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ABSTRACT 

Simple Photochemical Reduction of Carbon Dioxide to Formate 

by 

Ovuokenye Omadoko 

There is a need to develop techniques for conversion of carbon dioxide to other useful products such 

as methanol, formaldehyde, formic acid, formate, methane, and hydrocarbons. Carbon dioxide can 

be converted into these products using different methods such as photochemical, electrochemical, 

thermochemical and hydrogenation by bacteria. Formate is of interest due to its wide industrial 

applications which include it’s use in direct liquid fuel cells, as an additive in pyrolysis vapors, a 

precursor for biological fuels, and it is a key intermediate in methanogenesis breaking down 

complex organic compounds. In this work, conversion of carbon dioxide to formate was 

accomplished photochemically. The concentration of formate obtained was quantified using ion 

chromatography. The yield of formate, based on the amount of carbon dioxide in solution, was 

1.54%, while the quantum yield was near 2.0%. Detailed studies of the photoreduction process 

showed that the amount of sensitizer, light intensity and pH affect the amount of formate generated. 
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CHAPTER 1 

INTRODUCTION 

Carbon Dioxide 

            The rich energy nature, availability, and stability of common fossil fuels including natural 

gas, petroleum, and coal have made fossil fuels primary energy sources.1,2 Industrialized countries 

such as the USA and China have relied greatly on the use of coal as a major energy source over the 

years.1,3,4 Continuous dependence on fossil fuel burning has globally increased the atmospheric 

concentration of CO2, a major anthropogenic greenhouse gas, to 409.14 ppm in 2019.5 Industrialized 

countries are working towards reducing fossil fuel consumption for power production.6–8 Examples 

are use of biomass, geothermal, steam, solar, hydroelectric, nuclear and wind power.6–8  

Carbon dioxide is a stable component of the ambient air and a contributor to global 

warming.9–11 Global warming is due to the greenhouse effect which occurs because of the absorption 

and re-emission of infrared radiation by CO2.10 Reduction of the amount of atmospheric CO2 will 

minimize the danger of global warming and conversion to renewable fuels could improve 

sustainable technologies.11,12 Hence, there is an interest in removing or reducing CO2 to other 

products.13,14 There are different strategies for lowering CO2 levels such as carbon capture and 

conversion to other products such as formate.15 

Carbon Dioxide Capture 
 

 Carbon dioxide capture is ideal at sites where fossil fuels are used.16,17 Atmospheric CO2 can 

be captured through either absorption or adsorption processes. Alkanolamine compounds are widely 

used for absorption of CO2.16,18 Alkanolamine reacts with the CO2 to form soluble carbamate and 
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bicarbonate. Heating the mixture formed above 100 °C regenerates the alkanolamine and CO2 is 

reclaimed. The reaction of alkanolamine with CO2 is given in Equations 1.1-1.2.16 

                 2RR1NH    +   CO2                             RR1NCOO-      +     RR1NH2+                             (1.1) 

                RR1NCOO-    +   H2O                     RR1NH      +     HCO3-                                                           (1.2) 

The CO2 absorption capture process is a chemical absorption process, which requires high amounts 

of energy to recover CO2. Other disadvantages in using CO2 absorption capture include corrosion 

and needing a large volume of absorber.17 Adsorption of CO2 is an alternative. 

Adsorption makes use of adsorbents to capture atmospheric CO2.17,19 Such adsorbents bind 

with CO2 physically (physisorption) or chemically (chemisorption).16,19 Carbonaceous materials 

(graphene, carbon nanotube, activated charcoal), zeolite, ordered mesoporous silica, metal-organic 

frameworks have been reported as good physical adsorbents while amine-based materials (amine-

grafted by toluene reflux), lithium-based materials and calcium-based materials are good chemical 

adsorbents.17 Both physical and chemical adsorption require less energy for regeneration of CO2 as 

compared to chemical absorption.17 The adsorption of CO2 on the surface of the adsorbent has been 

experimentally determined to be influenced by various factors such as surface area, partial pressure 

of CO2 and surface pH.20  

Properties of Carbon Dioxide 

The solubility of a gas in a solvent is a measure of the volume of gas dissolved in one gram 

of solvent. Solubility depends on certain factors such as temperature, pressure and the nature of the 

solvent.21 Carbon dioxide dissolves more in alkaline medium than acidic medium because carbon 

dioxide reacts easily with alkaline solution to form bicarbonate.17 
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According to an experimental report on solubility of CO2 in sulfuric acid, about 0.7 cm3 of 

CO2 is required to saturate one gram of 1.0 mM H2SO4.22 The solubility can be used to determine the 

theoretical yield of formate from photoreduction of CO2.23 The development of innovative processes 

for CO2 recycling appears to be gaining more interest due to reduction of CO2 into useful industrial 

products such as methane, ethylene, alcohols, formaldehyde, formic acid and formate.24 These 

processes are based on photochemical, electrochemical, thermochemical, and biological 

hydrogenation.25,26 

Thermochemical Reduction of Carbon Dioxide 

One effective though expensive method of CO2 reduction to other valuable products is 

thermochemical reduction. This method involves the use of heat treatment at moderate temperatures 

in the presence of alkali metal hydrides such as lithium hydride (LiH) or sodium hydride (NaH).27 

This method produces methane and hydrogen gas.27 The amount of methane and hydrogen gas 

produced depends on the temperature and time of the reaction.27 It has also been reported that 

amorphous carbon plays an important intermediate role in the process of thermochemically 

converting CO2 to methane and hydrogen gas.27 

Biocatalytic Reduction of Carbon Dioxide 

Another effective method of converting CO2 into formate and other products is biocatalysis, 

which involves the hydrogenation of CO2 by a bacterial CO2 reductase under the influence of high 

temperature and pressure.28–30 Use of CO2 reductase enzymes is highly selective under mild 

conditions.28 

However, most biocatalysts require other coenzymes such as nicotinamide adenine 

dinucleotide phosphate (NADPH) or hydrogen gas to effectively hydrogenate CO2 to formate.29 
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Examples of bacteria that produce such enzymes include Methylobacteria jeotgali, Methylobacteria 

platani, and Methylobacteria dankookense.31 These biocatalysts come from anaerobic organisms that 

are not very stable when in contact with oxygen, and this can be a major obstacle for biocatalytic 

reduction of CO2 because of enzyme reusability problems under such conditions.32,33 Acetogenic 

bacteria have been observed to be the only microorganism that can receive electrons from electrode 

surfaces to effectively enhance reduction of CO2 while others require coenzymes such as NADPH to 

enhance the movement of electrons between enzymes and electrodes.34 

There are several reports of the use of nanostructures at electrode interfaces to reduce the 

distance between enzymes and the electrode to increase the chance of effective transfer of 

electrons.34 Limitations have been observed in biocatalytic reduction, though the reaction has 

applications in the development of biosensors and bioreactors. 

Electrochemical Reduction of Carbon Dioxide 

Electrochemical reduction of CO2 depends on several factors such as the nature of the 

cathode, the electrolyte used, pressure, and temperature of the system.35 For instance, it has been 

reported that mixtures of hydrocarbons (mainly methane and ethylene) and alcohols are obtained 

when a metal like copper is used as the cathode, the use of zinc, silver, or gold will yield mainly 

carbon monoxide while other moderately reactive metals like tin, mercury, or lead are strictly used 

for production of formic acid and formate through electrolysis.35 The faradaic efficiency, f, of an 

electrochemical cell is calculated by Equation 1.3.36 

f = 𝑛𝑛𝑛𝑛𝑛𝑛
𝑄𝑄

         (1.3) 

where ‘n’ represents moles of product formed during the electrochemical process, ‘N’ represents 

number of electrons required for the formation of one mole of product from CO2, (N = 2 for formate 
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formation), ‘F’ is Faraday’s constant (96,500 C mol-1 of electrons) and ‘Q’ is total charge in 

coulombs of electricity required for the electrochemical process.37  

 Electrocatalysts for electrochemical reduction of CO2 have problems such as low efficiency 

due to hydrogen evolution, requiring a high over potential, are easily deactivated, and have poor 

selectivity for products.38 For instance, electrochemical reduction of CO2 to formate using tin has 

been reported to have a faradaic efficiency of 58%, while another report shows a faradaic efficiency 

of 18% using tin particles on carbon paper.38,39 During electrochemical reduction of CO2, the 

electrolyte used is usually saturated with CO2 before the process begins.38,39 Also, CO2 is 

continuously bubbled at a constant flow rate while applying a constant overpotential.38,39 

Additionally, CO2 is reduced naturally through photosynthesis.40  

Carbon Dioxide and Photosynthesis 
 

Photosynthesis occurs in sub-cellular structures in plants called chloroplasts.41 The 

chloroplast contains chlorophyll, a green pigment which carries out the photosynthesis process.41 

