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ABSTRACT 

 

Study of Immobilizing Cadmium Selenide Quantum Dots in Selected Polymers for Application 

in Peroxyoxalate Chemiluminescence Flow Injection Analysis 

 

 

 

 

by 

 

Christopher S. Moore  

 

 

Two batches of CdSe QDs with different sizes were synthesized for immobilizing in 

polyisoprene (PI), polymethylmethacrylate (PMMA), and low-density polyethylene (LDPE).  

The combinations of QDs and polymer substrates were evaluated for their analytical fit-for-use 

in applicable immunoassays.  Hydrogen peroxide standards were injected into the flow injection 

analyzer (FIA) constructed to simulate enzyme-generated hydrogen peroxide reacting with bis-

(2,4,6-trichlorophenyl) oxalate. 

 

Linear correlations between hydrogen peroxide and chemiluminescent intensities yielded 

regression values greater than 0.9750 for hydrogen peroxide concentrations between    1.0 x 10
-4

 

M and 1.0 x 10
-1

 M.  The developed technique’s LOD was approximately 10 ppm.  Variability of 

the prepared QD-polymer products was as low as 3.2% throughout all preparations.  Stability of 

the preparations was tested during a 30-day period that displayed up to a four-fold increase in the 

first 10 days.  The preparations were decently robust to the FIA system demonstrating up to a 

15.20% intensity loss after twenty repetitive injections. 
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CHAPTER 1 

NANOCHEMISTRY PRINCIPLES AND APPLICATIONS 

 

Introduction 

Nanotechnology has become a household word in the recent decades.  The innovation of 

nanotechnology has been expanded across industries such as medical, electronics, and optics (1, 2).  The 

effects of nanotechnology on society, now and in the future, have been portrayed as the “Second 

Industrial Revolution” (3).  The possibilities and applications of nanotechnology continue to emerge as 

scientists and engineers explore deeper into the principles of nanochemistry. 

 Results of nanochemistry have been on display for centuries as immense red colors from gold 

nanoparticles on stained-glass art works (4).  Prior to the twentieth century, nanochemistry had not been 

proposed; therefore not understood.  Renowned physicists Erwin Schrodinger and Richard Feynman 

initiated the concept of building up to nanoparticles rather than dissecting down to them (3,5).  Advances 

in chemical instrumentation helped re-ignite nanochemistry first proposed decades before (2). 

 The basis of nanochemistry lies in the syntheses and properties of near-atomic-sized particles 

termed nanoparticles.  A nanoparticle is defined as a collection of atoms or molecules that is less than 100 

nanometers in one of its three directional dimensions (2,6).  These collections can contain up to one 

million atoms or molecules in a variety of geometries.  Such geometries can include spheres, cylindrical 

tubes, and triangular disks (2,6). 

 The shape and size of a synthesized nanoparticle affects both its physical and chemical properties 

(2,4,6).  The effect on the properties is inversely proportional to the nanoparticle size.  Learning to control 

the size and properties of nanoparticles, nanotechnology can influence human life tremendously.  Figure 1 

compares a 10 nm nanoparticle to atomic components and other nanoparticles. 
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Figure 1.  Chart of size comparison of nanoparticles and atoms 

 Social impacts of nanotechnology can be both positive and negative (3,6,7).  Research and 

application of nanotechnology in the electronic and medical industries have been two of the most studied 

fields.  Considering advances in computational processing, Gordon Moore of IBM proclaimed an 

expectation that processing power capability of electronics approximately doubles per year (3).  This 

expectation or prediction was termed Moore’s Law.  Extrapolation of Moore’s Law predicts miniaturized 

power production sources by the mid-twenty-first century (3).  Trends in this direction can be seen with 

the advent of solar cells using nanoparticles. 

 It has been seen that nanotechnology can provide enormous benefits to society.  The majority of 

society, however, remains blind to the implications of nanochemistry on the present and upcoming future 

(1).  Environmental and health concerns arise whenever new materials are produced.  Waste containing 

nanoparticles have been rigorously studied with governmental funding (8).  Quantum dot toxicity on 

human cellular uptake and environmental bacteria functions create additional areas of concern (9,10).  On 

the other hand, silver ion nanoparticles have been employed in many anti-microbial applications (8) while 

biocompatible quantum dots are being synthesized for luminescent medical imaging (7,11). 
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Synthesis of Nanoparticles and Quantum Dots 

 Nanoparticles exist in a unique size region between the everyday bulk materials and the atomic 

components that the bulk is comprised of.  To reach the size of these particles, one can follow either a 

“top-down” or “bottom-up” approach (2,5-7).  Working from bulk material, nanoparticles are synthesized 

using mechanical methods of precise milling and grinding.  Though the mechanical methods do create 

nanoparticles, control of their size and shape is hindered (2).  Some procedures require the assistance of 

surfactants to minimize the aggregation of the particles during machining (6). 

 To produce nanoparticles of desired characteristics, many work from the atomic level building 

upwards.  This “bottom-up” approach offers several techniques and advantages for to controlling the 

expected properties during synthesis of designed nanoparticles.  The synthesis of nanoparticles can be 

carried out in either a gaseous or liquid phase. 

Gaseous Synthesis 

 Nanoparticles of metals and metal oxides typically employ gaseous syntheses (2,6).  All gaseous 

syntheses follow similar routes by condensing the particles from a supersaturated atmosphere (7).  

Initiation of gaseous syntheses, however, can follow several routes based on the energy source employed.  

Once initiated through a thermal, sputtering, or laser method, the elements condensed begin nucleation 

and growth into the desired particles (2,6). 

 The most beneficial gaseous, or vapor, synthesis is the vapor deposition technique.  This 

synthesis proceeds via a decomposition of metal or semiconductor precursor (6).  Pyrolysis immediately 

vaporizes the precursor under an inert atmosphere.  Depending on defined configurations of the apparatus 

used for synthesis, condensation of the vapor releases the precursors into their zero-valent states (7).  

Soon after condensation of the elements, agglomeration occurs to begin building the nanonparticles.  

Collecting on a cool or charged surface, vapor deposition is a useful method for producing nanoparticle 
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films of high purity (2).  Disadvantages in using vapor deposition are commonly found in the cost and 

operational integrity. 

Colloidal Synthesis 

 In contrast to the gaseous synthesis, liquid syntheses are considered easier, cheaper, and more 

controllable.  Dispersive solutions are used to serve as media for self-assembly or to promote precipitation 

of the nanoparticles (6).  Molecular self-assembly synthesis provides the benefit for polymers to 

agglomerate for nanoparticle synthesis.  The colloidal synthesis, however, is more commonly employed 

among published works (12). 

  As mentioned, many reports of the synthesis of nanoparticles have been carried out in colloids 

suggesting its popularity among researchers.  This popularity implies a need to better understand how 

nanoparticles evolve from the colloidal approach.  Formation of nanoparticles typically follows a two-step 

process, nucleation and growth (12).  The nucleation step occurs first precipitating a collection of 

monomers produced from thermal decomposition and precursors and their stabilization.  Common 

monomers from precursors involve cadmium and selenium (9,13-15). 

 The nucleation of a nanoparticle is governed by the energy potential between crystalline and 

liquid states (12).  When the potential of the crystalline state falls below that of the liquid state nucleation 

is favored as the calculated Gibbs free energy potential is negative.  To induce spontaneous nucleation, 

hot-injection methods into organic solvents are commonly practiced (12-14).  Hot injection techniques 

exhibit an advantage of immediate nucleation prior to any growth of the nuclei formed.  This advantage is 

important for size-selective syntheses. 

 The second half of the nanoparticle synthesis in colloids is growth.  Complete nucleation prior to 

growth is preferred to minimize the dispersity of particle size (12).  Migration and diffusion of monomers 

to the nuclei surface are important to the nanoparticle growth.  In methods using high-concentrated 

injections of precursor monomers, diffusion becomes a negligible factor.  This is due to lack of a 
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distinguishable concentration gradient surrounding the nuclei surface.  Therefore the limiting factor lies in 

the speed of reaction between the nuclei surface and surrounding surplus of injected monomers. 

 As the nuclei growth progresses forming nanoparticles, diffusion of monomers becomes more 

prominent.  Monomer depletion increases with reaction time minimizing the availability of monomers 

within close proximity of the growing nanoparticles (12).  Continued growth relies on the concentration 

gradient formed between the nanoparticle region and bulk solution.  Diffusion from the bulk solution into 

the less concentrated nanoparticle region allows this continued growth.  The Nernst-Planck equation and 

Fick’s Law for diffusion can be applied to help study and predict growth patterns and rates (16,17).   

By permitting the colloidal solution to continue reacting in the growth stage the smaller 

nanoparticles can decompose releasing monomers under the extreme synthesis conditions.  The available 

monomers become collected by larger nanoparticles.  This process known as Ostwald ripening (12) 

provides smaller dispersities in particle sizes, but the average particle size is not commonly of small 

dimensions.  If particle size, however, holds a greater importance than size dispersity temperature 

quenching during synthesis or size extraction methods can be applied. 

Band Gap Chemistry 

 The chemistry of electron movement through solids, such as semiconductors and metals, revolves 

around the existence of the band gap (18,19).  Molecular orbitals are created from the combination of 

individual atomic orbitals.  As the valence electrons combine to form low-energy and occupied orbitals, 

opposing unoccupied orbitals of higher energy are formed.  The increasing number of molecular orbitals 

decreases the space between orbitals of the same category, occupied and unoccupied.  This creates a 

“band” of energy levels for electrons to move freely.  Bands for both occupied orbitals and unoccupied 

orbitals are produced.  Electron occupied bands are known as valence bands, and unoccupied bands are 

referred to as conduction bands.  The gap between the bands is known as the “band gap”. 
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 Band gaps can vary based on the molecule size, or number of atoms.  The gap decreases with an 

increase in the number of atoms until bulk properties are reached.  Dense and conductive metals for 

example, have little or no band gaps for electrons to transition across.  Semiconductors have moderate 

band gaps with transition energies similar to those associated with visible light (19).  Wavelengths of light 

can be expressed as energy in electron volts, eV.  Most semiconductor band gap energies exist up to 4 eV 

(20).  Their band gap energies, Eg, can be tuned by particle size (21) and surface chemistry. 

Surface Chemistry of Nanoparticles 

Nanoparticles can exhibit electrical and optical properties that are dependent upon the surface 

chemistry involved.  Respective surface chemistry involves the use of various ligands to stabilize and 

functionalize the synthesized nanoparticles of interest (6).  Stabilization of the nanoparticle can be 

performed to increase photostability, or even inhibit aggregation within dispersed solutions.  The 

functionalization of surfaces creates numerous possibilities and applications for material properties 

existing from a single nanoparticle core. 

Effect of Organic Ligands 

 Organic ligands are used in nanoparticle syntheses to stabilize or functionalize the surface.  Bulky 

organic molecules such as tri-n-octyl phosphine and oleic acid are used to coordinate and aid dissolution 

of the semiconductor elements (13,14,22).  During synthesis nanoparticles can agglomerate or group 

together, making it difficult to produce smaller particles.  Boatman et al. (13) used 1-octadecene as a 

high-temperature solvent while simultaneously taking advantage of its ability to inhibit sudden 

agglomeration. 

 Other uses of organic ligands relate to functionalizing surfaces for solvent compatibility and 

tuning optical properties.  Semiconductor quantum dots in organic solvents have exceptional luminescent 

properties.  Their application in the biological sciences, however, requires aqueous compatibility and 

biocompatibility.  Beta-cyclodextrin has been employed (23) to produce water-soluble CdSe and 
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CdSe/CdS quantum dots.  The modified quantum dots were observed to be soluble as the solution became 

an orange-red during synthesis.  The core CdSe fluorescence emission was recorded at 550 nm with a 

quantum yield of 0.65%. 

 An amphiphilic polymer to mediate aqueous compatibility was evaluated by Pellergrino et al. 

(24).  Different nanoparticles including CdSe/ZnS were synthesized in organic media with hydrophobic 

ligands attached to the surface.  The maleic anhydride polymer was reacted with the hydrophobic chains 

to form a surrounding shell with hydrophilic groups exposed.  Diameters of the nanoparticles were 

observed to more than double with the addition of the polymer shell. 

 It has been reported that organic ligands can also alter the optical properties of nanoparticles.  

Research groups have used CdSe quantum dots to examine these influences of organic ligand exchange.  

Tri-n-octylphosphine (TOP) and its oxide form (TOPO) were substituted with pyridine by Hyun-Ju et al. 

(25) to measure surface effects.  Upon ligand exchange the quantum dot solution was exposed to UV light 

for 3 days.  The effect was a red shift in emission wavelength.  Two explanations were manifested to 

determine why the shift occurred.  The first was the ability of pyridine to participate in electron transfer 

unlike that of the phosphine and phosphine oxide.  The second was the absorption of oxygen during the 3 

days of of UV exposure.  Oxygen was suspected to react with surface cadmium forming CdO. 

 Several years later, Luo et al. (26) revisited pyridine-capping of CdSe quantum dots.  Four sizes 

of CdSe capped with TOPO were synthesized.  The TOPO ligands were exchanged with pyridine.  Blue 

shifts to higher energy were observed after the ligand exchange.  The smallest quantum dots synthesized 

saw a 46.1 meV shift, while the other three sizes shifted by less than 10 meV.  A red shift was also noted 

to occur by approximately 23 meV due the change in surface electron density. 

