coal plants, natural gas combined cycles, boilers, furnaces, 

and stationary fuel cells. It is the most widely used method of CO2 capture and is the leading 

candidate for gas fired plants. With this method, the CO2 can be separated by four main ways: 

1. Absorption: fluid dissolves or permeates into a liquid or solid. It can be a chemical or physical 

process that involves ionic, hydrogen, and covalent bonds or Van der Waals forces. 

2. Adsorption: attachment of fluid to a solid surface either chemically or physically involving the 

different types of chemical bonds or Van der Waals forces. 
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3. Membranes: separation that makes use of difference in physical or chemical interaction with 

membrane. The transport mechanism through the membrane is a function of porosity and the 

membrane characteristics included permeability, selectivity, and stability. 

4. Cryogenic (low-temperature distillation): temperature of flue gas is reduced until CO2 liquefies 

to the point where it is easily separated from the system.  Separation is based on difference in 

boiling points. 

Pre-combustion Capture 

          As the name suggest, it refers to capture of CO2 prior to combustion. Fossil fuels are first 

converted to syngas, a mixture consisting mainly of CO and H2. CO is further reacted with steam 

to produce CO2 and more H2. The H2 rich gas can be distributed for use as an energy source while 

the CO2 removed from the system is stored [10-13]. Here CO2 separation is of less energy and 

cost-intensive than post-combustion. 

Oxy-fuel combustion Capture 

          This method is based on separation of O2 from N2. Fuel is combusted in oxygen instead of 

separating CO2 from N2 as in post-combustion capture; O2 is separated from N2 first. Then the flue 

gas consisting mainly of CO2 and steam can be separated easily by condensation. Separating O2 

from air is very costly, hence making this method not economically feasible.  

          The above three methods can be summarized as shown in Figure 4 below. 
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Figure 4. Schematic of the three main methods of CO2 capture [14] 

 

Materials used until present times for post-combustion CO2 capture 

          Due to increase of CO2 emissions from hydrocarbon plants, atmospheric CO2 levels a 

century from now are forecasted to double those of a century ago [15]. Hence, the reduction of 

anthropogenic CO2 emissions to alleviate the consequences of climate change is a matter of 

concern for all developed countries. One of the modern approaches to solve this problem is CO2 

sequestration from industrial sources. In the short term, this approach is a viable option for 

reducing carbon emissions by capturing CO2 and its storage. Several reviews discussed the 

problem of carbon capture by different technologies [16-18].  Most common substances used for 

CO2 capture in the past were liquid solvents such as amines. The first commercial CO2 

sequestration facility started in Norway in 1996 in response to a Norwegian carbon tax. Nowadays 

most plants capture CO2 using processes developed by Fluor Daniel Inc., Dow Chemical Co., and 

several other companies, and they are based on chemical absorption using monoethanolamine 
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(MEA) containing solvents. However, the cost of CO2 capturing by this method is very high (about 

$40 per ton) [19]. The amount of heat required to regenerate the solvent is quite high that it 

significantly reduces the net efficiency of the fossil fuel-based power plants. Part of the solvent is 

lost during the process. Flue gas impurities (such as O2, SO2, NO2) react with MEA producing 

thermally stable salts that reduce its absorption capacity. Degradation and oxidation of the solvents 

over time produces substances that are corrosive and may require hazardous material handling 

procedures [20]. Thus, MEA reacts with CO2 producing 2-oxazolidone and other side products 

[21].  

          More promising approach to CO2 capture is based on the use of solid adsorbents. Some 

porous materials can separate CO2 by physical adsorption, attracting it to the material surface 

through weak interactions, i.e., Van der Waals forces. Adsorption of CO2 can be achieved on 

activated carbon, metal organic frameworks, or zeolites and hydrotalcites. For example, Konduru 

suggested use of zeolites as CO2 adsorbent [22]. However, its capacity was only 40 g/kg, while an 

active life of the adsorbent was only 8 cycles due to low stability of zeolite structure. Chemical 

adsorption of CO2 on solid adsorbents of basic nature is more effective due to high operating 

temperature and long usage lifetime. Solid-state sorbents are a good option for reversible CO2 

capture. Porous materials with a functionalized surface increase the CO2 capturing ability and 

provide a high capacity and large surface area that is gas accessible. CO2 can react with limestone 

to form calcium and bicarbonate ions. These products can be deposited into the ocean, short-

circuiting the residence of carbon in the atmosphere [23]. However, this method involves large 

volume of adsorbent that makes it energy- and cost-consuming.   

          Carbon nanotubes have been used for CO2 capture. These nanotubes with modified CO2 

capturing capability using molecular anchors such as pyrene-based anchors are an appealing option 
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for CO2 capture. Carbon nanotubes have a high surface area and high thermal conductivity. These 

bifunctional molecules have an anchor part that adheres to nanotubes surfaces through 

hydrophobic interactions and a functional part to reversibly capture CO2. Such molecules with 

pyrene-based anchors (Figure 5) have low volatility and high relative thermal stability.  