The major functions of chlorophyll in photosynthesis include absorbing light, transferring excitation 

energy to reaction centers, charge separation across the photosynthetic membrane and producing 

membrane potential leading to adenosine trisphosphate (ATP) and NADPH.42–44 

Photosynthesis is a natural photoreduction process involving a series of biochemical 

reactions in which green plants and algae convert light and CO2 into glucose and oxygen, releasing 

energy in the form of ATP in the presence of sunlight trapped by a chromophore called 

chlorophyll.40 Photosynthesis is generally represented by the Equation 1.4.40 

                       6CO2  +  6H2O →  C6H12O6  +   6O2                                                                 (1.4) 
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Antenna chromophores have been reportedly applied to extend photosynthesis to regions 

where chlorophyll is not present.40 Examples of such antenna chromophores include carotenoid 

polyenes, phycoerythrin, phycocyanin, porphyrins, and cyclic tetrapyrroles.45–47  

Photosynthesis occurs under illumination (light-dependent reaction) and dark conditions 

(light-independent reaction).42,48 The light dependent reaction occurs in three phases; light 

absorption, primary electron transfer, and formation of NADPH and ATP.41,48,49 The dark reaction 

involves synthesis and exportation of stable products in which the formed ATP and NADPH are 

used to reduce CO2 into simple sugar.41,46,47 

In the light reaction stage, photons are absorbed by antenna chlorophyll systems; 

photosystem I (PS I) and photosystem II (PS II), leading to excitation of a chlorophyll pair and 

resulting in the splitting of water as shown in Equation 1.5.50,51 

                           H2O                1
2
O2   +    2H+    + 2e-                                                           (1.5) 

The high energy excited electrons pass through an electron transport chain and pump protons in the 

lumen and reduce NADP+ to NADPH in PS I as shown below.50 

                        NADP+    +    H+    + 2e-                 NADPH                                                 (1.6) 

The protons generated from water and those pumped into the thylakoid membrane, drive the 

production ATP from ADP.50 

                    ADP    +     H3PO4               ATP      +       H2O                                                (1.7) 

During the light independent reaction, ATP and NADPH are consumed to reduce CO2 to glucose.50–

52 

6CO2 +12NADPH+12H+ +18ATP +12H2O        C6H12O6 +12NADP+ +18ADP +18H3PO4  (1.8)                                                                                                                                  
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A reaction scheme of natural photosynthesis is shown in Figure 1.53 

 

Figure 1. Scheme for natural photosynthesis process53 

(Reprinted with permission from Muckerman, J.; Fujita, E. Artificial Photosynthesis. In ACS 
Symposium Series; American Chemical Society, 2009; Vol. 1025, pp 283–312.) 

 

In photosynthesis, about 75% of the incident solar energy is lost in absorbing light due to 

reflection, transmission, or conversion to heat.54 The quantum yield of products formed per photon 

absorbed during natural photosynthesis is approximately 1%.41,51 

Chlorophyll 
 

The natural pigments in plants that act like phthalocyanines are chlorophylls.54 Chlorophyll is 

made up of tetrapyrrole ring with magnesium as the center atom.54 There are four different types of 

chlorophyll; chlorophyll a, b, d and f.55 Figure 2 below shows the chemical structures of chlorophyll 

a and chlorophyll f and their absorption spectra.56 
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Figure 2.  Chemical structures and absorption spectra of chlorophyll a and chlorophyll f56 

 

(Reprinted with permission from Li, Y.; Cai, Z.-L.; Chen, M. Spectroscopic Properties of 
Chlorophyll F. J. Phys. Chem. B 2013, 117 (38), 11309–11317.) 

 

From the spectra, it can be seen that chlorophyll generally has two prominent absorption 

bands, a B band in the near UV or blue region and a Q band in the near-infrared or red region.41,56,57 

The difference in absorption spectrum of chlorophyll a and chlorophyll f is due to the minor 

chemical structural modification.56 This causes a difference in molecular electronic energies.56 The 

presence of antenna chromophores like carotenoid complexes (accessory pigments) in green plants 

aid the absorption of light within the spectral region where chlorophyll can’t absorb.54 However the 

antenna complexes can’t perform charge separation but transfer the energy to a chlorophyll 

sensitizer.54 An efficient antenna must allow electron transfer for CO2 reduction to occur.45 

Chlorophyll functioning as a sensitizer in natural photosynthesis process, makes the photoreduction 

of CO2 to simple sugar possible.54  
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An artificial photochemical process is capable of reducing CO2.58–61 This method has gained 

interest due to adequate availability of sunlight to convert CO2 into various chemical products in a 

more carbon-friendly way.58 Reduction of CO2 occurs by using a semiconductor photocatalyst 

enhanced by a sensitizer which absorbs photons.58–61 Several photocatalysts such as titanium dioxide 

(TiO2), zinc oxide (ZnO), zirconium dioxide (ZrO2), and gallium oxide (Ga2O3) have been reported 

to be used in the photoreduction of CO2 into several products.58 The choice of TiO2 as a catalyst for 

CO2 photochemical reduction is common due to its low toxicity, low cost, availability, moderate 

activity, and high ability to resist photocorrosion.59,61 

Titanium Dioxide 
 

The most useful titanium product from titanium ore is titanium dioxide (TiO2).62 Crystalline 

TiO2 exists in three major forms in nature: rutile, anatase, and brookite.63 Rutile was discovered by 

Werner in 1803, brookite was discovered in 1825 by Levy, and anatase was discovered in 1801 by 

Havy.64 

These forms of TiO2 phases are made up of TiO2 octahedra where each oxygen atom is 

surrounded by three titanium atoms and six oxygen atoms around each titanium atom.63,65 The 

crystalline structure of the three phases are different due to octahedral distortions caused by the 

oxygen atoms around each titanium atom.65 Rutile has the least distortion and brookite has the 

greatest distortion, making it least stable, difficult to manufacture and not common.63 Rutile and 

anatase are tetragonal while brookite is orthorhombic.64 Rutile is the most available form of TiO2.62 

Figure 3 shows the three crystalline phases of TiO2.64 
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            Anatase                                    Rutile                                       Brookite            

Figure 3.  Representations of the different phases of TiO2: anatase, rutile and brookite64 

(Reprinted with permission. Dambournet, D.; Belharouak, I.; Amine, K. Tailored Preparation 
Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical 
Properties. Chem. Mater. 2009, 22 (3), 1173–1179.) 

 

The density of the three TiO2 phases varies.66 Anatase has the lowest density, 3.83 gcm-3, 

compared to brookite, 4.17 gcm-3, and rutile, 4.24 gcm-3.51 Also, the refractive index of anatase is 

2.5688 and rutile is 2. 9467.66 Refractive index determines how scattering of light varies between 

each phase. Refractive index depends on particle size. Rutile particle size is 0.25 microns resulting in 

the highest amount of scattering of visible light when compared to anatase particle sizes of about 0.3 

microns.62 

Pure TiO2 crystals are white but sometimes appear red, yellow, black or brown due to the 

presence of impurities like iron, chromium, vanadium, or niobium.65 Rutile can be reddish brown, 

yellowish, bluish, or violet.64 Brookite ranges from dark brown to greenish black while anatase 

varies from black to reddish brown or yellowish brown.64,67 Anatase has a lower melting point and 

transforms into the rutile phase at temperatures above 600 ℃.68 During the transformation of anatase 
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to rutile at higher temperatures, pseudoclose – packed planes of oxygen and close – packed planes of 

rutile are retained.69 

The relative phase stability changes with particle size due to surface energy effects.70  

Anatase is the most stable when particle size is less than 11 nm. Between 11 nm and 35 nm, brookite 

will be the most stable while rutile becomes more stable when the particle size exceeds 35 nm.71 

Though rutile tends to be the most thermodynamically stable, anatase has been reported to be more 

active due to having higher surface area, charge mobility and exciton diffusion length.64,72  

TiO2 has been synthesized from titanium ore through several methods such as hydrolysis, 

flame pyrolysis, sol-gel, chemical vapor deposition, physical vapor deposition and micro-

emulsion.62,71 The hydrolysis method is preferable because synthesis is at ambient pressure and 

temperature.62 Hydrolysis can be carried out using a sulfate or chlorine process.64,73 

Photoactivity and Modification of Titanium Dioxide 
 

Titanium dioxide’s electronic structure has an empty conduction band and filled valence 

band.71 The energy difference between the valence band and conduction band is called the band 

gap.71 Irradiation of TiO2 with light energy equal to or greater than the band gap causes electron 

excitation from the valence band to the conduction band and leaving charged holes in the valence 

band.71 A redox process is induced by reaction of photogenerated electrons and holes with electron 

donors and acceptors adsorbed on TiO2 surface.66 The difference in electronic structure of the 

various TiO2 phases affects the band gap and electron transfer ability. Anatase has an indirect band 

gap of 3.2 eV while rutile has a direct band gap of 3.0 eV.66,74 
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TiO2 can only absorb UV radiation due to the large band gap between the conduction and 

valence bands.60 To extend absorption to the visible region, TiO2 is modified by doping with 

materials such as non-metals,75–78 metals,11 or dyes.11,79,80 

Non-Metal Modification of TiO2 
 

P-block non-metals such as carbon,81 flourine,82 nitrogen,83 and sulfur84 have been reportedly 

used in modification of TiO2 to enhance the photocatalytic properties of TiO2. Modification with a 

non-metal has been reportedly found to be more efficient in increasing photocatalytic efficiency of 

TiO2 when compared to metal doping.83,85 This is due to the fact that a non-metal does not form 

recombination centers.66 The photoactivity of the modified TiO2 can be influenced by the ionic 

radius of the non-metal.83 According to reported experiments, nitrogen-modified TiO2 shows 

increased photoactivity compared to using non- metals like fluorine, nitrogen, phosphorus, sulfur 

and carbon due to the influence of the p-states on narrowing the band gap of TiO2.83 

Metal Modified TiO2 
 

Metal modification involves adsorption to the crystal lattice of the TiO2 semiconductor. 

