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ABSTRACT 

Syntheses and Characterization of a New Cyano-Substituted Bis(pyrazolyl)borate and its 

Thallium (I) Complex 

by 

Chris Acquah 

Scorpionates are versatile and flexible ligands with a wide range of applications including 

catalysis, C-H bond activation, formation of new class of materials, and mimicking enzymatic 

reactions. This is as a result of its steric and electronic properties, and due to the relative ease 

with which the 3, and 5-positions of the pyrazole ring can be functionalized.  In this work, we 

report the synthesis of a new class of scorpionate ligands known as cyanoscorpionates which can 

crosslink various metal centers.  Thus, bis (4-cyano-3,5-diphenylpyrazolyl)borate BpPh2,4CN was 

synthesized and fully characterized by 1H NMR and FT-IR. Coordination of bis (4-cyano-3,5-

diphenylpyrazolyl)borate BpPh2,4CN to thallium (I) metal was performed and characterized and we 

are looking to elucidating its molecular structure by X-ray crystallography in future.  
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CHAPTER 1 

INTRODUCTION 

Trofimenko, in 1966, reported the first polypyrazolylborates ligand also known as 

scorpionate ligand.1  The general structure of a scorpionate ligand is a multidentate ligand 

consisting of a pyrazole ring; a five membered heterocyclic and polydentate compound with 

three carbon and two nitrogen atoms.1  One of the nitrogen donor atoms attaches to a boron atom 

and the other becomes a donor site for other ligands which result in the formation of a 

polypyrazolylborates ligand with improved steric and electronic properties (Fig 1).2  This is due 

to the fact that the number and position of the substituents on the pyrazole ring, mostly the 3 and 

5 position, can be varied and functionalize relatively easily.2  The term scorpionate comes from 

the nature of its bonding which resembles a scorpion attacking its prey using its pincers and 

sting. It binds to a metal with its two donor nitrogen atoms with a final and third donor point, 

which is either another pyrazole ring or an ‘R’ group attached to the boron, reaching over the 

plane to sting the metal (Fig 2).2 However, this is not obligatory especially because the Tp ligand 

for instance can only be bidentate sometimes as seen in complexes such as Pd(II) and Rh(I).2 

 

Fig 1: General Structure of Polypyrazolylborates (Scorpionates) Ligand, where n can be 0, 1, or 

2 and R can be and alkyl or aryl group.1,2 
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There are three forms of scorpionate ligands depending on the number of pyrazole rings 

(Fig 3). These include the dihydrobis(pyrazolyl)borates (Bp), hydrotris(pyrazolyl)borates (Tp), 

and tetrakis(pyrazolyl)borates (pzTp), with the Tp being the most popular and also the first to be 

discovered and synthesized by Trofimenko.1 They all carry a negative charge and can simply be 

synthesized by reacting a borohydride ion with excess pyrazole under different ratios and 

controllable conditions (Fig 4).1,2 Since their discovery, scorpionate ligands are deemed to be one 

of the most useful ligands in inorganic chemistry with applications in organic chemistry, 

bioinorganic chemistry, organometallics as well as in new materials such as polymer light 

emitting diodes (PLEDs).1 Applications include catalysis of polymerization and oligomerization 

reactions,3 modelling and mimicking of enzymatic reactions such as metalloenzymes,4  

investigating of the active sites of biomolecules as seen in bromoperoxidase,5 and C-H bond 

activation or functionalization.1 

 

Fig 2: Structure of bonding in polypyrazolylborates (Scorpionate) ligands.1 
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Fig 3: The three forms of polypyrazolylborates anions.1 

 

Most pyrazole derivatives are known to show biological activity. For instance, the 

complex 4-acetyl-3-amino-5-methyl pyrazole (aamp) has an outstanding biological activity and 

can be used to mimic enzymatic reactions.6 Tp complexes are also used to model mononuclear 

molybdenum cofactors of molybdoterm enzymes such as nitrate reductase and sulphite oxidase.2 

Also, the combination of Tp complexes with AlCl3 are used to catalyze polymerization and 

oligomerization reactions such as the ring opening metathesis polymerization (ROMP) of 

cyclooctene.2,7 
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Neutral Ru(II) complex such as TpRuCl(PPh3)2 can also be used to dimerized terminal 

alkynes with similar activity occurring with molybdenum complex.2,8 

TpRu(=C=CHPh)(Cl)(PPh3) can  be used to catalyze the ROMP of norbene.9 Photolysis of the 

