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ABSTRACT 

Mesoporous Adsorbents for Perfluorinated Compounds 

by 

Bertha Lotsi 

Effective adsorbents for polyfluorinated compounds (PFCs) were successfully prepared. And 

they were tested in the adsorption of perfluorooctanoic and perfluorooctanesulfonic acids. 

Bridged silsesquioxanes containing secondary and tertiary amino groups were synthesized by 

sol-gel condensation of bis[3-(trimethoxysilyl)propyl]amine and bis[3-(methylamino)propyl]-

trimethoxysilane in acidic media with surfactants. Obtained materials are mesoporous with high 

BET surface area. They combine high structural stability with a high concentration of surface 

amino groups serving as adsorption sites. Batch adsorption tests demonstrated their extremely 

high adsorption capacity on PFCs: in some experiments, it reached up to 88% of the adsorbent 

weight. Adsorption of PFCs changed the surfaces of the adsorbent nanoparticles from 

hydrophilic to hydrophobic thus providing their agglomeration and floatability. Column tests 

showed fast adsorption of PFCs even at high concentrations and high flow rates. Obtained results 

can be used in the development of an effective filtration device for clean-up of water 

contaminated by PFCs.  
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CHAPTER 1. INTRODUCTION 

 

Perfluorinated Compounds (PFCs) 

Perfluorinated compounds (PFCs), also known as the Perfluoroalkyl substances (PFASs)1  

are anthropogenic (generated from human activities) organo-fluorine compounds. The hydrogen 

atoms in the hydrocarbon backbone are replaced by fluorine atoms.2 PFCs have the 

characteristics such as amphiphilic (the ability to possess both hydrophilic and hydrophobic 

properties), making them accessible in the applications of papermaking, firefighting foams,3 

photolithography, and in the production of semiconductors. The carbon-fluorine (C-F) bond in 

fluorocarbons has sufficiently high energy (110 kcal/mol). It provides chemical stability of 

PFCs; hence they are persistent and wildly spread in the aquatic environments.  

PFCs come in many forms, but the two commonly known ones are perfluorooctanoic acid 

(PFOA) and perfluorooctane sulfonate (PFOS). In recent times, the manufacturing and use of 

PFCs are limited in the United States, Canada, and Europe.4 The bioaccumulative nature of PFCs 

makes it a requirement for researchers to find technologies for their removal from the 

environment, especially in water bodies.  

Throughout decades PFCs are produced and disposed about in large amounts from 

manufacturing companies contaminating agricultural produce and mostly waterbodies. The most 

persistent of PFCs are PFOA and PFOS. Precisely, PFOS was used in the production of clothes, 

furniture, and carpet in the United States until the 2000s. And PFOA is still in use for the 

formation of stainless-steel cookware.5 One can get exposed to PFCs from food packagings such 

as pizza boxes and microwave popcorn bags. PFCs can also be present in products such as 

textiles.6 Table 1 shows the structures and some properties of PFOA/PFOS in literature. 
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Table 1. Physicochemical Properties of PFOA and PFOS 2                                                                                                                          

PFC Structure M.W. 

(g/mol) 

pKa Solubility 

in water 

(mg/L) 

Molar 

volume 

(cm3/mol) 

Perfluorooctanoic 

acid (PFOA) 

CF3(CF2)6COOH 

O

OH

F
F F

F

F

F F

F

F FF F F

F F

 

414.17 2.5 3400 256 

Perfluorooctane-

sulfonic acid 

(PFOS) 

CF3(CF2)7SO3H 

S

O

O
OHF

F

F

F F F

FF

F
F FF

F F F F

F

 

500.13 -3.27 570 257 

 

 

Humankind should be concerned with PFCs because researchers have found serious 

health implications associated with the exposure of PFCs, i.e., cancer.7,8 Research has shown that 

the current thyroid disease records in the USA come from the high PFOS/PFOA concentration.9 

The PFCs also cause reproduction problems, kidney and liver damage in laboratory animals. The 

half-life of PFOA in humans is close to 3 years, while in the case of PFOS it is a little above 3 

years.10 Exposure of PFOA/PFOS caused low birth weight in laboratory animals, likewise in 

humans. It is essential that to reduce PFCs in the environment, we stay away from or limit the 

use of products containing these compounds.   

PFCs have high solubility in aqueous solutions, and this is a serious concern because of 

the exposure of consumers to contaminated drinking water. In the US, drinking and waste-water 

bodies close to industrial sites that manufacture and use PFCs have been reported to contain 

higher concentrations of PFCs. Also, during firefighting training, aqueous film-forming foams 

(AFFFs), which contains PFCs, are disposed-off into the surroundings; aircrafts hydraulic fuels 

also contain PFCs.  Therefore, water bodies close to civilian airports, firefighting training 
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centers, and PFCs manufacturing sites possessed high concentrations of PFCs. The white areas in 

the maps, (Figure 1) represent regions where no data was available. 

 

 

 

Figure 1. Hydrologic unit codes used as a proxy for watersheds with detectable PFOA and PFOS 

in drinking water (2013-2015) 1 
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The US-EPA health advisory sector has a maximum concentration limit of PFOA/PFOS 

contaminants and is expected not to exceed 0.07 µg/L, especially in drinking water. Some water 

bodies close to sites where PFCs were used or manufactured contain up to ten folds of  

0.07 µg/L. Table 2 shows some states in the US with guidelines on the concentration limits of 

PFOA/PFOS in their ground, surface, and drinking water. 

 

Table 2. PFCs Concentration Guidelines from US-EPA and Some States 5 

Agency or state Matrix Contaminant (µg/L) 

PFOA PFOS 

US EPA Drinking water Lifetime health advisory: 0.070 (combined 

or individually) 

Illinois Groundwater 0.400  0.200 

Maine Groundwater 0.060 0.100 

Michigan Surface water 0.420  0.012 

Minnesota Drinking water and fish 

consumption 

0.610 (lake)     

0.720 (river) 

0.012 (lake)   

0.006 (river) 

New Jersey Drinking water 0.040 - 

North Carolina Groundwater 2 - 

Vermont Drinking water 0.020 - 

 

 

Adsorbents for PFCs Removal 

There have been many effective removal techniques for PFCs from water bodies, such as 

thermal degradation,11 photolysis, reverse osmosis, ultraviolet irradiation,12 advanced oxidation 

processes. Adsorption is both practical and economical, making it one of the most used methods 

for the removal of PFCs from water bodies. 