When a metal is adsorbed into TiO2, electrons flow to the metal until the Fermi energy levels of the 

metal and TiO2 reach equilibrium.66,69 The causes an upward bend of the valence band of TiO2 which 

creates a Schottky barrier.66,86 This barrier trap acts as an electron scavenger preventing crossing of 

electrons back to TiO2 resulting in recombination.69 Figure 4 below shows metal modified TiO2 and 

electron-hole generation due to absorption of UV radiation.69 
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Figure 4.  Metal modified TiO2 semiconductor.69 

(Reprinted with permission from Ola, O.; Maroto-Valer, M. M. Review of Material Design  and 
Reactor Engineering on TiO2 Photocatalysis for CO2 Reduction. J. Photochem. Photobiol. C 
Photochem. Rev. 2015, 24, 16–42.) 

 

Photogenerated electrons diffuse to adsorbed surface species for photoreduction. According to a 

report on CO2 reduction to methanol, increasing the ratios of Ag/ TiO2 under 254 nm UV radiation 

over a period of 24 h results in more methanol.87 This is due to the fact that Ag causes the Fermi 

level of TiO2 to be higher enhancing electron transfer from the conduction band of TiO2 to silver. 

Also, Schottky barrier formation enhances electron trapping improving quantum efficiency.87 

Dye-Sensitized Titanium Dioxide 
 

Dye sensitization of TiO2 increases the absorption of TiO2 towards visible light.64,66,88,89 

Various dyes reportedly used as sensitizers include porphyrins, rhodamine B, Rose Bengal, thionine, 

and phthalocyanines (PCs).66,90,91 Such dyes have high absorption in the visible region, and the 

excited state has a long life time.61,66,92 Photogenerated electrons are transferred from an excited state 

of the dye molecule to the conduction band of TiO2 as shown in Figure 5.69 
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Figure 5.  Dye sensitized TiO2 where A is the electron acceptor69  

 

The transferred electrons reduce CO2 adsorbed on the TiO2 surface.67 The photosensitizer must be 

able to undergo fast electron injection into TiO2 to maximize photoefficiency and prevent 

recombination.66,69,88 The rate of electron migration to TiO2 is influenced by the properties of TiO2 

and surface interaction with the dye.67 Titanium dioxide has a high surface area, suitable conduction 

band just lower than the dye, high stability with high refractive index, which has been reported to 

facilitate injection of electrons from the excited state of dyes to the conduction band of TiO2.66,69,93 

PCs have been used as sensitizers to promote the activation of TiO2 as a photocatalyst due to their 

high stability, low cost, low environmental impact, and high efficiency in energy conversion.94–98 

Metal Phthalocyanines 

The first reported synthesis of PC was in 1907 when Braun and Tcherniac accidently isolated a blue 

complex compound as a by-product in attempt to synthesize ortho-cyanobenzamide.99,100 Twenty 

years later, H. de Diesbach and E. von der Weid synthesized the first copper phthalocyanine by 

reacting a mixture of o-dibromobenzene, pyridine and cuprous cyanide.101 X-ray diffraction was 



 
 

26 
 

used by Robertson to determine the crystalline structure of prepared Cu, Ni, and Pt phthalocyanines 

in 1935.102 

The PC molecule contains four indoline units linked by nitrogen atoms in a planar structure 

with a conjugated system of eighteen π-electrons.97 PC can be classified as synthetic analogues of 

natural porphyrin products such as chlorophyll and hemoglobin due to their similar structure.94,103 

PCs are also called tetrabenzoporphyrazins.94 Metal PCs are denoted as MC32H16N8 or MPCs.97 

Figure 6 shows the structure of PC without and with a metal center.103 

                                           a                                                                b 
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Figure 6.  Structure of (a) phthalocyanine and (b) metal phthalocyanine103 

 

Several synthetic procedures have been reported for MPC and H2PC. One reported method 

for MPC synthesis involves a condensation reaction of urea with phthalic anhydride in the presence 

of a metallic chloride. Metal-free phthalocyanine was prepared by heating a metal amylate with 

phthalonitrile followed by removing the metal center by heating in methanol.103    
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UV-Visible Absorbance of Phthalocyanines 
 

Phthalocyanines have a more delocalized system when compared to porphyrins leading to a 

higher probability of π-π* transitions when illuminated with UV-Vis light.98 MPCs have specific Q 

and B absorption bands within the UV-Vis region.104,105 The Q-band absorption can be found within 

wavelengths of 600-800 nm in the visible region while the B-band is from 300-500 nm in the UV 

region.105 The Q-band absorption is assigned to the ground state π-π* electronic transition from the 

highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) of 

the MPCs (So →  S1).104–107 The B-band is due to a strong π-π* energy level transition from HOMO 

to higher excited state (So →  S2).106–109 All MPCs have been shown to have a prominent narrow Q-

band and a relatively weaker B-band.104–106,108 Figure 7 shows the UV-Vis absorption spectra of 

ZnPC in ethanol (1 × 10-5M) with molar absorptivity of 1 ×10-5 cm-1 M-1 and maximum absorption at 

673 nm.106 

 

Figure 7.  UV-Vis absorption spectra of ZnPC in ethanol106 

 

(Reprinted with permission from Tiwari, A.; Krishna, N. V.; Giribabu, L.; Pal, U. Hierarchical       
Porous TiO2 Embedded Unsymmetrical Zinc–Phthalocyanine Sensitizer for Visible-Light-Induced 
Photocatalytic H2 Production. J. Phys. Chem. C 2017, 122 (1), 495–502.) 
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The variation in different MPCs wavelength of maximum absorption is due to the difference 

in the energy gap between the HOMO and LUMO of the MPCs delocalized system.108 An increase 

in valence electrons of the center metal leads to a higher electron density of the MPCs conjugated 

system and lower gap.108,110 This causes a bathochromic shift. The presence of electron-withdrawing 

(EWG) or electron-donating groups (EDG) substituted onto the MPC ring influences the Q-band.110 

An EDG increases electron density of the delocalized system lowering the band gap and shifts 

absorption to longer wavelengths (red or bathochromic shift). An EWG causes absorption to shift 

toward shorter wavelengths (blue or hypsochromic shift).111 The photochemical reduction of CO2 to 

formate in the presence of TiO2 activated by various metal phthalocyanines (ZnPC, NiPC, InPC, and 

NiPC) in solution is the subject of this research.  

Properties of Phthalocyanines 
 

Physical properties of phthalocyanines depend on having a metal center and if there are 

substituents.96,97 Phthalocyanines range in color from dark blue to green.97 Metallophthalocyanines 

have a high melting point.112 For example, NiPC melts at 300 ℃.113 Phthalocyanines are quite 

insoluble in water due to their π-π* conjugation system.114 They tend to be soluble in sulfuric, 

phosphoric, hydrofluoric, trichloroacetic acids and most organic solvents such as dichloromethane, 

dimethyl formide and dimethyl sulfoxide.94,115 Solubility of MPCs can be improved by linking 

ligands with hydrophilic groups such as sulfonates,116 phosphate,117 amino,118 carboxylate,119 or 

carbonyl groups.86 Solubility of PCs decrease due to aggregation caused by interactions between 

their 18 π delocalized electrons.120 The degree of aggregation depends on the central metal ion, type 

of substituents on the ligands, temperature, and the nature of the solvent.120,121 Methods reportedly 

used to reduce aggregation of PCs include using water soluble groups, dendrimer and surfactant 
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substituents as axial ligands.115,119 Such bulky substituents prevent delocalized π-electrons from 

interacting and reduces aggregation.122 

Phthalocyanines as Photosensitizers 
 

PC molecules become excited when they absorb light. Excited PCs molecules can react when 

oxidizing agents are present and decompose.96 Photochemical decomposition of PCs in solution is 

regarded as a complex process due to several radicals that could be formed.96 When exposed to UV-

Vis radiation, weakening of carbon-nitrogen bonds may occur resulting in photodegradation of 