Effect of Inorganic Ligands 

 Core quantum dots synthesized are susceptible to reactions that decrease emission intensities and 

quantum yields.  The surfaces of core quantum dots may also be imperfect with surface states that trap 
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mobile electrons.  Inorganic shells of semiconductors different than that of the core have been applied to 

passivate surfaces (27). 

 Many research groups have studied the effects of capping CdSe quantum dots with 

semiconductors of wider band gap.  The effects reported were reproducible increases in 

photoluminescence intensities and quantum efficiencies.  CdSe quantum dots were synthesized by Hao et 

al. (28) with low quantum yields via a microemulsion technique.  Attempts were made to create an outer 

shell of CdS to improve the quantum yield.  The addition of Na2S as a sulfide source to for a CdS shell on 

CdSe quantum dots failed to improve the yield.  The CdS-capped CdSe quantum dots also synthesized by 

Hao’s group demonstrated efficiencies up to 15%.  This efficiency was low compared to 20-80% yields 

by prior preparations using an epitaxial growth technique (28).  The epitaxial growth of CdS on CdSe by 

Lin et al. (29) only yielded an efficiency of 2.4% with the addition of thioacetamide as the sulfur source.  

Exposure to UV light increased the yield immensely to 60% and caused a luminescent 14 nm blue shift.   

 Semiconductors of ZnSe (30) and ZnTe (31) were used to form a shell around core CdSe 

quantum dots.  The CdSe quantum dots coated with ZnSe fluoresced near 580 nm.  The CdSe/ZnSe 

emission was a red shifted approximately 40 nm from the core emission.  The peak intensity was also 

increased approximately 10 fold.  These observations were suggestive of the CdSe surface becoming 

passivated by the ZnSe shell eliminating surface imperfections.  The electrogenerated luminescence 

spectrum was also compared to that of photoluminescence (30).  The overlapping spectra provided insight 

that luminescence stemmed from the core CdSe quantum dot when core-shell interfaces were ideal. 

A ZnTe shell on CdSe was used to study electron-hole separation.  Increasing the ZnTe shell 

thickness increased fluorescent lifetimes confirming the relocation of the vacant hole from the core to the 

shell (31).  The displacement of the hole to an energy band of the shell provided an indirect fluorescence 

upon recombination of the electron from the CdSe conduction band and hole from the ZnTe valence band. 
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 Extensions of the core-shell structures to core-shell-shell structures have improved 

photoluminescence efficiencies and stabilities (32,33).  The addition of a ZnS shell restricts the exposure 

of electrons to the surrounding environment due to a large band gap.  Efficiencies, however, can be 

diminished when ZnS and the underlying semiconductor has a mismatch in the crystalline lattice 

structures (32).  The lattice mismatch between CdSe and ZnS creates interfacial imperfections allowing 

for electron trapping or oxidation via diffusion.  By inserting a semiconductor material between the core 

and outer shell, the mismatch can be minimized or eliminated.  The mediating semiconductor material 

used must be composed of either the cationic or anionic of the core or previous shell.  Talapin et al. (32) 

used CdS and ZnSe as the mediating semiconductors between CdSe and ZnS.  Emission wavelengths 

were red-shifted by approximately 50 nm from the CdSe core emission, and effeciencies increased to near 

80%. 

 The use of ZnS also is important for dispersion in aqueous media.  CdTe/CdSe quantum dots 

have been examined for their application in biological imaging (33).  The CdTe core quantum dots, when 

coated with a monolayer of CdSe exhibited an impressive efficiency of 94%.   Upon transfer to aqueous 

solutions, the photoluminescence of CdTe/CdSe was completely quenched.  Zhang et al. (33) reported 

that the quenching in aqueous conditions could be due to electrons reaching the CdSe surface or 

extremeties.  Intriguingly the CdTe/CdSe quantum dots were prepared in chloroform.  This suggests the 

solvent conductivity aids to separate the electron-hole pair far enough apart that recombination is 

improbable.  By coating the CdTe/CdSe with ZnS to confine the electron-hole pair, dispersion in aqueous 

media restored photoluminescence efficiency to 84%. 

Effect of Oxygen 

 Oxygen makes up approximately one-fifth of our planet’s atmosphere.  This environmental factor 

makes oxidation a concern when performing inert-condition syntheses.  As nanoparticle syntheses employ 

the reduction of metals and salts, their potential to form oxides exists.  With dimensions of nanoparticles 
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less than 10 nm, the atomic affects are much stronger from oxidation.  This alters the semiconductor’s 

band gap energy as oxygen reacts as an n-type dopant. 

    Several research groups have discussed the concerns of quantum dot photodegradation by 

oxygen (23,25,32).  The best approach to combat oxidation of the quantum dot surface has been to add a 

semiconductor layer with larger band gap energy.  Though coatings with ZnS (31,32,34) drastically 

improved the stability of CdSe quantum dots; diffusion of oxygen through lattice mismatch was still 

observed (32).  This provides evidence that a better understanding of oxygen interaction with quantum dot 

surfaces is required. 

 Investigations into the role of oxygen from air (35) and solvent (36) exposures were carried out.  

CdSe quantum dots dispersed in chloroform exhibited an intensity increase.  Myung et al. (35) prepared 

the quantum dots in a colloidal solution using tri-octylphosphine oxide as a stabilizing ligand.  After 

precipitation and re-dispersion into chloroform the quantum dots were stored free of light.  Air exposure 

over time caused irreversible photoluminescence observations upon additional precipitation and 

dispersion routines.  Sparging the chloroform dispersion with oxygen increased the rate of increasing 

intensity, and provided sound evidence that oxygen was adsorbing to the quantum dot surface forming 

cadmium and selenium oxides. 

 Dissolved oxygen in coordination with solvent molecules was found to affect the optical 

properties of CdSe quantum dots (36).  The absorption of a CdSe quantum dot dispersion in toluene 

approximately tripled in absorbance when saturating with dissolved oxygen.  Removing the dissolved 

oxygen with argon returned the absorbance to near the pre-oxygenated levels.  Quantum dots dispersed in 

air-saturated solvents exposed to UV illumination were observed to undergo photooxidation.  It was 

suggestive that decomposition of the organic capping agents such as tri-octylphosphine oxide rendered 

surface sites available for oxide formation (36). 
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Quantum Dot Optical Applications 

 The optical properties expressed by quantum dots are unique to most light-emitting species.  

Synthesized quantum dots offer tunable emission colors and impressive efficiencies through size control 

and surface chemistry, respectively.  These properties have gained attention for application in display 

lighting and medical use. 

Quantum Dot Light-Emitting Diodes (QLEDs) 

 Light emitting diodes (LEDs) have been an increasing trend in the past couple of decades.  The 

recent initiative to go “green” has influenced many to evaluate ways to reduce energy consumption.  

LEDs provide comparable performance to incandescent and fluorescent lighting; however, only using a 

fraction of the energy.  Bulk semiconductor materials are used in the construction of LEDs (37).  Band 

gap properties of the semiconductors allow for light to be produced when an electrical current is applied.  

Continuing interest in LEDs has led to application research of quantum dot light emitting diodes 

(QLEDs), where LEDs can be fabricated on the nanoscale with desirable characteristics (38). 

 Colloidal CdSe quantum dots were tested for construction of QLED devices (39-41).  Surface-

attached molecules of oleic acid from synthesis were exchanged with a block copolymer (39).  Three-fold 

improvements in device efficiency were observed when compared to unmodified quantum dots.  Zorn et 

al. (39) also discovered that the stability of blue-emitting dots coated with the copolymer increased 

approximately one order of magnitude when continuously exposed to UV light. 

 QLED configurations are sandwich-like devices.  The outer layers consist of an aluminum-based 

anode and indium tin oxide (ITO) cathode (39-40), while transport layers and quantum dots reside 

between.  These electrodes transport electrons and holes, respectively.  The electrons and holes combine 

within the middle-layered quantum dots releasing luminescence.  Bae et al. (40) produced a multi-layer 

region of CdSe/ZnS dots between the electrodes.  Alternating the layers between green and red emitting 

quantum dots, electroluminescent spectra showed that all emission was from the two layers closest to the 
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anode.  The majority of emission was from the quantum dot layer adjacent to the anode.  Intensities of the 

device were stated to be 600 times brighter than others previously reported.   

Inverted device configurations were examined by Kwak et al. (41) to yield red, green, and blue 

emissions.  A zinc oxide layer was inserted between the ITO electrode and quantum dot layers.  The zinc 

layer aided electron injection and transport from the ITO electrode.  It also provided a foundation for 

deposition of succeeding quantum dot layers by spin-coating (41).  Overall device efficiencies for red, 

green, and blue emissions were 7.3%, 5.8%, and 1.7%, respectively.  Substituting hole transport layers 

with different HOMO energies; an increase in efficiency was observed when the orbital energy increased.  

The inverted configurations also exhibited improved stabilities by three orders of magnitude. 

Aside from improving emission colors in the visible spectrum, QLEDs emitting in the infrared 

spectrum region were of interest.  Monat et al. spin-casted above-average sized InAs/GaAs quantum dots 

into a QLED device (42).  Electroluminescence spectra showed two distinct peaks near 1300 nm with 

currents less than one microamp.  The intensity of luminescence saw a linear increase by 100-fold 

between 0.1 microamp and 10 microamps.  The group suggested QLEDs of this emission type be used in 

quantum cryptography (42). 

Biosensors and Probes 

 Sensitivity and selectivity of luminescent techniques make them appealing to biological detection 

schemes and applications.  Biosensors and bioprobes have been investigated for molecular–level 

detection with ease and fast response.  Sensors are created by linking fluorescent compounds, termed 

labels, to peptide chains.  The fluorescent labels are then used to detect chemical or biological reactions 

by monitoring for emitted light.  Interest in quantum dot optical and surface properties were evaluated in 

several application studies (43-48). 

 Quantum dots coupled with the luminescence event of fluorescence resonance energy transfer, 

FRET, were studied as contenders for biosensors monitoring enzyme activity (43-45).  FRET is the 
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occurance when two fluorescent species come within close proximity of each other (49).  When the 

primary fluorescing agent is excited it donates its excess energy to the nearby secondary fluorescing agent 

without light emission.  The transferred energy when absorbed is released as the acceptor’s characteristic 

wavelength of light, red-shifted from the donor’s characteristic’s emission wavelength. 

 Rhodamine was used as a FRET acceptor from CdSe/ZnS quantum dot donors by Shi et al. (43).  

Peptide chains modified with the rhodamine were linked to the surface of the quantum dot using cysteine.  

The intensity of the modified quantum dots decreased by four-fold following peptide addition.  An 

optimal ratio for rhodamine molecules per quantum dot was determined as 48:1 that yielded acceptable 

FRET efficiency for probe application.  Cleavage of the peptide chains by trypsin simultaneously 

decreased the rhodamine emission and increased the quantum dot emission.  Fifteen minute reaction times 

provided 1 ppm detection limits.  Extending the reaction time to 2 hours improved detection by one order 

of magnitude. 

 More quantum dot-peptide configurations were examined for early cancerous, disease detection 

(44-45) to replace radioactive biomarkers.  Phosphorylation by protein-kinase activity was monitored by 

the increase of the FRET-acceptor intensity, AlexaFluor 647 (44).  Water-soluble CdSe/ZnS quantum 

dots were synthesized to emit near 600 nm.  Using quantum dots with tunable emission presented the 

ability to keep observed emission separate from cellular fluorescence.  Tyrosine activity was dependent 

on adenosine triphosphate concentration.  Tested kinases Src and AbI allowed up to 75% efficiency in 

FRET and sub-nanomolar detection comparable to previously reported sensor capabilities (44). 

 Lowe et al. (45) exploited enzyme-binding specificity with pre-modified, purchased quantum 

dots.  Two different emitting quantum dots, 525 nm and 655 nm, were linked to different peptide chains.  

The 525-nm emissive quantum dots were linked to peptides with gold nanoparticles.  The peptide chains 

of the 655-nm emissive quantum dots were available for phosphorylation to attract FRET acceptors. 
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Both peptide-configured quantum dots were combined in the same solution to detect a kinase 

activator, uPA, and kinase receptor, Her2.  Early breast cancer detection has relied on monitoring Her2 

onset levels (45).  The neat solution prior to enzyme addition displayed emission at 520 nm for the FRET 

with the gold nanoparticle, and 655 nm for the unphosphorylated quantum dot-peptide configuration.  

Addition of uPA cleaved the gold nanoparticle peptide diminishing the FRET intensity and increasing the 

525-nm quantum dot intensity.  Simultaneously, Her2 addition catalyzed the phosphorylation of the 655-

nm quantum dot-peptide configuration by phosphate removal from adenosine triphosphate, causing 

intensity growth at 695 nm.  Detection of each enzyme by activity was not affected by the other in the 

same assay.  Limits of detection were found to be 50 ng/mL for uPA and 7.5 nM for Her2 (45).  These 

limits were improved to 25% and 50% of previously stated values, respectively. 

 Portable and on-demand devices were conceptualized using quantum dot biosensors (46,47).  

