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ABSTRACT 

Extraction, Purification, and Characterization of an Antibiotic- like Compound Produced by 

Rhodococcus sp. MTM3W5.2 

by 

Pushpavathi Reddyvari Manikindi 

 

The bacterium Rhodococcus is a potential source for novel antimicrobial metabolites. Recently, 

the Rhodococcus strain MTM3W5.2 was isolated from a soil sample collected from Morristown,  

East Tennessee and was found to produce an inhibitor molecule that is active against similar 

Rhodococcus species. The aim of this research is to extract, purify, and characterize the active 

compound. The compound was obtained from both agar and broth cultures of strain MTM3W5.2 

and purified by primary fractionation of crude extract on a Sephadex LH-20 column, followed by 

semi-preparative reversed phase column chromatography. Final purification was achieved using 

multiple rounds of an analytical C18 HPLC column. Based on the results obtained from UV-Vis, 

FT-IR, and HR-MS, the molecule is a polyketide with a molecular formula of C52H78O13 and an 

exact mass of 911.5490 amu. The partial structure of this compound has been determined using 

1D and 2D NMR spectroscopy. 
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CHAPTER 1 

INTRODUCTION 

Antibiotic Use and Resistance 

Drug-resistant infections have been increasing for many years. Resistance develops when 

a microorganism evolves and prevents the introduced antibiotics from being effective.1 The 

discovery of penicillin in 1928 led to the treatment of millions of bacterial infections and resulted 

in it being called a “miracle drug”.1 Now, more than half a century later, humans have reached a 

crisis level in treating antibiotic resistant infectious diseases. No drugs have been developed to 

keep apace with the natural capability of bacteria to advance and defend themselves against 

antibacterial drugs.2 Overuse of antibiotics and the natural evolution of bacteria to change 

themselves to resist the effect of the drugs have led to this growing threat.2  

Alexander Fleming warned of the development of resistance to penicillin as early as  

1945 by exposing microbes to lower concentrations of penicillin.3,4 Since then simultaneously 

with the development of new drugs, resistance in both pathogenic and nonpathogenic bacteria 

has been observed (Figure 1).5  

Microbes develop resistance through various mechanisms such as altering the target, 

hydrolysis, efflux, glycosylation, phosphorylation, reprogramming peptidoglycan biosynthesis, 

ADP-ribosylation, nucleotidylation, monooxygenation and acetylation.6 Resistant infections are 

turning deadly. The CDC in 2013 reported that antibiotic resistant infections result in 25,000 

deaths per year and an additional 2.5 million hospitalizations in the European Union.1 As a result 

of resistant bacterial infections passed from their mothers, more than 58,000 babies die in India 

per year.7,8 These infections cause 3.2 million illnesses and over 38,000 deaths per year in 
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Thailand9 and over 23,000 deaths, and more than 2.0 million illnesses in the United States 

yearly.1  

 

 

Figure 1. Timeline of antibiotic categorization and the identification of antibiotic resistance. 

(Adopted from references.1,5) 

 

In the process of discovering novel antibiotics, concomitant occurrence of antibiotic 

resistance has been developed.6 Figure 2 shows the evolution of antibiotic resistance for the 

leading antibiotics and the events in eras. Primeval era was the beginning of chemotherapy 

through sulfonamides. The broadest discovery of antibiotics occurred in the golden years of 

research between 1945 and 1955.6 Pharmacologic effects were made to understand the use of 

antibiotics by research and management.6 The biochemical activities of antibiotics and resistant 

mechanisms were used to modify the structure of drug compounds to chemically combat 

resistance.6 Genomic studies led researchers to propose novel molecules and predicted the 
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fundamental targets.6 Disappointment with massive investment in genome-based methods, many 

pharmaceutical companies dropped their antibiotic discovery programs.6 The important 

highlights in this history include the creation of the Office of New Drugs (OND) which 

introduced harsher requirements for the drug safety. These requirements reduced the introduction 

of new antimicrobial compounds by pharmaceutical companies. 

 

 

Figure 2. Events in the history of antibiotics and the development of antibiotic resistance. 

(Adapted from the source6 with permission from the publisher) 

 

The Need for New Antibiotic Classes 

In the society, antibiotic-resistant strains of infectious bacteria are increasingly common 

resulting in the appearance of multidrug resistance among the newest generation of pathogens.10 

The CDC reports dangerous levels for antibiotic resistance amongst pathogens. For example, 

Methicillin-resistant Staphylococcus aureus (MRSA), a gram-positive microbe is associated with 

severe hospice illnesses, and is considered a serious threat.11 Others such as Carbapenem-
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Resistant Enterobacteriaceae (CRE), like Klebsiella and Eschericha coli have quickly developed 

as major hazard being their resistant to nearly all modern antibiotics.11 There is an urgent need to 

find novel antibitics to fight against these microbial pathogens. However, the progress in 

developing them has been slow.10 The Infectious Diseases Society of America’s (IDSA) 2009 

antibiotic pipeline status report tracked a continual drop in the development of new antibiotics.12 

The fall from a high sixteen new antimicrobial agents approved during the period of 1983 to 

1987 to only two new antibiotics (ceftaroline-fosamil, and telavancin) since 2008 is 

problematic.12 Between 1998 and 2002, the approval rate of new antibacterial agents by FDA 

declined by 56% compared to the period from 1983 to 1987.12 Of the total fourteen drugs 

approved since 1998, only four exhibited a unique mechanism of action.12,13 Diseases caused by 

exclusively the “ESKAPE” pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), 

cause substantial morbidity and mortality.12 Worldwide and especially in the United States, 

“ESKAPE” and other drug-resistant gram-negative bacilli (GNB) infections negatively impact 

the health of hospitalized patients undergoing clinical treatments and additional procedures and 

also on healthy people outside the hospital.12 The requirement for new antibacterial agents to 

treat infections instigated by GNB resistance to available agents today is much more important 

than in the past.12  

Most clinically used antibiotics have come from a relatively small set of chemical 

structures. However, chemical groups of antibiotic scaffolds have been extended by the 

modification of their structures through synthetic tailoring.10 More than 73% of antibiotic-new 

chemical entities (NCEs) filed between 1981 and 2005 are derived from just four scaffolds - 

penicillins, cephalosporins, quinolones, and macrolides discovered between the mid-1930s and 
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the early 1960s.10 Although all antibiotics clinically approved between the 1960s and 2000 were 

derived synthetically from naturally existing scaffolds, synthetic tailoring is the primary method 

used for restocking of the antibiotic pipeline. The logical fashion to battle against resistance is to 

discover new scaffolds.10 

  

Natural Products as a Possible Source of Novel Antibiotics 

Over two-thirds of clinically-approved antibiotics are natural compounds or their 

semisynthetic derivatives.10 Living organisms generate three specifically distinctive types of 

organic products: primary metabolites, high molecular weight polymeric compounds, and 

secondary metabolites. 

Primary metabolites are produced in every part of cells and play a fundamental role in the 

metabolism and reproduction of those cells. These compounds include common amino acids, 

sugars, and nucleic acids.14 The high molecular weight polymeric compounds are involved in the 

formation of cellular structures. These include cellulose, lignins, and proteins.14  

Interestingly, secondary metabolites can show biological effects on other cells or even 

other organisms.14 This feature of these natural products makes them function as regulators, 

resistance and defensive substances.14 The organism which produces these organic secondary 

metabolites will get an advantage from their biological activity. However, it is often dangerous to 

other species, including humans.15 More than 40% of the bioactive secondary metabolites of 

plants and microbes are widely used as drugs.14 
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The Classes of Secondary Metabolites 

Secondary metabolites belong to one or more families. The structures of these 

compounds are diverse.14 It is not possible to distinguish primary and secondary metabolites 

based on their structure and biochemical processes; the differentiation principally depends on 

functionalities of the compounds.14,16 Based on the way they are produced by biosynthesis 

pathways in different organisms, they can be categorized into few major classes (Figure 3).14 

 

 

Figure 3. Flow chart of the categorization of secondary metabolites.14 

 

Terpenoids and Steroids 

Terpenoids are the most structurally diverse class of natural plant products derived from a 

repetitive combination of isopentane units indicated as isoprene monomers.17 Isopentane units 

usually originated from isopentenyl pyrophosphate (IPP) (Figure 4).14 As per Ruziicka’s isoprene 

rule,  they are monomers are bonded in a head-to-tail fashion.14 Based on the number of isoprene 

units (C5), the terpenes are classified as monoterpenoids, (C10), sesquiterpenoids, (C15), 
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diterpenoids, (C20), sesterterpenoids, (C25), triterpenoids, (C30), and carotenoids (C40). The 

steroids naturally come from the tetracyclic triterpenoid units.14 

 

 

Figure 4. The examples of terpenoid metabolites.14 

 

Phenylpropanoids  

The phenylpropanoids are well-known plant natural products with a six-membered 

aromatic ring structure plus a three carbon chain attached to it (C6-C3 unit).14 The Shikimic 

pathway,17 is an important biosynthetic pathway found in plants and microorganisms but not in 

animals.14 This pathway provides an unconventional way to synthesize aromatic compounds 

such as phenylpropanoids, and the aromatic amino acids like L-phenylalanine, L-tyrosine, and L-

tryptophan.17 The intermediate in the biosynthesis of these amino acids is shikimic acid (Figure 

5) which is extracted from Illicium plant species, also called shikimi plant in Japan.17 The 

phenylpropanoids biosynthesis pathway at oxygenation step differed from polyketide 

biosynthesis by this Shikimic route.14 The chemical structures of different phenylpropanoid 

metabolites appear in Figure 5. 
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Figure 5. The examples of phenylpropanoids metabolites.14 

 

Alkaloids 

Alkaloids were the leading natural products to be isolated from medicinal plants in the 

19th century.14 They were initially described as pharmacologically active, nitrogen-containing 

compounds of plant origin.17 Due to the basic nature of nitrogen which is present in all alkaloids, 

they form salts from their reaction with acids, thus, they are also known as vegetable alkali.14 

Alkaloids are classified in three ways;  

(i)! Based on biosynthesis from amino acid precursors: For example, relatively 

limited amino acids are involved in the biosynthesis of alkaloids such as lysine, 

nicotinic acid, ornithine, anthranilic acid, phenylalanine, tyrosine, histidine, and 

tryptophan.17  

(ii)! According to their sources:  According to the plant sources from which alkaloids 

are extracted, they grouped are as Aconitum, Cinchona, Curare, Ergot, Opium, 

Amaryllidaceae, Senecio and Vinca.14  

(iii)! Based on the nature of nitrogen present in them: Another important classification 

is made based on the nature of nitrogen positioned in the alkaloid structure. They 

include pyrrolidine, indole,  benzylisoquinoline, piperidine, quinoline, and 

isoquinoline.17 
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Figure 6. Quinine alkaloid (antimalarial drug).14 

 

Polyketides 

Polyketides are the most distinct subgroup of natural products, produced by fungi, 

bacteria, and plants.18 They engage in a broad range of biological activities such as antibacterial, 

antifungal, anticholesterol, antiparasitic, anticancer, and immunosuppressive properties.19 The 

activity of polyketides is represented in Figure 7.  