MPCs.96 One possible degradation product is phthalimide.96 The presence of a solvent influences the 

photostability of PCs due to interaction with PC ligands. Experiments show that electron rich ligand 

substituents such as hydroxyl groups, ethylene glycol, and amine increase the electron density of the 

carbon-nitrogen bond which enhances stability.123 The photostability of PCs also depends on the 

molecular structure and nature of the bond between the metal and ligands. The electronic 

configuration and electronegativity of PCs complexed with metal influences the carbon-nitrogen 

bond lengths resulting in different stabilities when illuminated with UV-Vis radiation.96 Experiments 

show solid PCs bind O2 or N2 causing a change in electron density distribution and polarizability 

within the PC, which results in a decrease in carbon-nitrogen bond length.96  

Applications of Phthalocyanines 
 

The color, high thermal stability and conductivity of MPC’s has made them suitable for 

many applications in dyes, medicine, ecology and chemical catalysis.96,124 MPCs account for about 

90-95% of blue and green chemicals used in production of inks, paints, dyes, and plastics.96   

In medicine, MPCs have been applied in photodynamic therapy (PDT), a special kind of 

phototherapy technology used in treatment of skin diseases and malignant tumors.124–126 The 
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operation of PDT is based on the use of photosensitizers like soluble MPCs, light and O2 to cause a 

photoinduced chemical reaction generating singlet oxygen that destroys harmful cells while 

minimizing the effects on normal cells.124–126 

MPCs have also been reportedly applied in ecology for pollution degradation.127,128 An 

example of this is TiO2 nanoparticles sensitized with cobalt phthalocyanine (CoPC) for 

photodegradation of 4-chlorophenol. Electrons transferred from CoPC in an excited state to TiO2 

react with O2 to produce singlet O2.127,128 Singlet O2 then reacts with hydrogen peroxide to form 

hydroxyl radicals.127,128 The hydroxyl radicals formed react with 4-chlorophenol to form 

chlorocatechol and chlorobenzoquinone.127,128 Subsequent attack of hydroxyl groups on 

chlorobenzoqunone results in conversion to simple acids.127,128 

Another use of MPCs is in dye-sensitized solar cells (DSSCs).129–131 DSSCs are made up of a 

photosensitizer and semiconductor nanoparticles as the working electrode, a redox mediator and 

counter electrode.129,130 DSSCs absorb solar photons, generate charge carriers and transfer charge 

from the sensitizer excited state into the conduction band of the semiconductor.129 This enhances 

solar energy conversion to electricity.129,130 The redox mediator reduces the oxidized sensitizer. An 

example of this is a ZnPC photovoltaic cell with carboxylic acid groups resulting in 4.1% 

photovoltaic efficiency.129,131 The presence of carboxylic acid as anchoring groups prevents the 

dissociation of ZnPC from TiO2 causing a decrease in conversion of photons to electrons.129,131 

Photochemical Reduction of Carbon Dioxide Using Dye Sensitized TiO2 

 

Carbon dioxide can also be reduced photocatalytically by photosensitized TiO2 systems.132 

Photoreduction of CO2 to formate involves absorption of photons by a sensitizer, such as MPC, in 

the electronic ground state which is highly reactive.132 Absorption of light energy equal or greater 
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than the band gap of the sensitizer initiates excitation of electrons from the valence band to the 

conduction band.132 Excited electrons are injected into the conduction band of TiO2, and electron 

transfer reactions occur on the surface where CO2 is adsorbed.132 A possible product is formate. The 

photoreduction process of carbon dioxide to formate under acidic medium can be represented by 

Equations 1.9-1.15.133–136   

MPC   +   hv   →   MPC*   (1.9) 

MPC*  +   TiO2   →   𝑒𝑒−· TiO2      +   MPC+   (1.10) 

CO2(g)  +  𝑒𝑒−· TiO2   →    TiO2·CO2
-(ads)   (1.11) 

𝑒𝑒−· TiO2  +  H+(aq)  →  TiO2·H(ads) (1.12) 

 TiO2·CO2
-(ads)   +   TiO2·H (ads) →  TiO2·HCO2

-(ads)  (1.13) 

TiO2·HCOO-(ads)  +  H+(aq)  →  TiO2  +  HCOOH(aq)     (1.14) 

2 MPC+   +   H2O     →   2 MPC   +   2H+(aq)   +   ½ O2(g) (1.15) 

Equations 1.16-1.24 suggest a mechanism for photoreduction to formate when pH is equal to or 

greater than 7, and the TiO2 surface is known to be negatively charged.95,137,138 

TiO-  +  H2O  →   TiOH   +  OH- (1.16) 

TiO2   +   TiOH   →   TiO2·H+(𝑎𝑎𝑎𝑎𝑎𝑎)  +  TiO-  (1.17) 

MPC*  +   TiO2·H+(𝑎𝑎𝑎𝑎𝑎𝑎)  →   MPC+   +   TiO2H(ads)   (1.18) 

CO2(g)  +  e-·TiO2   →    TiO2·CO2
-(ads)   (1.19) 

TiO2H(ads)   +   TiO2·CO2
-(ads)   →   TiO2   +   TiO2·HCO2

-(ads)   (1.20) 
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TiO2·HCO2
-(ads)   →   TiO2   +   HCO2

-(aq) (1.21) 

   MPC+   +  OH-(aq)    →   MPC   +   OH· (1.22) 

TiO2H(ads)  +   OH·   →   TiO2·H2O(ads)   (1.23) 

TiO2·H2O(ads)    →   TiO2   +   H2O(l) (1.24) 

The sensitized titanium dioxide surface enables the photoreduction of carbon dioxide to formic acid 

under mild acidic conditions and formate under alkaline or neutral medium. Formic acid is 

quantified as formate by ion chromatography (IC) technique. 

Quantum Yield 
 

 Photochemical efficiency describes the percent of absorbed photons that reduce CO2 to 

products. The adsorption of CO2 on a photocatalyst, influences the photochemical efficiency of CO2 

photoreduction. Photochemical efficiency is commonly referred to as the quantum yield (Φ) of 

reaction. Since two electrons are involved the photoreduction of CO2 to formate, the photochemical 

efficiency of the reaction is given by Equation 1.23.139 

                        Φformate = 2(molecules of formate)
number of photons

 x 100%                                                (1.23) 

Photochemical efficiency depends on intensity and wavelength of radiation.139 According to 

an experiment conducted on CO2  reduction, using UV light (300 nm) a maximum quantum yield of 

28% was obtained.139 In this experiment, 17 µmol of formic acid was formed after two hours.139 As 

wavelength was increased to 350 nm, the photochemical efficiency was near zero percent.139 The 

quantum yield of products formed per photon absorbed during natural photosynthesis is 

approximately 1%,41,51 while a typical artificial photoreduction of CO2 is at or less than 1%.140 An 

example of this is an experiment using a Ru(II)-Re(I) bridged supramolecular complex in an aqueous 
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solution which resulted in a quantum yield of 0.2% over 24 h of irradiation using 546 nm 

monochromatic light.140  

One factor that must be considered in determining the quantum yield of heterogenous 

catalytic systems is scattering and reflection of incident photons.141 If light is scattered, the 

absorbance of a sample measured by an instrument is higher than it should be. This has led to use of 

an apparent quantum yield where all incident photons are used in the calculation instead of the 

number of photons absorbed by the photocatalyst.142 Measuring transmittance using an integrating 

hard sphere allows collecting scatted light caused by a turbid or heterogeneous sample.143,144 The 

instrument subtracts the signal due to scattered light resulting in a true absorbance.    

In this work, measurement of polychromatic incident photons in the visible range was 

performed using a calibrated photodiode detector. Photodiodes work based on the photoelectric 

effect.145 Photons strike the semiconductor leading to electron excitation from the valence band to 

conduction band producing electron-hole charge carrier pairs.145 Electrons and holes remain 

separated by a strong local electric field.145 If photon absorption occurs within the depletion region 

of the photodiode p-n junction, a photoinduced current can be measured using a simple 

multimeter.145 The calibrated photodiode was also used to measure the reflected light from the 

heterogenous solution and photoreactor. 

Applications of Formate 

Formate is an anion of formic acid with the structure shown in Figure 8. 
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                                                      Figure 8.  Structure of formate 

 

Formate is one of the major products obtained from the reduction of CO2.146 One industrial 

application is the formate brine system (containing potassium, sodium, or cesium formate).75,147 A 

formate brine system has been reportedly used in stabilization of xanthan gum, a polysaccharide 

used in drilling and completion fluids.75 This is due to the ability of the formate brine system to 

stabilize biopolymer viscosity at temperature up to 200 oC.75 Also, formate brine systems are less 

corrosive, biodegradable, and have high stability towards shales.76,77 Another important use of 

formate is a feedstock for direct liquid fuel cells (DLFCs).78,148 An example is the direct formate-

peroxide fuel cell (DFPFC), which consists of an alkaline formate anode and an acid-peroxide 

cathode. The reaction at the cathode and anode of a DFPFC are given in Equations 1.24-1.26.148 

At the anode, formate is oxidized to CO32- and H2O. 

     HCOO- + 3 OH-     ⇌       CO32- + 2 H2O + 2e-           Eo anode = -1.05V                  (1.24) 

At the cathode, H2O2 is reduced to H2O. 