Tp*Rh(CO)2 complex followed by the loss of CO and oxidative addition of R-H or Ar-H is used 

in the activation of C-H bonds in aliphatic and aromatic hydrocarbon molecules.2,10  

 

Fig 4: Synthesis of Poly(pyrazolyl)borate ligands under different ratios (of KBH4 to pyrazole) 

and temperatures (T1, T2 & T3).1,2 

Another application of scorpionate ligand can be seen in carbene and nitrene transfer 

reactions. The reactions of olefins with ethyl diazoacetate is catalyzed by the complex 

TpRCu(ethylene) to form cyclopropanes which also catalyzes the transfer of nitrene from 
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PhI=NTs arizidines.11-13 Diaz et al researched into different TpR complexes as a catalyst for the 

conversion of olefins and ethyl diazoacetate into cyclopropanes. They find out that The TpMsCu 

complex gave the highest diaste-reomeric excesses, that in the case of styrene, of ca.96% as 

compared to other catalyst which gave a maximum diastereomeric excess (de) of 84% for 

styrene.11,13 Scorpionate ligands have also been applied in the development of new materials. 

The most recent being the fusion of Tp coordinated lanthanide complexes in electroluminescent 

lights which was reported by the Boncella group.1,14 Polymer light emitting diodes have been 

incorporated with lanthanide complex containing TpR ligands coordinated to 

tetraphenylporphyrin. Tetraphenylporphyrin shows diode-like behavior and binds to the lower 

half of the lanthanide metal while the Tp* ligand binds the top half leading to the enclosing of 

the lanthanide ion and shielding it from outside interactions (Fig 5).14 This improves the 

effectiveness of luminescence compared with analogous containing mono and bidentate 

ligands.1,14 

 

   

Fig 5: An electroluminescent lanthanide complex containing a Tp ligand coordinated to 

tetraphenylporphyrin in tripodal fashion.1 
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The Tp ligand is widely used because it is similar in a way to the cyclopentadienyl (Cp) 

ligand although both can either be a five electron donor which represents the covalent model 

ligands or a six electron donor representing the ionic model ligands.1 The difference, however, is 

that the Tp ligands are more bulky and have a comparatively weaker donor properties as 

compared to the Cp ligand. This is because the Tp ligands are weak field δ-N donors and form 

octahedral complexes in a “fac” manner while Cp is 5 fold π donors and form tetrahedral 

complexes.1 

The naming of the scorpionate ligands poly(pyrazolyl)borates is done with emphasis on 

the pyrazole ring. This has been grouped into four different cases. The default position is the 3 

position on the pyrazole ring and a substituent ‘R’ at this position is denoted or represented by a 

superscript “R”. Hence for Bp, we have BpR, Tp, TpR etc. For example, hydrobis(3-

phenylpyrazolyl) borate is written as BpPh; hydrotris(3-methylpyrazolyl)borate is denoted as 

TpMe etc. The next position of interest is the 5-position which follows the 3-position. In this case, 

substituents are named as a superscript separated by a coma.15 Example, hydrobis(3-phenyl-5-

methylpyrazolyl)borate is written as BpPh,Me. 

 Thirdly, in the case where both R substituents on 3 and 5 positions are identical, it is 

represented by a superscript R, followed by 2. For example, hydrobis(3,5-

dimethylpyrazolyl)borate is denoted by BpMe2.  Lastly, a substituent, R at 4-position is 

represented by a superscript 4R.15 For instance, tetrakis (4-cyano-3-phenylpyrazolyl)borate is 

denoted by pzTpPh,4CN.  

Recent research shows that varying the substituent at 3- and 5-positions of the pyrazole 

rings with strong electron withdrawing groups such as cyano groups or sterically hindered alkyl 

and aryl groups will not only affect the coordination geometry but also its electronic properties.16  
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The ease at which the substituents on the 3- and 5-positions on the Pyrazolyl ring of the 

scorpionate ligands can be modified leads to three main generations of scorpionates with 

different electronic and steric properties.17 The first generation of scorpionates involved small 

and less bulky substituent such as methyl (CH3) group. These are readily available and 

inexpensive, and they coordinate in tridentate fashions.1 

However, the bid to improve the catalytic ability of scorpionate ligands led to the 

synthesis of the second generation of scorpionates. They have bulkier substituents such as phenyl 