                     

N
H

O

N

 

Figure 5. Structure of a bifunctional anchor consisting of a pyrene anchoring group and an amine 

CO2 capturing group [24]. 

 

          According to a report by the U.S. Department of Energy, Carbon Capture and Storage (CCS) 

technologies have an effective potential in the decrease of the amount of CO2 emitted, hence 

reducing global warming without an adverse influence on the use of energy or hindering economic 

growth. Some materials that have been used by the National Energy Technology Laboratory 

(NETL) include but not limited to mesoporous (materials with pores of diameter between 2 and 50 

nanometers), functionalized solids with highly branched three-dimensional macromolecules of 

amino-polymers [25]. 

          Bayham et al. reported on March 20th 2013 two different types of CO2 capture termed 

Syngas Chemical Loop (SCL) and Coal-Direct Chemical Looping (CDCL), which both involve the 

oxidation of coal [26]. The Syngas involves a sealed chamber without atmospheric oxygen but 

with oxygen-containing metal compounds that provide oxygen for oxidation, take up coal’s 

energy, release it as heat in a second chamber, and re-circulate back into the first chamber for 
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another run. The CDCL reports the longest continuous operation time 200 hours. It uses sub-

bituminous and lignite coal, which are regarded as the main CO2 emission source at the U.S coal-

fired power plants. The purity of the CO2 captured was approximately 99.5% [26].  

          Scientists from the Korean Advanced Institute of Science and Technology (KAIST) reported 

a new solid material called Azo-COP (a combination of simple organic molecules with nitrogen to 

create a porous polymer) that is much cheaper to produce and efficient for capturing CO2 from a 

mixture of other gases. The capture takes place in hot and humid conditions and this material is 

stable in these conditions, and maintains its capturing efficiency. It does not need any catalyst and 

has excellent chemical characteristics like water and structural stability. This material holds on to 

the gas using weak attractive forces rather than chemical forces, hence reducing the cost of 

removing CO2 from the material.  

          According to Advance Technology Material Inc (ATMI) news on June 28th 2012, a high 

performance adsorbent called Bright Black has been produced. It is made up of microscopic 

carbon beads that bind with carbon atoms released in the combustion of fossil fuel, such as coal 

and natural gas. This material is a highly selective adsorbent that can absorb a variety of different 

gases at the exclusion of others. It was developed for a different purpose but has shown to capture 

more than 95% of CO2 from emission source with about 130 hours of operation time. It is less 

energy consuming than amine-based methods of CO2 capture. In this technology CO2 is absorbed 

in a bed of sorbent pellets and is desorbed in a separate chamber that regenerates the sorbent again 

back to the absorber with little or no mechanical or chemical degradation of the sorbent [27].  

          Carbon dioxide Capture and Sequestration (CCS) can also be done geologically.  CCS is a 

set of technologies that helps to reduce CO2 emissions from large stationary sources such as heavy 

industrial sources. The CCS process includes three different steps: 

20 
 



 
 

1. Firstly is the capture of CO2 from fire plants;  

2. Secondly, the transportation of captured CO2 that has been compressed (usually 

transported through pipelines);  

3. And thirdly is storage (underground injection) and geologic sequestration of CO2 into 

deep underground porous rocks usually a mile or more beneath the earth surface.  

          Overlying these porous rocks are non-porous layers that help to trap the CO2 and prevent it 

from migrating upwards [28]. More than 40% of CO2 emissions in the U.S. are from electric power 

generation and CCS can reduce 80-90% of CO2 emission from power plants. Hence, geologic 

sequestration is one step in the CCS process. CO2 can also be captured and stored through 

terrestrial or biological sequestration, where carbon is stored via agricultural and forestry practices 

in which plants help to capture carbon dioxide for photosynthesis.         

          Two major approaches to synthesis of materials for post-combustion CO2 capture include 

grafting technique and sol-gel technique. 

Background on grafting technique and its applications 

          In the last few years, many researchers were involved in the development and studies of 

organic/inorganic hybrid materials with amine functionalities to modify the surfaces of these 

materials [29-32]. Among the various technologies and processes that have been developed and are 

emerging for the modification of the surfaces of inorganic porous materials, grafting has been one 

of the most eminent techniques [33]. A typical inorganic precursor used is silica gel and an organic 

precursor is primary or secondary amine group as shown in Figure 6 below. It uses the mechanism 

of physical or chemical adsorption. The end result is a new organic/inorganic highly porous hybrid 

material whose surface has been modified. These modified nanoparticles are applicable in many 

areas of science not leaving out greenhouse chemistry for the adsorption of CO2. 
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Figure 6. Grafting of amino group on a solid support of silica gel 

 

          According to Rajesh et al. [34], CO2 is adsorbed on diamine grafted SBA-15 as bidentate 

carbonate and bidentate and monodentate bicarbonates at 25 ºC (Figure 8). Desorption revealed 

that the monodentate and bidentate bicarbonates bound stronger to the diamine grafted SBA-15 

surface than the bidentate carbonate. Desorption at 120 ºC removes the majority of the captured 

CO2 and regenerates the sorbent for CO2 capture at low temperature. 