     H2O2 + 2 H+   +   2e-     ⇌         2 H2O            Eo cathode = 1.78V             (1.25) 

The overall redox reaction in the DFPFC is: 

     HCOO- + OH- + H2O2       ⇌        CO32-   + 2 H2O    Eo overall = 2.83V                          (1.26)                           

The DFPFC has a high-power density of 331 mWcm-2 at 60 oC.78,148 
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Also, formate has been applied in fast pyrolysis of lignin.79 Lignin, a major biomass 

component is a valuable material for producing other chemicals such as alkylphenols and 

aromatics.79 Thermal degradation of lignin is difficult due to its complicated structure.80 During fast 

pyrolysis process of lignin, addition of formate results in deoxyhydrogenation of lignin, removing 

methoxy groups from lignin and increasing contents of alkylphenols and aromatics.79 Another key 

application of formate is biofuel synthesis.149 This occurs in anaerobic systems where CO2 is 

converted to formate by formate dehydrogenase, and subsequently to methane as a biofuel through a 

multistep pathway called methanogenesis.149 

Research Goals 
 

The goal of this research is to develop a simple system for the photoreduction of carbon 

dioxide and to quantify the formate produced by ion chromatography (IC). This study examined use 

of metal phthalocyanines (copper, nickel, zinc and indium) as catalysts adsorbed to anatase TiO2. 

Conditions such as pH and luminous intensity were varied to determine the effect on the amount of 

formate generated. A simple photodiode and integrating sphere absorbance measurements were used 

to determine the quantum yield.  
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CHAPTER 2 

EXPERIMENTAL 

Materials and Equipment 

The crystalline titanium dioxide (anatase) was purchased from Spectrum Chemical. Nickel 

phthalocyanine (purple) was purchased from Alfa Aesar, indium phthalocyanine (purple) from 

Sigma-Aldrich, zinc phthalocyanine (purple) and copper phthalocyanine (deep blue) were obtained 

from VWR Analytical. The oxidation state of In is 3+, while Zn, Ni, Cu have oxidation states of 2+. 

Sulfuric acid (98%) was purchased from Acros Organics. Carbon dioxide was obtained from Airgas 

with a purity of 99.7%. 

Photoreduction Experiment 

The photoreduction experiment uses a paste formed by mixing 4.0-5.0 mg of metal 

phthalocyanine sensitizer and 0.5 g titanium dioxide using 2-3 drops of chloroform. The supported 

photocatalyst was transferred into a reactor using 50.0 mL of an aqueous 1.0 mM sulfuric acid 

solution and saturated by bubbling pure carbon dioxide into the solution for 30 min. The reactor was 

sealed with a stopper and placed about 50 cm from a simple 150 W incandescent light source. A 

water filter was used to absorb heat. Photoreduction was carried out while stirring magnetically. The 

irradiated solution, 10.0 mL, was centrifuged to remove titanium dioxide and metal phthalocyanine. 

A 20.0 µL sample was analyzed by ion chromatography every 24 h for 96 h. Peak area was used to 

quantify formate in ppm. Each experimental trial was repeated at least three times using fresh TiO2 

and sensitizer. The amount of formate in ppm was averaged and reported with standard deviations. 

Figure 9 below shows the experimental set-up. 
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Figure 9.  Photoreduction experimental setup (Photographed by Ovuokenye Omadoko) 

 

Preparation of Blank 

The first blank was TiO2, the sensitizer and 1.0 mM H2SO4 saturated with CO2. A second 

blank was prepared using a mixture of 0.5 g TiO2 and 50 mL of 1.0 mM sulfuric acid saturated with 

CO2 but without sensitizer and illuminated. A third blank was prepared using a mixture of 4.0-5.0 

mg metal phthalocyanine, 50 mL 1.0 mM H2SO4 saturated with CO2 but without TiO2 and 

illuminated. All blanks were stirred for 96 h. 

Calibration of Ion Chromatography 

Formate analysis was determined by an ion chromatography. A 930 IC Flex System was 

obtained from Metrohm. Sodium carbonate, 3.6 mM, was used as the eluent with a flow rate of 0.7 

mL/min and sulfuric acid 0.5 M (Acros Organics) as a regenerant. A 1,000 ppm formate stock 

solution was purchased from VWR Analytical. 
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           The IC was calibrated using 50.0 ppm, 10.0 ppm, 5.00 ppm, and 1.00 ppm formate standards 

prepared in 1.0 mM sulfuric acid. Formate standards were injected using a 10.0 mL syringe to fill a 

20 µL sample loop. The retention time for formate was found to be 4-5 min. Peak areas for the 

formate standards were used to generate a calibration curve. Figure 10 is a photo of the IC 

instrument. 

 

Figure 10.  Metrohm 930 IC instrument (Photographed by Ovuokenye Omadoko) 

 

pH Measurement 

              To determine the change in hydrogen ion concentration of the acidic medium used over 96 

h, pH measurements were performed using a Vernier pH probe calibrated with pH 4.0 and 7.0 buffer 

solutions. The pH measurements were performed before irradiation with light and at 24 h intervals 

during the photoreduction process.  

 Also, the effect of pH on reduction was explored. A solution of 1.0 M NaOH was used to 

adjust pH from 3.0 to 5.0 before combining with ZnPC, TiO2 and saturated with CO2 for 30 min. 

The mixture was illuminated using 150 W incandescent light source for 96 h. Formate yield was 
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quantified using IC at 24 h intervals. The procedure was repeated using pure water at a pH of 7.0 and 

1.0 mM NaOH having a pH of 11.0. 

Light Intensity Variation 
 

 To determine the effect of light intensity on the yield of formate, mixtures of 0.5 g TiO2, 5.0 

mg ZnPC, and 50 mL 1.0 mM sulfuric acid was saturated CO2 and illuminated with a 45 W, 150 W, 

200 W incandescent light source for 24 h. All incandescent light sources had a color temperature of 

2800 K. The temperature of 50 mL of water was measured using each light source. Due to warming 

of the solution and to determine if heat resulted in reduction of CO2, the experiment was repeated at 

a constant temperature of 26.00±(0.01) °C using a temperature-controlled water bath without irradiation 

for 24 h. 

Visible Absorbance Studies 

 To determine the visible absorption spectrum of each MPC, 5.0 mg was stirred in 25 mL of 

toluene. A quartz cell of optical path length of 1 cm was filled with solution and absorbance 

measurement within the visible region was carried out using a SpectroVis Plus Spectrophotometer. 

Also, 0.5 g TiO2 mixed with 10.0 mg InPC using 2 drops of chloroform was transferred into the 

reactor using 50 mL 1.0 mM H2SO4 and irradiated for 24 h. About 3 ml of solution was transferred 

into a test tube. Procedure was repeated using 0.5 g TiO2 with 20 mg, 30 mg, 50 mg InPC 

respectively. 0.5 g TiO2 in 50 mL of 1.0 mM H2SO4 was used as reference. All test tubes containing 

solution were sent to East Central University, Ada, Oklahoma for diffuse UV-Vis reflectance 

absorption measurements. This work was performed by Dr. Dwight Myers using a Perkin Elmer 

Lambda 35 UV-Vis Spectrophotometer using an integrated sphere. 
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Quantum Yield Measurement 
 

 The quantum yield of formate involved determining the number of moles of formate 

generated and the number of absorbed photons. Incident photons from the 150 W incandescent light 

source was determined using a Hamamatsu S2387 33R Si photodiode with a surface area of 5.7 

mm2. Actinometry using a potassium iron oxalate solution was used to calibrate the photodiode as a 

visible polychromatic photon counter.145 This method works by photons being absorbed resulting in 

oxidation of oxalate to CO2 and reduction of Fe3+ to Fe2+. Iron 1,10-phenanthroline forms an orange 

complex with Fe2+ and an absorbance measurement at 514 nm, volume of solution and time of 

radiation permit calculating photons emitted per second. A calibrated monochromator was used to 

isolate radiation at 514.0 ± 0.2 nm from the light source for which the quantum yield of the 

potassium iron oxalate solution is known to be 0.93. While this wavelength is not near the 

wavelength of maximum absorbance for phthalocyanines, approximately 680 nm, the sensitivity of 

the photodiode is 0.2 A/W and 0.5 A/W at 400 and 800 nm respectively. Assuming an ideal 

sensitivity of 0.5 A/W across the visible range, an area ratio of the sensitivity of the photodiode in 

this region can correct for the number photons measured by the photodiode. This area ratio is used to 

correct the constant for the photodiode in units of einsteins·A-1·s-1. Measuring the photodiode current 

can be used to determine the number of emitted photons. A 0.2 M potassium ferrioxalate solution 

was prepared by mixing 4.2 g KOH, 0.262 g FeCl3 and 3.375 g oxalic acid (H2C2O4) in the dark. 

Additional H2C2O4 was added until a clear green solution of K3Fe(C2O4)3 was obtained. The green 

solution was diluted to 1.0 L with 5.16 g concentrated sulfuric acid and water. A buffer solution (pH 

= 5.0) was also prepared by mixing 24.8 g NaOH with 60.3 g glacial acetic acid and diluted to 1.0 L. 