(Ph), tert-butyl (t-Bu)18 etc. These substituents can be either on 3-position or a combination of 

the 3, 4, and 5-positions of the pyrazole ring.1  Bulkier substituents such as phenyl groups at 3-

position give rise to low coordination ligands, mainly due to steric hindrance.19  

Eichorn et al made several research into the effects of bulky substituents on 

poly(pyrazolyl)borate ligand complexed with Fe(II) (Table 1).20,21 Their findings showed that 

bulky substituents have erroneous effects on the Fe-N bond lengths, the spin state as well as the 

redox potential of the complexes.21 The octahedral Fe(II) metal which has a 3d6 electronic 

configuration has been a model for investigating low spin, high spin, and spin crossover 

complexes with 3d6 configuration.21 Table 1 shows that as the substituent gets bulkier the Fe-N 

bond gets longer. This is because there is a crystal field above which Iron (II) acts as a low spin 

t2g
6 (1A1g) complex and below which its acts as a high spin with t2g

4eg
2 (5T2g) configuration.  
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Table 1: Effects of substituents on the electronic properties of Tp coordinated Iron (II) 

complex.20,21 

 (Tp)2Fe Tp(Me2)Fe Tp(Ph2)2Fe 

Fe – N Bond (Å) 1.97 2.17 2.25 

Spin State Spin Crossover 

Tc > 395 K 

Spin Crossover 

Tc > 395 K 

High Spin 

T > 2 K 

Redox Potential 0.1V N/A 0.86V 

 

Hence, there is an increase in metal-ligand bond length as we go from a t2g
6 low spin state 

to a t2g
4eg

2 high spin state.21 Increasing the bulkiness of the substituent however elongates the Fe-

N bond length resulting in high spin complex as shown in table 1. The redox potential also 

increases with increasing bulkiness of substituent.  Another effect is also seen in the spin 

crossover which by definition is basically the movement of an electron from one orbital to the 

next and is highly dependent on temperature.16,20  The more bulky the substituent, the lesser the 

temperature needed for spin crossover to occur.20  

Finally, the third generation scorpionates; this is made of electronically active and high 

electron withdrawing substituents such as CN and CF3.
22,23 Years of extensive research by Diaz 

et al into the third generation scorpionates showed that the electronically active and high electron 

withdrawing substituents have a major effect on the magnetic, electronic and structural 

properties of the metal complexes.24 They  also improve the thermal stability, oxidation 

resistance, volatility and the solubility of the metal complexes.25  
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Table 2: Effect of different substituent on tris(pyrazolyl)boratocopper(I) carbonyl complexes.23 

 

 

Table 2, gives a detailed description of the effects of several electron withdrawing 

substituents on tris(pyrazolyl)boratocopper(I) carbonyl complexes.23 It was reported that, as the 

electron rich substituents increase (from iso-propyl to CF3) the electron density of the pyrazole 

ring (and in turn the coordinated metal) is reduced, which results in weakening the metal-

nitrogen bond. This enhances the interaction between the carbonyl (a strong π acceptor ligand) 

and the metal, mostly due to π back bonding, this leads to an increase in the metal carbon (Cu-C) 

bond as well as an increase in the CO stretching frequency.23,24 

Cyanoscorpionates 

Cyanosubstituted scorpionates or simply cyanoscorpionates fall under the third 

generation scorpionates.  In spite of the strong electron withdrawing ability of the cyano group, 

cyanoscorpionates can coordinate to metal ions through the nitrogen in the cyano group. They 

can also serve as ligands to form coordination bonds with a second transition metal26 through the 

nitrogen of the pyrazole ring. Thus, cyanoscorpionates can be cross-linked to different metal 

complexes by a conjugated pathway (Fig 6) connecting the nitrile coordinated metal and the 

R υCO (cm-1) Cu-C (Å) 

CF3 2137 1.808(4) 

Ph 2086  

H 2083 1.765(14) 

CH3 2066  

i-Pr 2056 1.769(8) 
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pyrazole of a second cyanosubstituted scorpionate forming an array of coordinated polymer 

chain.2,27 Expanding of this cross-linked coordination leads to polymeric coordination complexes 

with improved conductivity and magnetism properties.27 In this polymer, different metal 

moieties can “chat” with each other allowing magnetic interactions and electronic 

communication.15 This permits electron movement along multidimensional polymer chains 

leading to the formation of conductive polymers. The cyano-substituent which is normally at the 