          Pevida et al. reported synthesis of carbon-based sorbents containing NH2-groups by high-

temperature treatment of activated carbon by ammonia [35]. Their adsorption capacity was 7.0-

8.4%. Similar results were obtained by Maroto-Valer et al. [36]. Functionalized polymers provide 

adsorption of up to 8.19% CO2 [37]. 

          Many publications are devoted to the use of functionalized silica for CO2 chemisorption. 

Synthesis of such functionalized materials containing siloxane structures with incorporated organic 

molecules is well known as an effective method of obtaining materials with a wide range of 

structures, compositions, and properties. They can be prepared by grafting of organic molecules on 

the surface of silica or co-polycondensation of tetraalkoxysilane and trialkoxysilane containing an 

organic functional group. Several reviews describe these materials and their synthesis [38]. Gray et 

22 
 



 
 

al. used silica sorbent prepared with template for synthesis of an amino-containing adsorbent [39]. 

They functionalized the surface of silica by grafting with (3-aminopropyl)trimethoxysilane, and 

the obtained material adsorbed up to 8.8% CO2 in respect to the total weight of the adsorbent. This 

value is higher than for commercial amine adsorbent that was explained by uniform distribution of 

aminoalkyl groups in pores increasing their accessibility for CO2 molecules. Authors suggested 

that CO2 forms carbonate and bicarbonate structures on surface amino groups [40]. 

Background on sol-gel technique 

          Sol-gel process is a chemical technique widely used in material science and ceramic 

engineering for the fabrication of both glassy and ceramic materials. The precursor involves a 

metal or metalloid element surrounded by various reactive ligands. The sol-gel process can be 

described as the formation of an oxide network through polycondensation of molecular precursors 

in a liquid. This method can be used to prepare materials with a variety of shapes such as porous 

structures, thin fibers, dense powders, and thin films. The starting material is a colloidal solution 

(sol) that is a suspension of solid particles in a liquid. It acts as a precursor for an integrated 

porous, three dimensional, continuous network (or gel) of either discrete particles or network 

polymers. In this gel a recombination of polymers produces bushy structures that invade the whole 

volume inside the solvent, reaction by-products and free polymers are trapped. The sol evolves 

gradually towards the formation of a gel-like network containing both liquid and solid phase after 

the solution is allowed to precipitate [41-44]. The removal of the remaining liquid requires drying 

process accompanied by significant amount of shrinkage. The rate at which the solvent can be 

removed is determined by the distribution of its porosity in the gel. There are two distinct reactions 

in the sol-gel process, hydrolysis and condensation (Figure 7) of the resulting hydroxyl groups and 

occur by nucleophilic substitution through the following steps: addition of a nucleophile followed 
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by proton transfer, then eliminating the proton as water or an alcohol [45]. A well-studied alkoxide 

is tetraethoxylsilane (Si(OC2H5)4). Alkoxides are ideal chemical precursors for sol-gel synthesis 

because they react readily with water. In this hydrolysis reaction, hydroxyl ions become attached 

to the silicon atoms. 

  

Si OR + HOH
Hydrolysis

Reesterification
Si OH + ROH

Si + Water Condensation

Hydrolysis
Si O + HOH

Si + Alcohol Condensation

Alcoholysis
+ ROH

Si OH Si

Si OR

OH

Si O SiOH

Alkoxysilane Silanol

SilanolSilanol

Silanol

Siloxane

SiloxaneAlkoxysilane

Alcohol

Alcohol

Water

 
Figure 7. Example of hydrolysis and condensation in sol-gel reaction 
 

           Also, the condensation reactions are acid and base specific (Figure 8), hence the final 

structure of the end product is greatly influenced by the pH condition of the reaction. Mineral acids 

such as HCl and ammonia are commonly used as catalyst. In acidic condition, the reaction rate 

decreases as more alkoxy groups are hydrolyzed. Reaction at terminal Si is more favored resulting 

in a primarily or randomly branched polymer product.  In basic conditions, the reaction rate 

increases as more alkoxy groups are hydrolyzed. Reaction at central Si favored resulting in a  
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Figure 8. Sol-gel reaction in (a) acidic and (b) basic conditions 

 

highly branched polymer network. Aside the effect of pH, there are other factors that also affect 

the rate of hydrolysis and condensation that include but not limited to temperature, time of 

reaction, reagent concentration, catalyst nature, H2O/Si molar ratio, and aging temperature and 

time. 

          Aging is the structure modification with time depending on temperature, solvent and pH 

conditions. It leads to the promotion of additional cross linking as unreacted terminal groups (OH 

and OR) come in contact. The process also helps in further structural changes such as pore 

formation. 

          Tetraethylorthosilicate (TEOS) is one of the most commonly used precursors in sol-gel 

chemistry and results in a highly branched porous network structure as shown in Figure 9 below. 
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Figure 9. Simplified representation of condensation of TEOS in sol-gel process 

 

                                     Critical comparison of grafting and sol-gel technique 

          The modification of silica surface can be done using several different methods amongst 

which are grafting and sol-gel method. The method used to prepare the adsorbent determines the 

porosity and the quality of the adsorbent. 