16 
 

Adsorption is the accumulation of atoms, ions, or molecules from a gas, liquid, or 

dissolved solids known to be the adsorbate (e.g., PFCs) on either the liquid or solid surface of an 

adsorbent. A suitable adsorbent should possess a quality such as an intrinsic surface that is highly 

adsorbing. Its pore sizes must be regular and easily tunable. Also, its volume must be large 

enough, meaning the pore sizes can be modified. The following are some adsorbents used for 

PFCs removal. 

Activated Carbon 

Activated carbon (AC) is one of the most assuring adsorbents for the removal of PFCs 

from wastewater and even drinking water bodies such as groundwater and reservoirs.13 AC has a 

nonpolar surface, therefore used for removing hydrophobic pollutants. AC is also known for the 

removal of taste, odor, natural organic, and synthetic organic chemical compounds from water 

bodies, especially drinking water. AC materials are highly porous, and this provides a much 

larger surface area for the PFOA/PFOS to be adsorbed. There are two types of activated carbon, 

the powdered activated carbon (PAC) and the granular activated carbon (GAC). PAC mostly 

comes from materials that contain high carbon content such as coal and wood. PAC particles 

have a diameter of 0.1 mm or less, and both the density and the diameter ranges are affected by 

the type of material used for their production. GAC has a slow adsorption rate, and in most cases, 

the operational time exceed the estimated time. Comparing the two types of activated carbon, 

PAC has a higher adsorption capacity than GAC. AC is less expensive as compared to other 

types of adsorbent, and it can effectively adsorb PFOS/PFOA.  

AC falls short when it comes to the regeneration of the adsorbent for reuse, and even the 

regeneration of GAC requires thermal methods. It is usually hard to use pure organic solvents 

(methanol or ethanol) to regenerate the adsorbent, and this makes it problematic for safe 
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disposal. The best way for the regeneration of this adsorbent is to wait for the PFCs to 

decompose, but PFCs do not decompose quickly due to their high stability, hence the need to use 

catalytic degradation to enhance their decomposition exists. When using AC as adsorbent, pH, 

contact time, and temperature comes into consideration for effective adsorption. One 

disadvantage with AC is that during the adsorption of PFCs, especially in groundwater, they end 

up adsorbing some natural organic compounds as well. Those natural organic compounds usually 

will compete for adsorption sites with the PFCs. 

Resins 

Resins have favorable physicochemical stability, larger adsorption capacity, good 

selectivity, structural diversity, and benefit of generation.14 The anion exchange resins have 

records showing highest adsorption capacity among the nonionic exchange resins. Research 

shows that PFCs are mostly present as anions in aqueous solution; this makes anionic exchange 

resin a useful material for PFCs removal.15 Even though anionic exchange resins are capable of 

adsorbing PFCs, the rate of their adsorption mostly depends on material porosity and the matrix 

of the polymer.  

However, there is anionic competition, that is, if the contaminated water contains any 

other anions aside PFCs.  Also, the short-chain PFCs are less effective with resins.16 Resins are 

highly expensive, hence the need to regenerate for reuse in PFCs removal. Resin can be 

regenerated onsite and this gives it a more economic advantage than an adsorbent such as GAC. 

Pure methanol can be used to regenerate already used nonionic resins. A mixture of methanol 

and salt solution is used for the regeneration of anionic exchange resin. Solvent elution is one 

method used for regeneration of the resins. Also, solvent washing is another simple technique 

that is used to regenerate resins, this potentially recovers the solute. The volatility and toxicity of 
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organic adsorbents make them dangerous to regenerate in situ. Acid deposition and salting-out 

are the examples of some conventional methods used in the removal of concentrated acidic PFCs 

for proper disposal. 

Mineral Materials  

 Since minerals are essential components of the soil and water system, they must be well 

investigated as adsorbents. Some common mineral materials used as the adsorbents for the 

removal of PFCs are zeolites, goethite, kaolinite, and Ottawa sand. Research on such adsorbents 

has shown good adsorption with a high pH of the solution. The non-electrostatic interactions are 

the predominant type of interaction in PFCs adsorption onto silica. The silicate surfaces are 

hydrophilic and can be modified with cationic component for adsorption to occur.  The structural 

properties of different mineral materials can determine their adsorption mechanism. Alumina is 

one of the mineral adsorbents and is highly efficient due to acid-base nature towards charged 

components in water.  

Boehmite is an aluminum oxide hydroxide. Its surface abundant with hydroxyl groups 

that cause it to have 2-3 times higher adsorption rate than γ-alumina material.17 To understand 

and generate a good result for most mineral materials, especially for goethite, alumina, silica 

adsorbents, pH change, ionic strength, and Ca2+ concentration of solution must be considered.18 

The effectiveness of these mineral materials is lower as compared to that of ACs and resins. One 

advantage of mineral material is their ability to tune their mesopores. Their structures are 

changeable, making them suitable for better adsorption. Modifiers, such as 

hexadecyltrimethylammonium bromide (HDTMAB), (3-aminopropyl)-triethoxysilane, 1,8-

bis(dimethylamino)naphthalene, and 1H,1H,7H-dodecafluoroheptyl methacrylate are loaded on 

these mineral materials to enhance their PFCs adsorption. They function by entering the inner 
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layers of these materials and thus increasing the intralayer spaces to affect PFCs adsorption. For 

mineral materials, the PFCs can be desorbed by the organic solvent washing method. 

Biomaterials 

 Biomaterials are synthetic adsorbents formulated by researchers by mimicking natural 

types of adsorbents such as the AC. The idea was to decrease the adsorbent cost and to increase 

the adsorption capacity at PFCs removal. The biomaterial such as the crosslinked chitosan beads 

is less expensive but has high adsorption capacity for PFOS at low pH.19 The crosslinked 

chitosan is cheaper than resin and performs better in adsorption of PFCs than anion exchange 

resin. Biomaterials such as quaternized cotton and aminated rice husk originate from atom 

transfer radical polymerization.20 They have amine groups on their surfaces and since these 

groups exhibit electrostatic attractive forces with anionic PFCs, this gives them high adsorption 

capacity. They also have unique abilities to adsorb PFCs at pH ranges of 5-9. It is hard to remove 

PFCs from aminated adsorbent with pure organic solvents, due to their strong adsorption affinity. 