The potassium iron oxalate solution, 1.1 mL, was added to a beaker with 4.1 mL 0.1% 1,10-

phenathroline solution, 0.61 mL buffer solution and diluted with 4.5 mL deionized water serving as 
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blank. The procedure was repeated illuminating approximately 3.5 mL of the K3Fe(C2O4)3 solution 

for 5 h with a calibrated monochromator set at 514 nm. Of the 3.5 mL, 1.2 mL was mixed with 4.1 

mL 0.1% 1.10-phenathroline solution, 1.0 mL buffer solution and 4.1 mL deionized water. This 

solution results in the iron 1,10-phenanthroline complex which absorbs light at 514 nm. The 

absorbance of the blank and sample was measured at 514 nm, the wavelength of maximum 

absorbance for the iron phenanthroline complex. The difference in absorbance is used to calculate 

the number of emitted photons. The calibrated photodiode was used to measure the current generated 

when illuminated by the 150 W incandescent resulting in a current used for counting polychromatic 

photons.   

The photodiode was also used to measure the reflected light from the heterogeneous solution 

and photoreactor. The current resulting from direct illumination of the photodiode and reflected were 

subtracted resulting in a current that was used to determine the number of true incident photons on 

the heterogeneous solution. The photodiode sensitivity increases nearly linearly from 0.2 A/W at 400 

nm to 0.5 A/W at 800 nm. Assuming an ideal sensitivity of the photodiode (0.5 A/W) over this 

wavelength ranges, an area (A/W/nm) ratio was used to further correct the number of polychromatic 

photons.  

Absorbance spectra using the integrated sphere technique were integrated to determine an 

area. The ratio of the difference in area of MPC/TiO2 and TiO2 only divided by MPC/TiO2 

multiplied by the number of true incident photons was used to determine the number of absorbed 

polychromatic photons. The quantum yield was calculated by taking two times the number of 

molecules of formate formed divided by the number of photons and multiplying by 100%. 
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CHAPTER 3 

DATA AND RESULTS 

Calibration Curve Determination 
 

Formate standards were analyzed using the IC instrument. Figure 11 shows the superimposed 

IC chromatograms obtained in which formate has a retention time of approximately 4-5 min and 

sulfate 16-20 min. The broad sulfate peak is most likely due to high concentration. 

 

Figure 11.  IC chromatograms of formate standard in 1.0 mM H2SO4 

 

Table 1 lists the concentration of formate in 1.0 mM sulfuric acid and the peak areas obtained. 
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Table 1. Formate standard peak area 

Peak area 
(µS/cm*min)   

Error 
(±µS/cm*min) 

 Concentration         
(ppm) 

8.242 0.015 50.0 
1.916 0.004 10.0 
0.893 0.009   5.0 
0.168 0.016   1.0 

 

 

Figure 12.  Calibration curve of IC using ppm formate standards in 1.0 mM H2SO4 

 

A 1.00 ppm formate standard was measured four times to calculate the limit of detection and limit of 

quantitation. Three times the standard deviation and ten times the standard deviation of the peak area 

divided by the calibration slope resulted in a limit of detection of 0.289 ppm and limit of 

quantification of 0.964 ppm respectively. 
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Blank Determination 
 

Table 2 lists peak areas and concentration of formate obtained for the blank trials. All blank 

trials were analyzed after 96 h. 

Table 2. The amount of formate determined in blank trials. 

                            Blank Trials                               Peak area (µS/cm·min)   Concentration (ppm)   

1.   ZnPC and TiO2 in 1.0 mM H2SO4                                 ND                                   ND                                    
      saturated with CO2, but no light irradiation.       
                                                                                                                                                          
2.  ZnPC in 1.0 mM H2SO4 saturated with CO2                  ND                                   ND                                   
     and light irradiation. 
 
3.  TiO2 in 1.0 mM H2SO4 saturated with CO2                         ND                                   ND                                    
      and light irradiation. 
ND - not detected. 

Effect of Sensitizer 
 

 Tables 3-6 show the effect of modifying TiO2 with sensitizers CuPC, NiPC, ZnPC, and InPC 

on the amount of formate obtained. Table 6 shows that photoreduction of CO2 to formate using InPC 

gave the highest amount of formate, 23.5 ppm. CuPC resulted in the lowest amount of formate after 

illumination for 96 h, 13.9 ppm. 

Table 3. Amount of formate using CuPC/TiO2. 

Irradiation time         
            (h) 

Peak area 
(µS/cm*min) 

         Concentration                 
              (ppm) 

            Trial 

96 
0                                  

ND 
ND 

ND 
ND 

Dark 
Light   

24 0.6(±0.1) 3.6(±0.6)          Light 
48 1.2(±0.2) 7.2(±1.2) Light 
72 
96 

1.6(±0.4) 
2.3(±0.4)                

9.6(±2.4) 
13.9(±2.4)        

Light  
            Light 

    ND - not detected 
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Table 4. Amount of formate using NiPC/TiO2. 

Irradiation time         
            (h) 

Peak area 
(µS/cm*min) 

         Concentration                 
              (ppm) 

            Trial 

96 
0 

ND 
ND 

ND 
ND 

Dark   
Light 

24 0.5(±0.2) 3.0(±1.0)          Light 
48 1.5(±0.3) 9.0(±1.8) Light 
72 
96 

2.5(±0.3) 
3.2(±1.1)                

15.0(±1.8) 
19.3(±6.6)        

Light  
            Light 

    ND - not detected 

 

Table 5. Amount of formate using ZnPC/TiO2. 

Irradiation time         
            (h) 

Peak area 
(µS/cm*min) 

         Concentration                 
              (ppm) 

            Trial 

96 
0 

ND 
ND 

ND 
ND 

Dark  
Light  

24 1.1(±0.2) 6.6(±1.2)          Light 
48 1.8(±0.5) 11.0(±3.0) Light 
72 
96 

2.8(±0.6) 
3.6(±0.3)                

16.9(±3.5) 
21.7(±1.8)        

Light  
            Light 

    ND - not detected 

 

Table 6. Amount of formate using InPC/TiO2. 

Irradiation time         
            (h) 

Peak area 
(µS/cm*min) 

         Concentration                 
              (ppm) 

            Trial 

96 
0 

ND 
ND 

ND 
ND 

Dark  
Light  

24 1.2(±0.2) 7.2(±1.2)          Light 
48 2.2(±0.1) 13.3(±0.6) Light 
72 
96 

3.1(±0.8) 
3.9(±0.4)                

18.7(±4.8) 
23.5(±2.4)        

Light  
            Light 

ND - not detected 

 

Figure 13 shows variation of amount of formate produced at various time intervals using different 

MPC’s. 
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Figure 13.  Graph of formate concentration vs irradiation time using different metal phthalocyanines 

 

Table 7 and Figure 14 show the effect of modified TiO2-InPC on the amount of formate obtained at 

pH 3.0 over 24 h.  

Table 7. Effect of amount of sensitizer on formate production over 24 h at pH 3.0 

InPC    
(mg)   

Formate 
Concentration 

(ppm) 
5.0 7.2(±1.5)          
10.0           3.6(±0.2)          
20.0 2.4(±0.4)          
50.0 1.8(±0.1)          
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Figure 14.  Amount of InPC (mg) vs formate concentration (ppm) over 24 h at pH 3.0 

 

Amounts of InPC less than 5.0 mg will be used to determine the ratio of InPC and TiO2 that results 

in a maximum amount of formate.  

 
Effect of Light Intensity 

 

Table 8 shows the amount of formate obtained in photoereduction of CO2 in 50 mL of 1.0 

mM sulfuric acid with TiO2 and ZnPC using 45, 150 and 200 W sources for 24 h as well as 

temperature. 

Table 8. Amount of formate produce as a function of light intensity using ZnPC/TiO2 over 24 h  

Source wattage 
(W)        

Light intensity 
     (lumens) 

Formate       
Concentration (ppm) 

Temperature 
(°C) 

45 
150                                    
200 

        350 
       2740 
       3880 

0.3(±0.1) 
6.6(±1.6) 
8.2(±0.3) 

20.7 
24.5 
26.0 

0 0 ND 26.0 
ND is not detected 
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The temperature of the solution in the photoreactor does increases with the source intensity due to 

absorptive heating in the system. A reduction experiment was carried out in the dark at 26.0 °C. 