          Grafting takes place by chemical reaction between silanol groups (Si-OH) from commercial 

silica with ligands (e.g., chloride or alkoxide). The commercially obtained silica gel is highly 

porous, but we can introduce only small amount of amino groups because of steric hindrance. 

Hence, grafting results in a highly porous material that has limited number of amino groups 
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resulting to a low absorption capacity [46-48]. In the case of sol-gel, Si alkoxides are combined in 

a two-step reaction: hydrolysis (which leads to the formation of Si-OH bond) followed by 

condensation (which generates siloxane ie Si-O-Si bond) that results in the bulk skeleton of silica 

network. We don’t need any previously formed silica network, hence we can introduce any amount 

of amino group during the reaction. The product obtained has a high amount of amino groups but 

low porosity, hence a low absorption capacity [49]. The material obtained by sol-gel method has a 

well-defined morphology of spherical particle showing both the lamellar and spherical domains 

[49].     

Porous Structure Determination 

          The structural and surface properties of porous materials used in different applications have 

a great influence on the performance of these materials. These properties can be determined using 

Porosimetry method, which is an extremely useful characterization technique for porous materials 

and is one of the few analytical techniques used to determine various quantifiable aspects of a 

material’s porous nature, such as pore diameter, total pore volume, surface area, and absolute 

density by gas adsorption using a porosimeter. There are many different types of Porosimetry 

methods such as mercury porosimetry, nitrogen porosimetry, argon porosimetry, etc. [50]. 

Irrespective of the type of porosimetry method used, the principle behind it is the same. From the 

volume and partial pressure data, the area of pore at each diameter range can be obtained as well as 

the total pore volume and average pore diameter. A plot of the volume of gas as a function of 

pressure called an isotherm is obtained. Surface area can be calculated using the Langmuir or BET 

(Brunauer-Emmett-Teller) equation. These two equations have two different principles: BET seeks 

to explain the physical adsorption of gas molecules on a solid surface and is an extension of the 

Langmuir theory that is based on monolayer molecular adsorption. A variety of methods are 
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available for the calculation of pore volume and size distribution such as BJH (Barret, Joyer, and 

Halenda), Horvath-Kowazoe, and DFT (Density Functional Theory) methods [51]. 

          Porosimetry is not only useful in chemistry but also in life sciences as Robinson et al., used 

it as a technique for comparing the total pore volume and size distribution of the pores in ancient 

animals represented on European archaeological sites. The measurement of variations in bone 

porosity is a good potential for contributing to the predictive model of bone diagenesis [51, 52]. 

Research Objective 

          The main objective of this research is to develop new highly efficient adsorbents for carbon 

dioxide capture from a stationary source of flue gas. Synthesis of such adsorbents is based on the 

hybrid and inorganic materials, using bridged amines to achieve high porosity and high amine 

content; two methods of synthesis were used, namely:- grafting and sol-gel methods.                                                       
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CHAPTER 2 

EXPERIMENTAL 

Reagents 

Precursors 

          Bis[3-(trimethoxysilyl)propyl]amine (BTMSPA, C12H31NO6Si2, MW = 341.55, Figure 10) 

from Sigma Aldrich (St. Louis, MO). 

                  

H3CO Si

OCH3

OCH3

N
H

Si

OCH3

OCH3

OCH3  

Figure 10. Bis[3-(trimethoxysilyl)propyl]amine 

 

          [3-(2-Aminoethylamino)propyl]trimethoxysilane (AEAPTMS, C8H22N2O3Si, MW = 222.36, 

Figure 11) from Sigma Aldrich (St. Louis, MO). 

H3CO Si

OCH3

OCH3 H
N

NH2

 

Figure 11. [3-(2-Aminoethylamino)propyl]trimethoxysilane 

 

Surfactant 

          Dodecylamine (DDA, C12H27N, MW = 185.35, Figure 12) was obtained from Acros 

Organics (Morris Plain, NJ) 

NH2
 

Figure 12. Dodecylamine 
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Other chemical reagents used 

          Silica gel (Figure 13) from TCI America (Portland, OR)  

Si

Si Si

Si

OHO

O

O O

HO

 

Figure 13. Structure of silica gel 

 

          Toluene 

 Hydrochloric acid (HCl) from Acros Organics (Morris Plains, NJ) 

          Isopropanol 

          Sodium bicarbonate (NaHCO3) 

Acetone 

Ether 

Barium hydroxide (Ba(OH)2)  from Fischer Scientific (NJ) 

Deionized water 

Hazards 

          N-[3-(trimethoxysilyl)propyl]ethylenediamine and bis[3-(trimethoxysilyl)-propyl]amine are 

irritants.  Barium hydroxide is corrosive. Toluene is a flammable liquid. It causes skin and eye 

irritation and is harmful if inhaled. Silica gel is not a dangerous substance. Tube furnace should not 

be used in presence of flammable materials. Protective gloves, goggles, and clothing must be worn 

during the experiment.    
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Grafting technique 