The diversity in the chemical structure of polyketides is a key factor causing their diverse 

bioactivities.18 Numerous polyketides are biosynthesized by gram positive, soil residing 

microorganisms of the genus Streptomyces which belongs to the Actinomycete family.20 
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Figure 7. Different kind of polyketides and their pharmaceutical activity.21 

 

Polyketide Synthases (PKSs) 

The assemblies of polyketides vary widely; but they are all biosynthesized by a 

mechanism in their initial stages that is very similar to fatty acid biosynthesis.22 Polyketides are 

formed by sequential condensation of acyl originators such as acetyl and malonyl units.22 These 

condensation reactions are catalyzed by large mega enzyme-complexes known as polyketide 

synthase (PKS). Polyketide synthases can contain several protein domains (catalytic regions),14 

which are organized into sections called modules.23 The domains function in an assembly-line 
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manner to form a polyketide chain (Figure 8).23 Generally, the number of modules essential for 

the synthesis of the compound matches the number of precursors that are incorporated into the 

product polyketide chain.24 A typical intermediate in a polyketide biosynthesis is a polyketone.25 

Assembly of a basic polyketide involves three discrete steps: 

(i)! loading of a precursor molecule, 

(ii)! the addition of multiple chemical building blocks to elongate the polyketide chain, 

and  

(iii)! the release of the final condensed chain of the polyketide occurs.25 

Biosynthesis of a polyketides is very similar to that of fatty acid biosynthesis, often 

having the same type of building blocks. In the fatty acid chain assembly process, the carbonyl 

group of acetate undergoes reduction.14 Subsequent degradations and oxidation produces 

unsaturated fatty acids. Polyketide and fatty acid biosynthesis primarily differs in the number and 

type of acyl building blocks used, the extent and position of keto group reductions, and the 

cyclization arrangement of the finalized products.25    

PKSs are cataloged into three types, PKS I, PKS II, and PKS III. Type I PKSs contain a 

set of catalytic core domains, such as keto synthase (KS), acyltransferase (AT), and acyl carrier 

protein (ACP) assembled as a module (Figure 8) that regulates the assimilation of starting 

molecules into the polyketide chain.19 Unlike the type I PKSs, type II PKS contain an additional 

KS domain along with the core domains. The extra KS controls the elongation and enzymatic 

activities.19 Type III PKSs, on the other hand, are typically deficient in multiple catalytic 

domains and employ an ACP-independent mechanism.19 
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Figure 8. The arrangement of domains in the DEBS 1. 

Different colored boxes represent the keto synthase (KS), acyltransferase (AT), ketoreductase 

(KR), and acyl carrier protein (ACP) domains. (Adopted from the reference.21) 

 

Type I Modular Polyketide Synthase  

The classic bacterial type I PKS comprises multi-functional modules. Thus, they are 

named a ‘modular’ PKS.21 The 6-deoxyerythronolide B synthase (DEBS) from 

Saccharopolyspora erythraea
26 is the archetype of modular27 PKS responsible for making the 6-

deoxyerythronolide B (6-DEB) structure of erythromycin A.19 This PKS has three large proteins, 

DEBS 1, DEBS 2, DEBS 3, that accommodate 28 domains organized into seven functional 

modules.21 Each module contains the three domains KS, AT, and ACP, which co-operate to 

catalyze C–C bond formation by Claisen condensation.21 Catalysis of one cycle of chain addition 

is done by core domains as well as an adaptable set of domains (ketoreductase (KR), dehydratase 

(DH) and enoyl reductase (ER)) along with the modification of the keto functional group.21,26,28  

The polyketide biosynthesis starts with DEBS 1 by a loading N-didomain (AT and ACP), with 

the precursor propionate from propionyl-CoA.21 The AT domain recongnizes the particular 

extender unit to be integrated into the growing polyketide chain,19 while DEBS 3 terminates with 

a thioesterase (TE) by off-loading followed by cyclization of the fully-formed heptaketide 

intermediate to provide 6-DEB 16.21  

  

H2N
COOH

Module I Module II

AT

A
C
P

A
C
P

A
C
P

KS KSAT ATKR KR

6-deoxyerythronolide B synthase
                (DEBS 1)



 29 

 

Figure 9. Organization of modules in 6-deoxyerythronolide B synthase (DEBS).  

Three mega proteins (DEBS 1, DEBS 2, and DEBS 3) are organised into a total of six modules 

depicted by large rectangular boxes in the figure. Each module has core enzyme domains (KS, 

AT, and ACP) shown in small rectangular boxes including variable domains (KR, DH, and ER). 

The starter unit is loaded at the N-terminal of DEBS 1, followed by elongation with extender 

methyl malonyl-CoA units, then the polypeptide chain is terminated at the C-terminal of DEBS 3 

(Adopted from the reference.21,19). 

 

The Actinomycete Genus Rhodococcus 

At the moment, there are about 56 species classified in the genus Rhodococcus.
29 The 

Actinomycete genus Rhodococcus is described as an aerobic, GC-rich nonsporulating, and 

nonmotile Gram-positive bacteria that also contain mycolic acids in their cell envelope.30 The 

cell walls of the rhodococci are chemotype IV, which has meso-diaminopimelic acid containing 
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peptidoglycan, and arabinose, galactose as major sugars.31 Their cell morphology changes during 

the different stages of their growth cycle; the cocci of some strains turn into short rods, while 

others continue transforming into filamentous rods.32 Some rods start branching out in a simple 

or extensive manner.32 Rhodococci are found in soil, rocks, boreholes, groundwater, animal 

dung, marine sediments, the guts of insects and from healthy and diseased plants and  

animals.33, 34 

 

Environmental and Biotechnological Importance 

The mycolic acid containing cell wall of Rhodococcus may contribute to their exceptional 

ability to degrade a broad range of compounds, including pollutants.35 The catabolic versatility 

of Rhodococcus and their exceptional stress tolerance36 and rapid growth rates have led to their 

use in numerous applications in bioremediation and biocatalysis. For instance, Rhodococcus 

rhodochrous J1 is used in the production of acrylamide from acrylonitrile.30  

 

Antibiotics Produced by Rhodococcus 

In the past few decades, scientists have explored the genus Rhodococcus for its ability to 

produce antibiotic like compounds.37 Since 1999 other antimicrobial compounds have been 

produced from the Rhodococcus genus. Different types of antibiotic like compounds produced 

by this genus published to date are described below.38-44 

 

Rhodopeptins. Chiba et al. found a strain of Rhodococcus that produced a series of cyclic 

tetrapeptides that inhibited the growth of Candida albicans but did not show antibacterial 

activity.38 Five of these rhodopeptins C1, C2, C3, C4, and B5 were purified from the metabolites 
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produced by Rhodococcus sp. Mer-N1033.38 This strain was isolated from the soil sample 

collected at Mt. Hayachine, Prefectur, Japan.38 These novel type of cyclic tetrapeptides are made 

up of lithophilic β-amino acids and α-amino acids. The rhodopeptins are white residues or 

colorless solids and are soluble in methanol, dimethyl sulfoxide (DMSO), acetic acid and 

water.38 

 

 

Figure 10. The structural differences of rhodopeptins C1, C2, C3, C4, and B5.38 

 

Lariatins. In 2006, Iwatsuki et al. discovered the antimicrobial agents named lariatins A 

and B (Figure 11) while screening microbial metabolites that showed inhibitory activity towards 

Mycobacteria. These agents are specific cyclic peptides produced by Rhodococcus sp. K01-

B0171. They inhibit the growth of  Mycobacterium smegmatis and also inhibited the growth of 

M. tuberculosis.39 The scientists also studied the structure of lariatins A and B and discovered a 
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‘Lasso’ peptide structure, which consists of 18 and 20 L-amino acid residues with a linkage 

between the γ-COOH group of Glu8 and the α-NH2 group of Gly1 (Figure 11).39 They 

correspondingly isolated other similar compounds from microbes having similar internal bonding 

seen in the lariatins. These were classified into three groups; siaycin, anantin, and lariantin.39 

 

 

Figure 11. Structure of lariatins A and B.39 

 

 In 2008, a research team from Japan (Kitagawa and Tamura)40 investigated three groups 

of antibiotic producing R. erythropolis. They screened 80 strains of the genus Rhodococcus for 

antibiotic-producing ability. Eschericcoli, Pseudomonas, Streptomyces, Corynebacterium, 

Sinohizonium, Arthrobacter, and Rhodococcus were used as test strains for the first screening. 14 

R. erythropolis strains and one R. globerulus strain exhibited inhibition against the test strains. 

These 15 strains were then extensively studied using 52 test strains. As a result the Rhodococcus 

strains showed antibiotic activity against gram-positive test strains but did not exhibit same 

activity against gram-negative bacterial test strains.40 They classified these 15 strains into three 

groups;  

(i)! Group I (R01-R05) strains exhibited the antibiotic activity against gram-positive 

bacteria,  
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(ii)! Group II (R06-R08) showed antibiotic activity against Rhodococcus and gram-

positive bacteria, and  

(iii)! Group III consists of R09-R15 and exhibited antibiotic activity against R. 

erythropolis.
40

 
 

 Based on their results they concluded that the antibiotic spectrum of the 3 groups was 

different from the antibiotics which were previously reported from Rhodococcus strains.40 

 

Aurachins. Further research on three groups of R. erythropolis strains which exhibited the 

antibiotic activity. The researchers isolated an antibiotic from R. erythropolis JCM 6824 strain 

and determined the structure based on NMR and mass spectrometric analysis.41 The antibiotic 

was a quinoline called aurachin RE and exhibited strong antibiotic activity against gram-positive 

bacteria. It appeared as gray-brown and was soluble in ethanol, methanol, methyl cyanide, 

DMSO, and EtOAc and was barely soluble in water.41 Excitingly, they found that the structure of 

aurachin RE was similar to the structure of the antibiotic aurachin C shown in Figure 12. 

aurachin C was isolated from a gram-negative myxobacterium, Stigmotella aurantiaca.42 They 

both exhibited the antibiotic activity against gram-positive bacteria but aurachin RE showed 

considerably stronger activity.41 

 

 

Figure 12. The structures of aurachin RE (9’(R)-OH) and aurachin C (9’(R)-H)41,42 
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Horizontal Gene Transfer in Antibiotic Production. In January 2008, Kurosawa et al. 

isolated the antibiotic producing strain Rhodococcus 307C0 by co-culturing a strain of 

Rhodococcus fascians and a strain of Streptomyces padanus.43 R. fascians was not an antibiotic 

producer while S. padanus was a known producer of antibiotics. After co-culturing they 

recovered Rhodococcus 307C0 and found that it has a large segment of DNA derived from the 

Streptomyces strain.43 Two antibiotics named rhodostreptomycin A and B (Figure 13) were 

isolated from culture broths of Rhodococcus 307C0.43  

 

 

Figure 13. The isomers of rhodostreptomycins. The configuration of carbon attaching hydroxyl 

group in the oxazine ring is ‘R’ in A and ‘S’ in B.43
 

 

They described these two antibiotics as two isomers of a class of aminoglycosides, 

differing in structure from actinomycins (polypeptide antibiotics produced by Streptomyces), and 

showed that they had better antibiotic activities against gram-negative and gram-positive 

bacteria.43 

With the aim of detecting novel drugs for pharmaceutical applications Nachtigall et al. 

examined Actinomycete strains from terrestrial and limnetic habitats.44 Interestingly, they found a 

new strain Acta 2259 which exhibits an unusual UV-Vis spectrum and showed a prominent peak 
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from a mycelium extract at a retention time of 12.9 min in their optimized gradient elution 

method.44 During isolation and purification, four aurachins eluted in the same peak at retention 

time of 12.9 min. They determined the structures as aurachin Q, aurachin C, aurachin D, and 

aurachin R (Figure.14).  