Molecularly Imprinted Polymers (MIPs)  

PFCs removal from wastewater and water bodies requires materials with high selectivity. 

Due to many compounds competing with PFCs for adsorption sites, especially in wastewaters, 

adsorbents that are highly selective on PFCs are preferable.21,22 Due to this, some researchers 

have devised a technique called the molecular imprinting to manufacture molecularly imprinted 

polymers (MIPs). This method has high selectivity towards PFCs adsoption.23  

Some of the new MIPs prepared by researchers are chitosan crosslinked the 

epichlorohydrin and 4-vinyl pyridine with ethylene glycol dimethacrylate. For the imprinting 

effect of MIPs to be highly selective in the adsorption of PFCs, pH of the solution, the type of 
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template, the reaction time, and the quantity of crosslinking agents are surely come into 

consideration.23 Some advantages of MIPs are the selectivity with PFCs, the ability to chemically 

tune them, mechanical strength and their high stability. Another type of MIPs is the cyclodextrin 

(CD) based polymer.24 This type of MIPs has proven to be highly advantageous than the others, 

and it has multiple binding sites with exceptional physicochemical properties in varying shapes 

and forms.  

Adsorption Behavior of PFCs 

Every adsorbent has its peculiar and unique way of adsorbing the PFCs onto its surface. 

Adsorption behavior can be affected by solution chemistry (solution pH, inorganic ions, organic 

compounds), adsorption kinetics, adsorption isotherms, PFCs, and adsorbent properties. 

Adsorption Kinetics 

  Adsorption kinetic is the measure of the amount of material adsorbed by an adsorbent 

concerning the time when pressure or concentration is constant. The three most common kinetics 

used to attribute to PFCs adsorption are, pseudo first order kinetic model, pseudo second order 

kinetic model and the intra-particle diffusion model. In order to calculate the diffusion of 

adsorbate (PFCs) in the pores of the adsorbent, the adsorption of the particle diameter and the 

pore size of the adsorbent must be considered since this determines the adsorption kinetics. 

Researchers have reported that PAC adsorbent exhibits faster adsorption rates of about 1-5 hours 

with adsorption capacity at equilibrium concentration of 100 mg/L.25 For GAC adsorbent, it 

takes as long as about 168 hours for adsorption to complete.26 For PFCs such as PFOA/PFOS, a 

mesoporous adsorbent shows higher adsorption rates than the others adsorbents. This is because 

a mesoporous adsorbent has better intraparticle diffusion rate.  
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Adsorption Isotherms 

 It is the graphical representation of the amount of an adsorbate adsorbed on an adsorbent 

at constant temperature and pressure. Researchers have admitted that, indeed, the Langmuir 

model properly explains the adsorption isotherm for PFCs. The most studied adsorption 

isotherms among PFCs are for PFOA and PFOS. The amine group-containing adsorbent, such as 

crosslinked chitosan, was purposely prepared, and the adsorption capacity for PFOA recorded to 

be the highest (2,745 mg/g). The anion exchange resin exhibited higher adsorption as well 

(2,575 mg/g for PFOS and 1,206 mg/g for PFOA), proving their excellent adsorption capacity. 

The nonionic resins showed low adsorption capacity, and their results were even lower than 

some AC. PAC had an adsorption capacity of 374-500 mg/g for PFOS and 175-524 mg/L for 

PFOA. The GAC had much lower adsorption capacity than the PAC, giving 160-229 mg/g for 

PFOS and 121-161 mg/g for PFOA.25 The mineral materials showed inferior adsorption capacity, 

and these are silica, alumina, zeolites, and montmorillonite. For example, the inorganic alumina 

exhibited an adsorption capacity of 22.3 µg/g for PFOS and 13.9 µg/g for PFOA.  

Effect of Solution Chemistry 

In most cases, at high pH, PFCs adsorption is lower. But this case is not always valid, 

especially when certain divalent cations are present in the solution. Researchers explained that 

the increase PFCs adsorption capacity at high pH when cations such as Mg2+ and Ca2+ are 

present.27,28,29  

Inorganic cations or anions can affect PFCs adsorption either negatively or positively, 

causing surface charge neutralization, competitive adsorption, and divalent cation bridging 

effects. Divalent cations (Mg2+ and Ca2+) can neutralize the negative surface of the adsorbent 

with an increase in zeta potential. They can form a bridge with phenolic, carboxyl, and hydroxyl 
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adsorbent groups, thus providing better adsorption.30 Recorded, Mg2+ mostly forms a bridge with 

adsorbent of carboxyl groups while Ca2+ does with both the carboxyl and sulfonate groups. 

Inorganic anions in solutions make the opposite effect. Instead they compete with the PFCs for 

adsorption sites. Examples of anions that inhibit adsorption of PFC are Cl-, SO4
2-, and Cr2O7

2-. 

Organic compounds or Natural Organic Matter (NOMs) and organic pollutants compete 

for adsorption sites with PFCs, hence the primary cause for a competitive source for PFC 

adsorption. NOMs with the same molecular size as that of PFCs compete to occupy adsorption 

site and this decreases the adsorption capacity of PFC. Some surfactants, such as 

hexadecyltrimethylammonium bromide (HDTMAB) and sodium dodecyl benzenesulfonate 

(SDBS), at higher concentrations, inhibit the adsorption of PFCs. At high concentrations, these 

surfactants produce micelles which makes PFCs soluble hence decreasing the adsorption effect.31  

Effect of Adsorbent Properties 

 There are different kinds of adsorbents with unique adsorption capacities and rates for 

PFCs removal. The properties of these adsorbents such as, particle size, pore size, and surface 

chemistry determine their way of adsorption.  

Adsorbents of PFCs with different particle sizes result in various adsorption capacities. 

PAC with the particle size of less than 0.1 mm will tend to adsorb more PFCs on its surface than 

GAC with particle sizes between 0.9-1 mm. Adsorbents with bigger particle sizes usually reduce 

pore accessibility and the steric hindrances blocking PFCs adsorption.   