          Two samples (1 and 2) were synthesized by grafting method as follows: 

Preparation of sample 1: 

          About 3.5 g of bis[3-(trimetoxysilyl)propyl]amine was weighed using a top-loading balance 

and dissolved in 100 mL of toluene in a beaker. Then, 20 g of silica gel was added to the solution 

and stirred. The entire solution was then transferred into a round bottom flask in the presence of a 

magnetic stirrer and then connected to a reflux condenser with a hot plate placed directly under the 

flask. While stirring the solution was refluxed at 111 ºC for 12 hrs. After 24 hours, the solution was 

allowed to cool down. It was then filtered using a filter paper and washed with acetone to facilitate 

the drying process. After allowing it to air dry for a few hours, sample 1 was then stored in a 

closed container to keep it from absorbing moisture because it is hygroscopic. Its final weight was 

19.7 g. 

 Preparation of sample 2: 

          About 3.5 g of [3-(2-Aminoethylamino)propyl]trimethoxysilane was weighed and dissolved 

in 100 mL of toluene in a beaker. Then, 20 g of silica gel was also added to the solution and 

stirred. It was then refluxed at 111 ºC, filtered, washed, dried, and stored using the same reagents 

and under the same conditions as sample 1. The final weight of the product was 21.6 g. 

Sol-gel technique 

          Also, two samples (3 and 4) were synthesized using the sol-gel method as thus: 

Preparation of sample 3:  

          Two solutions were prepared at the same time. The first solution consisted of 80 mL of 35% 

HCl and 10 g of dodecylamine added to 500 mL of distilled water in a 1000 mL beaker. The 

second solution consisted of 30 g of bis[3-(trimetoxysilyl)propyl]amine dissolved in 50 mL of 
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isopropanol in a 100 mL beaker. The first solution was heated at 40 ºC while stirring with a 

magnetic stirrer. The second solution was then added drop-wise to the first solution while still 

heating and stirring. I continued heating and stirring the final solution at 40 ºC for 24 hours, then 

increased the temperature to 80 ºC and continued heating and stirring for 24 hours again. Allowed 

the solution to cool; the solid product was filtered using a funnel. Washed the filtrate with distilled 

water until all the acid was removed completely (i.e., when the pH = 7). Washed once with a base 

(NaHCO3). Washed again with distilled water until all the base was completely removed, i.e., 

when the pH = 7. Washed twice with acetone and once with ether. The solid product was then 

dried in a vacuum desiccator overnight. The weight of the final product obtained was 78.8 g. It was 

then stored in an air tight container. 

Preparation of sample 4:  

          Two individual solutions were prepared at same time. The first solution contained 5 g of 

dodecylamine and 40 mL of 35% HCl and dissolved in 250 mL of distilled water. The second 

solution consisted of 15 g of [3-(2-aminoethylamino)propyl]trimethoxysilane in 25 mL of 

isopropanol. The first solution was heated 40 ºC while stirring and the second solution was added 

drop wise to it. Continued heating at constant temperature for 24 hours. Increased the temperature 

to 80 ºC and heated for 24 hours more. Filtered, washed, and dried using the same method and 

reagents just as with sample 3. The weight of final product obtained was 3.1 g. It was then stored 

in an air tight container. 

Preparation of barium hydroxide (Ba(OH)2) solution 

          One litre Ba(OH)2 solution that was used to absorb CO2 from the furnace was prepared by 

the following procedure. Solubility of Ba(OH)2 at 20 ºC is 3.89 g / 100 mL. A mass of 38.9 g of 
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Ba(OH)2  was dissolved in 1 L of distilled water. Stirred until everything dissolves then filtered out 

any impurities using a filter paper and then stored in a closed container.  

Adsorption/desorption setup. 

          The scheme of CO2 adsorption/desorption is as shown in Figure 14 below. 

 

Figure 14. Scheme of CO2 adsorption/desorption set-up (1 - bubbler (contains water), 2 and 6 - two 

way valves, 3 - Thermolyne furnace, 4 - adsorber (contains any of the adsorbents prepared), 5 - the 

receiver containing Ba(OH)2 solution). 

 

          The experiments were conducted on an experimental setup constructed as shown above. A 

glass distillation column (50 cm x 2 cm) was used as an adsorber 4. The adsorbent (4 g) was 

loaded in the adsorber between two fiber gaskets, and the adsorber was placed in a furnace.         

Two gas lines were connected to the setup for: - N2 and CO2. As reported earlier, CO2 adsorption 

is higher in the presence of water vapor [19], thus, it bubbled through water in the bubbler 1 prior 

to entering the adsorber. Saturated solution of Ba(OH)2 (50 mL) was loaded in the receiver 5. 