However, formate was not detected indicating that reduction of CO2 is due to a photochemical or 

photo-thermal process. Figure 15 shows that the plot of formate produced and intensity is linear 

mostly within error using the 45, 150 and 200 W incandescent sources. A linear result is expected 

using low intensity sources.150 

 

Figure 15.  The amount of formate produced and luminous intensity over 24 h 

 
Influence of pH on Photoreduction of Carbon Dioxide 

 

 The pH of the solution containing a mixture of saturated CO2, TiO2, ZnPC in 50 mL 1.0 mM 

sulfuric acid was measured before and after irradiation with a 150 W source. Table 9 and Figure 16 

show the amount of formate produced under different pH conditions. 
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Table 9. Amount of formate produced using ZnPC at different pH. 

             pH Formate (ppm) 
0 h 

Formate (ppm) 
24 h 

Formate (ppm) 
48 h 

Formate (ppm) 
72 h 

            3.0 ND 6.6(±1.2) 11.0(±3.0) 16.9(±3.5) 
         5.0 ND 1.3(±0.3) 3.1(±0.9) 5.8(±0.5) 
         7.0 ND 1.2(±0.2) 1.9(±1.1) 3.8(±1.2) 
        11.0 ND 1.6(±0.4) 2.1(±0.7) 4.8(±1.1) 

ND is not detected 

 

Figure 16.  Graph of formate concentration vs irradiation time at different pH 

 

Visible Absorption Spectra of Metal Phthalocyanines 

Figure 17 shows the visible absorption spectra of approximately 5 mg of CuPC, NiPC, ZnPC and 

InPC in 25 mL of toluene. All phthalocyanines measured show a Q and B band. In this work, only 
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the visible range of incident radiation is utilized. All MPC’s have a maximum wavelength of 

absorption at approximate 680 nm.  

 

Figure 17.  Visible absorption spectra of various MPCs 

 

Visible Absorption Spectrum of Iron II Phenanthroline 
 

Figure 18 shows the visible absorption spectrum of the green potassium iron (III) oxalate solution, 

and the iron (II) 1,10-phenanthroline complex formed on complexing free Fe2+(aq) ion with 1,10-

phenanthroline solution. The wavelength of maximum absorption of potassium iron (III) oxalate in 

solution was found to be approximately 410 nm. The wavelength of maximum absorption of iron (II) 

1,10-phenanthroline in solution is approximately 514 nm.  
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Figure 18.  Visible absorption spectrum of potassium iron (III) oxalate and iron (II) 1,10-
phenanthroline 

      
Figure 19 shows the absorption spectra of various ratio of TiO2/InPC loading using an integrated 

sphere. 
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Figure 19.  Absorption spectra of various ratios of TiO2/InPC loading using an integrated sphere 

 

The absorption area obtained using 0.5 g TiO2/10 mg InPC and 0.5 g TiO2 only in Figure 18 was 

integrated using logger pro 3.10.1 software within 350 nm–750 nm visible range.  

Stoichiometric Yield Based on the Amount of Carbon Dioxide 
 

Henry’s law was used to determine a stoichiometric yield for formate based the amount of 

CO2 in solution. Henry’s law describes the relationship between partial pressure and aqueous 

concentration and is given in Equation 3.1.23 

                                                           𝑃𝑃𝐶𝐶𝑂𝑂2 = kH [CO2]aq                                                                (3.1) 

Where ‘𝑃𝑃𝐶𝐶𝑂𝑂2’ represents pressure of atmospheric CO2 in atm, and ‘kH’ is Henry’s constant for CO2 in 

atm/M at room temperature (29 atm/M).23 At 1.00 atm the concentration of aqueous CO2 can be 
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calculated from Equation 3.0 and is 0.034 M. Equation 1.13 provides the stoichiometric ratio of CO2 

and formate allowing determination of the theoretical yield of formate provided in equation (3.2). 

                 �0.034 mol CO2
L

� �1 mol HCOOH
1 mol CO2

� � 45.00 g
1 mol HCOOH

� �1,000 mg
1 g

�=1,530 ppm formate             (3.2) 

Using the experimental yield of formate after 96 h of illumination of the TiO2/InPC system (23.5 

ppm), and the theoretical yield of 1,530 ppm results in a stoichiometric yield of 1.54%.       

Quantum Yield 
 

A Hamamatsu S2387 33R photodiode was calibrated using the potassium iron oxalate 

actinometry method using Equation 3.3.145 

                                           𝑁𝑁𝑞𝑞 = ∆A V1 V3
 Ф(λ) Ԑ(514 nm) V2 l t



𝑁𝑁𝑞𝑞 is moles of incident photons in einsteins per second. The quantity ΔA is the change in absorbance 

of the iron 1,10-phenanthroline complex before and after illumination. The term Ф(λ) is the 

quantum yield for reduction of Fe3+ to Fe2+ ion, which is 0.93 for a 0.2 M potassium iron oxalate 

solution using 514 nm radiation. The quantity V1 is volume of K3Fe(C2O4)3 solution irradiated, V2 is 

volume of solution analyzed after irradiation, V3 is total volume of the solution after adding 0.1% 

1,10-phenanthroline buffer solution and water, Ԑ (514 nm) is the molar absorption coefficient of the 

iron 1,10-phenanthroline complex (11,100 L·mol-1·cm-1), l is optical pathlength and t is irradiation 

time in seconds. 

Table 10. Absorbance values for three trials calibration the photodiode. 

Trial Before 
Illumination 
Absorbance 

After 
Illumination 
Absorbance 

         1 0.103 0.169 
         2 0.103 0.186 
         3 0.103 0.181 
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For trial 1 using Equation 3.3, the number of moles of photons per second absorbed is given in 

Equation 3.4 

                  (0.066)(3.5 mL ×10−3 )(10.4 𝑚𝑚𝑚𝑚)
(0.93)(11,100 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−1𝑐𝑐𝑚𝑚−1)(1.2 mL)(1 𝑐𝑐𝑚𝑚)(18,000 𝑠𝑠)

=  1.1 × 10−11 einstein𝑎𝑎/𝑎𝑎                (3.4) 

The number of einsteins/s, the photodiode current measured (1.8 µA), given area of the photodiode 

(5.7 mm2) and incident area of heterogeneous solution (3,500 mm2) enabled determination of a 

constant such that current and number of incident polychromatic photons are proportional.  

Additionally, the change in intensity of the source as a function of wavelength and sensitivity of the 

photodiode means that the number of einsteins/s needs to be corrected. The photodiode increases in 

sensitivity linearly from 0.2 A/W at 400 nm to 0.5 A/W at 800 nm as given in the data sheet for the 

photodiode. Assuming an ideal sensitivity of 0.5 A/W across the visible range, an area ratio (0.7) of 

the sensitivity of the photodiode from approximately 400 to 800 nm corrects the current from the 

photodiode for counting polychromatic photons. These two ratios and the photodiode current were 

used to calculate the photodiode constant, Sλ,A, in einsteins/(A·s) given in Equation 3.5. 

    Sλ,A = 
(1.1 × 10-11einsteins

s )(3,500 mm2)(0.7)

(1.8×10-6A)(5.7 mm2)
=  2.6 × 10−3 einsteins/(A·s)                (3.5)                 

As such, the three trials calibrating the photodiode resulted in an average value of  

3.2 ± 0.4 x 10-3 einsteins/(A·s). The calibrated photodiode was illuminated directly by the 150 W 

incandescent source and the direct current (183 µA) was measured using a multimeter. The 

photodiode was also used to measure the reflected light from the heterogeneous solution and 

photoreactor (165 µA). However, the number of photons from the source varies with wavelength 

introducing error in the current measurement.151 This error for the light source was determined by 

taking 18.27 lumens/Watt and dividing by 680 lumens/Watt, which is 100% luminous efficiency at 
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556 nm. The wavelength of 556 nm is the peak response of the human eye to visible light.150 When 

this ratio is multiplied by the 150 W source 4.03 J/s is obtained. Assuming a near linear response of 

photons and wavelength from 400 to 740 nm, this corresponds to 1.2±0.4 x 1019 photons/s. The 

relative error on the number of photons is 33%. This relative error was applied to the current output 

of the photodiode and propagated to find the number of einsteins of photons absorbed. This 

calculation is shown in Equation 3.6. 

 (3.2 ± 0.4 × 10−3 𝑒𝑒𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑠𝑠
𝐴𝐴.𝑆𝑆

)(0.18 ± 0.06 × 10−4𝐴𝐴)(86,400 𝑎𝑎) = 5.0 ± 1.8 × 10−3𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎 (3.6) 

Integrated absorbance area from visible integrated sphere measurements of the MPC/TiO2 solutions 

were used to determine the number of true incident photons absorbed. The areas for 0.5 g TiO2 in 50 

mL of 1.0 mM H2SO4 only and with 10, 20 and 50 mg of InPC were 811.27, 957.19, 984.68, and 

1,086.85 respectively. To account for absorption of photons due to the added InPC only, the 

absorbance area of TiO2 only was subtracted from the area with InPC and divided by the area of 

TiO2 and InPC. Using 0.5 g TiO2 and 10 mg InPC, the number of absorbed photons is given in 

Equation 3.7 

       (5.0 ± 1.8 × 10−3𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎)(145.92
957.19) =  7.6 ± 2.7 × 10−4𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎                              (3.7) 

From Table 7, the amount of formate obtained using 0.5 g TiO2 with 5 mg of InPC and irradiation in 

50 mL solution was determined to be 3.6(±0.2) ppm. The corresponding number of moles is given in 

Equation 3.8 

        (7.2 ±1.2 𝑚𝑚𝑚𝑚)(1 𝑚𝑚)(1 𝑚𝑚𝑚𝑚𝑚𝑚)(0.05 𝑚𝑚 )
(1 𝑚𝑚)(1000 𝑚𝑚𝑚𝑚)(45 𝑚𝑚)

 =   8.0 ± 1.3 × 10−6 𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑓𝑓𝑚𝑚𝑎𝑎𝑒𝑒𝑒𝑒                                    (3.8) 

Considering that one einstein is a mole of photons, the quantum yield for formate obtained within 24 

h of irradiation can be calculated as shown in Equation 3.9 

           Φformate = 2(8.0 ± 1.3 × 10−6𝑚𝑚𝑚𝑚𝑚𝑚)
(7.6 ±2.7 𝑥𝑥 10−4 𝑒𝑒𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑠𝑠)

 x 100%  = 2.1 ± 0.8%                                            (3.9) 
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The quantum yield of formate for using 0.5 g TiO2 and 5 mg InPC was found to be 1.9 ± 0.7%, 1.8 ± 

0.7% and 1.7 ± 0.6% after 48, 72 and 96 h of irradiation respectively. The results indicate that 

quantum yield is identical within error from 24 to 96 h of illumination. 
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CHAPTER 4 

 

DISCUSSION AND CONCLUSIONS 
 

From Figure 11, formate has a retention time between 4-5 min. Sulfate is also present due to 

sulfuric acid which has a retention time of 16-20 min. Table 1 shows that an increase in 

concentration of formate will lead to a corresponding increase in peak area of formate. 