As the scientist indicated,  the macroporous anion-exchange resins have higher 

adsorption capacity for PFCs than the mesoporous resins. Due to the pore blockage effect, 

microporous zeolites have lower adsorption capacity for PFCs than mesoporous hexagonal silica. 
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The reason is that the mesoporous materials have more space to accept large PFCs molecules. 

Hence the pore size and surface area play essential roles in the selection of an adsorbent for 

PFCs removal. 

Surface chemistry determines the effect of the adsorbent functional groups concerning 

PFCs. Research has shown that, for example, silica with different functional groups on its 

surfaces has different adsorption capacities. The more basic the functional group, such as a 

positively charged surface , the better it adsorbs anionic PFCs on its surface. Adsorbents with the 

multiple functional groups exhibit low adsorption capacity.  

Effect of PFCs Properties 

Reports show that PFCs have relatively low pKa values and exist as anions in 

waterbodies.32 Pearson's hard and soft bases explain that the sulfonate group is a hard base, while 

the carboxylate group is the soft base. Hence hard bases readily adsorb on the surfaces of hard 

acids (oxide surfaces), hence the reason for PFOS adsorption at higher capacities by silicas, ACs, 

and sediments than PFOA. Also, various adsorbents tend to adsorb higher amounts of PFCs with 

the increase in the number of C-F bonds with the same acidic group. With the longer C-F chain, 

PFCs have the lower water solubility. Hence the PFCs are more hydrophobic, and their capacity 

to be adsorbed is optimum when hydrophobic interaction is involved in the adsorption.  

Mechanisms of PFCs Adsorption 

Electrostatic Interaction 

Most adsorption processes of adsorbents PAC and commercial thin- film composite 

polyamide membrane can occur through electrostatic interactions.33,34 Electrostatic attractions 

occur between the positively charged adsorbent surface and anions of PFCs. Metal cations (e.g., 
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Mg2+) can catalyze anion adsorption, increasing electrostatic attraction between PFCs and the 

adsorbent. Anionic adsorbents mostly repel PFCs anions. NOMs are also anionic and are likely 

to resist most PFCs unless they are bridged or activated by other compounds. Figure 2 shows the 

different possibilities of electrostatic attraction and repulsion that can occur between adsorbents 

and PFCs. 

 

 

 Figure 2. Electrostatic attraction and repulsion of PFCs on various adsorbent sites 2 

 

Hydrophobic Interactions 

  PFCs can still be adsorbed on the negatively charged surface of the adsorbent by 

hydrophobic interactions. NOMs mostly found in aquatic environments act as hydrophobic parts 

for PFCs adsorption. Typically, PFOS and PFOA with a long perfluoroalkyl chains can form 

hemimicelles or micelles in water. When these hemimicelles and micelles collide, their tails can 



25 
 

amass together, and this brings high adsorption capacity.35 Figure 3 explains some adsorbent 

surfaces and how hydrophobic interactions of PFCs occur on these surfaces. 

 

Figure 3. Hydrophobic interactions of PFCs on various adsorbent sites 2 

 

Ligand and Ion Exchange 

  Some adsorbents prefer to adsorb by interacting with the functional group heads of PFCs. 

The ion exchange resin, for example, using exchange interaction, release hydroxyl groups for 

PFCs. Research shows that anion exchange resin with Chloride on its surface can exchange the 

chloride with PFOS. Hence the ratio of PFOS adsorbed to Cl- released ranging between 1-1.28, 

indicating that anion exchange reaction subjugated the adsorption of PFOS on resins. 

Hydrogen Bonds 

  Due to the hydrophobic nature of the C-F bond, it is hard for PFCs to form hydrogen 

bonds with water molecules or other hydrogen-containing polar molecules.36 Adsorbents with 

OH, COOH, and NH2 groups do not form hydrogen bonds with PFCs. However, functional 
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group heads of PFCs contain oxygen atoms, which may form hydrogen bonds with OH, COOH, 

and NH2 groups.   

Mesoporous Bridged Amino-Functionalized Polysilsesquioxanes 

The interest of this research is to use silsesquioxanes, a type of mineral material 

adsorbent, modify its surfaces with amine groups to purposely serve as the adsorption site for the 

removal of Perfluorinated compounds. 

Polysilsesquioxanes 

Polysilsesquioxanes are organosilicon compounds that comprise of silicon atoms bonded 

by oxygen molecules and R (where R could be H, alkyl, acyl, or alkoxyl group). Their polymeric 

structures are mostly cage-like with Si-O-Si linkages. The silicon has tetrahedral vertices (3 

oxygen molecules which also bonds with other silicon in the organic structure). This kind of 

material is quite uncommon because they have an inorganic silicate as its core and an external 

organic moiety.37 The silica core of this compound confers rigidity and thermal stability. The 

material is suitable for precursors in nanocomposites.

Sol-Gel Chemistry 

A common way to synthesize polysilsesquioxanes is the sol-gel method. An example is 

polymerization of tetraethoxysilane Si(OEt)4 (TEOS), and the chemical steps involved are 

hydrolysis and condensation. These steps ensure the formation of Si-O-Si chemical linkages. In a 

typical sol-gel reaction, the acid or base acts as a catalyst. The silica polymers can grow until a 

gel transition ultimate, which can transform into a solid-like gel (Figure 4). The introduction of 

an organic group into this inorganic polymer can change its physical properties.38 
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Bridged Polysilsesquioxanes  

 The bridged polysilsesquioxanes are highly cross-linked hybrid organic-inorganic 

materials. They contain variable organic fragments attached to the trialkoxysilyl groups. This 

kind of sol-gel polymerization leads to a network formation called bridged polysilsesquioxanes 

(Figure 5).39 The importance of bridging is to develop the full potential of both the organic and 

inorganic group or moieties. The condensation polymers are covalently attached to the inorganic 

phase. An alkyltrimethoxysilane is bridged with an amino-functionalized group form a stable 

silsesquioxane with high porous surface.40,41 
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Figure 5. Synthesis of bridged polysilsesquioxanes from a precursor  

 

Objective of the Project 

The main objectives of this project are to synthesize effective adsorbents for PFCs 

removal from contaminated water. The synthesized environmentally friendly materials must be 

recyclable with high adsorption capacity on PFCs. Mesoporous bridged amino-functionalized 

silsesquioxanes were chosen as prospective materials due to their high surface area and contents 

of basic adsorption sites.  
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CHAPTER 2. EXPERIMENTAL METHODS 

Chemicals and Reagents 

 

Table 3 lists various chemicals and reagents used and their roles in the syntheses. 