Change of gas flow route was regulated by valves 2 and 6. The image of the adsorption/desorption 

apparatus including the entire experimental setup is shown in Figure 15 below. 
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          The first step in adsorption/desorption cycle was adsorption of CO2 on the sample at room 

temperature. Gas flow passed through the sample at the rate of 50 mL/min for 30 min and directed 

to atmosphere by valve 6. Then CO2 was switched to N2 by valve 2 for additional 30 min until CO2 

was fully removed from the adsorber. After that, gas flow was turned to the flask 5 by valve 6 and 

the heating of the sample started. When the temperature reached 120 °C, the solution of Ba(OH)2 

became cloudy. Desorption of CO2 continued for 30 min, then the heating was stopped and white 

precipitate was collected by filtration on a paper filter. 

  

Figure 15. Photograph of the adsorption/desorption apparatus  

 

           The experiment was repeated two more adsorption/desorption cycles to demonstrate 

recyclability of the adsorbents. The amount of CO2 adsorbed was calculated for each cycle.  

          The reaction of CO2 with the adsorbent is shown in Figure 16 below. 
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Figure 16. Grafting of amines on the silica surface and CO2 adsorption/desorption 

 

Elemental analysis 

          The content of molecules of amino compounds on the surface of adsorbent were calculated 

from the data of elemental analysis on nitrogen (provided by Robertson Microlit Laboratories, 

Ledgewood, NJ) in accordance with the formula (1): 

                   C(mmol) = 0.71C(%)/N                                                                                              (1) 

[Where C(mmol)  is the content of surface amino groups, mmol/g; C is the content of nitrogen in the 

samples, mass %; N is the number of nitrogen atom in the molecule]. 

          The molar amounts of CO2 adsorbed per 1 mmol of surface amino compounds were 

calculated from the masses of BaCO3 precipitates in accordance with formula (2):  

          A = 5.08 M / (m ∙ C(mmol))           (2)   

[Where A is the adsorption of CO2 per one mmol of surface amino compound, mmol; M is the 

mass of precipitated BaCO3, g; C(mmol) is contents of surface amino compound, mmol/g; m is the 

mass of the adsorbent, g].  
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Pore size determination 

          The porosity of the adsorbents synthesized was determined using nitrogen adsorption 

porosimetry. Nitrogen gas was used as adsorbate because it is an inexpensive and readily obtained 

gas. The principle behind nitrogen porosimetry is that the analyzer determines pore information by 

condensing N2 gas in the pores of the adsorbent and then calculating the pore volume from the 

quantities of gas required to fill the pores. An estimate of about 0.3 g of adsorbent is placed in a 

long narrow glass test tube and the test tube is placed in the oven for a few hours to dry the sample. 

The test tube is then placed in a porosimeter that contains N2 and pressure is applied to the system. 

N2 is being taken up into the pores of the adsorbent as the pressure increases until saturation. The 

Quantachrome is connected to a computer that automatically plots the volume of N2 

adsorbed/desorbed versus the pressure of adsorption. From the isotherm obtained the pore size is 

calculated using the Langmuir equation. 
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CHAPTER 3 

RESULTS AND DICUSSION 

Synthesis of Adsorbents 

Synthesis by grafting method 

          The silica gel used served as a solid support on which the amine was incorporated. This 

commercially obtained silica gel (SiO2) had a particle size of 63-200 μm, a pore volume of 0.75 

cm3/g, a pore size of 60 Å, and a surface area of 500 m2/g. After a few hours of refluxing, the 

solution became thicker and thicker. The rate of modification of the surface of porous silica gel by 

precursors is increased by heating and stirring. At the end of the heating process, a thick gel-like 

precipitate was formed. Filtration of the product was very easy. Samples 1 and 2 were easily 

washed and dried. The resulting weight of sample 1 was 19.65 g, while that of sample 2 was 21.56 

g. 

Synthesis by sol-gel method 

          The surfactant dodecylamine was used to form a porous system through the formation of 

micelles, thereby inducing porosity in the system. During synthesis, HCl was added to the reaction 

mixture in order to catalyze the reaction and convert the surfactant (DDA) to the soluble 

ammonium salt. Due to the heating of the acid solution and the surface tension reduction effect of 

the surfactant, the amine dissolved immediately as it was dropped in the acid solution. Because 

heating was done in an open system, there was fast and continuous loss of water and the need of 

addition of water into the system every 1.5 – 2 hours. Gelation of the solution started about 20-30 

min after both solutions were mixed and increased with time. At the end of the heating when the 

solution was allowed to cool, they both had precipitates, but the precipitates formed by the diamine 

was white and had a mesh-like structure suspended at the top of the solution. But the precipitate of 
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the monoamine was uniformly cloudy with a yellowish color. The surfactant was removed from 

the product by washing.  

          At the time of washing the samples, Sample 3 was easily washed and dried though not as 

easy as the first two samples. But this is not the case with sample 4, it was very unstable because it 

is a non-bridged amine and also the fact that it was partially soluble in water resulted in the loss of 

a great part of the sample during washing resulting in a very low yield of 3.088 g while the yield of 

monoamine was 78.98 g. 