Detection of pesticide, 2, 4-dichlorophenoxyacetic acid, was of particular interest by Long et al. (46) for 

its role in human toxicity.  A microfluidic device less than 0.02 m
3
 was constructed to excite volumes of 

35 L and measure the FRET emission.  The emission intensity was shown to be inversely proportional to 

the pesticide’s concentration.  A dynamic range was produced between 10 and 1000 nM that exhibited a 

linear regression of 0.9829.   The technique was found to be completely recoverable within experimental 

error, and be sensitive down to 0.5 nM.  Additionally, the device flushing and sample analysis times 

combined only required a total of six minutes.  The device described by Long et al. (46) provided a rapid 

and simple task for determining a toxin at trace levels. 

 Fluorescent CdSe/ZnS quantum dots were applied to immunochromatographic strip assays by 

Zou et al. (47) for environmental testing of pesticides.  Immunochromatographic strips allow for 

separation of important analytes from the matrix or environment they reside.  Trichloropyridinol was 

selected as the analyte for evaluating the on-demand testing device.  Competitive binding activity 

between free TCP and TCP-quantum dot conjugates provided the mode of analyte detection.  As free TCP 

competition increased against the TCP-quantum dot conjugates binding, less bounded conjugates resulted 
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in a fluorescent intensity decrease.  The integrity of the on-demand device was comparable to existing 

capabilities (47).  A detection limit of 1 ng/mL was determined with exceptional linearity, R
2
 = 0.9935, 

up to 50 ng/mL.  Recovery of the analyte was 102% with variability less than 13%. 

 Quantum dots as fluorescent bioprobes have not only been investigated for trace molecular 

detection, but also for medical imaging purposes.  Bioconjugated quantum dots were illuminated to 

induce “blueing” (48) of the dots’ fluorescence emission.  Photooxidation was stated as the culprit to the 

emission shifting to higher-energy wavelengths as oxygen diffused beneath the ZnS shell of the quantum 

dots.  As previously mentioned (32) the mismatch between CdSe and ZnS geometries compromised 

photostability.  The quantum dot application to nanoscopy reported by Hoyer et al. (48) produced cellular 

images of microtubular structure patterns.  Brilliant emission intensities of the quantum dots yielded 

resolution on the nanoscale comparable to the size of a quantum dot. 

Quantum Dot Immobilization 

 The optical properties of quantum dots make them intriguing to many optical and electronic 

applications discussed in previous sections.  Application of the quantum dots, however, is inhibited by 

their dynamic and mobile environments.  To overcome this inhibition, methods to bond or immobilize the 

quantum dots have introduced a sector of research related to quantum dot chemistry.  Common substrates 

used to immobilize quantum dots have been polymers (50-52), gels (53,54), and silica (55,56). 

 Immobilizing quantum dots with trans-polyisoprene was evaluated for producing biocompatible 

biosensors (50).  Inorganic CdSe quantum dots alone pose a toxic effect to biological entities.  Preparation 

of biocompatible quantum dots have typically diminished the above-average quantum efficiency (50) 

demonstrated by the core quantum dots in non-aqueous media.  Yin et al. immobilized CdSe/ZnS in 

polyisoprene via emulsification in a surfactant.  The encapsulated quantum dots were prepared through 

polymer and quantum dot dissolution in a compatible solvent followed by transfer to the surfactant.  The 

surfactant acted as an inhibitor against agglomeration of the polymer-coated CdSe dots. 
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 The encapsulated CdSe/ZnS quantum dots proved to be resistant to defective surface chemistry 

for several weeks yet, the emission color and intensity changed.  Photooxidation of the quantum dots was 

stated (50) as the reason for the change of emission.  Yin’s group also reported that the quantum dots 

were not completely shielded from external factors such as oxygen.  A second round of polyisoprene-

quantum dot composites was prepared with emphasis on cross-linking of the polymer.  Results proved an 

oxygen-resistant barrier had been constructed as the emission color did not change.  The stability of the 

cross-linked composites far extended those non-cross-linked lasting for at least eight months (50). 

 Application of the polyisoprene-quantum dot composites was tested for biosensing.  The 

composites were modified with streptavidin.  The streptavidin when in proximity to biotin would cause 

the CdSe/ZnS quantum dots to fluoresce.  Biotin was attached to polystyrene particles for use in 

controlled experiments with the streptavidin-modified composites (50).  Microscopy images were taken to 

observe streptavidin-biotin interactions.  It was observed that the quantum dots emitted light on the 

circumference of the polystyrene particles.  Streptavidin-free composites did not fluoresce when reacting 

with the biotin on polystyrene.  This guaranteed that quantum dot emission was only initiated by 

streptavidin-biotion reactions. 

 Another polymer of interest for immobilizing quantum dots has been polystyrene (51,52).  

Polystyrene surfaces were modified with sulfur-linkage groups known as thiol groups (51).  The thiols 

were supplied through addition of polythiourethane.  Other sources of thiols were substituted with results 

showing larger molecular weight thiols ineffective for modification to immobilize quantum dots.  The 

group tested polyurethane without thiols, and saw no retention (51).  This proved retention relied on the 

sulfur linkage provided with thiol groups.  To improve the effectiveness of retention, free-radical 

polymerization to cross-link the polystyrene was tested.  Intriguingly, the emission of the quantum dots 

was quenched.  The loss of emission was mentioned that the free-radical polymerization created an 

environment friendly to agglomeration of the quantum dots forming bulk materials (51).  Yin et al. (50) 

observed an opposing effect; however, their quantum dots were encapsulated rather than adsorbed. 
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 Microgel formation of polystyrene was evaluated for immobilizing CdSe quantum dots (52).  

Solvent optimization was the key factor studied.  It was observed that a co-solvent system provided 

immobilization of the quantum dots into the pores of the polystyrene particles as they swelled.  A mixture 

of 60% chloroform and 40% propanol by volume provided the optimum immobilization (52).  At this 

solvent ratio it was observed that the quantum dots could be immobilized in approximately 40% of the 

polystyrene particles. 

 Additional examination with gels for immobilization of quantum dots has been performed.  

Peptides forming organogels were used to retain CdSeS core-mixed shell quantum dots (53).  The gel was 

formed via self-assembly of monomers of the peptide, diphenylalanine.  Emission of the quantum dots 

was unaltered after immobilization.  A disadvantage of the immobilized quantum dots for application falls 

on the gel substrate.  Fluorescence of the gel was observed when excitation light was below 400 nm (53).  

Advantageously, quantum dots can be excited above 400 nm without drastic decrease in emission 

intensity or efficiency. 

 Polyethylene glycol gels immobilized CdSe and CdTe for application to drug delivery monitoring 

(54).  Similar to polyisoprene (50) polyethylene glycol is a biocompatible material.  The two quantum 

dots chosen were selected for observing the differences in particle size.  Cross-linking of the glycol gel 

did not retain the CdSe dots when submerged in chloroform solvent.  The CdTe dots were well 

immobilized, thus quantum dot size was isolated as the reason for unacceptable retention of the CdSe 

dots.  The research group increased the diameter of the CdSe dots, and the retention was improved (54).  

When testing the glycol-CdSe gels in aqueous solvents the immobilization was also acceptable.  Solvent 

interaction between the hydrophobic quantum dots and water was found to keep the CdSe dots in the gel. 

 Silica has also been another means of immobilizing quantum dots for their optical properties.  

Tetraethyl orthosilicate, TEOS, created a silica coating on gold nanoparticles (55).  The silica coating 

required ethanol:water:propanol mixture of 9.8:0.2:90.0 volume percentages.  Thickness of the silica was 
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approximately 60 nm on average with a stability of at least one year.  A red-shift in the original quantum 

dot emission was observed though, and expected to be an effect of ligand interaction with the core 

quantum dot surface. 

 Jeong et al. used silica films to immobilize CdSe quantum dots (56).  The silica films with 

quantum dots were prepared using a spin-casting technique.  As a glass substrate was spun at a high 

speed, the silica and quantum dot precursors were dispensed on the glass.  The resulting film was baked in 

an oven, where both quantum dot growth and film strengthening occurred.  Jeong and colleagues were 

able to obtain different emitting films by increasing the bake time, or quantum dot growth time.  The 

quantum dots on the films expressed quantum efficiencies up to 35% (56).  Loading, or saturation, of the 

film with quantum dots reached a maximum of 13% not previously reported (56).  Dissolution of the 

CdSe dots in melted glass was considered as an alternate approach, but glass requires extremely hot 

temperatures to melt.  The alternate would probably quench the fluorescence through agglomeration of 

the quantum dots to form bulk material.  With the ease of processing and “tuning” the silica films of 

quantum dots on glass, application to optoelectronics is very promising. 
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CHAPTER 2 

LUMINESCENCE AND FLOW INJECTION ANALYSIS 

 

Introduction  

 Luminescence is a unique portion of chemistry involving electronic transitions.  The ability of a 

species to absorb and emit energy in the form of light has attracted many researchers.  Explorations and 

discoveries in luminescence have provided numerous analytical applications.  Several types of 

luminescence including fluorescence and chemiluminescence have opened the door for sensitive and 

selective detections.  Analytical applications have matured in the recent decades from reagent streams 

using luminol to using immobilized fluorophores. 

History of Luminescence 

Luminescence is a phenomenon that has been observed for many centuries, dating all the way 

back to the ending centuries of the B.C. era (57).  The term “luminescence” refers to any molecule or 

species that is emitting light as a “cold light,” which is not the same as light produced by incandescence.  

The luminescence stems from an initial excitation that can be from a variety of energy sources.  Some of 

the initial observations of luminescence were made by famous Greek and Chinese philosophers.  The 

historical observations were of many common luminescent occurrences still seen by many today, such as 

firefly and marine life (58). 

 Over time luminescence was seen more as a supernatural effect rather than an effect that could be 

explained by scientific investigations.  As the sixteenth and seventeenth centuries arose, so did the 

attempts of divulging these “cold light” observations noted over the previous two millennia.  From the 

accounts of Francis Bacon, Kircher, Gesner, and many more; luminescence began to be investigated 

deeper to understand why it occurs.  These investigations were accounted for in several known works of 

literature, including the first book written on luminescence by Conrad Gesner (57). 
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 Eventually, these independent researchers began to congregate and discuss their observations.  

These meetings of similar interests led to the formation of scientific societies.  One of those societies was 

the Academy of Experiments, or also known as “Academia del Cimento”.  It was formed in 1657 and 

existed into the mid-twentieth century.  A parallel society, residing in France, was responsible for 

publishing the first article on luminescence.  It was published in the “Journal des Scavans” in April 1666, 

discussing luminous worms found in oysters (57). 

 As the twentieth century approached, many more discoveries and principles of luminescence 

evolved.  Sir George Stokes in 1852 had a realization about fluorescence through a simple experiment.  

The experiment used a setup of prisms, where the emission of quinine sulfate increased as the solution 

was illuminated with an “invisible light”, later referred to as ultraviolet light (58).  Sir Stokes noted that 

excitation frequency was greater than the emission frequency, thus the excitation wavelength is less than 

that of the emission (ex < em).  This separation between the excitation and emission wavelengths would 

later be termed as “Stokes Shift” in his honor.  It would also help in the introduction of the concept of 

fluorescence (58). 

 Sir George Stokes continued his research to observe that the intensity of luminescence is related 

to the concentration of the luminescent species under study.  He noted that as the concentration of the of 

the luminescent compound increased, or if it was in the presence of known foreign materials, the intensity 

would reach a maximum or diminish, respectively.  Sir George Stokes also contributed to luminescence 

by proposing to apply the fluorescence technique for analytical demands (58). 

 A few years after Stokes’s experimental discoveries, another major discovery in luminescence 

was made by Edmond Becquerel.  His research introduced the technique of phosphorescence.  He tested 

several known phosphors by varying the temperature, and recording the lifetimes of those phosphors.  

These experiments led to his development of the first phosphoroscope in 1858.  The instrument was 

capable of measuring lifetimes down to a tenth of a millisecond (58). 
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 Into the twentieth century, some of the largest contributions from luminescence to analytical 

chemistry were made.  The application of luminescence to analytical chemistry provided an extra benefit 

for quantitative and qualitative measurements alike.  Photoluminescence observations became better 

understood after the introduction of the Jablonski diagram in 1935, illustrating the electronic transitions 

needed for absorption, emission, and other electronic pathways (59).  Closer to the mid-1900s the 

adaptation of the photomultiplier tube to existing luminescent-detecting instrumentation yielded higher 

sensitivities.  Now trace amounts of luminescent compounds could be detected with ease. 

 In the recent centuries, luminescent discoveries were laying the ground work for the basic 

concepts familiar today.  Luminescence had been divided into different classifications based on the source 

of excitation employed for observance of emission.  A few of the classifications were labeled as 

photoluminescence, chemiluminescence, and triboluminescence.  Within the first two classifications just 

mentioned, lie the more commonly known and practiced techniques of fluorescence, phosphorescence, 

chemiluminescence, and bioluminescence (58,59). 