 

Table 3. Properties of Chemicals and Reagents Used 

Name Chemical 

formula 

Manufacturer Role 

Bis[3-(trimethoxysilyl)-

propyl]amine (TMPA) 

 

See Figure 6 Sigma-Aldrich (St. 

Louis, MO) 

Precursor 

Bis[3-(methylamino)-

propyl]trimethoxysilane 

(MAPS) 

See Figure 7 Sigma-Aldrich Precursor 

Trimethylstearylammonium 

chloride (TMS) 

C18H37(CH3)3NCl TCI (Tokyo, Japan) Surfactant 

Dodecylamine (DDA) C12H25NH2 Acros Organics 

(Morris Planes, NJ) 

Surfactant 

Sodium dodecyl sulfate 

(SDS) 

C12H25SO4Na Acros Organics Surfactant 

Pluronic P123 M.W. = 5800 

(PLU) 

See Figure 8 Sigma-Aldrich Surfactant 

Perfluorooctanoic acid 

(PFOA) 

C7F15COOH Sigma-Aldrich PFC 

Perfluorooctane sulfonate 

(PFOS) (40% in H2O) 

C8F17SO3H Sigma-Aldrich  PFC 

Trifluoromethanesulfonic 

acid (TFMSA) 

CF3SO3H Acros Organics Reference for 

NMR  
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Figure 6. Structure of TMPA 
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Figure 7. Structure of MAPS  
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Figure 8. Structure of PLU 

 

Synthesis of Materials 

The sol-gel method was used for the synthesis of the adsorbents TMPA and MAPS by 

polycondensation. 2 g of a surfactant dissolved in 6 mL of ethanol. 3.2 g of a precursor dissolved 

in 2 mL of ethanol. As shown in Table 4, TMPA was used to prepare samples 1-4, samples 5-8 

were prepared using MAPS. Solutions of TMPA (MAPS) and 20% HCl were simultaneously 

added to the solution of surfactants dropwise under constant stirring.  Shown in Table 4 are 

surfactants used for the preparation of these samples. The adsorbents were obtained by refluxing 

the reaction mixture for 24 h at 80°C. The gels were filtered, washed with deionized water and 

hot ethanol, rinsed with acetone and air-dried. 
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Table 4. Preparation of Samples 1-8 with Respective Precursors and Surfactants 

Sample Precursor Surfactant 

1 TMPA TMS 

2 TMPA DDA 

3 TMPA SDS 

4 TMPA PLU 

5 MAPS TMS 

6 MAPS DDA 

7 MAPS SDS 

8 MAPS PLU 

 

Adsorption Methodology 

Batch Tests 

The maximum adsorption capacity of bridged silsesquioxanes (BSSOs) was determined 

by the adsorption of PFOA and PFOS from concentrated solutions. The adsorption study was 

performed by placing 0.2 g of obtained adsorbents 1-8 in 50 mL of 0.5 % PFOA or PFOS 

solutions. The mixture was left stirring at room temperature for 16 h. After adsorption, the solid 

phase was filtered, washed with deionized water until pH = 7, and dried on air. Contents of 

PFOS and PFOA in the samples were calculated from the contents of total fluorine. 

Adsorption Isotherms 

0.1 g of adsorbent 1 and 5 were mixed with 10 mL of PFOA and PFOS solutions of four 

different concentrations: 100, 200, 300, and 400 mg/L. The mixture was kept for 2 h at constant 

temperature (21, 30, and 40°C) in a circulating water bath (Thermo Scientific, Pittsburg, PA). 
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Equilibrium concentrations of PFCs on the adsorbent (qe) and in the solution (Ce) were 

determined from analysis of the adsorbents on total fluorine. 

Column Tests  

Column tests were performed using PFOA and PFOS solutions with concentrations of 

100, 200, 300, and 400 mg/L. The adsorbents were granulated by tableting the powder samples 

at a pressure of 9 metric tons and separating the 1–2 mm fraction on Fisher Scientific test sieves. 

The solutions passed through a column with an internal diameter of 5 mm containing 0.5 g of 

granulated adsorbent 1 and 5 mixed with glass beads. The flow rate of 3 mL/(g•min) was 

maintained by Carter Manostat peristaltic pump (Cole-Parmer, Vernon Hills, IL). For 

determination of the effect of flow rate on the adsorbent effectiveness, different amount of the 

adsorbents (0.1-0.5 g) were taken, that corresponded to flow rates 6-30 mL/(g•min). Eluate 

samples were collected every 2 min and analyzed using 19F NMR. 

Regeneration 

Regeneration of samples containing adsorbed PFCs was conducted in a 5% solution of 

KOH in CH3OH. A sample (0.1 g) was mixed with 10 mL of the solution and left on a shaker for 

20 h. Then it was filtered, washed by DI water and acetone, and dried on air. The remaining 

amount of PFCs was determined by analysis of total fluorine. 

Instrumental Analysis and Characterization 

Elemental Analysis  

The elemental analysis performed on total organic C, H, N and F was provided by 

Robertson Microlit Laboratories (Ledgewood, NJ).  
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 19F NMR Spectroscopy 

19F NMR spectra of the solutions were recorded on a JNM-ECZS 400 FT NMR 

spectrometer (JEOL USA, Peabody, MA) at 400 MHz in D2O as a solvent. The number of scans 

was 140 at pulse length of 6.35 µs and delay time of 4 s. Concentrations of dissolved PFCs were 

calculated from relative intensity of CF3 peaks of TFMSA (‒78.6 ppm) and PFOS or PFOA   

(‒80.6 ppm). 

FT-IR Spectra  

FT-IR spectra were recorded in KBr pellets on a Genesis II spectrometer (Shimadzu, 

Kyoto, Japan). 

Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA)  

DSC and TGA analyses were provided by Robertson Microlit Laboratories. The DSC 

curve was recorded on a Pyris Diamond differential scanning calorimeter (Perkin Elmer, 

Waltham, MS) in a sealed pan. TGA analysis was conducted on a Perkin Elmer TGA 7 analyzer. 