          Because many chemicals were used during synthesis, it was necessary for all four absorbents 

to be washed in order to remove any unreacted amine or other chemicals that might present any 

interference in the bonding between our product and CO2. For samples obtained by sol-gel, 

washing with acid (HCl) allowed any physically present amine and also surfactant present in pores 

to form water soluble compounds so they can be washed away easily. But the reaction of acid with 

surface amino groups produces salts that cannot react with CO2.  So, further washing with base 

(NaHCO3) converts covalently bonded amino salts to useful amine that can react with CO2. At this 

point we are sure that the amine present in the absorbents is chemically bonded because physically 

adsorbed amines should be washed from the surface. 

Characterization 

Elemental analysis 

          The contents of amino compounds on the surface of adsorbent were calculated from the data 

of elemental analysis on nitrogen (provided by Robertson Microlit Laboratories, Ledgewood, NJ) 

in accordance with the formula (1). The data are as shown in Table 1 below. 
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Table 1. Content of N, % on adsorbent and contents of surface amino compounds, mmol/g on 

samples 1-4 

Samples Contents of N, % Contents of surface amino 

compound, mmol/g 

1           0.68        0.49 

2           1.35        0.48 

3           5.81         4.13 

4           6.23         2.21 

 

Porosity study 

          The BET isotherms for the N2 adsorption/desorption for samples 1-4 were obtained using 

porosimetry technique. These isotherms were used to study the porosity and the morphology of the 

samples. The BET isotherms for each sample are shown in Figures 17-20 below. 
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Figure 17 . BET isotherm of N2 absorption/desorption on sample 1 

 

 

Figure 18. BET isotherm for N2 absorption/desorption on sample 2 
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Figure 19. BET isotherm for N2 absorption/desorption on sample 3 

 

 

Figure 20. BET isotherm for N2 absorption/desorption on sample 4 
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          From the isotherms it is obvious that all materials except sample 4 are porous though of 

different levels of porosity. The isotherms also provided important pore characteristics such as 

surface area, pore average radius and pore volume as shown in Table 2. 

Table 2. Surface area (m2/g), pore average radius (Å) and pore volume (cm3/g) 

 Samples      Surface area  

         (m2/g) 

Pore average radius 

  (Å) 

Pore Volume 

    (cm3/g) 

  1  203.56   33.1  0.66 

  2  125.55   32.8   0.61 

  3   87.99   56.6   0.67 

  4   2.46     -     - 

 

Adsorption/desorption of CO2 on adsorbents 

          The duration of one adsorption/desorption cycle is 1.5 h; however, the experiment was 

extended to three cycles to demonstrate recyclability of the adsorbent. The carbon dioxide passed 

through water there by allowing it to form surface carbonate salt that makes the reaction easy and 

faster. We used N2 gas as a carrier gas to sweep away the CO2 that has been physically adsorbed 

by the adsorbent. The choice of N2 is because it is an inert gas, hence will not further react with the 

adsorbent. On the desorption step, thermal decomposition of surface carbonates occurred. The 

bonding between CO2 and adsorbents is ionic bonding that is a relatively weak bond hence can be 

easily broken during the desorption process. The released CO2 was carried away from the surface 

of the adsorbent using a carrier gas such as N2.  
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          Released CO2 reacted with a solution of Ba(OH)2 and formed insoluble BaCO3. The color of 

the Ba(OH)2 solution changed from colorless to white confirming the presence of CO2 as shown in 

Figure 21. The molar amount of BaCO3 corresponds to the molar amount of CO2, the adsorption of 

CO2 per one amino group was calculated from the amount of BaCO3. 

 

Figure 21. Receiver for CO2 capture before (left) and after (right) desorption 

 

Data of adsorption/desorption cycle of CO2 

          The results for adsorption of CO2 per one mmol of surface amino compound for all four 

samples on each cycle are as shown in Table 3 below. 
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Table 3. Results of CO2 capture by samples 1 - 4 in three adsorption/desorption cycles 

   Samples Yield of BaCO3 on each cycle, 

g 

Adsorption of CO2 per one 

mmol of surface amino groups 

 1                  2                      3     1                2                   3 

     1 0.075          0.043            0.083 0.20             0.12             0.22 

     2 0.154         0.054            0.105 0.41             0.14             0.28 

     3 0.360          0.139            0.169 0.11             0.04              0.05 

     4 0.012            -                   - 0.01 

 

Discussion 

Synthesis of adsorbents 

         The results obtained for each sample are different due to the different methods used for their 

synthesis. Grafting method generally requires the use of commercially obtained silica gel that is 

highly porous, but we can introduce only small amount of amino groups to the surface of silica gel 

because of steric hindrances. This results in a highly porous product that has limited number of 

amino groups resulting to a relatively low absorption capacity. Hence, the CO2 adsorption on 

samples 1 and 2 can be explained by different numbers of amino groups because both materials are 

porous. So, sample 2 has a greater adsorption capacity of CO2 than sample 1, i.e., sample 2 absorbs 

almost twice as sample 1 because sample 2 has a higher number of amine content than sample 1.  