4-position of the pyrazole ring is affected by other substituents at the 3- and 5-position.  In 2000, 

Trofimenko first synthesized and published the Bp4CN ligand with no substituent in the 3-, and 5 

positions.  Intractable polymer was formed, and the effect of the CN substituent was not yet 

known and fully explored.15,29 

 

 

Fig 6: Cyano bridged coordination polymer of cyanoscorpionates via a conjugated pathway.15 
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Recent works by Eichorn et al focused on the Bp4CN ligand but with bulky alkyl 

substituent. They successfully synthesized the homoscorpionate complexes (BpPh,4CN)2Co and 

(BpPh,4CN)2Cu.27,29  They then concluded that, the cyano substituent did not have a significant 

effect on the introduction of a bulky substituent on the 3- or 5- positions of the ligand, though the 

effect of the electron withdrawal properties of the cyano group on the ligand was not studied.27  

Other significant findings from the Eichhorn’s group also confirmed the cyano-scorpionate 

polymer formation.28,29 Formation of a red precipitate after mixing (BpPh,4CN)2Co with 

Rh2(CF3COO)4 in CH2Cl2, which gave two infrared CN stretches at 2285 cm-1  and 2234 cm-1 

and has a m/z of 761 peak in the mass spectrum.15,28,29 The two CN stretches indicate polymer 

formation and the coordination of the CN group to the Rh ion.15,29 

Siemer et al also synthesized a cyano-substituted hydrobis(pyrazolyl)borate complex, 

Bp4CN, but were unable  to isolate the monomeric homoleptic complex of the Bp ligand due to 

formation of polymeric species as a result of the cross-linked coordination between the cyano 

group and the metal of a neighboring M(Bp4CN) complex.29 

The goal of this research is to synthesize and structurally characterize bis cyano-

substituted scorpionate ligands with symmetric phenyl substituents at the 3- and 5-positions 

(BpPh2,4CN) and to synthesize their metal (Thallium) complex. This is more advantageous than the 

asymmetric substituents due to the fact that the symmetrical substitution provides protection of 

the B-H group and prevents ligand degradation; this also provides steric congestion due to 

rearrangement, as seen in asymmetric derivatives.30   
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CHAPTER 2 

METHODOLOGY 

Materials and Methods 

All reagents used in this research were obtained from Alfa Aeser, Fischer Scientific, 

Sigma-Aldrich, and Acros Organics which were used without further purification unless 

otherwise stated. Glassware used were cleaned by soaking them in a base bath, rinsed with 

distilled water and dried in an isotemp oven from Fischer Scientific. The base bath was prepared 

by a combination of potassium hydroxide (KOH) and a 2:1 isopropanol/water solution. Toluene 

was further dried by distilling over sodium lumps and benzophenone. Reduction of solvents 

under reduced pressure and mass measurements were carried out using a 19A BUCHI 

SWITZERLAND ROTAVOPOR RII and a METTLER TOLEDO PB403-S/FACT analytical 

balance respectively. NMR, FT-IR, GC-MS were the techniques used for structural elucidation 

and characterization of results. A SHIMADZU 1R PRESTIGE-21 FT-IR spectrometer was used 

in recording IR Spectra. 1H NMR were conducted on 400MHZ JOEL-NMR Eclipse 

Spectrophotometer with a TMS standard. Singlet (s), doublet (d), and triplet (t) were the terms 

used to describe splitting patterns with chemical shifts reported in parts per million (ppm). GC-

MS Spectra were recorded on a SHIMADZU GCMS-QP210 PLUS GC system spectrometer. 

Melting points were recorded with a MELTEMP 50/60 CYCLES melting point apparatus. 

Column Chromatography and Thin Layer Chromatography were conducted to purify products. A 

100-200 mesh silica gel was used with a 3:1 Dichloromethane (DCM)/Hexane mixture as the 

solvent. Silica active TLC plates were used for TLC and spots viewed with a 254nm UV lamp. 
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BpPh2,4CN Ligand 

The BpPh,4CN was first reported by Trofimenko and has been synthesized by Eichhorn et 

al. Though after synthesizing both the Bpt-butyl,4CN and BpPh,4CN ligands and successfully 

complexing with a metal, they concluded that the bulky nature of the tert-butyl tend to push the 

metal further away from the nitrogen therefore increasing the bond length but that wasn’t seen in 

the BpPh,4CN ligand as the less bulky phenyl group (as compared to tert-butyl) did not sterically 

hinder the complexation of the metal to the nitrogen hence resulting in a shorter bond length. 