The heating rate was 10 °C/min. 

Particle Sizes  

Particle sizes were determined by dynamic light scattering on a Zetasizer Nano ZS90 

(Malvern, UK). The samples were dispersed in water for 10 min at sonication prior to analysis. 

Brunauer-Emmett-Teller (BET) Surface Areas 

BET surface areas were measured on a Quantachrome Nova 2200e porosimeter (Boynton 

Beach, FL). Prior to measurements, the samples were degassed at 150 °C in vacuum for 2 h. 

Adsorption/desorption isotherms were recorded at -196 °C using N2 as an adsorbate. The BET 
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surface areas were calculated from the adsorption branch of isotherms to be in the range of            

P/Po = 0.1-0.3. 

TEM Imaging 

TEM study was conducted on a JEOL 2100F transmission electron microscope (JEOL 

USA, Peabody, MA) at 200 keV operated in scanning mode (STEM) at spot size of 0.2 nm. 

Images were collected with JEOL annular dark field detector and Gatan bright field detector. A 

sample was dispersed in ethanol and sonicated for 10 minutes. Then 5 drops of 0.5% RuO4 

solution were added and a dispersion was stirred for 2 minutes. One drop of this dispersion was 

added to formvar coated 200 mesh Cu TEM grid, left for 20 seconds and the residual was wicked 

away. The grid was washed by a drop of ethanol. 
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CHAPTER 3. RESULTS  

Synthesis of BSSOs 

Formation of the gel after 20% HCl, and the respective precursors were simultaneously 

added dropwise to the solutions of various surfactants. Samples 4 and 8 were prepared using a 

non-ionic surfactant, Pluronic P123. Ionic surfactants were used for the preparation of the rest of 

the samples. Samples were prepared using the precursor TMPA gave a high yield of products 

ranging from 0.78-0.93 g/gpr. The sample that gave the highest yield was 3 (0.93 g/gpr). Samples 

prepared using MAPS as the precursor also gave good yield ranging from 0.61-0.81 g/gpr. The 

contents of amino groups (potential adsorption sites) in the materials were almost similar (Table 

5). The ratio C/N was some less than in the precursors except for samples 3 and 7. The materials 

were highly hydrophilic. The content of amino groups in all the samples where similar, ranging 

from 3.1-3.5 mmol/g. The loading of amino groups in the samples ranged from 

10.2-97.9 molecules/nm2. 

Adsorption of PFCs 

Batch Tests 

The adsorption capacities of the various adsorbents on PFOA and PFOS were recorded in 

gram per 100 g of adsorbent. All the samples showed incredible adsorption capacities in the 

adsorption of both PFOA and PFOS of 0.5 % concentration. The surfactant used for the synthesis 

of adsorbent with the best adsorption of both PFOA and PFOS was TMS. Hence the sample 1 

and 5 were used in the subsequent research. Sample 7 adsorbed the highest amount of PFOS of 

approximately 90% on its surface (Fig. 9). 



36 
 

Table 5. Results of Elemental Composition, Yield, the Content of Amino Groups and Loading of 

Amino Groups of Samples 1-8 

Sample Elemental composition 

of the organic phase 

Yield 

(g/gpr.) 

Content of amino 

groups, mmol/g 

Loading of amino 

groups, molecules/ nm2 

1 C5.5H18.3N 0.83 3.2 10.2 

2 C5.8H17.9N 0.86 3.5 38.9 

3 C6.6H18.3N 0.93 3.2 15.0 

4 C5.3H18.8N 0.78 3.4 28.7 

5 C6.7H20.6N 0.76 3.2 46.8 

6 C6H20.9N 0.61 3.2 68.1 

7 C7.3H20.2N 0.81 3.3 16.9 

8 C6.2H18.1N 0.72 3.1 97.9 

 

Most of BSSOs demonstrated an excellent capability of PFCs removal from water. 

Samples 1-4 obtained from TMPA had lower adsorption capacity (198-466 mg/g) than samples 

5-7 obtained from MAPS (260-868 mg/g). However, the sample 8 had the lowest adsorption 

capacity and this may be due to the non-ionic surfactant used. Adsorption of PFOA on all 

samples was higher than PFOS except sample 7,for which adsorbed 1.8 mmol/g PFOS or 86.8% 

of the adsorbent weight.  

After the adsorption, all materials became highly hydrophobic and floated on the surface 

of the water. All the synthesized material placed in water (Fig. 10a) resulted in the formation of a 

cloudy solution because of the solvation of the solid. However, after the adsorption, the 

synthesized material appeared completely hydrophobic (Fig. 10b). Such a drastic change in 

adsorbent hydrophilicity was observed for all eight samples. 
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Figure 9. Adsorption of PFOA and PFOS by various adsorbents 

  

  

 

Figure 10. The synthesized adsorbent in water before (a) and after (b) adsorption of PFOA 

 

a b 
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Regeneration 

Treatment of samples 1 and 5 with PFCs on their surfaces by methanol solution of KOH 

resulted in the elimination of 96-99% of PFCs. As shown in Fig 11., sample 5 with PFOA gave 

the best regeneration result. The content of PFOA on its surface had decreased from 750 to 

10 mg/gabs after regeneration. Sample 5 with PFOS gave PFOS content of about 20 mg/gads after 

regeneration. 

Figure 11. Regeneration of samples 1 and 5 containing adsorbed PFCs 
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Adsorption Isotherms 

Isotherms of adsorption of PFCs on materials 1 and 5 do not fit the Langmuir model. 

Adsorption of PFOA on both samples well fits the Freundlich model qe = KFCe
1/n with R2 

between 0.957 and 0.996 (Fig.12). In contrast, the adsorption of PFOS fits the Freundlich model 

only for sample 5 (R2 = 0.99). In the case of sample 1, isotherms have the shape of BET type 

with an increase of adsorption at higher concentrations of PFOS.  

 

Figure 12. Isotherms of adsorption of PFOA and PFOS on materials 1 and 5 and linear fitting plots 

of Freundlich isotherm models at different temperatures (°C): 21 (■), 30 (●), and 40 (▲) 
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Column tests 

Column tests confirmed the high effectiveness of the adsorbents in the removal of 

dissolved PFCs even at high concentrations. In most of the water samples, after adsorption, the 

remaining level of concentrations of PFCs were below the detection limit of NMR spectroscopic 

analysis (5 ppm). The only exception was the adsorption of PFOA on TMPA-derived material, 

where notable amounts of the contaminant were detected in the eluents (Fig. 13).  