 

 

Figure 14. The structures of aurachin Q, D, R, and C.44 

             

These compounds showed for antibiotic activity against gram-positive and gram-negative 

bacteria. Aurachin R and C exhibited moderate antimicrobial activity against Staphylococcus 

epidermidis DSM 20044, Bacillus subtillis DSM 347 and Propionilbacterium acnes DSM 1987, 

whereas aurachin Q and D were inactive up to a concentration of 100 µM.44 

The first example of the isolation of an antibiotic-producing gene from Rhodococcus was 

done using a transposon mutagenesis method by Kitagawa et al.45 They identified a new 

functional P450 monooxygenase, which catalyzes N-hydroxylation in the quinoline ring skeleton 

of the aurachin originator. Based on their results, they concluded that the unique function of 
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P450 monooxygenase might be useful for the development of new antibiotic products with 

quinoline compounds as a precursor.45 

 

Rhodococcus sp. MTM3W5.2 

In 2011, soil samples from across East Tennessee were tested for antimicrobial 

compounds. One of the samples from Morristown, Tennessee, yielded a microbe that showed 

good inhibition against Rhodococcus erythropolis and other Rhodococcus species.32 The soil 

bacterium that produces this inhibitory compound is similar to Rhodococcus jostii.32 The strain 

was given the name MTM3W5.2.32 The inhibitory compound was tested against many different 

bacteria species, but the best results were against members of the related species within the 

genus. Rhodococcus erythropolis showed a well defined inhibition zone with a size of 36-50 

mm.32 The compound of interest was initially produced at about 15 oC,32 but later was produced 

at a slightly higher temperature than previously reported (approximately 20 oC).46 Part of a gene 

required to produce this inhibitor molecule was previously discovered and found to be similar to 

a polyketide synthase gene from Streptomyces.
46 At that time, research publications clearly 

indicated that few antibiotics had been identified in the genus Rhodococcus. 
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Figure 15. The colonies of Rhodococcus sp. MTM3W5.2.32 

 

Research Objectives 

Natural products obtained from microbial sources have been a major source of antibiotics 

which are in the market today. Advances in natural product based screening and developments in 

NMR techniques for the structural elucidation process have contributed to a revival of interest in 

natural products for antibiotic discovery.47 The bacterial genus Rhodococcus has recently shown 

potential to produce new active metabolites.38-44 The aim of this research work is to exploit genus 

Rhodococcus for the discovery of novel bioactive molecules. This project describes an efficient 

extraction method and purification of an inhibitor compound from Rhodococcus using reversed-

phase high-performance liquid chromatography (RP-HPLC) as well as possible structural 

elucidation of the purified compound of interest. The proposed objectives of this project are 

outlined and described below 

 

 



 38 

1.! Identify inhibitory secondary metabolites from culture extracts produced by Rhodococcus 

sp. MTM3W5.2. 

2.! Develop an efficient solvent extraction method to give sufficient amount for the 

purification and characterization of an inhibitory compound. 

3.! Pre-fractionate crude extract using flash column chromatography or size exclusion 

chromatography. 

4.! Compare wild-type and mutant strain of MTM3W5.2 using HPLC profile  

5.! Isolate the inhibitory compound using semi-preparative RP-HPLC. 

6.! Purify the active compound by using analytical HPLC column.  

7.! Analyze the pure compound using high-resolution mass spectrometry to determine the 

elemental composition of the inhibitory compound. 

8.! Validate the inhibitory activity of the purified compound.  

9.! Characterize the compound using IR spectroscopy to detect the functional groups present 

in the structure of the compound. 

10.!Analyze the UV-Vis spectra which provides information about any conjugated 

unsaturated chromophores present in the compound.   

11.!Analyze the 1D NMR and 2D NMR spectra which can give complete information about 

the structure of the compound. 

12.!In the end, crystallize the compound to determine the structure using X-ray 

crystallography. 
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CHAPTER 2 

EXPERIMENTAL METHODS AND MATERIALS 

Reagents 

The reagents, stock solutions, and solvents used for the purification, and characterization 

procedures are discussed below. 

 

HPLC Solvents 

Two different mobile phases were used during HPLC separation and analysis; solvent A 

and solvent B. Water (HPLC-Grade) obtained from Fisher Scientific and deionized water from 

the Elga PURELAB UHQ water purification system were used as solvent A in some HPLC 

purification Methods. HPLC-grade methanol (CH3OH), HPLC-grade acetonitrile (CH3CN), and 

HPLC-grade 2-propanol from Fisher Scientific, were used as solvent B in different HPLC 

separation methods. 2-propanol (HPLC-grade) and DMSO were also used to dissolve crude 

extract of Rhodococcus sp. MTM3W5.2, and to make dilutions of the sample before it was 

injected into the HPLC system. 

 

Buffers Used in RP-HPLC  

Different types of buffers such as 10 mM ammonium formate (HCOONH4), 

0.1% potassium dihydrogen phosphate (KH2PO4), and 0.1% ammonium hydroxide (NH4OH) 

were used in HPLC purification. 10 mM ammonium formate was prepared by dissolving 0.3153 

g of ammonium formate in 5 mL of dH2O to a volume of 500 mL by using 495 mL of dH2O. The 

pH of the solution was adjusted to 3.0 using formic acid (HCOOH). 0.1% NH4OH was prepared 

by diluting 2 mL of 50% stock NH4OH with 1 L of HPLC-grade water. 0.1% KH2PO4 was 
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prepared by dissolving 0.5 g of KH2PO4 salt in 500 mL of deionized water, and was adjusted to 

pH of 3.5. 

 

Other Solvents and Reagents 

1-pentane and 1-butanol solvents were used in liquid-liquid extraction method to obtain 

antimicrobial compound from the bacterial strain. Dichloromethane (DCM) was used in column 

chromatography for the fractionation of the crude extract. Dimethyl sulfoxide (DMSO), ethanol, 

and acetonitrile from Fisher Scientific were used to dissolve the inhibitor molecule before 

analyzing by HPLC. Methanol (semiconductor grade) was also used for the HPLC purification. 

Every other chemical used was acquired from Sigma-Aldrich or Fisher Scientific.  

 

Bacterial Strains 

The bacteria used in this study was obtained from Dr. Bert C. Lampson’s research lab, 

Department of Health Sciences, East Tennessee State University. Rhodococcus sp. MTM3W5.2 

is a wild-type bacterium, that produces the inhibitory compound, was isolated from surface 

soil.32 Rhodococcus sp. RMP2.31 is a mutant strain that is no longer producing the inhibitory 

compound of interest.46 Rhodococcus erythropolis IGTS8 was used as sensitive indicator strain 

for the determination of antimicrobial activity of crude extracts from wild-type and mutant-type 

bacteria described above.  
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Types of Culture Media 

Rich Medium (RM) 

Rich medium32,46 used for the growth of MTM3W5.2, and RMP2.31 bacteria. The 

composition and the preparation procedure of the medium adopted from reference.46  

 

Mueller-Hinton Medium (MH) 

Mueller- Hinton media was used to test the sensitivity of the organism to the inhibitory 

compound. MH agar plates were prepared by dissolving 19.5 g of DifcoTM Mueller!Hinton agar 

in 500 mL of dH2O with heating.46 The dissolved medium was autoclaved for 20 min then 

transferred the MH medium in the sterile Petri dishes at 55 °C. Solidified MH agar plates were 

stored at 4 °C for further use.32 MH broth was also prepared using 11 g of BBL
TM Mueller!

Hinton broth and 500 mL of dH2O with the same process.32, 46 

 

Extraction Methods 

The production of secondary metabolites varies depending on the culture medium and the 

microorganism cultivated.14 The solvents used for the extraction were chosen based on 

increasing polarity. In order to isolate the pure compound in sufficient concentration, the 

compound has to be extracted several times using different methods. The type of extraction 

methods used in this research are described below. 
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Extraction from RM Agar Plates  

Mini Scale Extraction. Primarily, the antibacterial secondary metabolite was extracted in 

small quantities using the agar extraction method, which was adopted from Carr et al.46, 48  

R. sp. MTM3W5.2 bacterial seed culture was prepared by inoculating a single colony into a 2 

mL RM broth, then incubated in a shaking water bath for 18 hours. The seed culture was grown 

at 27 °C. To produce the compound on a small scale, five (100 mm ×15 mm) RM agar Petri 

dishes were used. The seed inoculum of the MTM3W5.2 was streaked on RM agar plates by 

using a sterile cotton swab. Then the plates were kept in an incubator at 19 °C for two weeks. 

After growth, the agar plate was sliced into small square (1 cm × 1 cm) pieces (Figure 16). The 

agar square pieces were collected in a 250 mL beaker and ethyl acetate was added to soak the 

agar pieces. The beaker was wrapped with parafilm and let stand for one day. The ethyl acetate 

extract was transferred into a 100 mL beaker and was left under fume hood to evaporate the 

organic solvent. The left over agar slices were again soaked in a small amount of ethyl acetate 

solution to remove all the active compound from the agar. Once the collective ethyl acetate 

extract was evaporated to dryness, the dried extract was dissolved in 1 mL of methanol (MeOH) 

and transferred to an Eppendorf tube and stored at 4 °C for later use. 
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Figure 16. Agar extraction method.46 An inoculum of Rhodococcus sp. MTM3W5.2 was 

streaked on RM agar plate and incubated at 19 oC for two weeks. The agar plate was then 

chopped into small pieces, and metabolites were extracted using ethyl acetate. 

 

Large Scale Extraction. For the purification analysis, a larger amount of the inhibitory 

compound was needed. A large scale up of agar extraction method48 was done. Fifteen large (150 

mm × 15 mm) RM agar Petri dishes were used. After appropriate growth at 19 oC for two weeks, 

the agar plates were chopped into small square (1 cm × 1 cm) pieces. The agar squares were 

collected in a 2 L beaker, and ethyl acetate (1 L approximately) was added to soak up the agar 

chips. The beaker was wrapped with the parafilm and left for one day. The ethyl acetate solution 

was transferred into another 1 L sterile beaker and left under a fume hood to evaporate the 

organic solvent.  
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The left over agar chips were again soaked in a minimum amount of ethyl acetate 

solution to remove all the active compound from the agar. All the ethyl acetate extract was 

combined and kept under the hood for dryness. The dried extract was dissolved in a small 

volume of MeOH. It was transferred to polystyrene tubes and centrifuged for 30 min at 8000 

RPM speed to remove any solid particles. The Methanol extract was then washed with a 6 mL 

volume of deionized water for three rounds to remove polar impurities. The leftover organic 

layer (MeOH) was then again washed with 10 mL of pentane for three times to remove any 

nonpolar impurities. The separated organic extract was dried under a fume hood. The dried 

natural product was finally dissolved in a minimum volume of MeOH (1 mL approximately) and 

stored at 4 °C. 

 

Extraction of MTM3W5.2 Metabolites from RM Broth Culture  

 Based on work by A. Ward,46 production of inhibitory compound occurs in stagnant 

broth cultures of MTM3W5.2. 1500 mL of RM broth was divided into three different 1 L flasks, 

each containing 500 mL of RM broth were inoculated with 5 mL of the MTM3W5.2 seed 

culture. The stagnant broth cultures was grown at 19 oC for two weeks. After two weeks, a 300 

mL of 1-Butanol was added to a 1500 mL of entire culture. 1-Butanol is immiscible with the 

aqueous solution. The flasks were then allowed to shake in an incubator for 1 hr. After shaking, 

the culture was transferred to centrifuge bottles then subjected to centrifugation at 6000 RPM for 

10 min. The centrifuged culture was poured into a separating funnel, the top organic layer (1-

butanol) was collected into a beaker, and both layers (organic and the aqueous) tested for activity 

to ensure the all of the compound had been extracted from the broth culture. The butanol extract 

was evaporated using a rotor evaporator at 25 °C. The result was 1.51 g of a dried compound had 
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been recovered from 1500 mL of broth culture. 

 

 

Figure 17. The extraction of the crude sample from a liquid RM broth culture. 

 

Antimicrobial Activity Test 

An antimicrobial activity was detected using the disc diffusion method.49 In this test, a 

paper disk soaked with an antimicrobial compound was placed on an agar plate where a sensitive 

indicator bacterium had been inoculated, and the plate was incubated. If the compound stopped 

the indicator bacteria from growing, then there would be areas of no progress of growth forming 

zone of inhibition.49 

 

Preparation of Seed Culture for R. erythropolis IGTS8  

R. erythropolis strain IGTS8 was used as a sensitive indicator bacterium to detect the 

inhibitory compound from culture extracts. First, well-formed isolated colonies of the same type 
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were selected from an agar plate culture of R. erythropolis IGTS8. The single colony of indicator 

strain was inoculated using a sterile loop into a 10 mL test tube which contains 2 mL of RM 

broth. The test tube was placed in a shaking water bath at 27 °C for 18 hrs. The suitable turbid 

seed culture was then used to inoculate the MH plates for the disk diffusion assay.49 

 

Inoculation of MH Agar Plate  

A sterilized cotton swab was plunged into the adjusted turbid R. erythropolis IGTS8 seed 

culture. The swab was rotated several times and pressed decisively on the inside wall of the tube 

above the liquid level to remove superfluous liquid.49 The dried surface of a Mueller-Hinton agar 

plate was inoculated by swipe the swab over the entire sterile agar surface.49 

 

Preparation of Antimicrobial Disks 

Sterilized autoclaved paper disks were prepared from whatman blotting paper GB004 

with a hole puncher, and were labeled using a pencil. Each disk was soaked with 25 microLiter 

(µL) of an antimicrobial extract or HPLC column fractions. After complete absorption of the 

compound, another 25 µL of the antimicrobial compound was soaked onto each disk. 