Photoluminescence 

 When discussing luminescent techniques, photoluminescence is the most common among the 

several types that exist (59-62).  Photoluminescence is comprised of fluorescent and phosphorescent 

emission pathways that are initiated by the luminescent molecule’s excitation with an external light 

source.  The process of a given molecule to undergo excitation, and follow immediately with either a 

radiative or non-radiative relaxation back to the ground state is best detailed by the Jablonski diagram 

shown below in Figure 2. 
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Figure 2.  Jablonski Diagram Illustrating the Excitation and Emission Processes of Luminescence 

 

Photoluminescence Excitation Process 

The more desired, radiative and luminescent pathways begin in the ground singlet state of S00.  

The excitation process to an excited singlet state, S1n or S2n, occurs quite rapidly with a lifetime of 10
-15

 

second.  Following excitation several possible pathways can relieve the excited molecule back to the 

ground state S0n.  These pathways are as follows in order of favorability and shortest lifetimes:  

vibrational relaxation, internal conversion, fluorescence, intersystem crossing, quenching, and 

phosphorescence.  In order to create the analytically desired pathways that end in fluorescence or 

phosphorescence; the electronic structure along with molecular and environmental factors must be 

considered and controlled if required. 

 To understand why luminescence occurs, a luminescent molecule’s electronic structure needs to 

be studied.  There are five kinds of orbitals that the electrons in the structure can reside in:  sigma (), pi 

(), and non-bonding (n).  The  and  orbitals also have corresponding anti-bonding states, * and *.  
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A general diagram is portrayed below in Figure 3 with a reference to the energy of each level in respect to 

the others. 

 

Figure 3.  Depiction of the general orbital diagram and electronic transitions between the states 

 In the bonding of atoms to create molecules, electrons are used as the bonding source.  

Considering the luminescent molecule as an aromatic hydrocarbon for example, -bonds are the most 

stable.  These bonds make the backbone of the molecule acting as single bonds between atoms.  The next 

stable bonding possible is the -bond that is formed from electrons in overlapping -orbitals.  These are 

seen as double bonds, and when evenly alternated among  bonds participate in conjugation.  Lastly, any 

valence electrons not involved in bonding are termed as non-bonding and reside at the highest energy 

level of the ground states. 

 Among the possible transitions upon excitation, the n  * and   * transitions are the ones 

that lead to luminescence.  The   * transition can occur with sufficient energy; however, 

luminescence is not probable because of the bond dissociation following that leads to a molecular 

breakdown and non-radiative relaxation.  This breakdown of a molecule post excitation is better known as 

photodecomposition (59).  Because of the increase in probability of photodecomposition occurring with 



36 

 

high excitation energies, analytical practice in measuring photoluminescence prefers to use the lowest 

allowed excitation energy, or wavelength. 

Photoluminescence Emission Process 

Once the molecule arrives in an upper singlet state upon excitation, the excited molecule can 

undergo one of the six listed processes on its journey to quantifiable light emission.  The fastest process to 

occur will be vibrational relaxation at a time range just short of excitation, 10
-14

 to 10
-12

 seconds.  This 

will allow the molecule to relax from S2n to S20 before the next process becomes competitive as seen in 

Figure 2.   

 With the molecule reaching the S20 state, it can either fall back to the ground state, S0n, or skip 

over to a S1n state that is of similar energy to the S20 state.  This “skip” is termed internal conversion, 

and allows the excited molecule to continue relaxing through vibrations down to the S10 state.  Here, 

fluorescence is now more competitive given that favoring conditions are set for the system.  If 

fluorescence occurs, a rapid light emission takes place with nanosecond to microsecond lifetimes. 

 Fluorescence is commonly seen at wavelengths of lower energy than that of the excitation 

wavelength.  This is due to the loss of energy through all of the processes discussed above before the 

molecule can fluoresce.  The displacement of the emission wavelength from the excitation wavelength is 

also known as the Stokes Shift, and was discovered as mentioned earlier. 

 If molecular or environmental conditions are not favorable for fluorescence, the three remaining 

processes or electronic transitions can be experienced (59).  If the excited molecule reaches the S10 state, 

but fluorescence is not favored, the molecule can undergo quenching or intersystem crossing (ISC).  

Quenching occurs when the molecule or environment contains species that absorb the extra energy 

sustained by the excited molecule, allowing it to relax back to S0n without luminescence.  The same 

species that can absorb the extra energy of the excited molecule can also aid in ISC of the molecule.  By 
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ISC an electron in the molecule will change its spin-state and thus the multiplicity from singlet to triplet 

as seen by using Equation 1, where S represents the total spin value of paired electrons (59).  This process 

is considered as “spin-forbidden”, however, can occur with the correct conditions.  Because ISC has slow 

lifetimes compared to fluorescence, the conditions required are typically low temperatures and 

substituents or solvents promoting spin-state change. 

2S + 1 = multiplicity      Equation 1 

 As the molecule surpasses ISC, it is now able to participate in phosphorescence.  The emission of 

phosphorescence requires low temperatures as well in order to reduce other transitions that are more 

favorable because of their much shorter lifetimes than 10
-3

 to 10 seconds.  With the long lifetime of 

phosphorescence, it is commonly observed as an afterglow upon removal of the excitation source. 

Structural Effects on Photoluminescence 

 For fluorescence or phosphorescence to occur, there must be sufficient energy absorbed and a 

favorable pathway for it to end in light emission.  This relates to the definition of quantum efficiency, .  

The efficiencies, f for fluorescence and p for phosphorescence, are based on the rates of internal 

conversion (kIC), intersystem crossing (kISC), fluorescence (kf), phosphorescence (kp), quenching (kq), and 

the amount of quencher (Q) if present (59, 62).  A change in one of these rates or quencher concentration 

can have a major impact on the respective quantum efficiency.  This can be seen in Equations 2 and 3. 

 f = kf / (kf + kIC + kISC + kq[Q])      Equation 2 

 p = ISCkp / (kp + kIC + kISC + kq[Q])     Equation 3 

 By applying the equations above, the efficiencies can be increased easily be diminishing or 

eliminating the non-radiative rates.  The same can be done with the quencher concentration; however, the 

rates can also be increased easily through changes in the molecular and environmental conditions (59, 

60).  These changes can include structure shape, geometry, and substitution or addition of substituents for 
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the molecular factors.  Because most measurements for photoluminescence, with the exception of 

phosphorescence, are taken in dynamic media, environmental changes cover solvent polarity, pH, 

temperature, and quenching (60). 

 Looking on the molecular level, the ability to lower rotational and vibrational movement is an 

important factor in increasing the quantum efficiency.  This can be achieved with a molecule whose 

structure is planar and linear.  If the molecule cannot twist or bend within itself energy will not be lost, 

and the lowest singlet, S1, or triplet, T1, state has a better probability of population increasing the 

efficiency.  The planar and linear arrangement also leads to better delocalization of -electrons when a 

molecule is conjugated. 

 The second factor lies in what is attached to the molecule.  When the substituent attached is a 

functional group, it can affect the parent molecule’s efficiency positively or negatively.  To better 

understand how these contribute, the electronic structure must be considered.  If the functional group is 

known as electron-donating, it can have a lone-pair or non-bonding electrons that will be promoted to the 

* orbital under excitation.  These electronic transitions, n  *, are typically weak (60).  The 

participating non-bonding electrons can also lead to ISC, which decreases f and increases p. 

 Following with the traits of electron-donating functional groups, halide substituents can have 

major impacts on the f.  The impact is primarily negative and more impressive as the atomic number of 

the halide increases (59, 60).  With this said the effective strength of halides on decreasing f generally 

follow this order:  I
-
 > Br

-
 > Cl

-
 > F

-
.  The iodide ion has the greatest effect due to its size.  The ion size 

causes bond dissociation, which creates a pathway back to the ground state from an excited state 

sufficiently decreasing f. 

 On the other hand, if the substituent exhibits electron-withdrawing properties, the f can be 

increased.  The positive effect on fluorescent measurements is due to the lowering of energy related to the 

  * transition.  A general portrayal of this shifting in orbital energies is seen in Figure 4. 
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Figure 4.  Effect of electron-withdrawing substituent on orbital energies of a fluorophore 

Environmental Effects on Photoluminescence 

Switching gears to discuss environmental factors, the same can be mentioned about controlling 

the dynamics of the system as was on the molecular level.  The first and probably most important 

environmental factor is solvent polarity.  The polarity, or dipole, of the solvent differs between the ground 

and excited states and is explained by the Frank-Condon Principle (63).  As the principle states, upon 

absorption of energy the surrounding solvent molecules do not have time to re-orientate in respect to the 

new dipole experienced in the excited state.  After arrival in the excited state, the solvent molecules now 

have time to adjust to the new dipole and do so by releasing some energy.  As the molecule proceeds 

through the motions and reaches the S10 state, emission occurs.  Though the molecule and corresponding 

solvent cage has returned to the ground state, the current orientation of the solvent molecules does not 

agree with the dipole experienced in the ground state.  For this reason the solvent cage must adjust once 

again lowering the remaining excessive energy held by the molecule bringing it back to the original 

ground state.  This is well depicted in Figure 5. 
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Figure 5.  Depiction of how solvent molecules alter fluorescence of molecules per the Frank-Condon 

Principle 

 Solvents can also impact the efficiency of photoluminescence through pH and quenching.  The 

effects of pH are observed in three regions; acidic, basic, and neutral.  Emission wavelengths and 

intensities can be altered by changes in the pH (62).  Electronic ground and excited states express 

differences in acidity and basicity.  Most carbonyl functional groups such as ketones and carboxylic acids 

increase in basicity in the excited state (59).  Increased electronic density surrounding the oxygen of the 

carbonyl can explain the increased basicity.  On the other hand, alcohols and amines display increased 

acidity in the excited state.  Again, an increase in electron density on the oxygen is the suspected culprit, 

stretching the O-H bond because of the dipole. 

 Photoluminescence emission intensities are affected negatively when heavy-atom solvents are 

employed.  These drops in intensities are considered a quenching effect.  In this case the heavy-atom is 

usually a high molecular weight halide such as chlorine, bromine, or iodine.  These atoms in the vicinity 

of a fluorescent molecule allow for spin-forbidden, or intersystem crossing transitions to proceed.  This 

quenches the fluorescence of the molecule by promoting phosphorescence through population of the 

lowest triplet excited state. 
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 Solvent viscosity and temperature effects can be discussed together.  Both factors affect 

photoluminescence through increased molecular collisions.  A decrease in solvent viscosity leads to an 

increase in molecular movement.  A rise in molecular collisions favors excited state relaxation through 

non-radiative pathways resulting minimal or no luminescence.  An increase in viscosity enhances 

photoluminescence intensities by diminishing vibrational relaxation and internal conversion rates making 

fluorescence rates more competitive by using the previous, Equation 3.  In some instances the solvent 

viscosity can be increased to a point, where intersystem crossing and phosphorescence becomes 

competitive with fluorescence (62). 

 Temperature affects photoluminescence intensities in an inverse fashion with regards to viscosity.  

As temperature is increased, so do molecular collisions increasing the favorability of vibrational 

relaxation and internal conversion.  Sample chilling is commonly practiced to enhance the intensity by 

reducing the number of molecular collisions.  Phosphorescence analyses typically require temperatures 

below freezing with solvents of high viscosity (59). 

Chemiluminescence 

Chemiluminescence is the oldest form of luminescence observed (57,58).  It is another light-

emitting phenomenon similar to fluorescence.  Chemiluminescence, however, has a different source of 

excitation energy.  Fluorescence requires an excitation source external to the system under study, such as 

a xenon-arc lamp (64).  The energy for excitation in chemiluminescence is provided from within the 

system by a specific chemical reaction.  Chemical reactions producing between 40 and 70 kilocalories per 

mole (58) are sufficient for observing a spectrum of emission colors from blue to red.  Energies greater 

than the range just mentioned may lead to molecular decomposition through bond dissociation. 

 The efficiency of chemiluminescence tends to be of concern for analytical applications.  

Efficiencies below one percent (65, 66) create sensitivity barriers for trace analyses.  Chemiluminescence 

efficiency, CL, is defined as the quantity of photons emitting per molecule of reactant consumed by the 
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chemiluminescence-generating reaction (65).  This statement is summarized into Equation 4.  Efficiency 

values can be presented in percent or numerical form.  The most efficient reactions have values of 100% 

or 1.   

                                                                          Equation 4 

 Over the recent decades, research has provided reactions and systems capable of 

chemiluminescence efficiencies greater than 1%.  Peroxyoxalate reactions have been introduced that can 

achieve efficiencies up to 50% (67).  Studies of chemiluminescence in biological entities, 

bioluminescence, presented exceptional efficiencies (68, 69).  One of the most studied (65, 70-72) 

bioluminescent reactions is that of firefly luciferin-luciferase.  Ongoing research in bioluminescence has 

aided mechanistic insight for intermediate formation (68, 69) and application for trace analyses (65).  

 Chemiluminescence intensities are also of importance for analytical measurements.  For 

analytical purposes the chemiluminescence signal is compared among analyses based on its integrated 

area, or more commonly by peak intensity.  The intensity, ICL, is relative to the system’s efficiency 

coupled with the formation rate, dP/dt of the excited-state product (58,65).  Equation 5 presents the 

relationship between intensity, efficiency, and reaction rate. 