However, in order to study very well the effects of the  bulky substituents on the electronic 

properties of the ligand, we decided to increase the phenyl group substituent on the pyrazole ring 

hence the synthesis of the BpPh2,4CN ligand, which seeks to broaden our understanding on the 

effects of both di-substituted and tri-substituted poly(Pyrazolyl)borates ligands on the magnetic 

and electronic properties of the ligands and their contribution to the ligand metal bond distances 

as well as their ability to form coordination polymers. 

The BpPh2,4CN has never been reported and synthesized though its analogous Tp ligand has 

been successfully reported, synthesized and structurally characterized using the X-ray 

diffractometer after complexation with Thallium (I) metal. Thallium (I) metal is larger and very 

stable due to inert pair effect and should be easily crystallized as compared to other metals. The 

starting material which is the pyrazole (HpzPh2,4CN) was previously synthesized with a technique 

which was toxic and explosive. Hence, a modified version courtesy Bray and Tupper as 

described by Zhao15 was used. The general scheme for the synthesis of the BpPh2,4CN is shown in 

Fig 7. 
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Figure 7: General scheme for the synthesis of BpPh2,4CN ligand (Ph = Phenyl) 

 

Synthesis of 4-cyano-3,5-diphenylpyrazole (HpzPh2,4CN) (4) 

Sodium hydride (0.690 g, 0.01724 mole), as 60% dispersion in mineral oil, was 

suspended in 100ml dry toluene.  Benzoylacetonitrile (2.500 g, 0.01724 mole) was then added to 
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the suspension which resulted in the immediate appearance of small bubbles. The solution was 

placed under nitrogen, cooled in ice bath and stirred for 18 hours, forming a cloudy solution. 

Benzoyl chloride (2.420 g, 0.0172 mole) was added dropwise to the solution and stirred 

overnight resulting in a yellowish solution. The solution was then transferred into a separatory 

funnel and extracted three times with 3x100 mL of 0.2 M sodium hydroxide. The aqueous layers 

were combined and neutralized with 6 M HCl. The acidified solution was re transferred to the 

separatory funnel and extracted with three portions of 100 mL of ethyl acetate. The combind 

yellow organic layer was dried over anhydrous magnesium sulphate, then evaporated under 

reduced pressure on a rotary evaporator to yield 3.500 g of the crude product. The product was 

recrystallized from ethanol to give 3.027g (70% yield) of yellowish crystals, 2-cyano-1,3-

diphenyl-1,3-propanedione, 3. 

The recrystallized 3 (3.027 g, 0.01216 mole) was stirred over night with hydrazine 

monohydrate (0.609 g, 0.0121 mole) in 100 mL of methanol. The solution was concentrated to 

25 mL under reduced pressure and chromatographed on a 100-200 mesh silica gel column, using 

3:1 dichloromethane/hexane mixture as an eluent. Several fractions were collected and TLC 

showed the first 10 fractions to have one spot with identical Rf value. These fractions were 

combined and the solvent was evaporated under reduced pressure. The solid product was 

recrystallized from ethanol to give 1.697 g (56% yield) , 4-cyano-3,5-diphenylpyrazole (4), as 

yellowish crystals. M.p. 130 oC.  1H NMR (DMSO-d6), δ: 7.90 (d,4H), 7.67 (t,2H), and 7.57 

(t,4H).  FT-IR (cm-1): 3300 cm-1 (N-H Stretch) and 2210 cm-1 (C≡N stretch). GC-MS (m/z): 245 

and 77. 
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Figure 8: Scheme for the synthesis of 4-cyano-3,5-diphenylpyrazole (HpzPh2,4CN) complex. 

 

Synthesis of Potassium bis (4-cyano-3,5-diphenylpyrazole)borate (KBpPh2,4CN) (5) 

Compound 4 (1.042 g, 0.00425 mole) was reacted with 0.5 equivalent of potassium 

borohydride (0.114 g, 0.002125 mole) in a round bottom flask fitted with a reflux condenser. The 

mixture was stirred and heated gradually in an oil bath to 150 oC for 1 hour.  The reaction 

mixture began to melt at 130oC, giving off hydrogen gas, and completely melted at 150 oC after 

1 hour. The melted pyrazole/potassium borohydride mixture was allowed to cool at room 

temperature for 45 min to form solid.    The solid was dissolved in acetonitrile (50 mL) and 
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filtered to remove any excess KBH4. The solvent was evaporated under reduced pressure and the 

residue was washed (triturated) with toluene (10 mL) to remove any unreacted pyrazole. 