  The calibration curve in Figure 12 was obtained by plotting peak area against concentration 

of formate and fit through the origin. The calibration was linear with an R2 of 0.9989 given in 

Equation 4.1 

                                                 A = 0.166C                                                                              (4.1) 

Where A is the peak area in µScm-1min-1 and C is concentration in ppm. Equation 4.1 above was 

used to find the concentration of formate generated by photoreduction of CO2.   

Photoreduction of Carbon Dioxide to Formate 

From Table 2, photoreduction of CO2 to formate does not seem to occur when TiO2 is used 

alone as a blank without a metal phthalocyanine. Titanium dioxide as a photocatalyst does not 

absorb radiation within the visible region, therefore it requires a sensitizer to extends its light 

absorption to visible region.11,60,79,81 The metal phthalocyanine alone also results in an undetectable 

amount of formate. No formate was obtained using a catalyst and photosensitizer, without irradiation 

for 96 h. Tables 3-6 also show that the amount of formate generated in the dark is very low 

compared to the amount of formate when using visible radiation. The maximum amount of formate 

obtained after 96 h was 23.5 ppm formate using InPC. This result shows that light radiation is 

essential for reduction of CO2 to formate in the photochemical process. 
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Although the presence of MPC catalyzes the photoreduction of CO2 to formate, the 

TiO2/MPC ratio is also key. According to Table 7 and Figure 14, higher amounts of InPC result in a 

decrease in the amount of formate. This could be due to a greater ratio of the amount of InPC to 

TiO2 causing π stacking of InPC rings forming dimers which decreases absorbance and thus 

photochemical ability.152 

Effect of Luminous Intensity 

From Table 8, after 24 h of irradiation, 0.3(±0.1) ppm formate was obtained using a 45 W 

light source. An increase in luminous intensity is consistent with an increase in the amount of 

formate produced. Also, no formate was obtained when the heterogenous solution was heated at 26 

°C for 24 h without irradiation. This shows that the amount of heat absorbed by solution has no 

effect on photoreduction of CO2 to formate. Reduction of CO2 to formate is clearly a photochemical 

or photo-thermal process. 

Effect of pH 

The effect of pH of aqueous solution on the amount of formate produced was investigated 

using four different pH values (3, 5, 7, and 11). According to the results in Table 9 and Figure 15, 

there was no significant change in pH after illumination. This result obtained is probably due to a 

low amount of formate generated compared to theoretical yield of formate and resolution of the pH 

meter. As a result, photoreduction was carried out under acidic and basic conditions. The amount of 

formate decreases as pH approaches neutral conditions. A solution of pH 3.0 gave the highest yield 

of formate (16.6 ppm). Neutral pH resulted in the lowest amount of formate, (3.8 ppm). 

Photoreduction of CO2 also occurs under alkaline conditions but the amount of formate is lower 

compared to acidic conditions. This result is consistent with literature.133 This result may be 
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attributed to the difference in solubility and equilibrium of CO2 in acidic, basic and neutral medium 

and desorption in acidic medium.17,20 

Use of Different MPC’s  

Figure 16 shows the visible absorption spectra of various MPCs used as photosensitizers. The 

Q-band absorption can be found within wavelengths of 650-750 nm in the visible region which is in 

accordance with literature.105 The difference in absorbance of PCs is attributed the size of the metal 

center. A metal with a larger size will have weaker coordination to nitrogen in the phthalocyanine 

cause the difference between LUMO and HOMO to be smaller. This causes the wavelength of 

maximum absorbance to be longer.108 This is observed in Figure 16. Figure 16 also shows that 

absorbance increases in the order of CuPC < NiPC < ZnPC < InPC. This is due to aggregation of 

MPC’s.152,153 Figure 13 reflects this trend in that the amount of formate generated is consistent with 

the order of increasing absorbance of the phthalocyanine. In other words, the amount of formate 

generated is greatest using InPC, followed by ZnPC, then NiPC while using CuPC resulted in the 

lowest amount of formate due to aggregation. 

Quantum Yield 

The quantum yield was nearly 2.0%. Within error, quantum efficiency remains constant over 

time. The quantum yield is low but comparable to other systems.140 Reasons for a low quantum yield 

include recombination of separated holes and electrons.141 Photoreduction was done using a 

polychromatic incandescent light source while actinometry was used to calibrate a photodiode as a 

polychromatic photon counter. Direct illumination and reflected light by the heterogeneous solution 

and photoreactor was measured as a current using the photodiode. This introduces the largest 

uncertainty in the number of photons absorbed and available for photoreduction. Another source of 
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uncertainty is the area of solution receiving incident radiation as the photoreactor used has a curved 

surface. 

Rate of Reaction 

Figure 13 shows plots of concentration and time exhibiting zero order kinetics for all 

phthalocyanines tested with R2 values of 0.992 or higher. The rate of photoreduction of CO2 to 

formate can be obtained from the slope of ppm vs. time for each metal phthalocyanine in Figure 13. 

The reaction rate constant is expressed as ppm formate (ppm) per second. Table 11 lists the reaction 

rates of photoreduction of CO2 to formate using different metal phthalocyanine. 

Table 11. Photochemical reduction reaction rates of CO2 to formate using different metal 
phthalocyanines over 96 h. 

Metal 
phthalocyanine         

     Amount  
    of formate 
       (ppm) 

Rate Constant 
(ppm/s) 

CuPc                       13.9 ±2.4  4.0 ± 0.7x10-5 
NiPc      19.3 ±6.6   5.6 ± 1.9x10-5 
ZnPc      21.7 ±1.7  6.3 ± 0.5x10-5             
InPc      23.5 ±2.9    6.8 ± 0.8x10-5 

 

According to Table 11, photoreduction of CO2 to formate using InPC and ZnPC, the 

photochemical reaction rate was statistically faster compared to use of NiPC and CuPC. The 

variation in the rate of formate produced using different sensitizers can be attributed to a different 

degree of aggregation in each phthalocyanine. InPC has the lowest degree of aggregation compared 

to other PC’s used in this work. This results in a higher probability of π-π* transitions in InPC when 

illuminated with visible radiation.98,105 The result is greater electron transfer to the conduction band 

of TiO2 enhancing electron transfer reactions. This accounts for the greater amount of formate 

generated by InPC compared to NiPC, ZnPC and CuPC. 
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Conclusions 
 

Photoreduction of CO2 to formate under acidic conditions using solid TiO2 and MPC’s is 

possible as quantified by ion chromatography. The amount of formate produced depends on 

wavelength, luminosity, metal sensitizer, pH, and time of radiation. The order of aggregation of 

sensitizers in solution used increases in the following manner: InPC > ZnPC > NiPC ˃ CuPC.  

Aggregation of PCs limit the injection of electrons into the conduction band of the TiO2 surface 

reducing electron transfer reactions.105,153 Also, saturation of CO2 in acidic medium gave higher 

yield when compared to basic or neutral conditions. Though photolysis of water produces protons 

required for the reduction process, more protons are present for photoreduction of CO2 to formate 

under acidic conditions. The amount of formate increases over time with visible radiation. The 

quantum yield of photoreduction of CO2 to formate was determined to be 2.1 ± 0.8% after 24 h and 

is a subject of ongoing research. 

Future Work 
 

 Photoreduction of CO2 to formate should be extended to use of hydrophilic metal 

phthalocyanines such as tetrasulfophthaloycanines. Additionally, heteroleptic dimers may prove to 

be more active and selective toward photoreduction of CO2. Amount of MPC/TiO2 ratio required for 

maximum formate formation will also be investigated. Interestingly, use of UV-LED in combination 

with Visible LED sources in the Q and B bands of tetrasulfophthalocyanines are of interest for 

photoreduction experiments to improve quantum yield. 
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