 

Application of Disks onto Inoculated Agar Plates 

Prepared and dried disks were placed onto the surface of the agar plate, previously 

inoculated with the indicator strain. Each disk was pushed down to ensure complete contact with 

the agar surface. After 16 to 18 hrs of incubation, each plate was examined. If the plate was 

adequately streaked, the developing zones of inhibition would be consistently spherical, and 

there was a confluent lawn of growth.49 If individual colonies appeared, the inoculum was too 
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low in concentration and the test was repeated.49 

 

Chromatographic Methods 

In the present work, several chromatographic techniques were used to separate the 

antimicrobial compound from the crude extract. 

 

Flash Column Chromatography (FCC) 

Silica gel flash chromatography is a popular method of preliminary separation in drug 

discovery.50 The prominence of flash chromatography is predominantly due to its simple packing 

procedure,51 low operating pressure,50 low cost for instrumentation.51 The main purpose of  FCC 

is for pre-workup because its high loading capacity, and its operability at low to medium 

pressures.52 The principle involved in FCC is that the mobile phase was rapidly pushed through a 

glass column with a large inner diameter under low pressure.51 The basic theory is the 

importance of partitioning between a mobile phase and a stationary phase to separate the 

compounds in a mixture. The molecules in the crude mixture had a different affinity with the 

solid phase,50 which can be caused by a charge or adsorption.50 The glass column was packed 

with the stationary phase of defined-particle size silica gel (40-63 µm).51 The common stationary 

phases are silica gel (SiO₂) (silica gel 60 or silica gel 230-400) and alumina (Al₂O₃).53 In the 

current work, silica gel was preferred because of the slight acidity in nature, so good separation 

would be expected. 

 

Procedure. A chromatography column was sealed with a piece of cotton wool on the 

bottom. A small layer of sand was added across the diameter of the column (approximately 1-2 
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cm). Silica gel 60 was loaded onto the column. Vaccum was applied through the stopcock at the 

bottom of the column. The vacuum condensed the silica gel and packed the column tightly. 

Sodium sulfate (Na2SO4) was added on top of the column as a protecting agent. The mobile 

phase, dichloromethane (DCM) was passed onto the column with a vacuum till all the silica 

adsorbent packed perfectly, and the all the solvent eluted. The column was filled with sufficient 

eluent to prevent the column drying. The flash column should not have any air bubbles54 before 

applying the crude extract on it. The dried butanol extract was mixed with silica and the solution 

was prepared with a minimum amount of DCM. This crude mixture was loaded atop of the 

column using a pipette then a protecting agent was added. Purification was carried out with a 

combination of two solvents, polar (methanol), and nonpolar (dichloromethane). Different ratios 

of volumes of DCM to methanol was used to elute the various compounds from the column 

(Table 1).  

 

Table: 1 Ratios of DCM and Methanol Used in Flash Column Chromatography. 

 

 

 

 

 

 

 

A total of 21 column fractions, each containing 100 mL of eluent, were collected. UV-

Vis absorption values were recorded for 21 fractions using Carey 8454 UV-Vis 

DCM  

(volume in mL) 

Methanol  

(volume in mL) 
DCM/MeOH 

300 0 1:0 

300 10 30:1 

300 20 15:1 

300 30 10:1 

250 50 5:1 

150 150 1:1 

0 300 0:1 
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spectrophotometer. The fractions were further tested for antimicrobial activity by the disk 

diffusion method. The active fractions were pooled, and the solvent was evaporated to dryness 

using N2 Gas. The dried mixture was dissolved in 2-propanol and stored at 4 °C for further 

purification. 

  

Size Exclusion Chromatography (SEC) 

Size exclusion or gel filtration chromatography was also performed for better separation 

of the compounds in the crude butanol extract. In this chromatography, molecules were separated 

based on their size as they passed through the stationary phase packed in a column.55 The larger 

size molecules cannot fit in the pores of the media and run faster through the stationary phase 

with the mobile phase, whereas the smaller molecules can easily settle in the pores of medium 

and take a longer time to elute out of the column. Sephadex™ LH-20 was used for the 

purification of secondary metabolites using organic solvents as mobile phases. The Sephadex is 

prepared by hydroxypropylation of Sephadex G-25 (cross-linked dextran), a bead with pores of 

different sizes.55 It has both hydrophilic and lipophilic characteristics, so it swells in aqueous 

solutions and organic solvents.56 Molecular exclusion chromatography is a simple isocratic 

elution of liquid chromatography.56 Sephadex™ provides high-resolution separation with short 

elution times, and substantial recovery.55 Since the medium is Sephadex LH-20, the method is 

termed as Sephadex LH-20 column chromatography. 
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Figure 18. Structure of Sephadex LH-20 (cross-linked hydroxypropylated dextran).56 

 

Procedure.  28.78 g of Sephadex™ LH-20 dry powder (particle size range 18 µm-111 

µm)55 was taken into a 250 mL beaker and swollen in excess methanol for 2 hrs. The beaker was 

shaken every 30 minutes to remove any air bubbles trapped in the medium. The Sephadex slurry 

was poured onto the chromatographic column through a glass rod to fill the column evenly and 

without air bubbles forming. After filling the column with the medium, the top of the column 

was connected to the solvent reservoir, which allowed it to flow through the medium with 

atmospheric pressure. Once the column was tightly packed with Sephadex resin, the outlet was 

closed. The dried 1-butanol extract was dissolved in a minimum amount of isopropanol and 

applied to a Sephadex column eluted with methanol as a mobile phase. The fractions collected 

were tested for antimicrobial activity, and UV-Vis absorption values were recorded using Carey 

8454 UV-Vis spectrophotometer. The active antimicrobial fractions were pooled and dried using 
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rotor evaporator. The dried compound was then subjected to semi-preparative HPLC followed by 

analytical HPLC purification. 

 

High-Performance Liquid Chromatography 

HPLC works at high pressure to push the mobile phases through a column containing 

stationary chemical groups linked to very different units, which results in better resolution of 

peaks of separation.57 In the current work, a Shimadzu LC-10AS HPLC instrument was used to 

purify the antimicrobial extract. It was equipped with solvent systems, a detector, a controller, a 

column, and a sample injection system.  

 

Solvent System. LC-10AS HPLC instrument was equipped with a two-solvent system: 

solvent A and solvent B. In HPLC, volatile mobile phases provides a good separation of 

compounds.58 Two pumps A and B were used to pump the mobile phase to generate a maximum 

pressure of 6000 psi (lb/in.2) or 414 bar.59 Formation of air bubbles is a major concern in liquid 

chromatographic purification; it causes a problem in the solvent delivery and forms specious 

peaks in the output by the detector.60 Mobile phase degassing is the best solution to avoid the 

formation of air bubbles inside the pump. 

 

Vacuum Degassing. Although some modern HPLC instruments are furnished with the 

degassers,59 it is necessary to purify and degas the solvents using a convenient method. In the 

present work, a vacuum method was used. Solvents were placed in a HPLC container with a stir 

bar, which was connected to a vacuum pump by the stopper. Withdrawing a vacuum using the 
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pump removes the dissolved air in solvents. Stirring the solvent aids in removing all the air 

inside the solvents. 

 

Detectors. The current purification analysis was carried out using a Shimadzu LC-10AS 

HPLC instrument equipped with UV-Vis detector (SPD-10A). UV-Vis detectors are appropriate 

for a broad range of biological analytes because most organic metabolites show strong 

absorption in the UV range. These detectors are highly selective and sensitive (10!10-10!11g 

analyte/s),59 with low background noise detection with almost all HPLC-grade solvents.61 

 

Analytical Columns Used in HPLC. The columns used in liquid chromatography vary in 

length and inner diameters. Modern columns are available with an inner diameter of 1 to 4.6 mm 

are packed with a particle size of 3 or 5 µm.59 A small volume of solvent was required because 

of a higher number of theoretical plates in the analytical columns.59 Both preparative and 

analytical columns were used in the current purification by RP-HPLC. The semi-preparative 

Hamilton polymeric reversed phase-1 column with inner diameter of 21.2 mm and a length of 

250 mm, was packed with poly (styrene-divinyl benzene) (PSDVB) co-polymer with a particle 

size of 12-20 µm and the pore size of 100 Å. The high hydrophobicity and surface area of the 

solid phase allow for semi-preparative separation of a bioactive crude extract. Analytical 

columns such as Kinetex® phenyl hexyl 100 Å with an inner diameter of 4.6 mm and a length of 

250 mm was used in a preliminary purification of an extract. Kinetex® 5µm EVO C18 100 Å 

with an inner diameter of 4.6 mm and the length of 150 mm (from Phenomenex, Torrance, CA, 

USA) was used to perform multiple rounds of HPLC purification until the extract was purified 

enough for further analysis. Guard columns from Phenomenex were used to enhance the life of 
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the column by removing dust particles and contaminants introduced by the solvents.59 The 

stationary phase for the phenyl-hexyl column was made from a phenyl hexyl hydrocarbon chain 

was linked to silica, which enables a greater separation of aromatic compounds. The stationary 

phase for the C18 column made of a long C18 chain of carbons bonded onto a silica support. 

(Figure 19) 

 

 

Figure 19. The structure of stationary phases. (A) phenylhexyl stationary phase, (B) C18 

stationary phase. 

 

Instrumentation 

 Shimadzu LC–1OAS, a product of Shimadzu Scientific Instrument Incorporated, was 

used to analyze crude inhibitory fractions. It is equipped with a SCL–1OAVP system controller, 

and a SPD–1OA UV – VIS detector. All HPLC experiments were carried out at a wavelength of 

254 nm. The temperature maintained at 25 oC. The HPLC back pressure was maintained within 

the range of 1200–3800 psi. 
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Figure 20. Schematic diagram of the Shimadzu LC–1OAS HPLC system. 

 

Normal and Reversed Phase HPLC 

There are two types of partition chromatography, based on the relative polarity, 

permittivity,62 also called the dielectric constant62 of the stationary and the mobile phases.59 

Solute molecules have distinctive interactions with the mobile phase and stationary phase. In 

normal phase chromatography, a highly polar stationary phase and non-polar solvents as a 

mobile phase are used to carry out the separation.63 The less polar compounds are eluted first. 