Filtration and drying gave a dark yellow powder of potassium bis (4-cyano-3,5-

diphenylpyrazole)borate (KBpPh2,4CN), 5 (0.525 g, 31% yield). M.p: 240 oC, 1H NMR: 8.07 ppm 

(d,8H), 7.65 ppm (t,4H), 7.55 ppm (t,8H). FT-IR, cm-1: 2350 and 2250, representing the B-H and 

C≡N bonds, respectively. 

 

Figure 9: Scheme for the synthesis of potassium bis(4-cyano-3,5-diphenylpyrazole)borate 

(KBpPh2,4CN), 5. 

Synthesis of Thallium bis (4-cyano-3,5-diphenylpyrazolyl) borate (TlBpPh2,4CN), 6 

Compound 5 (0.425 g, 0.00084 mole) was dissolved in 20 mL of acetone. The solution 

was then added to TlNO3 (0.220 g, 0.00084 mole) dissolved in 20 mL of 50/50 (v/v) of 

water/acetone. After stirring for 1 hour the solvent was evaporated under reduced pressure.  The 

yellow solid residue was washed with water (20 mL) to remove any unreacted TlNO3, then dried.  

A lightly yellow powder, 6 (0.385 g, 64%) was obtained. M.p: 280 oC, 1H NMR, δ: 7.95 (d,8H), 
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7.72 (t,8H), 7.61 (t,4H). FT-IR,cm-1: 2350 and 2220 , confirming the presence of both B-H and 

C≡N bonds, respectively. 

 

Figure 10: Scheme for the synthesis of thallium bis (4-cyano-3,5-diphenylpyrazolyl) borate 

TlBpPh2,4CN, 6 

Growing of thallium bis (4-cyano-3,5-diphenylpyrazolyl) borate TlBpPh2,4CN crystals 

X-Ray quality crystals can be grown with different techniques including slow 

evaporation and liquid-liquid diffusion.  Both techniques were attempted, but at least in our 

hands, the latter seems to give better quality crystals.  A typical recrystallization involved 

layering a saturated solution of ligand (5) in acetone over a saturated solution of TlNO3 in 50/50 

(v/v) water/acetone in a test tube covered with paraffin film. This was repeated with different 

concentrations of ligand: 1/4, 1/8, 1/16, 1/20 of the original solution in acetone. The layered 

solutions were kept in a cool dry place for a month. The tubes were opened after the first two 

weeks when crystals start to grow in order to expedite crystal growth.  An illustration of the 

crystallization technique is shown in Fig 11.  
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Figure 11: Layering crystallization (or liquid-liquid diffusion) technique for crystal growth31  

‘Image modified from’ 

http://www.chemistryviews.org/details/education/2538941/Tips_and_Tricks_for_the_Lab_Grow

ing_Crystals_Part_3.html .31 

Solvent 1 contains TlNO3 in 50/50 acetone/water while solvent 2 contains KBpPh2,4CN in acetone. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

Various cyano-substituted pyrazolyl derivatives have been synthesized for potential 

applications in catalysis, bioinorganic and organic chemistry.  In this research we successfully 

synthesized BpPh2,4CN and its  thallium (I) complex, TlBpPh2,4CN.  Our attempts to grow x-ray 

quality crystals were promising but the diffraction results were inconclusive.  As a result, we 

were not able to obtain acceptable X-ray crystal structures of such complexes.  The synthesized 

compounds were purified by utilizing a combination of column chromatography and 

recrystallization; and their structures were elucidated by NMR, FT-IR and GC-MS. 

 

4-cyano-3,5-diphenylpyrazole, HpzPh2,4CN, 4 

This compound was synthesized using the reported method in figure 8. Benzoyl chloride 

and benzoylacetonitrile were reacted in dry toluene in the presence of sodium hydride as a base 

to deprotonate the benzoylacetonitrile, to form 2-cyano-1,3-diphenyl-1,3-propanedione,3 in good 

yield.  This was further reacted with hydrazine to form the substituted pyrazole product.  The 

lightly yellow crude product was recrystallized from ethanol, to give 70% yield of 4 with a 

melting point of 150 oC.  FT-IR gave two characteristic absorptions at 3300 cm-1 (for N-H bond) 

and at 2210 cm-1 (for C≡N bond) . This is consistent with the pyrazole being substituted with 