 CL    CL
                     Equation 5 

 Chemiluminescence occurs through one of two possible pathways (58).  Both pathways begin 

with reactants producing an excited-state species.  The first pathway is considered “direct”.  The “direct” 

pathway occurs when the exicted-state species is the emissive component.  A second pathway follows an 

“indirect” approach to producing luminescence.  The “indirect” pathway produces a non-emitting 

intermediate.  The intermediate can, however, transfer energy through electron transfer, or molecular 

decomposition to an added fluorophore.  If the energy transferred is sufficient to promote the fluorophore 
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to an excited singlet state, luminescence will follow.  Both “direct” and “indirect” pathways are presented 

in Figure 5. 

                   Direct Pathway 

                                Indirect Pathway 

Figure 6.  Direct and indirect pathways of chemical reactions to produce chemiluminescence. 

 

Peroxyoxalate Chemiluminescence 

Peroxyoxalate chemiluminescence, POCL, is considered a subset of all chemiluminescent 

reactions.  POCL is observed as the emission of light when adding hydrogen peroxide to a solution of 

oxalate ester and fluorophore in the presence of imidazole catalyst (73).  The reaction scheme is presented 

in Figure 7.  Chandross (74,75) was the first to observe the mild-bluish emission after solely mixing 

oxalyl chloride with hydrogen peroxide.   

Since 1963 the POCL mechanism has been extensively investigated.  Research groups have 

studied and documented how the mechanism proceeds, (66, 75-77) oxalate ester chemistry (78, 79) and 

determination of reaction intermediates (67,80-82). 
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Figure 7.  Reaction scheme of TCPO with hydrogen peroxide in presence of imidazole catalyst for 

peroxyoxalate chemiluminescence 
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Rauhut and colleagues expanded on the understanding on Chandross’s initial report (74) of 

POCL.  Studies were performed with focus on kinetic data to provide insight into the POCL mechanism.  

Oxalyl chloride (77), aryl oxalate esters (66), and aryl oxalic anhydrides (76) on oxalyl chloride 

concentration were evaluated.  Oxalyl chloride was found (66) to be a quencher of emission at high 

concentrations.  Increasing hydrogen peroxide and fluorophore concentrations both increased the system’s 

quantum yield; however, the quantum yield plateaued with high concentrations of the fluorophore due to 

concentration quenching (77). 

 Substituting aryl oxalate esters (66) for oxalyl chloride (77) improved the quantum efficiency 

approximately three-fold.  A contributing factor to the increased efficiency was the stability of the esters 

compared to oxalyl chloride.  The ester stability, however, can be degraded in basic and polar solvent 

conditions.  This is likely due to the ester hydrolyzing before it can react to begin the chemiluminescent 

process.  Ester depletion was found to be complete within 5 minutes after initiating a POCL reaction (66), 

where interestingly about 50% of the emission curve remained before the signal returned to baseline. 

 A classroom demonstration of POCL was used by Hadd et al. (78) to help explain the mechanism 

through ester hydrolysis.  Nucleophilic substitution of the oxalate ester by hydrogen peroxide proceeds 

similar to ester hydrolysis by water (78,79).  Imidazole when used as the catalyst was found to first 

undergo deprotonation by a second imidazole before nucleophilic attack on the oxalate ester (79).  Bases 

were added to the system to improve deprotonation increasing signal intensities.  Lastly the leaving group 

post nucleophilic attack contributed to the efficiency, where pKa’s of the leaving groups aided these 

observations (78,79). 

 Aryl oxalate esters commonly employed in POCL are bis (2,4,6-trichlorophenyl) oxalate, TCPO, 

and bis (2,4-dinitrophenyl) oxalate, DNPO.  Preference lies with TCPO due to its exceptional stability 

even though DNPO has better reactivity (81).  TCPO when prepared and stored properly can remain 
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stable for several months (73).  Studies of non-catalyzed and base-catalyzed POCL reactions using TCPO 

have led to elucidating mechanistic intermediates. 
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Figure 8.  Molecular structures for TCPO and DNPO 
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Several research groups (80-83) have directed their attention towards exposing the intermediates 

formed in the POCL mechanism.  Two intermediates, Figure 9, have been proposed since Rauhut and 

colleagues began their inquiry almost 5 decades ago.  The first proposed structure (77) was 1, 2-

dioxetanedione, a cyclic peroxide that releases an abundance of energy when decomposing into two 

molecules of carbon dioxide.  The energy released is absorbed by an adjacent fluorophore that undergoes 

light emission. 

 

Figure 9.  Molecular structures of 1,2-dioxetanedione and 1,1-oxalylimidazole POCL intermediates 

 An integral intermediate in POCL when using aryl oxalate esters is 1, 1-oxalylimidazole, better 

known as ODI.  This intermediate does not participate in the chemi-exictation leading to 

chemiluminescence observations (81,83).  Instead the role of ODI is to create favorable conditions for 

producing CL.  Reacting hydrogen peroxide with TCPO has been stated to produce CL, but with low 

reactivity (81).  Imidazole as catalyst addition to the reaction improves yields and signal response time 

(79).  Emteborg et al. (81) evaluated POCL using ODI directly as the reagent rather than TCPO and 

imidazole.  Kinetic data reported by Orlovic et al. (82) revealed that excess imidazole had a negative 

effect on the quantum yield.  The observation of excess imidazole was later explained (81) through the 

reaction of imidazole with ODI.  Formation of the intermediate soon follows with nucleophilic attack by 

the peroxide anion (83) leading to proposed formation of 1, 2-dioxetanedione. 

Research groups have labeled 1, 2-dioxetanedione as the intermediate responsible for producing 

chemiluminescence (80, 82, 83).  This intermediate has been the focus of exhaustive study by many 
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research groups.  Confirmation of the intermediate was made after four decades using 
13

C NMR 

spectroscopy (80).  Since confirmation, Ciscato et al. (67) have refuted that the intermediate responsible 

for chemiluminescence cannot be a cyclic peroxide.  Activation energy data suggested the accumulated 

molecule had a stability lower than 1, 2-dioxetanedione. 

Observations of CL are claimed to stem from the decomposition of 1, 2-dioxetanedione (67, 73).  

Electron transfer between the intermediate and fluorophore initiates the chemiexcitation step.  The 

application of semiconductor quantum dots suggests electron transfer for luminescence.  Semiconductor 

quantum dot luminescence requires excitation to produce electron-hole separation.  A proposed 

mechanism using quantum dots supports 1, 2-dioxetanedione as the intermediate. 
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Figure 10.  Proposed mechanism by thesis author of quantum dot reaction with 1,2-dioxetanedione 

producing chemiluminescence 
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Analytical Instrumentation in Luminescence 

The use of chemistry to quantitate species has been practiced since I.M. Koltoff established 

analytical chemistry (84).  Instrumentation is a crucial organ of analytical chemistry.  The introduction of 

luminescence spectrometers has expanded the capability to perform analyses requiring sensitive detection.  

Photoluminescence instrumentation includes spectrofluorometers and phosphorimeters.  

Chemiluminescence instrumentation, however, is available in a variety of configurations. 

 Fluorescence of a species is measured using a spectrofluorometer.  A basic diagram of the 

instrument can be found in Figure 11.  A xenon-arc lamp with stable power supply (60,85) is typically 

used to provide excitation energy for molecular absorption and promotion from the ground electronic 

state to an excited state.  Light-emitting diodes, LEDs, are beginning to see application as excitation 

sources.  LEDs consume less energy and operate over a wider frequency range (85).  Sources lamps are 

not required in chemiluminescence instrumentation because the excitation source is a chemical reaction.  

The absence of a source lamp improves the sensitivity because emission is collected from a light-free 

background. 

 

Figure 11.  Schematic of basic fluorescence instrument 
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The polychromatic excitation beam, is broken down into component wavelengths using a 

monochromator.  Monochromators of choice are prisms and diffraction gratings (62).  Current 

instrumentation allows for component wavelength selection with the monochromator installed.  

Diffraction gratings in instruments are replicates of a master grating containing 1200 to 1400 grooves per 

millimeter (62).  Again, chemiluminescence is exempt from another part of fluorescence instrumentation.  

The energy produced by a chemiluminescence reaction is related to a specific wavelength .  The chemical 

reaction in this case is its own monochromator. 

 The state of the sample under study provides an array of sample cells or holders (86,87).  

Fluorescence is commonly a measurement performed on a dynamic medium, such as liquid.  Cuvettes of 

precisely constructed dimensions are used to contain a sample at the intersection between the excitation 

and emission pathways.  Solid samples can also be measured for fluorescence, but only at the surface 

(86).  This technique is referred to as front-face fluorescence (60).  Some sample cells may also be 

equipped with cooling features (88). 

 Sample holders for chemiluminescence may be similar to those used in fluorescence when 

solutions are used.  The simplest and most common setup is a cuvette in a spectrofluorometer.  Reagent 

addition to the cuvette produces emission observed by the detector allowing chemiluminesce observation.  

More complex sample cells for chemiluminescence measurements involve flow cells.  Techniques such as 

high-performance liquid chromatography and flow-injection analysis using liquid carrier streams use flow 

cells.  The flow cell is positioned adjacent to the detector, or fiber optics can be used between the flow 

cell and detector.  Flow cells are also used in instrumentation with gaseous carrier streams (89,90).  

Figure 12 displays static and dynamic configurations for measuring chemiluminescnce. 
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Figure 12.  Schematics for basic stationary and dynamic configurations of chemilumenscence 

instrumentation 

 The detector is ubiquitous for both fluorescence and chemiluminescene measurements.  A 

photomultiplier tube, PMT, provides sensitive light detection spanning several orders of magnitude of 

linearity (58).  Dynodes in the construction of PMTs make this possible.  As electrons reach the PMT, 

collision with a dynode releases a larger amount of electrons that collide with the next dynode in series.  

Each dynode has a higher cathodic charge than the previous.  When the last dynode is struck, an amplified 

signal exists for conversion readout response. 

 Several commercial instruments are available.  Most fluorescence instruments are stationary units 

(89-91).  Ocean Optics (92) offers a portable spectrofluorometer, where fiber optics participate as the 

light carrier to and from the sample cell.  For flow-type analyses, Agilent (93) offers a spectrofluorometer 

adaptable to their liquid chromatography instruments.  Chemiluminescence options are not quite as easily 

available.  Simple chemiluminescence measurements can be performed using spectrofluorometers as 

previously mentioned.  Complex chemiluminescence measurements involving flow typically do not have 

universal configurations.  For this reason complex flow instruments for chemiluminescence are 

laboratory-built for specific use. 
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Applications of Peroxyoxalate Chemiluminescence 

Peroxyoxalate chemiluminescence has found a niche in analytical applications since its discovery 

by Chandross.  Chemiluminescence alone has been a preferred choice over other techniques due to its 

reduced background noise.  The chemistry behind POCL provides the efficiency desired by many to reach 

detection limits below that of other techniques.  Selectivity also plays a role for related applications.  

Though hydrogen peroxide is a primary determination resulting from POCL, the reaction can be 

manipulated to expand on the multitude of analytes possible for detection. 

Several applications have found liquid chromatography as a platform.  Sigvardson and Birks (94) 

demonstrated the detection of polycyclic aromatic hydrocarbons.  Perylene, tetracene, and 9,10-

diphenylanthracene yielded picogram detection limits of 0.77, 10, and 20, respectively.  These limits were 

found to be better than both UV absorption and fluorescence detections in liquid chromatography.  

Fluorescence by liquid chromatography had the best detection limits for most of the aromatic 

hydrocarbons surveyed.  Improvements to the POCL detection method was recommended by removing 

background emission (94,95).  Hanaoka et al. (95) evaluated POCL kinetics in liquid chromatography to 

determine the optimum relationship among reagent concentrations, temperature, pH, and solvent matrix. 

 A review of hydrogen peroxide determinations was made by Tsunoda and Imai (96).  Direct 

hydrogen peroxide determination is the most fundamental analysis performed by POCL.  A step up from 

hydrogen peroxide is the use of immobilized enzymes to produce the hydrogen peroxide.  The light 

intensity due to created peroxide by enzymatic reaction can be used to stoichiometrically calculate the 

original analyte.  Tsunoda and Imai (96) also made mention of the advantage of POCL over luminol-

based systems for enzymatic reactions. 

 Immobilized enzyme reactors, IMER, coupled with POCL were investigated for glucose, choline, 

and acetylcholine (97).  The reagent stream was found to affect the enzyme activity based on water 

content.  Reversing the ratios of water and acetonitrile from 80:20 to 20:80 saw no major change in 
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sensitivity when comparing calibration slopes.  Glucose standards were tested on the configured setup 

using the IMER, and complete recovery was determined once corrected for -glucose content.  

Reproducibility of the recovery data had a relative standard deviation of 2% for four determinations.  The 

use of a separation column before the IMER, produced nanomolar detection limits for the analytes 

previously mentioned. 

 Quenching of POCL by salts and anilines was studied using liquid chromatography (98).  The 

species of interest tested for quenching were reductants, or electron donors.  The effect of quenching was 

found to not alter the POCL linearity in the micro- to millimolar range.  More than 10 analytes were 

found to have detection limits less than 10 nanograms for flow injection analysis.  When extended to high 

performance liquid chromatography, three of four analytes yielded detection limits between 2.4 

nanograms and 5.6 nanograms.  Reproducibility was determined as 2.5% RSD when tested at 

concentrations one order above the respective detection limits.  Linearity up to three orders was also 

determined. 