The higher the polar mobile phase, the shorter the elution times. In RP-HPLC, the stationary 

phase is non-polar, polar solvents serve as mobile phase, and highly polar compounds are eluted 

first.59 Molecules are eluted typically as a function of their ordinary polarizability.62 The greater 

the pressure, the longer retention times for very polarizable compounds and the smaller the 

retention times for non-polarizable compounds.62 
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Method Development 

The development of a method to achieve a better separation of molecules in liquid 

chromatography is difficult because the analyte interacts with both stationary and mobile 

phases.59 Suitable separations by HPLC need to have an appropriate equilibrium of 

intermolecular forces among the solute, the mobile phase, and the stationary phase.59 Developing 

a proper method to obtain a good separation of compounds starts by selecting an appropriate 

column. Successful separation was obtained when the polarity of stationary phase and analyte 

match but differ from the mobile phase.59 An error and trial59 approach can establish the safest 

method of separation in RP chromatography. Various trials were made with different mobile 

phases (different solvent modifiers)59 until a reasonable resolution was determined. This 

approach is time-consuming, if the proposed method failed to show a good separation, a different 

column with different composition of a mobile phase should be tried to determine a better 

method. Changing the composition of mobile phase and changing the packing material in the 

column might give better resolution of peaks in the chromatogram.64  

 

Isocratic Elution 

HPLC elution without changing the composition of the mobile phase is called an isocratic 

elution.59 This method involves only one solvent or sometimes a solvent mixture. Larger 

retention times occur especially with a wide range of polar compounds subjected to HPLC.59,65 

Some sample components might not elute from the column with isocratic flow of the solvent and 

are retained for a longer time in the column, which causes the contamination of the stationary 

phase.65 

 



 56 

Gradient Elution 

Gradient elution involves two or more mobile phases, which differ in their polarity and 

composition.59 The gradient elution method is programmed using different concentrations of  the 

two solvents. The ratio of solvent A and solvent B is varied in a programmed way, sometimes 

continuously and sometimes in a series of steps.59 The solvent gradient method is preferable to 

elute all the components of the sample from the column by increasing the concentration of 

solvent, because it decreases the time of separation significantly without losing the resolution.59 

The advantages of gradient elution include a better resolution, quicker separation, and no column 

contamination.65 The considerable drawback is longer re-equilibration time to return to initial 

conditions for the next round of purification.59 

 

Optimization of Mobile Phase 

One of the aims of this project was to develop a method that would carry out the elution 

of the active compound efficiently through HPLC. The elution method was optimized by using a 

combination of water and methanol as solvents. The reason behind choosing them was that water 

is not toxic, while HPLC-grade methanol is a good polar solvent to use and it is exclusively 

soluble in water and thought to be a better solvent for the purification procedures.57 The change 

in composition of mobile phases led to substantial changes in separation.66 

 

            HPLC Analysis of Crude Extract. Initially HPLC system was programmed using a 

different ratio of methanol to water in order to analyze the crude extract. In this elution method, 

methanol concentration was increasing from 40% to 100% from 3.20-48.4 min; from 48.4 to 

63.40 min increased to 100% methanol (Method I, Table 2). The phenyl hexyl column was 
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equilibrated for 20 min using methanol gradient 40: 60 (methanol: H2O) before injecting the 

sample. The injection volume of crude extract was 20 µL.  

 

Elution Method Used in Semi-Preparative HPLC Analysis. The mixture of active 

compounds eluted from the Sephadex LH-20 column was subjected to semi-preparative HPLC 

purification. In this elution method acetonitrile (solvent B) and 0.1% KH2PO4 (solvent A) were 

used as mobile phases. Solvent B concentration was from 30% to 100% from 3.20-63.40 min, 

100% B maintained from 63.40-78.40 min (Method II, Table 2). The column has been 

equilibrated with 30: 70 (acetonitrile/ 0.1% KH2PO4) for 20 min before injecting the sample. 

 

Gradient Methods Employed in Final HPLC Analysis. The gradient elution method had 

to be modified using different mobile phases to achieve the highest purity as possible. 

Acetonitrile (solvent B), H2O, 0.1 % NH4OH, and 10 mM ammonium formate as solvent A were 

used for the final stage purification by Kinetex® 5µm EVO C18 100 Å column. The gradient 

method used in analytical HPLC purification is graphically represented in Figure 21. The solvent 

B concentration started from 20% to 70% from 3.20 -63.40 min; was increased to 100% B from 

63.40-73.40 min; then 100% B was allowed to wash the column for 20 min from 73.40-93.40 

min (Method III, Table 2). 
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Figure 21. A graphical illustration of the solvent gradient elution method III. The composition of 

acetonitrile (Solvent B) is charted as a function of retention time (min). 

 

Table 2. Chromatographic Gradient Elution Methods Used in this Work. Methanol in method I, 

acetonitrile in method II and III was used as solvent B. RP represents reversed-phase mode. 

 

Elution 

method 
HPLC column 

HPLC 

mode 
Solvent B% 

Flow rate 

mL/min 

Method I Kinetex® phenyl-hexyl  

(250 mm × 4.6 mm, I.D, 5 µm) 

RP 3.20-48.4 min, 40-100% B 

48.4-63.4 min, 100% B 

1.0 

Method II Hamilton PRP-1    

(250 mm × 21.2 mm, I.D, 12-20 

µm) 

RP 3.20-63.4 min 30-100% B 

63.4-78.4 min 100% B 

 

5.0 

Method III Kinetex® EVO C18                              

(150 mm × 4.6 mm, I.D, 5µm) 

RP 3.20-63.40 min 20-70% B 

63.4-73.40 min 70-100% B 

73.40-93.40 min 100% B 

1.8 
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Structural Elucidation Methods 

Structural determination of natural products is a very laborious process, and typically is 

the “bottleneck” 67 in the drug discovery.67 It is easy to elucidate the structure of well-known 

natural products, but it can absolutely be thought-provoking for new compounds.67 It involves 

collecting data from plentiful spectroscopic sources such as UV-Vis spectroscopy, IR 

spectroscopy, mass spectroscopy, and NMR (1D and 2D).68, 69 

 

Ultraviolet-Visible Spectroscopy (UV-Vis) 

UV-Spectra were recorded using the Carey 8454 UV-Vis spectrophotometer from 

Agilent Technologies. 1000 µL quartz cuvettes were used with a path length of 1 cm for 

UV-Vis absorbance. The UV absorbance was monitored at a wavelength ranging from 280 to 

400 nm for all the fractions collected from flash column chromatography, and Sephadex column 

chromatography. Methanol was used as a blank to record absorbance for fractions collected. The 

final pure compound obtained from HPLC was dissolved in acetonitrile and its UV-Vis spectrum 

was recorded at 210 to 400 nm. Acetonitrile was used as a blank. 

 

Infrared Spectroscopy (IR) 

IR-spectra were recorded in KBr pellets with a spectral range of 6,000-350 cm-1 using a 

Genesis II FTIR spectrometer. 

 

Liquid Chromatography-Mass Spectroscopy (LC-MS) 

LC-MS analysis was performed on crude extracts from the wild strain MTM3W5.2 and 

mutant strain in Dr. Shawn Compagna laboratory at the University of Tennessee. The extracts 
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were separated on a Kinetex® 5 µm phenyl-hexyl 100 Å column attached to an UltiMate 3000 

autosampler and UHPLC pump, coupled to an Exactive benchtop Orbitrap mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA). The analyses were done using the gradient elution 

method with solvents A and B containing 0.1% aqueous formic acid and acetonitrile, 

respectively. The program started with 30% B which was increased to 40% B from 0-5 min. 

After 5 to 10 min it was increased to 50% B; from 10 to 15 min it increased to 60% B; from 15 

to 20 min it increased to 80% B; from 20 to 25 min increased to 100% B, which was maintained 

from 25 to 35 min, at a flow rate 1.0 mL/min. From 35 to 35.5 min 100% B was dramatically 

decreased back to 30% B, which was kept from 35.5 to 40 min, to reconstitute the column before 

the next run. The column oven temperature was maintained at 25°C, and the temperature of the 

autosampler was set to 4 °C. An electrospray ionization (ESI) probe was used to ionize the 

sample at a 3.5 kV spray voltage. The sheath gas flow was set to 50 units and the auxiliary gas 

was set to 25 units. The S-lens level was set to 50 units. The conditions were kept constant for 

positive ionization mode acquisition. External mass calibration was performed using the 

calibration standard mixture and protocol from ThermoFisher. For complete scan profiling 

experiments, the MS was run with a resolution of 140,000 and with a scan range of 80-1000 m/z, 

for all ion fragmentation (AIF) scans. The resolution was 140,000 with a scan range of 80-1000 

m/z, with a normalized collision energy (NCE) of 20 eV. Xcalibur software was used to examine 

the results. 

 

High-Resolution Mass Spectrometry (MS) 

The high-resolution mass analysis was carried out on Bruker maXis II mass spectrometer. 

The sample was ionized using electrospray ionization in positive (ESI+) mode. The sample was 
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dissolved in an acetonitrile and water mixture (50: 50) with 0.1% formic acid. 

 

Nuclear Magnetic Resonance (NMR) Spectroscopy 

1H-NMR, 13C-NMR, and 2D-NMR experiments such as Heteronuclear Single-quantum 

Correlation Spectroscopy (HSQC), Heteronuclear Multiple Bond Coherence (HMBC), 

Correlation Spectroscopy (COSY) spectrum, Rotating Frame Nuclear Overhauser Effect 

Spectroscopy (ROESY), and Total Correlated Spectroscopy (TOCSY) were performed on a 

Bruker Avance II 600 MHz NMR spectrometer (1H 600 MHz; 13C 150 MHz). It was equipped 

with a 5 mm probe using deuterated methanol (CD3OD) as a solvent. All NMR experiments were 

carried out at room temperature. Chemical shift values were measured in parts per million (δ, 

ppm). The coupling constants value (J) was described in Hz. The splitting patterns of proton 

signals were also designated as follows: singlet (s), doublet (d), a doublet of doublets (dd), a 

doublet of the doublet of doublets (ddd), triplet (t), the quartet (q), and the multiplet (m). 
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CHAPTER 3 

RESULTS AND DISCUSSION 

Development of Extraction Method 

The antimicrobial compound of interest was obtained from a culture extract of 

Rhodococcus sp. MTM3W5.2 grown on RM agar plates and extracted using ethyl acetate. 

Extraction from RM agar plates was a very tedious and time-consuming process involving the 

use of large volumes of the extraction solvent to obtain a significant amount of the compound of 

interest. Thus, a more efficient method was required to give sufficient amount of the active crude 

metabolites to enable purification and possible characterization of the antimicrobial molecule. To 

develop a better extraction method, our research team set out to determine first the polarity of the 

crude ethyl acetate sample by using HPLC. This analysis helped us to determine how polar our 

compound was, and what the best solvent for extraction would be. 20-100 µL (normal injection 

volume) of crude agar ethyl acetate extract was separated on phenyl hexyl column using 

methanol and water as the mobile phase. The resultant chromatogram displayed both the 

suspected active compound (medium polarity) as well as very polar and non-polar impurities. 

The fractions collected were tested for their antimicrobial activity, and the fractions with medium 

polar components showed activity against the sensitive indicator strain. To further increase the 

efficiency of extraction of the compound of interest as proposed previously, various kinds of 

solvents were used to extract the compound to ascertain the best extraction solvent. 

 

Effect of Solvents on Extraction of Inhibitory Compound 

           An extraction method involving the use of two solvents (water and n-pentane) was 

employed to remove very polar and non-polar impurities thus facilitating the efficient extraction 
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of the inhibitory compound of interest. The idea was to use water (polar) to remove the polar 

impurities and n-pentane (nonpolar) for the removal of non-polar impurities. Although this 

method was efficient in enhancing ease of purification, the research team still aimed for the 

development of a more effective extraction protocol to scale up the compound by employing the 

use of RM broth rather than RM agar plates.  

 

 

 

 

 

 

 

 

 

 

 

Figure 22. The 1-butanol crude inhibitory extract (B) from 1500 mL RM broth culture (A). 