C≡N.32   GC-MS also confirmed the structure of compound 4 as indicated by m/z peak of 245 

and a phenyl cation fragment peak of 77.  1H NMR spectrum of 4 gave three peaks, a doublet 

and two triplets in the chemical shift range of 8-7.5 ppm, corresponding to the hydrogens 

(protons) in the aromatic phenyl group. Individual peak integration showed a ratio of 2:1:2 for 
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the protons in the aromatic region for the ortho, para and meta protons of the phenyl group, 

appearing at 7.90 ppm (d,4H), 7.67 ppm (t,2H) and 7.57 ppm (t,4H), respectively. The down 

field shift of the ortho protons is attributed to the fact that they are highly deshielded by the 

nearby electron withdrawing cyano group. The meta and para protons, however, are less 

deshielded than the ortho protons, thus their signals appear relatively upfield. The signal of the 

amino group proton was not observed since it undergoes deuterium exchange with the solvent.  

The peak at 3.7 ppm is due to water impurities in DMSO-d6. (Refer to spectra in appendix A, B, 

C1 and C2). 

 

Potassium bis (4-cyano-3,5-diphenylpyrazolyl)borate, KBpPh2,4CN ,5 

 KBpPh2,4CN scorpionate was synthesized according to the general scheme shown in Fig 9 .  

A portion of pyrazole 4 was heated with KBH4 in a 2:1 ratio to a melting temperature without 

use of solvent. Upon melting in the range of 130 -150 oC, the reaction proceeded by giving off 

hydrogen gas. Slight excess of pyrazole 4 was used to ensure complete reaction of KBH4.  FT-IR 

spectra of the compound (5) shows B-H stretch at 2350 cm-1 and C≡N stretch at 2250 cm-1. The 

B-H stretching frequency of compound 5 was slightly lower than those of other analogous 

(KBpPh,4CN)  observed by Eichhorn et al (Table 3).  This is as a result of the introduction of 

another bulky phenyl substituent on 5-position of the pyrazole ring as well as the presence of the 

strongly electron withdrawing cyano group. This attributes to weakening of the B-H bond 

lowering its stretching frequency. The absence of the N-H absorption indicates the bonding of 

two pyrazole rings to boron.  1H NMR of spectrum of (5) showed three peaks in 7.5 - 8.1 ppm 

range, doublet and two triplets, which correspond to the protons on the aromatic groups. The 

singlet at 7.25 ppm is the chloroform-d solvent peak.  Individual peak integration gave a ratio of 
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4:2:4 for the aromatic protons due to the highly symmetrical nature of compound. The eight 

ortho protons of the phenyl groups gave a doublet at 8.07 ppm. The other two triplets at 7.55 

ppm and 7.60 ppm represent the para (4H) and the meta (8H) protons, respectively. These are 

shifted upfield compared to the ortho protons due to the fact that they are less deshielded. (Refer 

to spectra in appendix D, E1 and E2). 

Table 3: Comparism of B-H and C≡N stretches of different synthesized Bp Ligand. 

Compound B-H (cm-1) C≡N (cm-1) Reference 

KBpPh2,4CN 2350 2250 This work 

KBpPh,4CN 2421 2225 27 

 

Thallium bis(4-cyano-3,5-diphenylpyrazolyl)borates, TlTpPh2,4CN 6 

The choice of thallium (I) metal is due to its ability to form generally stable complexes 

due to its inert pair effect (oxidation state that are two less than the group oxidation) and for its 

relatively low price. Furthermore, most thallium based pyrazole complexes are widely employed 

in ligand exchange reactions, 33 and have potential applications in catalysis.  Since ligand 5 is 

insoluble in water, it has to be dissolved in acetone during complexation reaction with TlNO3. 