 Laboratory-specific instruments have been used to apply POCL for analytical determinations.  

Flow injection analysis instruments are modular with various configurations, built for the task at hand.  

The addition of cupric ions to an aqueous reagent solvent revealed increased sensitivity (75).  Applying 

this observation to liquid chromatography was considered.  Steiger et al. used computational chemistry to 

explain why cupric increased the emission signal much better than ferric and other transition metals.  Data 

suggested that a balance existed between the cupric ions and imidazole.  Unpublished research by the 

thesis author involved the decomposition of hydrogen peroxide using substituted imidazoles with a 

binuclear copper catalyst.  The imidazole ligands were coordinated to the copper catalyst to improve its 

efficiency.  Observation of increased decomposition rates were observed when a methyl substituent was 

bonded between the nitrogen atoms in the ring structure.  This observation aided the author’s input that 

the cupric ion with imidazole created a complex that participates easily in electron transfer.  
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 Other adaptations to flow injection analysis for POCL involve in-situ polymerized supports (99) 

and a gas diffusion scrubber (100).  Studies of in-situ polymerized supports, ISPS, were carried out to 

provide an alternative to packed bed reactors (99).  The ISPS were polymerized using photoinitiation.  

The efficiency of ISPS were in correlation with the degree of functionalized sites using 3-

aminofluoranthene as the fluorophore.  Various methacrylate-based polymers were tested with 6% RSD 

and nanomolar detection limits. 

 Hydrogen peroxide was selectively determined with the use of a diffusion scrubber (100).  

Atmospheric gases contain mixtures of organic peroxides with hydrogen peroxide.  Rauhut et al.  (66) 

demonstrated that POCL is selective for hydrogen peroxide over organic peroxides.  Sterically hindered 

organic peroxides exhibit the worst reactivity.  Separation of hydrogen peroxide from the organic 

peroxides was carried out by passing the gaseous peroxide mixtures against an acetic acid buffer.  

Without separation all peroxides were detected as the same chemiluminescence signal.  Excess methyl 

hydroperoxide over hydrogen peroxide decreased the signal by 25.7%.  Recovery using the scrubber 

configuration was demonstrated to be 95% after four replicates at 270 ppbv.  Optimizing scrubber 

flowrates provided sampling frequencies up to 120 injections per hour, and detection limits of 30 pptv and 

below.  A calibration of the gas diffusion separation flow injection analysis apparatus had a correlation 

coefficient of 0.999 between 0.6 ppbv and 3.4 ppbv hydrogen peroxide with a flowrate of 0.5 mL/min 

(100). 

Flow Injection Analysis 

In the profession and practice of analytical chemistry, sample preparation prior to analysis is a 

necessity.  Sample preparation involves dissolution, reaction, separation, and possibly much more 

depending on the samples and analyses to be performed.  Most sample preparations are performed across 

multiple steps or operations.  Typically sample preparations are carried out on the macro-scale. 
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 A factor affecting sample preparation for analysis is the reproducibility of the procedure.  If the 

sample preparation is performed over a long period of time, a day-to-day variability of the analytical 

environment can affect reproducibility as well.  Considering these factors along with the ability to 

minimize chemical consumption, increase sample frequency, and improve sensitivities; flow-injection 

analysis was developed with an optimistic future (101-103). 

Dispersion in Flow Injection Analysis 

 Flow injection analysis, FIA, is an analytical technique that performs sample preparation and 

analysis in one complete unit.  The technique thrives on the principles of dispersion and the factors 

influencing them.  Understanding the dispersion of an injected sample into the carrier/reagent stream 

allows one to optimize the desired analysis configuration.  Focusing exclusively on sample dispersion, 

however, can be an inhibition to the overall system design.  This is evident when not considering reagent 

dispersion because many variables affect dispersion. 

 Dispersion is related to sample or reagent dilution when a volume of sample is injected into the 

carrier stream, of concentration, S0, the sample travels with the carrier stream to the window of detection, 

and divides the carrier stream creating a gradient as time progresses (104).  This process is shown in 

Figure 13.  The gradient formed is due to dispersion between the sample and carrier or reagent stream. 

 

Figure 13.  Representation of a dispersed sample gradient within flow injection analyzer. 

 As time passes the original sample concentration, S0, disperses into the carrier/reagent at an 

original concentration, R0.  The formation of the gradient creates a variance of sample concentrations, 
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where a finite concentration exists at a specific time.  The concentration of sample in the gradient at a 

specified time is noted as, St.  Dividing S0 with St provides a ratio that is equal to the dispersion 

coefficient, DS, at the given time in the given FIA configuration (104). 

Ds = S0/St    Equation 6 

 The diffusion coefficient, DS, just mentioned can be used to generally characterize FIA 

configurations.  When the coefficient is found to be less than 10, the dispersion is said to be slight to 

average (101-104).  As the dispersion becomes more vigorous, St falls in magnitude increasing the 

coefficient to values commonly above 10.  For a variety of required FIA conditions, minimal or excessive 

dispersion can be beneficial or detrimental. 

 Several factors as mentioned can affect the dispersion taking place in a given FIA unit.  These 

factors include sample residence time, sample volume, reactor design, flow rate, and the diameter of the 

flow path. 

Effects of Analysis Time and Flowrate on Dispersion 

 Dispersion increases with time.  The residence time is commonly defined as time taken for 

sample upon injection to reach the detector.  The relation is seen in the following equation (104). 

Dmax = 23/2
R

2
Df

1/2
T

1/2
 / S   Equation 7 

 Dispersion is also affected by flow rate.  The flow rate primarily affects the axial, or linear, 

dispersion of the sample region.  Axial dispersion of the region grows with increasing flow rates.  On the 

other hand, when the flow rate is halted the axial dispersion is disrupted leaving radial dispersion as the 

main event.  Flow rate, Q, is inversely proportional to residence time.  Therefore, increasing flow rate 

decreases the residence time as the reactor volume, VR, is held constant. 

T = VR / Q    Equation 8 



59 

 

Effect of Sample Volume on Dispersion 

 A third factor on dispersion is the sample volume injected into the carrier stream.  The amount of 

sample injected affects the overall dispersion instead of the dispersion process itself.  By monitoring the 

output signal the affect can be observed.  As the sample volume is increased, the resulting peak intensity 

will increase in height and width.  When the injected volume reaches an allowable maximum for the 

employed FIA unit; the peak height flattens as the peak widens.  One other observation of increasing 

sample volume is to see a double-peak response.  These are illustrated in Figure 14. 

 

Figure14.  Representation of changes in peak intensity due to increasing sample volume and flow path 

diameter 

 The other aspect of sample volume effect lies with the initial concentration of the injected sample.  

Dispersion in FIA can be used in favor of sample preparation prior to detection.  Depending on the 

concentration of the sample, the volume injected can be used as a form of dilution.  The volume can also 

be figured such that the FIA system itself can be used to dilute the sample prior to other operations 

needing to be performed before detection. 

 

 



60 

 

Effects of the Flow Path and Instrument Design on Dispersion 

 Another factor affecting dispersion is the diameter of the flow path.  The diameter is important to 

dispersion in a similar manner as sample volume is.  If say, a fixed sample volume was injected into two 

different systems using different flow path diameters, the length that the volume occupies will differ.  For 

tubing of smaller inner diameters this creates a need for higher dispersion in order to be equivalent to that 

of a larger diameter.  This relation is seen in Figure 15, where “n” is a multiple of the original tubing 

diameter.  If the dispersion is not higher for the smaller diameter, then the double-peak formation as 

mentioned before is commonly observed (103,104).  

 

Figure 15.  Representation of expanding the sample zone by decreasing flow path diameter 

 With flow path diameter, it is important to keep in mind the practicality of the operating 

requirements.  When minimizing the tubing diameter a limit is eventually reached.  If the diameter 

becomes too small back-pressure on the tubing is created when the flow rate is not simultaneously 

reduced.  Other possible limitations include small particles blocking flow and poor optical conditions 

during detection. 
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 The design of the reactor has the greatest importance on dispersion (101).  The reactor of a FIA 

unit is designed accordingly to the dispersion needed.  Three primary designs have been characterized as 

coiled, knotted, and knitted.  Each design is fashioned such that the axial dispersion is minimized and 

radial dispersion is increased.  Greater dispersions provided are beneficial to certain experimental 

requirements.  The other benefit of these reactor designs is it allows the shrinking of the overall 

instrument design, giving rise to economical savings as well. 

Effect of Chemical Reactions on Dispersion 

 In certain FIA units chemical reactions are required.  Just like sample dispersion, reagents must 

also disperse in order for chemical reactions to take place in situ.  This leads to effects on sampling 

frequency.  As reagent dispersion decreases, sampling frequency decreases.  Eventually the ratio of 

reagent-to-sample concentration becomes important, which is said to be optimal at a five-to-one ratio 

(104). 

 Reviewing all of the effects on sample and reagent dispersion, one sees that they also affect each 

other.  In general there is a balance among the affects for every individual FIA instrument created.  By 

understanding these effects in detail, an optimal FIA configuration can constructed. 

Instrumentation of Flow Injection Analysis 

To understand flow injection analysis one needs to become familiar with the primary components 

and the factors affecting dispersion in the construction and optimization of instrumentation.  Though 

many components can be pieced together in a flow injection analyzer, only a few parts are always 

required.  These required parts are pumps, injectors, reactors, detectors, and the tubing connecting them 

all. 

 Following the flow through an injection analyzer, the tubing is the component that comes in 

contact with all solutions employed.  For this reason chemical inertness of the tubing is a highly desired 
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quality.  Structural integrity and flexibility of tubing is important when discussing the repeatability of 

analysis.  This is inherent with reactor design. 

Pumps in Flow Injection Analysis 

 Pumps used in FIA can be considered the heart of the analyzer propelling solution through the 

system.  Several pumps have been considered for use in flow injection analyses.  The most practical pump 

is the peristaltic pump.  The peristaltic pump has several advantages as well as a few disadvantages (104).  

A couple of advantages are low costs and no chemical contact.  A disadvantage of the peristaltic pump is 

a flow pulsation.  This disadvantage can be overcome using higher flow rates or more cylinder rollers that 

will decrease the pulsation intensity. 

 Other pumps employed are piston displacement, syringe, and pressurized reservoirs (104).  The 

piston displacement pump is commonly coupled with gradient techniques because of the precise timing 

required.  Syringe pumps are also used for high precision; however, these need periodic refilling halting 

analyses.  For simple flow injection analyzers, reservoirs with a pressurized head space can be used.  

These pressurized reservoirs are the most economical, but fall short in multi-channel analyzers. 

Injectors in Flow Injection Analysis 

The injection of the sample has several requirements for FIA to be useful in analyses.  The most 

important are reproducible injections and a consistent frequency.  In the early days, manual injections 

were done with a syringe through the tubing wall into the flow path (104).  This method was later 

replaced by rotary-valve injectors.  These injectors contain a fixed-volume sample loop for more precise 

volume injections.  They can also be automated to improve the injection reproducibility and timing. 

Reactors in Flow Injection Analysis 

 Between injection and detection, the sample zone must undergo sufficient dispersion.  If chemical 

reactions are also required, they need to occur within the reactor.  The reactor can take on different 
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geometries.  Three common geometries are coiled, knotted, and knitted.  Coiled reactors are common 

throughout flow injection analyzers.  The reactor is formed by coiling tubing around a cylindrical center.   

The knitted and knotted geometries undergo simple and elaborate bending, respectively.  To bend 

the tubing without creating flow restrictions involves careful technique with specific tubing 

characteristics.  Because the tubing is flexible enough to create the geometry desired, slight flexibility 

from flow during analysis can create irreproducible results (104).  Securing the tubing to fixed supports 

helps to overcome the flexibility from flow. 

Packed reactors and integrated micro-conduits make up the remainder of possible reactors.  The 

packed reactor works well in situations using immobilized reagents.  These reactors are typically only a 

few centimeters in length (104).  Coated silica particles increase the surface area and efficiency of the 

reactor.  Progress in micro-conduit reactors further shrinks the overall reactor design using fixed flow 

channels.  These channels have charted pathways mimicking the appearance of an integrated circuit board 

(105). 

Detectors in Flow Injection Analysis 

Lastly, the detector is where applications are evolving.  A variety of detectors can be used with 

flow injection analysis under given circumstances.  Possible detectors can be classified into one of two 

groups, spectrophotometric or electrochemical (101,103,104).  Each detector classification comes with its 

limitations.  Spectrophotometric detectors have possible peak broadening concerns while electrochemical 

detectors are only surface-contacting measurements.  A wide range of detectors are available such as; 

absorption, luminescence, and ion-selective. 

Coupling these detectors with the other components necessary to flow injection analysis; 

manufacturers have produced a variety of commercial instruments.  The instruments provided are for 

quantifying common analytes with high sample throughput (101-104).  The downside to commercializing 
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flow injection analyzers is that one instrument configuration does not work for all cases.  It is still 

customary to see laboratory-built analyzers for most research and development needs. 

Applications of Flow Injection Analysis 

Many articles and publications have surfaced over the recent decades on applications of flow 

injection analysis in analytical chemistry.  Areas of interest or application of flow injection analysis 

include agriculture, biological assays, and fundamental/exploratory research (105-111).  The main 

advantages for its use in all fields are relative inexpensive costs, high sample throughputs, and trace levels 

of detection possible. 