 

Using RM broth proved to be more effective and easier as the HPLC chromatogram of 

the crude extract isolated from RM broth was not as complex as the peaks eluted in agar 

chromatogram. Based on the eluting profile on HPLC, the extraction from RM broth was 

preferred for scaling up the compound. An efficient extraction method was developed using 1-

butanol as a solvent. 1-butanol is not highly soluble in aqueous solution, and it forms an 

    A          B      
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immiscible layer, which helps to extract the compound more efficiently. Alcohols are the more 

commonly used solvents for efficient extraction of bioactive compounds from bacterial 

cultures.70 

 

Detection of Activity by Disk Diffusion Assay 

Disk diffusion assay was used to detect the antimicrobial compound throughout the 

purification process. Rhodococcus erythropolis IGTS8 was used as an indicator strain as  

previous research had shown that it is super sensitive to the inhibitor compound produced by 

MTM3W5.2. 32, 46 The aqueous layer that separated from RM broth culture was tested to ensure 

that all the active compound(s) was extracted into the organic solvent (1-butanol). The mutant 

extract was also tested against the indicator strain. During every pre-fractionation process, the 

fractions were subjected to disk diffusion assay along with UV-Vis spectroscopy to monitor the 

retention of activity in the fractions. After analysis of pooled bioactive fractions using HPLC, 

every fraction eluted from the column was also tested for bioactivity.  
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Figure 23. Disk diffusion assay. (A). The organic layer (disk labeled with O) and the aqueous 

layer (disk marked with A) were tested for antibacterial activity during the extraction process. 

(B). Disk diffusion assay of mutant strain RMP2.31. (C). Antibacterial activity of ethyl acetate 

crude extract against Rhodococcus erythropolis IGTS8 

 

Preliminary HPLC Analysis of Crude Extract 

The crude agar ethyl acetate extract of MTM3W5.2, and RMP2.31 were priliminarily 

analysed using RP-HPLC. 20 µL of the diluted crude extract was injected into the HPLC loop 

and eluted through a Kintex 5µm RP Phenyl-Hexyl 100Å column (250 × 4.6 mm), at a 1 mL/min 

flow rate, and UV absorption wavelength set at 254 nm. A gradient MeOH /H2O elution [mobile 

Phase: 40-100% MeOH (3.20-48.40 min) and 100% MeOH (48.40-63.40 min)] was used.  The 

fractions with the peaks of interest were collected and tested for activity against R. Erythropolis 

IGTS8.  Fractions 3 to 5 (in Figure 24 with red color) retained antibacterial activity and eluted 

with retention time of 41.90, 43.43, and 44.54 min, respectively, and were reproducibly 

observed. All five peaks, which include active peaks, in the range of 40-45 min, were not 

observed in the mutant chromatogram as shown in Figure 25. These results indicate that the 

mutant does not produce this active compound. To further confirm this assertion, fractions 

collected from the range between 40 and 45 min from the mutant extract HPLC chromatogram 

      A                                                          B                                                 C 
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were also tested for activity. As shown in Figure 26B, no zone of inhibition was observed thus 

proving that there was no active compound produced by the mutant RMP2.31.  

The major peak at 45.5 min was collected and dried using N2 gas and tested for solubility 

using different solvents like acetonitrile, DMSO, methanol, ethanol, and 2-propanol. The 

compound completely dissolved in methanol, acetonitrile, and DMSO but partially dissolved in 

ethanol and 2-propanol. 

 

 

Figure 24. HPLC chromatogram of agar extract of MTM3W5.2 in methanol. 
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Figure 25. HPLC chromatogram of agar extract of RMP 2.31 in methanol. 

 

 

 

Figure 26. Disk diffusion assays of HPLC fractions. 

(A) Among five peaks collected from MTM3W5.2, peaks 3, 4 and 5 were active. The 4th peak 

showed a large zone of inhibition (disks are placed in a clockwise direction). (B) Five peaks 

collected from the mutant strain RMP2.31 showed no activity against the indicator strain. 

 

 

 

 

   A                                                                 B 
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Comparison Between MTM3W5.2 and RMP2.31 HPLC Profile Using RM Broth Extracts 

One of the objectives of this research was to compare the HPLC profile of metabolites 

extracted from the mutant RMP2.31 with the wild type MTM3W5.2. The newly identified 

mutant strain R. sp. RMP2.31 has been reported as a non-producer of the same antimicrobial 

compound.46 The wild-type strain MTM3W5.2 is a producer of the antimicrobial compound of 

interest. To compare differences between both the mutant and wild-type extracts through HPLC, 

both strains were grown under the same conditions (in RM broth), and their secondary 

metabolites were extracted in the same fashion as well.  

 

 

Figure 27. Stacked HPLC chromatogram of mutant RMP 2.31 (red), and wild-type MTM3W5.2 

(blue) extract from RM broth cultures. The insert in the chromatogram represent the disk 

diffusion assay of fractions (1-5) collected from wild-type (left) and from mutant (right). 

 

Remarkably, the HPLC analysis of mutant extract (Figure 27) validated that the mutant 

RMP2.31 was no longer producing an active compound which is clearly seen in stacked HPLC 
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chromatograms of wild-type and mutant extracts (Figure 27). 

 

Comparison of the Wild and Mutant Strain Extract LC-MS Profile 

The LC-MS results revealed that both strains have different chromatographic and MS 

characteristics. The HPLC profile had already confirmed that the active compound was not 

generated in cultures of the mutant strain. In addition, the LC-MS spectrum of wild-type extract 

showed the active compound had a molecular ion peak at m/z of 911.546 (Figure 28). This 

molecular ion peak and some significant mass peaks were absent in the mutant broth extract 

(Figure 29). LC-MS profile also confirmed that the mutant strain is no longer producing the 

antimicrobial compound. 

  

 

Figure 28. The full mass spectrum of MTM3W5.2 crude extract. 
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Figure 29. The full mass spectrum of RMP2.31 crude extract. 

 

Primary Fractionation 

The HPLC chromatogram of the earlier analysis of the MTM3W5.2 crude extract 

indicated its polarity based on its retention times. Different chromatographic techniques such as 

silica gel and size exclusion chromatography were used to purify the inhibitory compound from a 

large scale broth culture extracts. 

 

Fractionation by Silica Gel Chromatography 

Flash column chromatography using silica gel as the stationary phase and a mixture of 

DCM/methanol (Table 1) was used for the preliminary purification of the dried crude extract. 
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Figure 30.  Flow chart of purification process by flash column chromatography. 

 

A total of 21 fractions of (FCC1 to FCC21) were eluted in series with DCM/ CH3OH [1:0 

(total 300 mL), 30:1 (310 mL), 15:1 (320 mL), 10: 1 (330 mL), 5: 1 (300 mL) 1:1 (300 mL) and 

finally 100% CH3OH (300 mL). Fractions FCC 11, 12, and 13 were active and were eluted with 

the 5:1 ratio of the solvent mixture. Active fractions were pooled and dried under nitrogen gas 
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and further purification was employed with HPLC using different gradient methods to isolate the 

pure compound. The resulting chromatogram for this dried active compound was more complex 

than expected. However, the pure compound in a sufficiently high concentration could not 

successfully be obtained. Several other methods were considered to purify the extract more 

effectively. 

 

Sephadex LH-20 Fractionation 

This size exclusion chromatographic technique gave good separation of the antibacterial 

compound from crude extracts. Thirty large fractions were eluted through the column with 

CH3OH as an eluting mobile phase. The fractions SF10 (Sephadex fraction 10), SF11, SF12,  

SF13 and SF14 had antimicrobial activity confirmed by the disk diffusion assay. Active portions 

were combined and evaporated under N2 gas.  

 

UV profile of Sephadex LH-20 Separation 

The absorbance of the fractions eluted with methanol from the Sephadex LH-20 column 

was measured at wavelengths 210-280 nm. The fraction number 10, 11, 12, 13 and 14 showed 

antimicrobial activity in a disk diffusion test (Figure 32B).  
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Figure 31.  UV spectra of individual fractions separated by Sephadex LH-20 column with 

MeOH as the mobile phase. 

 

 

 

Figure 32. Disk diffusion assay of Sephadex LH-20 fractions. (A) The broad Sephadex LH-20 

band at 254 nm which includes all five active fractions marked. (B) The disk diffusion assay of 

the fraction which showed activity against the indicator strain. 

A                                                     B 
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The broad Sephadex LH-20 peak included all the five fractions (SF10-14) showing activity 

(Figure 32B). This broad peak exhibited higher absorbance at a shorter wavelength (201 nm), 

moderate absorbance at 254 nm, and the lower absorbance at 280 nm (Figure 31). 

 

 

 

Figure 33. Flow chart of purification process by Sephadex LH-20 column chromatography. 

1-butanol crude extract

Dried under vacuum

Dried crude extract dissolved in Isopropanol

Sephadex LH-20 Column Chromatography

eluted stepwise with Methanol as eluting solvent

SF(1-9) SF10 SF11 SF12 SF13 SF14 SF(15-30)

Active fractions pooled and 
dried under nitrogen gas

HPLC using semipreparative column

SHPLC3 SHPLC4 SHPLC5 SHPLC 6SHPLC(1-2) SHPLC(7-10)

Active fractions pooled 
and dried using nitrogen gas

HPLC using Analytical column

Multiple rounds of RP HPLC 
using analytical column

Pure Inhibitor Molecule
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Semi-Preparative HPLC Purification 

The second level of purification for the pooled active fractions obtained from the 

Sephadex chromatography was done using semi-preparative HPLC. The active fractions 

(approximately 1-2 mL) separated by the Sephadex column were loaded onto a Hamilton PRP-

C18 semi-preparative column and eluted with a solvent gradient method with at 5 mL/min flow 

rate, and UV absorption wavelength set at 254 nm. A gradient acetonitrile/0.1% KH2PO4 elution 

(30-100% B from 3.20-63.40 min and 100% B from 63.40-78.40 min) was used. Four fractions, 

SHPLC3, SHPLC4, SHPLC5, and SHPLC6 eluted from the column showed antimicrobial 

activity. The active fractions were combined and dried with nitrogen gas to the next level of 

purification by analytical HPLC. 

 

Purification Using Analytical HPLC Column  

To isolate the pure bioactive compound, analytical column, and various modifiers were 

employed to finally purify the compound. The active peaks eluted from the semi-preparative C18 

column were further purified using a Kinetex® 5µm EVO C18 100 Å column. First, the active 

compound was eluted with acetonitrile (solvent B) and H2O (solvent A) used as a mobile phase, 

at 1 mL/min flow rate, and the gradient method described in Figure 21. As a result, the 

compound peak was obtained at a retention time of 48.1 min. The chromatogram is shown in 

Figure 34 and contained a broad peak, which indicated a possible mixture of compounds.  
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Figure 34. The chromatogram represents the separation by using acetonitrile and water as a 

mobile phase.  

 

 

Figure 35. The chromatogram represents the separation by using acetonitrile and 10 mM 

ammonium formate as a mobile phase. 

 

Further purification was needed to separate this mixture of compounds. A 10 mM 

ammonium formate solution was tried as solvent to separate the peaks (compounds eluted as a 

mixture) following the same HPLC conditions. The resulting chromatogram indicated that the 
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compounds were separated to a limited extent, but the peak eluted with a shoulder still indicative 

of a mixture of the compounds (Figure 35).  

Finally, a pure peak was obtained by using 0.1% NH4OH as solvent A with the same 

HPLC conditions as in the first two purification methods (the same column, flow rate, solvent B, 

and the same elution method described in Table 2) described earlier. The pure compound was 

scaled up by multiple rounds of HPLC chromatography. Typical injection volumes were 50-100 

µL. 

 

 

Figure 36. The chromatogram represents the resolution obtained by employing acetonitrile and 

0.1% NH4OH as a mobile phase. The disk diffusion assay image inside the figure indicates the 

antimicrobial activity of each peak eluted in the chromatogram (fraction 2 at RT 48.9 min is 

active). 

 

Stability of the Inhibitory Compound 

Using the pure active fraction obtained from HPLC, absorptions were measured at room 

temperature using a UV-Vis spectrophotometer immediately after elution from the column 
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(within 1 hr), after 3 days, 18 days, and 25 days respectively. UV-Vis spectra (Figure 37) showed 

that the concentration of the active compound decreased, and this was based on the calculation of 

the concentration from the absorbance readings using the Beer-Lambert Law equation. The 

results indicated that the concentration of the compound decreased to 96.3% at day 18th, and 

90.6% at day 25th. The compound was injected onto HPLC on the day 25th and the resulting 

chromatogram indicated that the compound was relatively stable with a slight possibility of 

decomposition occurring, as shown in the peak in Figure 38B.  