After work up, the thallium complex, TlBpPh2,4CN 6 was obtained in good yield (64%).  FT-IR 

spectrum of 6 shows the B-H stretch at 2350 cm-1 and the C≡N stretch at 2210 cm-1. We also 

noticed a C=O stretch at 1600 cm-1, apparently coming from trace amount of acetone. Although 

the B-H stretch remained unchanged from the FT-IR of starting material 5, there was a slight 

change in the C≡N stretch as it shifted from 2250 cm-1 to 2220 cm-1. This may be attributed to 

the change in the molecular geometry of the complex and to the ionic radii differences of 
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thallium (I) metal ion due to possible complexation. 1H NMR gave three peaks, a doublet and 

two triplets at chemical shifts of 7.95 ppm, 7.72 ppm, and 7.61 ppm, corresponding to the ortho 

(d,8H), para (t,4H) and meta (t,8H) protons of the phenyl groups, respectively. (Refer to spectra 

in appendix F, G1 and G2). However, the NMR and FT-IR results does not indicate a successful 

complexation and position of complexation of the thallium metal to the BpPh2,4CN  ligand though 

the melting points are different; thus the structure of the TlBpPh2,4CN complex is left open. 

  

Thallium bis(4-cyano-3,5-diphenylpyrazolyl)borates, TlBpPh2,4CN (6) crystals 

X-ray quality crystals were grown using the layering or liquid-liquid diffusion technique. 

Although we tried other techniques such as slow evaporation, the liquid-liquid diffusion 

technique proved to be the most effective. Slow crystallization, over a month period, provided 

shiny colorless crystals. Structural characterization of the compound 6 crystals by X-ray 

crystallography proved inconclusive as the data obtained from the X-ray indicated an 

unsuccessful crystallization. The X-ray crystallographic data obtained for our harvested crystals 

was similar to that of TlNO3 crystals suggesting that our Bp ligand couldn’t crystallize hence an 

unsuccessful complexation of the Tl metal to the Bp ligand. Melting point of the crystals gave 

206 oC which was similar to the theoretical melting point of TlNO3 which is 207 oC. This 

however confirmed that the crystals isolated or harvested were indeed TlNO3 crystals and not our 

TlBpPh2,4CN  complex. 
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CHAPTER 4 

CONCLUSION 

Since their initial discovery by Trofimenko, the scorpionates have attracted significant 

interest due to their versatile applications in various fields. We succeeded to synthesize 

substituted pyrazole derivatives that vary in their functionalities. This opened a new way that 

may lead to future investigation into how new scorpionate ligands can be synthesized and how 

their electronic properties can be modified. Cyanoscorpionates have become very valuable in 

modern inorganic chemistry for their ability to form transition metal complexes and fully 

conjugated coordination polymers.  

In this work, we  successfully synthesized new cyanoscorpionate ligands, 4-cyano-3,5-

diphenylpyrazole, HpzPh2,4CN , bis(4-cyano-3,5-diphenylpyrazolyl)borate, BpPh2,4CN and their 

thallium (I) complex,   These were synthesized by modifying literature procedures .  Thallium (I) 

complex of TlBpPh2,4CN was synthesized  and crystallized using the layering liquid-liquid 

diffusion technique.  Structural determination of the thallium complexes of the new scorpionates 

by X-ray crystallography is in progress; however initial attempts were inconclusive due to poor 

diffraction of the crystals. Further attempts also proved unsuccessful as it was established that 

the isolated crystals was however TlNO3 crystals instead of our TlBpPh2,4CN complex. 

Future work would involve further attempts to resolve the structures of thallium 

complexes of the newly synthesized ligands by X-ray.  We also will seek to improve the 

synthesis of cyanoscorpionates by optimizing reaction conditions to improve reactions yield; and 

to prepare coordination polymers involving cyanoscorpionates as well as ways to successfully 

grow TlBpPh2,4CN crystals.  
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APPENDICES 

Appendix A: FT-IR spectrum of HpzPh2,4CN (4) 
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Appendix B: Mass spectrum of HpzPh2,4CN (4) 
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Appendix C1 : 1H NMR spectrum of HpzPh2,4CN (4) (DMSO-d6) 

 

  a = ortho, b = para, & c = meta protons  
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Appendix C2: Extended 1H NMR spectrum of HpzPh2,4CN (4) (DMSO-d6) 

 

a = ortho, b = para, & c = meta protons 
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Appendix D: FT-IR spectrum of BpPh2,4CN (5) 
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Appendix E1: 1H NMR spectrum of KBpPh2,4CN (5) (Chloroform-d) 
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Appendix E2: Extended 1H NMR spectrum of BpPh2,4CN (5) (Chloroform-d) 
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Appendix F: FT-IR spectrum of TlBpPh2,4CN (6) 
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Appendix G1: 1H NMR spectrum of TlBpPh2,4CN (6) (DMSO-d6) 
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Appendix G2: Extended 1H NMR spectrum of TlBpPh2,4CN (6) (DMSO-d6) 
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