 

Figure 13. Column tests on samples 1 and 5 

 

Flow Rate 

  The study of the effect of flow rate showed a clear difference between TMPA- and 

MAPS-derived adsorbents (Fig. 14). The sample 1 was useful only at a low flow rate not 

exceeding 6-8 mL/(g•min). At higher flow rates, a significant part of the PFCs passed through 

the adsorbent without interaction. In contrast, sample 5 demonstrated the effectiveness of up to 

20 mL/(g•min).   
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Figure 14. Effect of flow rate on the adsorption of PFOA and PFOS 

 

FT-IR Spectra Aanalysis 

FT-IR spectra of the synthesized BSSOs (Fig. 15) showed spectra of samples 1 and 5 

contain absorption bands characteristic for silica gel and an organic phase. Vibrations of the 

silica network produced bands at 458 (δSiOSi), 1055 (νsSiOSi) and 1130 cm-1 (νasSiOSi). Bands at 

910 (νSiO), 1636–1652 (δHOH), and 3433 cm-1 (νOH) are attributed to the silanol groups. The 

presence of the organic phase is evident from bands at 1473 (δCH2) and 2804–2957 cm-1 (νCH2, 

two bands). In addition, a strong band at 694 cm-1 indicates νSiC vibrations. Spectra of samples 

2-4 and 6-8 were similar as compared to 1 and 5, respectively.  

The presence of adsorbed PFOA and PFOS in the materials after adsorption was evident 

from characteristic absorption bands of polyfluoroalkyl groups. These bands are located at 1211 

and 1247 cm-1 (νCF) in Fig. 16 for the FT-IR spectra of PFOA.  
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Figure 15. FT-IR spectra of 1 and 5 before and after adsorption 

 

 

Figure 16. FT-IR spectra of PFOA 
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Thermoanalysis 

Differential scanning calorimetry (DSC) is a thermo-analytical technique in which the 

difference in the amount of heat required to increase the temperature of a sample and reference 

is measured as a function of temperature. DSC spectrum of sample 1 demonstrated its stability 

up to 172 °C (Fig. 17). In this range, physically adsorbed water (10 % by weight) desorbed, 

mostly below 100 °C. Heating above 172 °C leads to its degradation, which occurred in three 

steps: 172-222, 222-400, and 400-700 °C, with a total weight loss of 40%. The same sample with 

adsorbed PFOA had mostly similar behavior. However, the fast desorption of PFOA from the 

material co-occurred with its degradation. The TGA curve of this sample has an additional sharp 

step in the range of 180-220 °C, with a weight loss of 31 %.   

Dynamic Light Scattering 

Particle sizes of the adsorbents varied in the full range from 13 to 301 nm (Table 6). 

Particle size distributions of each adsorbent were mostly narrow. For example, all particles of 

sample 1 were between 80 and 100 nm in diameter (Fig. 18). Adsorption of PFCs strongly 

favored agglomeration of the particles up to 732 nm.  
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Figure 17. DCS and TGA curves of sample 1 before and after adsorption of PFOA 

 

Table 6. The Particle Size Distribution of Samples 1-8 Before and After Adsorption of 

PFOA/PFOS 

Sample Precursor Surfactants Particle Size, nm 

Before After (PFOA) After (PFOS) 

1 TMPA TMA 91 118  361 

2 TMPA DDA 157 266 190 

3 TMPA DDS 66 91 244 

4 TMPA Pluronic P123 301 313 732 

5 MAPS TMA 142 164 269 

6 MAPS DDA 13 38 190 

7 MAPS DDS 59 115 368 

8 MAPS Pluronic P123 68 151 295 
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Figure 18.  Particle size distribution in sample 1 before and after adsorption 

 

Porosimetry 

All obtained BSSOs were mesoporous with BET surface areas 18.7-189.4 m2/g (Table 7). 

The surface loading of amino groups depended on the BET surface area and varied between 10.2 

and 97.9 molecules per nm2. Adsorption of PFCs reduced the BET surface area of all samples to 

2.1-87.0 m2/g. The most significant reduction was observed for samples with the highest loading 

of the adsorption sites.  

TEM Imaging 

TEM images of samples 1 and 5 showed that they are formed by large, highly branched 

agglomerates of particles of about 100 nm in diameter (Fig. 19). The sizes of these agglomerates 

exceed 1 μm. The images confirmed the mesoporous structure of the particles with pore sizes of 

about 2-4 nm. No notable difference between the structures of these materials was detected. 
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Table 7. BET Surface Area of Samples 1-8 Before and After Adsorption of PFOA and PFOS 

Sample Precursor Surfactants BET Surface Area, m2/g 

Before After (PFOA) After (PFOS) 

1 TMPA TMA 189.4 52.6 56.6 

2 TMPA DDA 54.5 17.0 12.9 

3 TMPA DDS 128.2 43.1 81.9 

4 TMPA Pluronic P123 71.2 54.7 38.0 

5 MAPS TMA 40.9 26.6 7.0 

6 MAPS DDA 28.2 2.1 17.3 

7 MAPS DDS 117.2 87.0 78.3 

8 MAPS Pluronic P123 18.7 8.2 14.9 
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Figure 19. TEM Imaging for sample 1 and 5  
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CHAPTER 4. DISCUSSION 

High yields of the products which were obtained proved complete polycondensation of 

TMPA and MAPS to corresponding BSSOs. The prepared mesoporous materials were highly 

hydrophilic and absorbed water up to 10 % by weight. The contents of amino groups in all 

materials were almost similar. Their slightly increased content in sample 2 might be caused by a 

small amount of entrapped DDA.  