 

 

Figure 37. UV-Vis absorbance of the inhibitory compound: The stability of the active HPLC 

fraction was monitored by UV-Vis absorbance. Spectra recorded after 1 hr (black line), 18 days 

(red line), and 25 days (blue line). 
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Figure 38. HPLC chromatograms representing the stability of the compound. (A) The 

chromatogram obtained at day 1. (B) The chromatogram for the same compound obtained after 

25 days. 

 

Spectroscopic Characterization of the Compound 

UV-Vis Spectra Results 

The UV spectrum showed intense broad absorption with maxima at 277 nm, and 327 nm 

(Figure 39). This indicates the presence of conjugated systems in the chemical structure of the 

compound. Most type I PKS secondary metabolites, excluding polyenes, are known to have 

reasonably small conjugated systems and exhibited UV absorption bands approximately at 230-

300 nm.71 These characteristic absorption bands at similar wavelengths, indicated that the 

purified compound could be the product of a type I PKS. 
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Figure 39. UV-Visible spectrum of the pure compound. 

 

The IR Spectroscopy Result 

The IR spectrum showed a broad absorption at 3338 cm-1 that is characteristic of a 

hydroxyl group, an absorption at 3079 cm-1 associated with an alkene, and the absorption bands 

around 3000 cm-1 that indicated the -C-H stretches of alkane groups. Absorption at 1728 cm-1 

confirms the presence of a carbonyl functional group in the molecule (Appendix A).  

 

High-Resolution Mass Spectrometry 

A molecular formula of C52H78O13 was determined by high-resolution mass spectrum 

analysis of the compound. The molecular ion peak found at m/z 911.5490 [M+H] + in the mass 

spectrum was derived from the ESI-Time of Flight Mass Spectrometer (Appendix B1). The 

degree of unsaturation was estimated to be 14 by using the following formula.72 

            Degree of unsaturation (U) = C+1-[1/2(H+X-N)] = 14  
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Structure Elucidation Using NMR Spectroscopy 

In antimicrobial metabolite isolation from natural sources, the major challenge is the 

determination of its structure. After purification, the purified metabolite was shipped to Bruker 

BioSpin, Billerica MA for 1D (1H NMR, 13C NMR) and 2D (HSQC, COSY, TOCSY, and 

HMBC) extensive NMR spectral analysis. Partial structure determination of an unknown 

compound was performed using the results obtained from Bruker BioSpin. Among them, the 

HSQC spectrum provided valuable information regarding the total number of “C→H” 

correlations (single carbon directly attached to its proton(s)) in a different chemical environment. 

Structure determination of an unknown compound using homonuclear 1H-1H COSY depends on 

the ability to detect couplings between neighboring protons “H↔H.” The correlations between 

protons and neighboring carbons can be detected using the heteronuclear HMBC spectrum. 

Based on the characteristic UV-Vis absorption maxima at 277 nm, and 327 nm; strong IR 

absorptions at 3338 cm-1 (-OH), 3079 cm-1 (=CH-); large molecular weight 911.5490 Da with a 

higher number of carbon, hydrogen, and oxygen atoms from HR-MS and proton signals 

(olefinic, and aliphatic) from 1H NMR, the compound of interest would most likely be a 

polyketide. Close inspection of spectral data revealed the presence of minor peaks in NMR 

spectra, which could be related to the decomposition of the natural product during the 

purification process, as well as distinctive tautomers or conformers. Apart from minor signals, 

the structure analysis of the unknown polyketide was started with major peaks present in 

CD3OD. 

1H and 13C NMR data in combination with the HSQC analysis showed the presence of 52 

carbons attributable to seven (7) sp3 methyl (-CH3) groups among which one was an oxygenated 

sp3 methyl carbon. There are eleven carbons corresponded to sp2 methine (-CH=C), ten carbons 
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sp3 methylene (-CH2-) (eight are diastereotopic carbons), eighteen carbons are sp3 methine (eight 

oxygenated), and six carbons are quaternary carbons ( three oxygenated, two quarternary sp2 

carbons).  

13C-NMR interpretation disclosed three sets of distinct chemical shifts: i) Saturated 

methyl (-CH3), methylene (-CH2-), methine (sp3 CH), and quaternary carbons were observed in 

the range of δ 12- 58 ppm, ii) In the range of δ 60-99 ppm, signals arising from sp3 oxygenated 

carbons were detected; iii) Signals resulting from olefinic methines (-CH=C) and quaternary 

olefinic carbons were detected at δ 115-166 ppm. Table 3 shows the chemical shift NMR 

spectroscopic data for the polyketide compound (600 MHz, methanol-d4). 

A number of small “spin systems” were generated based on 1H-1H COSY correlations. 
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Table 3. NMR Spectroscopic Data for the Antimicrobial Compound (600 MHz, Methanol-d4). 

 

 

Proton # δH, mult (J in Hz) δC Carbon COSY (H↔H) HMBC(H→C) 

1 
6.752, dd (J=11.2, 16.2 

Hz) 
152.66 CH═C 5.86 (6), 5.58 (27) 

165.93 (52), 119.76 (6), 80.16, 

17.01 (41) 41.02 (27) 

2 6.358, dd (J=9.8, 14.9 Hz ) 128.68 CH═C 5.98 (5), 5.36 (10) 137.14 (50), 128.40 (5), 46.03 (32) 

3 6.058, t  132.38 CH═C 5.42 (8)  132.23 (w), 40.60 (30) 

4 6.051, d  130.41 CH═C 5.419 (9)  

5 5.998, d  128.38 CH═C 6.35 (2) 9.49 (36), 82.16 (21), 133.57 (10) 

6 5.860, d (  J=15.5 Hz ) 119.76 CH═C 6.72 (1) 165.99 (52) 41.14 (27), 17.01 (41) 

7 5.590, dd  65.60 
CH

OHHO

CH

OH

Allylic 
2.09 (33a) 165.93 (52), 61.76 (48), 43.78 (25) 

8 5.421, dd  138.28 CH═C 6.058 (3), 2.29 (30) 132.38 (3), 130.40 (4) 

9 5.420, dd  133.29 CH═C 6.051 (4) 130.40 (4) 

10 5.363, td  133.56 CH═C 6.35 (2), 2.20 (32) 128. 36 (5), 70.48 (22), 46.19 (32) 

11 5.210, dd  126.29 CH═C 2.45 (28a), 2.35 (28b)  86.41 (15)  

12 4.069, t 73.02 CH─O   

13 4.063, dd 70.13 CH─O   

14 4.010, d  75.53 CH─O 1.33 (40)  

15 3.877, d  86.45 CH─O  137.88 (51), 126.26 (11), 77.11 (17) 

16 3.776, d  80.31 CH─O 2.51 (27) 75.55 (14), 3.79 (44) 

17 3.716, t 77.12 CH─O   

18 3.692, t  60.90 CH2─O 3.58 (20a)  

19 3.588, m 77.59 CH─O  17.65 (42), 17.81 (43), 
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Table 3. (continued) 

 

 

20a,/20b 3.579, t / 3.352, m 72.15 CH2─O 2.42 (29a), 2.26 (29b) 60.99 (18), 26.65 (29a,b) 

21 3.524, d  82.13 CH─O  128.3 (5), 40.60 (30), 9.49 (36) 

22 3.412, m 70.50 CH2─O  
46.16 (32), 57.16 (24), 31.13 

(31a,b) 

23 3.335, m 57.12 CH─C   

24 3.315, m 57.14 CH─C   

25 2.928, dd  43.78 CH─C  98.64 (49), 61.76 (48), 65.65 (7) 

26 2.855, dd 43.79 CH─C  98.64 (49), 61.76 (48) 

27 2.510, d  (  J=9.9 Hz ) 41.12 CH─C 
6.75 (1), 3.77 (16), 1.12 

(41) 
119.75 (6), 80.17 (16) 

28a/28b 2.456, m / 2.372, m 36.12 CH2─C 4.063 (13)  

29a/29b 2.421, m /2.262, m 26.62 CH2─C  86.45 (15) 

30 2.298 m 40.66 CH─C   

31a/31b 2.216, m / 1.422, m 31.09 CH2─C   

32 2.208, m 46.20 CH─C 
5.36 (10), 3.41(22), 

1.41 (34b) 
70.49 (22) 

33a/33b 2.098 dd / 1.288, m 37.69 CH2─C  61.76 (48),  

34a/34b 1.794, m /1.412, m 28.30 CH2─C  61.76 (48), 98.62 (49) 

35a/35b 1.789, m / 1.684, m 17.57 CH2─C  98.62 (49) 

36 1.728, s  9.50 CH3─O  137.14 (50) 

37 1.683, dd  33.44 CH─C   

38a/38b 1.638, m / 1.380, m 26.12 CH2─C   

39 1.497, m 40.84 CH─C 3.87 (15), 3.71 (17) 77.14 (17) 

40 1.330, m 39.05 CH─C 0.8874 (44), 3.77 (16)  

41 1.119, t  17.00 ─CH3 2.51 (27) 41.17 (27), 80.27 (16), 152.68 (1) 
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Table 3. (continued) 

 

 

 

 

 

 

 

 

 

42 1.050, d  17.63 ─CH3 1.68 (37) 17.83 (43), 33.41 (37), 77.56 (19) 

43 0.954, d  17.85 ─CH3 1.68 (37) 17.80 (43), 33.41 (37), 77.55 (19) 

44 0.887, d  3.78 ─CH3 39.05 (40) 
39.13 (40), 75.49 (14), 77.36, 

80.27 (16) 

45 0.804, t  16.20 ─CH3 2.29 (30) 40.64 (30), 82.04 (21), 138.20 (8) 

46 0.450, d  12.70 ─CH3 1.49 (39), 3.88 (15) 86.45 (15), 77.14 (17), 39.09 (40) 

47 q 53.20 C

   

48 q 61.76 C
O

   

49 q 98.61 C
OO

   

50 q 137.15 C

 
  

51 q 137.88 C

 
  

52  q 165.92 O C

O  
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            In the COSY spectrum (Appendix F) of the inhibitory compound, the methine doublet of 

doublets at  δ 6.752 H(1, J=11.2, 16.2) correlates with the doublet at δ 5.86 H(6), and the doublet 

δ 2.51 H(27). The latter proton, H(27) further correlates with the triplet at δ 1.119 H(41). This 

linkage of COSY correlation indicates an H(6)-H(1)-H(27)-H (41) spin system 1 (Table 4). The 

HMBC correlations of H(1), H(6), and H(41) with C-27, the protons H(1), and H(6) with C-41 

supported this fragment structure. The proton H(6) did not show further correlation with any 

other proton. The aliphatic methine multiplet H(32) at δ 2.20 coupled with an olefinic methine 

proton H(10) at δ 133.55. The proton H(10) showed COSY correlation with a doublet of 

doublets at δ 6.358 H(2), and H(32) at δ 2.208. Further COSY correlation of H(2) with a doublet 

at δ 5.99 H(5), and H(10) give the correlation pattern H(32)-H(10)-H(2)-H(5), which suggests 

the possible spin system 2 represented in Table 4. This pattern was supported by HMBC 

correlations of H(2) with C(5, and 32) the protons H(10) with C(5, and 32), and H(5) with C-10.  

The triplet H(3) at δ 6.05 has a COSY correlation with olefinic methine at δ 5.42 H(8). 

The proton H(8) is further coupled to aliphatic methine multiplet H(30) at δ 2.29. The COSY 

cross-peaks of H(30) with doublet H(21) at  δ 3.52 and triplet methyl H(45) at δ 0.804 ppm. The 

correlation pattern, H(3)-H(8)-H(30)-H(21, 45) suggests a spin system 3 as represented in Table 

4. This fragment structure is supported by HMBC correlations of H(21, and 3) with C-30, and 

H(45) with C-(21, 30, and 8). 