 The food and agriculture sector uses flow injection analysis in a couple of unique ways.  First, 

Kotorman et al (106) used flow injection analysis coupled with an immobilized enzyme reactor.  This 

configuration along with a spectrophotometer was used to monitor levels of lactic acid in various wines.  

Their approach resulted in a micro-molar detection limit with high reproducibility of approximately 2% 

RSD. 

 Nanita et al (107) developed a flow injection analyzer using tandem mass spectrometry for 

detection.  Automation capabilities of flow injection analysis with the selectivity of mass spectrometry led 

to a sample frequency of up to 60 samples per hour.  Repeatability at this rate was fair with 20% RSD.  

The technique was developed to perform a multi-component analysis of insecticides and herbicides.  A 

detection limit in aqueous samples was found to be 30 ppt.  Liquid chromatography methods have 

sampling frequencies about half of the flow injection method proposed (107).  This provides an advantage 

of the flow injection method; however, there still exists a disadvantage in its complexity. 

 Flow injection analyzers have been applied for faster and more repeatable immunoassays.  

Chemiluminescence detection and immobilized enzymes were paired for measuring oxidized amino acids 

(108).  Analytes of interest were L-Glutamate and L-Lysine.  Previous work to co-immobilize enzymes 

showed activity decrease as enzyme population increased.  To overcome the activity concern, Kiba’s 
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group immobilized the enzymes on polymeric beads.  These beads were then packed into a flexible tube 

coiled in front of a photomultiplier tube.  Detection of the analytes to 50 nanomolar per oxidized acid was 

possible.  A sampling frequency of 11 samples per hour was also achieved.  The group also elaborated on 

the interference of luminol-chemiluminescence in the presence of reductants. 

 Though several more areas employ flow injection analyzers or combination thereof; fundamental 

and exploratory research provides some of the best approaches to applying flow injection analysis 

currently and beyond.  Research in the later twentieth century on flow injection analysis investigated 

possibilities for peroxyoxalate chemiluminescence (109,110). 

 Substitution of bis-2, 4-dintroperoxyoxalate for bis-2, 4, 6-trichloroperoxyoxalate was evaluated 

because of its greater quantum efficiency by Honda et al. (109).  The group also determined the affects of 

halides, water, and respective phenols of each oxalate ester system.  The halides as expected showed fair 

to complete quenching of chemiluminescence.  Increasing concentrations of chloride diminished the 

chemiluminescence intensity; however, bromide and iodide quenched all intensity. 

 In the peroxyoxalate chemiluminescence system, bis-2, 4-dinitroperoxyoxalate experienced more 

detrimental effects from water than bis-2, 4, 6-trichloroperoxyoxalate, a 40% difference.  Lastly, the 

respective phenols of 2, 4-dinitrophenol and 2, 4, 6-trichlorphenol were found to also lower the 

chemiluminescence intensity.  Bis-2,4,6-trichloroperoxyoxalate was affected more by its conjugate phenol 

than bis-2, 4-dinitroperoxyoxalate.  This observation causes concern for users of bis-2, 4, 6-

trichloroperoxyoxalate regarding the purity of the chemiluminescence reagent. 

 Milofsky and Birks researched into the initiation of peroxyoxalate chemiluminescence with light 

instead of hydrogen peroxide (110).  They termed the chemistry involving light initiation as “photo 

ionization chemiluminescence”.  The detection limits were found to be acceptable, but not as optimal as 

found in previous peroxyoxalate chemiluminescence methods.  It was found that certain matrix 

requirements must be met for emission to be observed.  The requirements were the availability of 
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dissolved oxygen, fluorophore, and an alcohol or carbonyl that can release a hydrogen atom.  The 

hydrogen atom is absorbed by the oxalate ester during a reduction step.  This was also seen in 

electrochemical induced peroxyoxalate chemiluminescence by Bard (110). 

 Other approaches in fundamental and exploratory work include the investigations of new 

detectors due to improved electronics and miniaturized devices (105,111).  An electrochemical detector 

similar to an ion-selective electrode can be coupled to a flow injection analyzer.  This technique used the 

ability to produce a liquid-gel micro interface (111).  The interface allowed for ion transport, specifically 

anions.  Employing high-resistance or pure water as an eluent, halides were carried to the electrochemical 

detector.  At the detector, a pulse of applied potential was used to help measure the current due to ion 

transport across the liquid-gel interface.  Lee and his colleagues (111) found that increasing the pulsed, 

applied potential increased the sensitivity of the detector to ppb detection limits. 

 Miniaturization of devices has been an area of interest for analytical chemistry in the recent years.  

Scaling down in instrumentation allows decreasing amounts of chemicals required, and lessens the 

amount of waste.  Flow injection analysis was miniaturized with fluorescence detection by Leach et al. of 

Stanford University (105).  Their work produced a durable and disposable unit with a goal of being 

economical.  The flow injection analyzer was constructed of micron-size flow channels.  When pressure 

was placed on and off the channels, a pumping action was created.  The pressure was applied using 

electrical pulses and the characteristics of the poly-dimethylsiloxane tubing collapsed upon the pulses. 

 Repeatability excelled for the miniature flow injection apparatus. Reproducibility was found to be 

less than 3% RSD.   Samples of nanoliter volumes per injection can be injected as the unit occupies only 

the palm of an adult’s hand (105).  Also impressive were the detection limits proving to be in the 

zeptomolar range. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURES 

Purpose of Research 

 As discussed in Chapter One, nanoparticles and quantum dots possess optical properties that can 

be tailored by changing their size and surface chemistry.  This has the attention of many research groups 

evaluating nanoparticle applications for electronic technology and medical imaging.  Proposed 

applications of nanoparticles have used their ability to be immobilized with a variety of substrates. 

 The luminescent properties of quantum dots make them ideal substitutes for organic fluorescent 

dyes.  Luminol is one of the most common organic fluorophores employed in chemiluminescence 

analyses.  Assays involving enzyme-generated hydrogen peroxide are included.  The use of immobilized 

enzymes has provided improvements for chemiluminescence analyses coupled to flow injection. 

 Interest was taken in colloidal CdSe quantum dots as sources of luminescence in peroxyoxalate 

chemiluminescence analyses.  Immobilizing these semiconductor nanoparticles makes luminescence 

measurements more appealing and applicable.  Fluorophores immobilized in a flow injection system 

simplify the construction and reduce materials consumption.  The ability to successfully immobilize non-

passivated CdSe quantum dots for chemiluminescence measurements offers future improvement 

opportunities in analytical chemistry to increase sensitivities, stabilities, and additional applications. 

 Goals were set to study the application of immobilized quantum dots in POCL-FIA and have 

been listed immediately following this paragraph.  The remainder of the chapter was constructed to 

describe how the luminescent quantum dots were immobilized in selected polymers.  Experimental details 

for optimizing the flow injection analyzer used, characterizing the quantum dots prepared, and testing the 

application based on linearity, robustness, stability, and variability were also recorded. 
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 Synthesize two quantum dot sizes in batch quantities for later immobilization and size 

comparisons. 

 Immobilize quantum dots with trans-polyisoprene, polymethylmethacrylate, and low-density 

polyethylene polymer substrates 

 Develop and construct a flow cell for multi-use with immobilized quantum dot preparations 

 Optimize FIA configuration for evaluation of immobilized quantum dot preparations 

 Use POCL-FIA to evaluate each immobilized quantum dot  preparation for the following: 

o Determine linearity of each immobilized quantum dot preparation 

o Determine robustness of immobilized quantum dot preparation by number of sequential 

samples injected at a given analyte concentration 

o Determine shelf-life stability of each immobilized quantum dot preparation 

o Determine variability within a single immobilized quantum dot preparation and across 

multiple preparations of the same immobilized quantum dots 

 Consider application of technique for measuring H2O2 in non-aqueous matrices 

Reagents 

 Cadmium selenide, CdSe, quantum dots were synthesized per the procedures described by 

Boatman, Lisensky, and Nordell (13).  The following chemicals were obtained for synthesizing the CdSe 

quantum dots.  Cadmium oxide (98.9%), selenium powder (99%), oleic acid (99%) was purchased from 

Alfa-Aesar (Ward Hill, MA).  Technical-grade trioctylphosphine (90%) was supplied by Sigma-Aldrich 

(St. Louis, MO).  The coordinating solvent, 1-octadecene, was technical grade (90%) and manufactured 

by Acros Organics, a division of Thermo-Fisher Scientific (Pittsburgh, PA).  Triethylamine (sequenal 

grade) was purchased from Pierce Chemicals (Rockford, IL) then distilled prior to use. 

Immobilization of the CdSe quantum dots was based from procedures discussed in Yin et al. (50) 

article.  Modifications were made as needed due to solvent compatibility with the selected polymers.  
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Polymethylmethacrylate powder, PMMA, and low-density polyethylene, LDPE, (500 micron) was used 

as substrates in addition to trans-polyisoprene, PI.  The PMMA and LDPE were purchased from Alfa-

Aesar (Ward Hill, MA), and the PI was obtained from Sigma-Aldrich (St. Louis, MO).  High-purity grade 

chloroform solvent was from Burdick & Jackson (Muskegon, MI), and ACS reagent grade acetone was 

purchased from Fisher Chemicals (Pittsburgh, PA).  The surfactant solution for encapsulation used lauric 

acid from Acros Organics (Pittsburgh, PA), sodium hydroxide pellets from Fisher Chemicals (Pittsburgh, 

PA).  Deionized water was supplied from a purification kit purchased from US Filters (Pittsburgh, PA). 

Bis-(2,4,6-trichlorophenyl) oxalate, TCPO, was synthesized following Mohan and Turro’s article 

(73).  2,4,6-trichlorophenol (98%) and oxalyl chloride (98%) was a purchased from Alfa-Aesar (Ward 

Hill, MA).  It is important to note that trichlorophenol is a known carcinogen!  Anhydrous magnesium 

sulfate powder and ACS reagent grade benzene and petroleum ether were purchased from Fisher 

Chemicals (Pittsburgh, PA).  The TCPO was dissolved for flow measurements in ACS reagent grade 

acetonitrile also purchased from Fisher Chemicals (Pittsburgh, PA). Imidazole (99%) from Sigma-Aldrcih 

(St. Louis, MO) was used as a catalyst. 

Hydrogen peroxide (30%) from Fisher Chemicals (Pittsburgh, PA) and hydrogen peroxide (3%) 

from a local retailer were used to create standards used for initiating the peroxyoxalate 

chemiluminescence.  Additional solvents of cyclohexane, isopropanol, and glacial acetic acid were ACS 

reagent grade. 

Stock Solutions 

Selenium Precursor Solution 

 A 30-mL solution of selenium precursor was prepared for bulk CdSe syntheses with the 

procedure detailed by Boatman et al. (13).  Weights and volumes per the procedure by Boatman et al. 

were adjusted accordingly to accommodate the bulk syntheses performed.  The stock was made by 

weighing 183.2 mg of selenium powder in a 100-mL beaker.  A stir bar and 30 mL of 1-octadecene were 
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added to the selenium powder in the beaker.  The mixture was stirred with gentle heat while 2.5 mL of tri-

octylphosphine were added to induce the dissolution of the selenium powder.  The resulting solution was 

stored at room temperature in an amber jar until required for use in the CdSe syntheses. 

“Yellow” CdSe Solution (QD520) 

 To synthesize the batch of “yellow” CdSe quantum dots for immobilizing in selected polymers, 

the procedure detailed by Boatman et al. (13) was followed with minor alterations.  First, 131 mg of 

cadmium oxide were weighed into a 250-mL round-bottom flask.  Next a stir bar, 6 mL of oleic acid, and 

100 mL of 1-octadecene were added to the flask in the order listed.   The flask and contents were then 

placed on a 250-mL soft-shell heating mantle controlled by a rheostat with a setting of “70”.  The mantle 

sat above a stir plate to allow for stirring before and after the addition of the selenium precursor solution. 

 Using a 260
o
C thermometer, the cadmium oxide solution temperature was monitored as it calmly 

rose to 225
o
C.  At 225

o
C while stirring, 10 mL of the previously prepared selenium precursor solution 

was added using a 10-mL gas-tight syringe and needle.  After the selenium precursor solution was added, 

the flask containing the mixture was immediately transferred to an ice-water bath.  The reaction time was 

about 5 seconds from selenium precursor injection till flask emersion in the ice-water bath halting the 

colloidal growth of the quantum dots. 

“Red” CdSe Solution (QD555) 

 The procedure for the synthesis of the “yellow” CdSe solution (QD520) was followed in similar 

motions for the “red” CdSe solution (QD555) except for the following details.  The preparation of the 

“red” CdSe solution used 136 mg of cadmium oxide, and was allowed to react with the selenium 

precursor solution on heat while stirring for about 60 seconds before halting the colloidal growth.  
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Imidazole Solution 

 An imidazole, catalyst solution was prepared for POCL-FIA measurements.  A 1 M solution of 

imidazole for later dilutions was made by dissolving 1.7326 g of imidazole in 25 mL of de-ionized water 

using a 25-mL volumetric flask.  The solution was shaken till completely dissolved then stored in a 

refrigerator between uses. 