          In the case of sol-gel synthesis, there is no previously formed silica network, hence we can 

introduce any number of amino groups during the bulk silica network reaction. The resulting 
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product has a high amount of amino groups but low porosity. Hence, the difference in adsorption 

can be explained using the nature of amines used [53]. The low yield of sample 4 and its inability 

to absorb much CO2 is confirmed from literature that explains that non-bridged trialkoxylsilanes 

have only one point of anchor as oppose to the bridged trialkoxylsilanes, this makes them less 

stable. Bridged trialkoxysilanes have two points of anchor on the material, hence making them 

more stable and the fact that they are also partially porous with a high content of amino groups 

explains their high absorption capacity. Literature also confirms that non-bridged trialkoxylsilanes 

yield non-porous products partially soluble in water as we observed making them useless [54, 55]. 

Hence, though bridged alkoxysilanes obtained by sol-gel are not as porous as adsorbents from 

grafting, but are porous enough and their high content of amino groups makes them adsorb better 

than grafting products. Among samples 1, 2 and 3, though 3 has the lowest surface area from the 

isotherm results, it is the most recommended because it has the highest accessibility of amino 

groups. 

 Adsorption of CO2  

          Generally, CO2 capture can be done either through wet or dry adsorption as shown in Figure 

22.  

N
HH

O C OH

O

(a) Wet Adsorption                                  

N
H

O C O

Dry Adsorption(b)  

Figure 22. (a) Wet adsorption and (b) Dry adsorption of CO2 

In wet adsorption, CO2 passes through water before it reacts with the adsorbent. CO2 reacts with 

water to form carbonic acid and the carbonic acid protonates amino group forming ammonium salt 
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and this involves ionic bonding that is much stronger (Figure 24a). In the case of dry adsorption, 

i.e., without water, CO2 C=O bond is polar and the only possibility of bonding is hydrogen 

bonding formed between H and O that is relatively weak compared to ionic bonding in wet 

adsorption (Figure 24b). This explains why we preferred using wet absorption (first bubbling of 

CO2 through water) in this work to ensure stronger bonding between CO2 and adsorbent. 

           On the first step (adsorption), CO2 reacted with surface amino groups in presence of water 

producing surface carbonates in the ratio 1 CO2 : 2 amino groups. This aspect is very important 

because by using diamine it will be possible to reduce to almost half the amount of amine 

necessary for the separation of a specific amount of CO2. Highly porous silica gel (S = 500 m2/g) 

was used for this experiment. From the data of analysis on nitrogen, surface density of grafted 

amine in the adsorbents was found about 0.6 molecules per 1 nm2.  As it can be seen from Table 1, 

not all amino groups were accessible for CO2 molecules. Thus, we assumed a necessity of 

development of adsorbents with high adsorption capacity. From Table 3, there is an inconsistency 

in the adsorption/desorption values for each sample with the first value always the highest (except 

for sample 1) followed by the third values then the second. 

Technical impact of this research 

          Large-scale implementation of solid adsorbents can provide significant economic benefits 

because the proposed approach allows reducing the cost of CO2 capture. In existing absorbers 

amines are dissolved in water. Regeneration of the amine is a very energy-consuming process 

because its solution in water has a very high heat capacity. For example, heat capacity of a 10% 

solution of monoethanolamine in water after absorption of CO2 is 3.857 J•g-1•K-1 [56]. In contrast, 

heat capacity of porous silica is 0.7-0.8 J•g-1•K-1. The adsorbers containing solid adsorbing 
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materials do not require exhaust gas compression. This additionally reduces the cost of CO2 

capture.  

Educational impact of this research 

          A demonstration experiment on reversible adsorption of CO2 on mesoporous modified silica 

gel was developed [57-59]. The experiment is simple and does not require any expensive 

equipment. This experiment visualizes a technology of post-combustion CO2 sequestration from 

industrial emission gases and its storage. This demonstration can be included in the course of 

Industrial Chemistry or Green Chemistry. In this work, one gets to learn about the role of industrial 

gas emissions in greenhouse effect and the strategies of its reduction. During the demonstration 

one will gain an understanding of the nature and environmental effect of greenhouse gases. It also 

discusses the difficulties and shortcomings in the current approaches to management of CO2 

emissions and teaches about chemistry of CO2 capture. 

Conclusion 

          Silica based adsorbents containing surface amino groups were successfully prepared by two 

methods:-grafting and sol-gel method. Samples obtained by grafting were highly porous; however, 

they had low contents of amino groups. For samples obtained by sol-gel method, sample 3 

(bridged amine structure) was moderately porous but content of amino groups was very high. 

Sample 4 (non-bridged amine) resulted in very low yield of the product and this product was non 

porous. 

          Three porous samples were successfully used for adsorption of CO2 from gas mixture with 

N2. Reaction of adsorbents of CO2 was reversible and when CO2 was adsorbed at room 

temperature it could be desorbed at moderate heating. Desorbed CO2 was captured in a solution of 

Ba(OH)2 producing insoluble BaCO3.  
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          As a result of this work we suggest bridged amine product obtained by sol-gel method as the 

most promising material for adsorption of CO2. In future, adsorption can be improved and 

adsorption capacity can be increased by improvement of the methodology. 
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