            The proton doublet of doublets at H(7) δ 5.59 ppm was correlated with diastereotopic 

methylene CH2(33a,b) δ 5.59 ppm. This COSY correlation with downfield H(7) suggests an 

extra electronegative atom, and the HMBC cross-peaks of H(7) with ester carbonyl (C-52) 

suggested the fragment 4 (Table 4). Diastereotopic methylene pairs were identified from the 

HSQC spectrum. 
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A three-carbon spin system 5 was deduced from a chain of COSY correlations of a 

diastereotopic methylene protons H(35a,b δ 1.78, 1.68) with another diastereotopic protons 

H(31a,b δ 2.21, 1.42). The latter proton further coupled to methylene multiplet protons H(22) at 

δ 3.41 ppm. The link of COSY correlations suggests a CH2(35a, b)-CH2(31a, b)-CH2(22) 

connectivity outline. The diastereotopic methylene protons (35a/35b, 31a/31b), and non 

diastereotopic protons (22) were confirmed by the HSQC spectrum and HMBC correlations of 

H(22) with H(31a,b) with carbon chemical shift 31.13 ppm) that supported the connectivity.  

The COSY cross peak was detected between H(32) δ 2.20 and diastereotopic methylene 

H(34a, b). This methylene again coupled to another diastereotopic multiplet protons H(38a, b). 

The latter protons H(38a, b) correlated to multiplet H(19 δ 3.58), which was further coupled to a 

doublet of doublets H(37) at δ 1.68. H(37) that has a COSY cross-peaks with two methyl protons 

doublet H(42) at δ 1.05 and doublet H(43) δ 0.95 ppm. This network of COSY connections 

suggest an H(32)-H(34a,b)-H(38a,b)-H(19)-H(37)-H(42, 43) connectivity pattern. This pattern 

with H(19) at δ 3.588 ppm suggests the fragment structure 6, and which possibly could be 

supported by HMBC correlations of H(42) with C(19, δ 77.58), C(37, δ 33.44 ), and C(43, δ 

17.85), H(43) with C(19, δ 77.59), C(37, δ 33.44 ), and C(42, δ 17.63), and H(19) with C(43, δ 

17.85) and C(42, δ 17.63). 

            A four carbon fragment is observed from a series of COSY correlations of methyl doublet 

H(46) at δ 0.45 with sp
3
 methine multiplet H(39) δ 1.49 ppm. The latter proton is coupled to oxy 

methine doublet H(15) at δ 3.87 and another oxy methine triplet H(17) at δ 3.71. These network 

COSY correlations make spin system 7 represented in Table 4. The HMBC supported this 

structure by the correlations of H(46) with C-15, C-17, & C-39, and H(39, 15) with C-17. 
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           The COSY correlations of an oxygenated methine doublet of doublets H(14) chemical 

shift 4.01 ppm with methine multiplet H(40) at δ 1.33 ppm. This methine proton H(40) further 

showed cross-peaks with methyl doublet H(44) at δ 0.88, and oxy methine doublet H(16) at δ 

3.77 ppm. This series of COSY correlations suggest the spin system 8. This connectivity is 

supported by HMBC correlations H(44) to C-14, C-40, & C-16, H(16) to C-44, & C14, and 

H(40) to C-16, & C-44. The 
1
H spin system 9 was deduced from the doublet of doublets sp

2
 

methine proton H(11) δ 5.21 correlated with methylene pairs H(28a,b) at δ 2.45, 2.37. The 

methylene protons again coupled to sp
3
 methine doublet of doublets H(13) at δ 4.06. The HMBC 

correlations of H(15) with C-11, quaternary carbon (C-51) and the correlation of H(11) with C-

15 suggests the fragment structure 9 shown in Table 4. 

Three carbon 
1
H spin system 10 was determined from the COSY correlations from triplet 

methylene protons H(18) δ 3.69 to diastereotopic methylene protons H(20a,b). The cross-peaks 

between methylene pairs H(20a,b) and other methylene diastereotopic H(29a,b) at δ 2.42, 2.26 

ppm. HMBC correlations H(20) with C-18 and C-29 demonstrated the spin connectivity. 

Spin system 11 is suggested based on the HMBC correlations of doublets of doublet 

H(26) δ 2.85 with carbons (C-48, C-49), the correlations of H(25) δ 2.92 with carbons (C-49, C-

48, and C-7), the HMBC cross-peaks of H(7) with carbon (C-48, C-25) and additional HMBC 

correlations of methylene protons H(34a,b) with carbons (C-48, C-49). The proton cross-peaks 

of H(26) and H(25) on the HSQC spectrum indicate that they were possibly symmetric protons. 

It could be possible that they are both linked to the oxygen atom shown in structure 11. (Table 4)  
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Table 4. Different Spin Systems Were Deduced from 
1
H-

1
H COSY and Corresponding HMBC 

Correlations. 

 

                  Key fragment structures                                   HMBC correlations 

1 

 
 

 

2 

  

3 

 

 
 

4 

 
 

 

5 

 
 

 

6 
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Table. 4 (continued) 

 

                     Key fragment structures                                   HMBC correlations 

7 

 
 

8 

  

9 

28a,b
13

11
OO

51

15

     
       

28a,b
13

11
OO

5115

 

10 

 
 

 

11  

 
 

  

 

The HMBC correlation of protons H(6) with the ester carbonyl carbon C-52 at δ 165.92, 

and olefinic carbon C-1 (δ152.66) establishes an α-β unsaturated ester moiety. The chemical 

shift of H(1) is an unusually high δ 6.75 ppm, because proton H(1) is located at the β position of 

an α-β unsaturated system. H(6) has no further COSY correlations except with H(1) suggesting 

no extra neighboring protons.The HMBC correlation of H(7) and H(6) to the ester carbonyl 

carbon C(165.92) allowed fragments 1 to be connected to spin system 4. The additional HMBC 

correlations of protons attached to C-41 with C(16, δ 80.17), C(27, δ 41.17), and C(1, δ 152.68) 
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updated fragment A could be generated. The HMBC correlation of allylic methine proton H(27) 

with C-6 supported structure A. 

As stated earlier, H(5) has no additional COSY correlations but has HMBC correlations 

to C(50, δ 137.15), C(21, δ 82.13), and C(36, δ , 9.5). In addition to these correlations, the 

HMBC correlations of H(9) with C-3, and C-4 intercepts the spin systems 2 and 3 (Table 4) and 

generate fragment B as shown in Figure 40. The HMBC correlations of H(2 and 5) with 

quaternary carbon C-50 and H(21) with C-36 may support the structure of fragment B. 

The HMBC correlations of H(32) with C(22, δ 70.50) and H(22) with C(32, δ 46.20) 

allowed spin systems 5, and 6 to be connected with fragment B, so updated fragment C can be 

proposed (Figure 40). The proton H(2) showed HMBC correlation to allylic methine carbon C-

32 at δ 46.20 ppm. 

             

                          

 

Figure 40. Partial spin systems assembly based on HMBC correlations for polyketide. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

There is an essential need for new classes of antibiotics to fight against ever growing 

antibiotic resistance emerging in various pathogenic bacterial species. The increase in discovery 

of numerous gene clusters in Rhodococcus with unknown activity motivates scientists to find the 

function of those genes that may produce novel antibiotics. Recently, during the process of 

finding new antimicrobial compounds from soil bacteria, Rhodococcus sp. MTM3W5.2 was 

identified as a novel strain that produces an inhibitory compound against most related 

Rhodococcus microbes. This study focused on the development of purification methods for the 

inhibitory compound produced by Rhodococcus sp. MTM3W5.2, as well as stability studies and 

the characterization of the compound.  

A crude mixture of metabolites containing the active compound was extracted from broth 

culture by using 1-butanol and was purified using Sephadex LH-20 column chromatography 

before further purification using semi-preparative HPLC chromatography. Sephadex LH-20 

purification was employed as the best method for efficient first stage purification of the 

compound of interest from the crude extract as compared to other purification techniques also 

explored during this research. It enabled suitable fractionation of 1-butanol crude extract 

containing a mixture of different compounds. The semi-preparative HPLC method using a 

Hamilton PRP-1 column accomplished satisfactory removal of all highly polar impurities (RT ≤ 

5 min). Different solvent elution systems using acetonitrile/HCOONH4 and acetonitrile/NH4OH 

were effectively developed and applied for the final step purification of the inhibitory compound. 
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1.2 mg of pure compound was obtained by multiple rounds of analytical HPLC using reversed-

phase C18 column as a stationary phase.  

The molecular composition of the inhibitory compound (C52H78O13) was determined by 

HR-TOFMS analysis of the compound. Tests demonstrated that the active compound undergoes 

slight degradation during the purification process. In addition, using some modifiers such as 

formic acid and TFA may have facilitated this perceived decomposition. Consequently, the 

presence of slight impurities perhaps due to this decomposition in the final compound or the 

presence of distinctive isomers caused difficulties in confirming the structure of the compound 

regarding a total number of carbons and hydrogens. Apart from minor signals in the NMR 

spectra, the structure analysis of the unknown molecule was started with major signals present in 

the 1D and 2D NMR spectra. The possible fragments of the structure have been proposed based 

on the NMR spectra in CD3OD.  

 

Future Work 

Due to time limits, this research study only determined the partial chemical structure of 

the compound. For this type of research, purification should be optimized in analytical scale 

followed by scaling up the compound for further characterization. Two strategies to elucidate the 

complete structure of this compound are proposed below. 

 

1.! The compound should be extracted on a large scale and purified using the established 

method. After purification, the compound should be taken to Murdock Research Institute, 

North Carolina for determining HR-MS, 1D, and 2D NMR spectroscopy. The compound 

should not undergo any decomposition. 
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2.! The stability tests should be performed in different reagents such as trifluoroacetic acid 

(TFA), formic acid, and ammonia. Based on the stability of the compound in the presence 

of these reagents, the polyketide will undergo hydrolysis in one of them. The hydrolyzed 

extract will be subjected to bioactivity-guided column chromatography. The pure active 

fragments will be further characterized using NMR spectroscopy. Hydrolysis of the 

whole compound into small fragments will simplify the structural determination of 

individual fragments by 2D NMR and consenquently will facilitate the final 

characterization of the entire molecule. 

 

 Crystals of the compound could be grown and submitted to X-ray crystallographic 

analysis to confirm the absolute configuration of the chemical structure. Once the structure is 

elucidated, the possible genes responsible for the production of this antimicrobial compound can 

be identified. Only a few antimicrobial compounds have been reported from the genus 

Rhodococcus to date; and thus, the discovery of the entire structure of this compound and 

genome would supplement ongoing research by scientists in exploring the genus Rhodococcus 

for novel antimicrobial compounds. The type of PKS, which could be responsible for the 

biosynthesis of the molecule, can also be identified by the retrosynthetic pathway. The research 

could also propose synthetic routes for the production of this compound. The bioactivity profile 

of this compound was reported as a narrow spectrum antibiotic. A bioactivity profile against a 

huge library of bacteria could determine its antibiotic nature and specificity. 
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APPENDICES 

Appendix A: IR Spectrum of Inhibitory Compound  
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Appendix B1: MS Spectrum for The Compound  
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Appendix B2: MS Spectrum Zoomed Around Molecular Ion Peak at 911.5490 m/z 
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Appendix B3: MS/MS Spectrum for The Compound  
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Appendix C1: 
1
H NMR Spectrum for The Compound  
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Appendix C2: 
1
H NMR Spectrum for The Compound 

 

 

 

 

 

 

 

 

 

 

 

 



 110 

Appendix C3: 
1
H NMR Spectrum for The Compound 
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Appendix D1: 
13

C NMR Spectrum for The Compound  
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Appendix D2: 
13

C NMR Spectrum for The Compound  
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Appendix E: HSQC Spectrum for The Compound  
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Appendix F: COSY Spectrum for The Compound  
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Appendix G: TOCSY Spectrum for The Compound  
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Appendix H: HMBC Spectrum for The Compound  
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Appendix I: ROESY Spectrum for The Compound  
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