High contents of primary adsorption sites in the adsorbents provides the high adsorption 

capacity for PFCs. This value varied between 0.5 and 2.2 mmol/g for different combinations of 

adsorbents and adsorbates. The concentration of amino groups in the materials were 3.1-3.5 

mmol/g, and this shows that only part of adsorption sites interacted with the PFCs. This is 

because, after PFCs adsorption, concentrations of amino groups were still recorded on the 

surfaces of the materials. Their incomplete involvement was caused by inaccessibility of some 

adsorption sites due to steric hindrances. The adsorption occurred by a multilayer mechanism 

through not only ionic interaction between acidic groups of PFCs and significant groups such as 

oxide on the surface of BSSOs. Hydrophobic interaction between PFC molecules and surfaces of 

BSSOs makes another contribution to the adsorption of these PFCs.   

Strong bonding of PFCs to the BSSO surface is evident from the thermal stability of 

adsorbed species. The thermal behavior of BSSOs was similar to non-bridged ones. At 172 °C, 

powder material 1 converted to glassy solid with no weight loss. The decomposition started at 

221 °C and occurred in two steps. On the first step, up to 400 °C weight loss was 17%. Between 

400 and 700 °C, the material lost 23% of its weight. These results corresponded to the total 

elimination of the organic phase, hence transformation to silicon oxide. All these transformations 

also occurred with PFC-containing samples and an additional step that was observed on PFC 
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elimination was at 180-220 °C. Thus, the desorption of adsorbed substance occurred on the step 

of glass transition before the thermal decomposition of the adsorbent. The elimination of PFC 

was due to the loss of the adsorbent porosity after the glass transition temperature. 

Adsorption of PFCs makes significant changes to the porosity and particle size of BSSOs. 

In all experiments of all the samples, the BET surface area decreased after PFCs adsorption. This 

change is caused by the adsorbate molecules blocking the pores on the surfaces of BSSOs and 

particle agglomeration. No direct correlation between the BET surface area of an adsorbent and 

its adsorption capacity was found. Moreover, materials with lower surface area in most cases 

adsorb higher amounts of PFCs. It confirmed the multilayer adsorption mechanism on the 

surface. 

Polyfluorinated alkyl groups of PFCs are highly hydrophobic. After adsorption, they 

changed particle surfaces from hydrophilic to hydrophobic. It then further caused hydrophobic 

agglomeration of the particles in water solution. This effect was also responsible for the loss of 

wettability of the samples that caused the flotation of used adsorbents in aqueous media. Higher 

hydrophobicity resulted in a better agglomeration degree. Since PFOS is more hydrophobic than 

PFOA, PFOS caused a higher agglomeration degree than PFOA (Table 7). 

Interestingly, BSSOs synthesized from MAPS showed better adsorption capacity than 

materials obtained from TMPA. This trend is unusual because secondary amines are more 

effective in adsorption of the acidic molecules. However, non-electrostatic hydrophobic 

interaction between the adsorbent surface and perfluorinated tale of the adsorbed molecules plays 

a significant role in the mechanism of adsorption. MAPS, as a tertiary amine, produces more 

hydrophobic BSSOs than TMPA.  
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The differences between TMPA and MAPS were more obvious from the corresponding 

column adsorption tests of PFCs on samples 1 and 5. Due to the higher basicity of TMPA 

(calculated pKa = 10.78), the adsorption of PFOA on this material is lower compared to the 

adsorption of PFOS (Fig.12). It should be noted that the adsorption rate was fast at the beginning 

of the process and then slowed down later. For example, at a flow rate of 6 mL/g, after 10 min, 

sample 1 adsorbed only 19 mg/g of PFOA that corresponded to 79% of its full amount. In the 

case of PFOS, it adsorbed 24 mg/g or 100%. It can be explained by the high accessibility of 

adsorption sites located on the external surface of the particles and diffusion limitations inside 

the pores. In contrast with TMPA, MAPS with lower basicity (pKa = 9.76), meaning more 

hydrophobic due to its inability to react with water, demonstrated higher adsorption of PFCs. 

Since hydrophobic groups enhance PFCs adsorption. PFOS, as a strong acid, readily adsorbed on 

both materials. Hence Sample 5 which is a product of MAPS showing almost complete 

adsorption of both PFOA and PFOS.  

The study of the effect of flow rate on both adsorbents also confirmed higher 

effectiveness of sample 5, a product of MAPS . It maintained excellent adsorption ability up to 

20 mL/(g•min), while sample 1,a product of TMPA became ineffective already at 6 mL/(g•min). 

The reason is that the available adsorption sites in the adsorbent synthesized from MAPS were 

higher than TMPA due to lower diffusion limitations.   

Isotherms of adsorption of PFOA on samples 1 and 5 and PFOS on sample 5 did not fit 

the Langmuir model for monolayers on homogeneous surfaces. Moreover, they suitably fit the 

Freundlich model that indicates heterogeneity of the adsorbent surface. The shape of adsorption 

isotherms of PFOS on sample 1 implies a more complicated mechanism of its adsorption that 

involves multilayer. PFOS is a significantly stronger acid than PFOA. While pKa of PFOS is -
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3.27, it is only 2.8 for PFOA. This difference also shows the comparative adsorption of PFOA 

and PFOS on ordinary silica gel. In this case, the adsorption capacity on PFOS is 33.3 times 

higher than on PFOA. Considering the weak ability of silica gel to protonation, surface silanol 

groups or bridge oxygen atoms of BSSOs cannot be protonated by PFOA in a notable degree; 

however, strong PFOS can protonate them. This is because PFOS is a Pearson hard base and will 

react with the hard acid surface of BSSOs (silanol groups). Therefore, the adsorption of PFOS in 

this case, might occurs not only on amino groups but also on structural oxygen atoms. 

Conclusions 

The bridged amino-functionalized trimethoxysilanes in acidic media with the surfactants 

provided the stable mesoporous silsesquioxanes. The obtained materials with high contents of 

accessible primary sites demonstrated excellent adsorption capacity for PFOA and PFOS. 

Especially efficient adsorbents synthesized from bis[3-(methylamino)propyl]trimethoxysilane 

adsorbed up to 86.8% of a PFC by weight. Because of  the electrostatic attraction between 

carboxylate/sulfonate ions and protonated amino groups, and the hydrophobic interaction 

between the polyfluorinated chain and surface alkyl groups, a high adsorption capacity for PFCs 

is attained. The materials are thermally stable in the range of temperatures expected use. 

Although PFC solutions studied in this work had higher concentrations than in natural water 

sources, the excellent performance of the adsorbents makes them promising materials for 

potential applications in filters for drinking water.  
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