Encapsulation Surfactant Solution 

 A surfactant solution was prepared in bulk for use in immobilization-by-encapsulation 

preparations.  The surfactant solution was made by weighing 2.5327 g of NaOH pellets and 8.5392 g of 

lauric acid flakes into a plastic weighing boat.  The NaOH and lauric acid was then placed in a 4-L amber 

jar together.  De-ionized water was added using a 1-L graduated cylinder, bringing the final volume to 2.5 

L.  A stir bar was added to the 4-L jar, and the jar set on a stir/hot plate to help dissolve the lauric acid.  

Once completely dissolved, the surfactant solution was allowed to cool to room temperature, and 

remained in the 4-L jar for storage at room temperature until needed for use in immobilizations. 

Hydrogen Peroxide Solution 

 A solution of 30% hydrogen peroxide was purchased from Fisher Chemicals (Pittsburgh, PA) for 

use in preparing working solutions used in all POCL-FIA measurements.  The solution was stored in a 

refrigerator between uses. 

Working Solutions 

Preparation of CdSe Solutions for Characterization by Fluorescence Emission 

 The prepared CdSe quantum dot solutions were diluted to 5% for fluorescence emission 

characterizations.  Aliquots of 500 L of each CdSe solution were diluted in a 10-mL volumetric flask 
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with cyclohexane.  The flask was shaken in hand to mix the CdSe solution and cyclohexane efficiently 

prior to use in fluorescence emission measurements. 

Preparation of TCPO Solution for Imidazole Optimization 

 A solution of TCPO in acetonitrile for use in POCL-FIA measurements to find the optimum 

concentration of imidazole catalyst was prepared in the following manner.  Synthesized TCPO (details of 

TCPO synthesis to follow later) was weighed in a plastic weighing boat to 2.7 g.  The TCPO was 

transferred to a 500-mL beaker.  Next, 360 mL of acetonitrile was added to the beaker.  The beaker with 

contents was then placed in a soniccator bath for 60 minutes at 35
o
C to increase the rate of dissolution.  

The preparation was also carried out in minimal light, and the soniccator was covered loosely with 

aluminum foil. 

Preparation of Imidazole Standards in TCPO for Catalyst Optimization (1 x 10
-6

 M – 1.0 x 10
-1

M) 

 Standards of imidazole in TCPO were prepared by diluting aliquots of the previously prepared 

imidazole stock solution, 1 M, into separate 50-mL volumetric flasks.  Serially diluting the 1 M stock 

imidazole;  1.0 x 10
-1

, 1.0 x 10
-2

, 1.0 x 10
-3

, 1.0 x 10
-4

, 1.0 x 10
-5

, and 1.0 x 10
-6

 M concentrations were 

achieved beginning with 5 mL of the stock 1 M imidazole brought to the 50-mL volume with previously 

prepared TCPO solution.  Each subsequent concentration was made by repeating the preparation of the 

previous standard.  The imidazole standards were gently shaken to ensure efficient mixing of imidazole 

throughout the solution prior to their immediate use. 

Preparation of Imidazole Standards in TCPO for Catalyst Optimization (10 M – 500 M) 

 Standards of imidazole in TCPO were prepared by initially diluting a 2.5 mL-aliquot of the 

previously prepared imidazole stock solution, 1 M, into a 50-mL volumetric flask to produce a 

concentration of 5.0 x 10
-2

 M.  Diluting the temporary stock of imidazole; 5.0 x 10
-4

, 2.5 x 10
-4

, 1.5 x 10
-4

, 

1.0 x 10
-4

, 5.0 x 10
-5

, and 1.0 x 10
-5

 M concentrations were achieved by diluting aliquots of 500 L, 250 
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L, 150 L, 100 L, 50 L, and 10 L to the 50-mL volume with previously prepared TCPO solution per 

flask, respectively.  The imidazole standards were gently shaken to ensure efficient mixing of imidazole 

throughout the solution prior to their immediate use. 

Preparation of TCPO Solutions for Remaining POCL-FIA Measurements 

 The remaining POCL-FIA measurements pertaining to instrument flowrate optimization, 

immobilized-quantum dot preparation characterizations, and technique applicability required multiple 

preparations of TCPO solution with the optimized imidazole concentration included.  Each preparation of 

TCPO solution was made by weighing approximately 0.75 g of synthesized TCPO per 100 mL of 

acetonitrile.  The TCPO solids were weighed then placed in the appropriate volumetric flask, where 

acetonitrile was added till the volume was about one-half inch from the volumetric mark on the flask.  

Here the correct amount of 1 M imidazole stock solution (10 L/100 mL TCPO solution) was added to 

achieve the previously determined optimum concentration of imidazole at 100 M.  Acetonitrile was used 

to bring the volume to the mark on the flask prior to soniccation for 60 minutes at 35
o
C.  The TCPO 

solids were allowed to continue to reach complete dissolution during this time while covered with 

aluminum foil.  Minimal light was used while preparing the solution; and its use was immediate after 

preparation.  No solutions were prepared and stored for later use. 

Preparation of Hydrogen Peroxide Standards for Linearity Studies 

 Seven hydrogen peroxide standards were prepared by first diluting a 568-L aliquot of stock 30% 

hydrogen peroxide solution to 1.0 x 10
-1

 M in a 50-mL volumetric flask with de-ionized water.  The 1.0 x 

10
-1

 M standard was then diluted serially to concentrations of 5.0 x 10
-2

, 1.0 x 10
-2

, 5.0 x 10
-3

, 1.0 x 10
-3

, 

5.0 x 10
-4

, and 1.0 x 10
-4

 M in 50-mL volumetric flasks with de-ionized water.  The standards were 

prepared fresh from stock each day of testing. 
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Preparation of Hydrogen Peroxide Standards for Robustness Studies 

 A hydrogen peroxide standard of 1.0 x 10
-2

 M was prepared by diluting a 57-L aliquot of stock 

30% hydrogen peroxide solution in a 50-mL volumetric flask with de-ionized water.  The standard was 

prepared fresh from stock each day of testing. 

Preparation of Hydrogen Peroxide Standards for Stability Studies 

 A hydrogen peroxide standard of 1.0 x 10
-2

 M was prepared by diluting a 57-L aliquot of stock 

30% hydrogen peroxide solution in a 50-mL volumetric flask with de-ionized water.  The standard was 

prepared fresh from stock each day of testing. 

Preparation of Hydrogen Peroxide Standards for Variability Studies 

 A hydrogen peroxide standard of 1.0 x 10
-2

 M was prepared by diluting a 57-L aliquot of stock 

30% hydrogen peroxide solution in a 50-mL volumetric flask with de-ionized water.  The standard was 

prepared fresh from stock each day of testing. 

Calibration of POCL-FIA Instrument Configuration 

 Seven hydrogen peroxide standards were prepared by first diluting a 568-L aliquot of stock 30% 

hydrogen peroxide solution to 1.0 x 10
-1

 M in a 50-mL volumetric flask with de-ionized water.  The 1.0 x 

10
-1

 M standard was then diluted serially to concentrations of 5.0 x 10
-2

, 1.0 x 10
-2

, 5.0 x 10
-3

, 1.0 x 10
-3

, 

5.0 x 10
-4

, and 1.0 x 10
-4

 M in 50-mL volumetric flasks with de-ionized water. 

Preparation of Hydrogen Peroxide in Non-Aqueous Solvents 

 Two hydrogen peroxides standards were prepared in each isopropanol and glacial acetic acid.  

The first standard in each solvent was made by diluting 57-L aliquots of stock hydrogen peroxide 

solution in 10-mL volumetric flasks with the appropriate solvent.  The resulting concentration of the first 

standard was 5.0 x 10
-2

 M.  The second standard for each solvent was prepared using a 100-L aliquot of 
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the respective 5.0 x 10
-2

 M standard.  The aliquot was diluted in a 10-mL volumetric flask with the 

respective solvent.  The concentration of the second standard of each solvent was 5.0 x 10
-4

 M. 

Instrumentation 

 A Perkin-Elmer 650-10S series spectrofluorometer was used to determine the emission spectra of 

the two different quantum dots synthesized.  The excitation beam was produced with a xenon flash-lamp 

using a Perkin-Elmer 150 Xenon flash-lamp external power source.  The emission was detected at a 

perpendicular path from the excitation beam path with the sample under analysis in a quartz cuvette.  

Pathways for the excitation and emission beams passed through 2 nm slits.  Spectra for the emission of all 

samples were recorded by scanning from 240 nm up to 820 nm at intervals of 5 nm.  Intensities were 

viewed with a digital readout, while the sensitivity setting was a “1”.  A basic diagram of the instrument 

configuration is seen in Chapter 2 as Figure 11. 

 The other instrument used to perform the research at hand was a laboratory-built FIA instrument.  

The instrument was configured using a Cole-Parmer (Chicago, IL) Masterflex peristaltic pump (7013-20) 

with a controller box (7520-25) set at “350”.  The pump propelled the prepared TCPO reaction solution 

through Masterflex 6409-13 tubing with a 1.6 mm inner-diameter and max capacitiy flowrate of 36 

mL/min.  The operating flowrate was approximately 5 mL/min. 

 As the TCPO solution was pumped through the system, the solution passed through a Rheodyne 

7125 series injector.  The injector was comprised of a 50-L loop, and a two-position valve for loading or 

injecting the standards of hydrogen peroxide prepared for the research.  The injected sample plus solution 

reacted as it flowed to the custom-built, glass flow-cell where the immobilized-quantum dot preparation 

under current study was held.  A picture of the flow-cell is seen in Figure 16, where it contains one of the 

several immobilized-quantum dot preparations.  The design of the flow-cell was considered to allow for 

quick and easy change of preparations.  It also allowed for reducing the possibility of plugging by the 

preparations. 
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Figure 16.  Photo of custom glass flowcell for POCL-FIA with immobilized-quantum dot preparation 

 With the flow-cell containing the immobilized-quantum dots positioned in front of a Hamatsu 

photomultiplier tube, the chemiluminescence signal intensity was relayed to an analog output with 

multiple choices of sensitivities.  The analog output was displayed on a control box salvaged from an 

American Instruments Company (Silver Springs, MD), AMINCO, spectrofluorometer.  A schematic of 

the configuration is sketched in Figure 17, while an actual photograph of the instrument is shown in 

Figure 18. 
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Figure 17.  Schematic of laboratory built of FIA configuration used in POCL-FIA analyses 

 

Figure 18.  Photo of laboratory built FIA instrument for POCL-FIA measurements with immobilized 

quantum dots 
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Characterization of CdSe Solutions Using Fluorescence Emission Spectra 

 The prepared CdSe quantum dots were evaluated for emission spectra upon excitation by light at 

a wavelength of 400 nm.  The emission spectra were produced by first diluting 500 M of each CdSe 

solution to 5% in a 10-mL volumetric flask with cyclohexane.  A Perkin-Elmer 650-10S 

spectrofluorometer was used to produce the spectra of the cyclohexane solvent and each prepared CdSe 

solution.  The observed emission wavelength of maximum peak intensity was used in part to characterize 

the prepared quantum dots. 

Synthesis of bis-(2,4,6-trichlorophenyl) oxalate (TCPO) 

 In order to perform the POCL-FIA analyses required to study and in-part characterize the 

immobilized-quantum dot preparations, a chemiluminescence reagent needed to be synthesized.  The 

required material of bis (2,4,6-trichlorophenyl) oxalate, TCPO, was synthesized for this research work 

following the method described per the article by Mohan and Turro (73).  Depending on the amount of 

TCPO required at a given time, multiples of the original procedure were synthesized.  This was done by 

distilling 15 mL of sequenal-grade triethylamine into a 250-mL round-bottom flask.  Once the majority of 

the triethylamine distillate had collected in the round-bottom flask, approximately 10-12 g, the flask was 

removed from the distillation apparatus.  

 Next, 19.75 g of 2,4,6- trichlorophenol were weighed into a plastic weighing boat then transferred 

to the round-bottom flask containing the freshly-distilled triethylamine.  After drying 300 mL of benzene 

with 5 g of anhydrous magnesium sulfate salt, the benzene was filtered of the salt prior to adding 250 mL 

of the dried benzene to the 250-mL round-bottom flask containing the triethylamine and 2, 4, 6 – 

trichlorophenol.  The resulting mixture was placed into an ice-water bath to reduce the contents 

temperature to below 10
o
C.  This was a requirement along with minimal lighting during the addition of 

the oxalyl chloride. 
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 The addition of the oxalyl chloride was carried out patiently by slowly dropping 5 mL of the 

light-sensitive chemical to the round-bottom flask containing the previously mentioned contents.  As the 

oxalyl chloride was added, fumes were released from the chemical reaction taking place forming the dark-

orange, crude product of TCPO.  After the complete addition of the oxalyl chloride, the flask was loosely 

stoppered and secured with a Keck clamp.  The flask was set aside overnight away from heat and light to 

allow additional formation of crude TCPO. 

 Following the synthesis of the crude TCPO, the material was removed from the round-bottom 

flask the next day with petroleum ether as it was collected, washed, and air-dried using vacuum filtration.  

The washing with petroleum ether and air-drying in a Buchner funnel was also carried out in minimal 

light and heat.  Once the product was washed, beige to light-brown in color, it was transferred to an amber 

jar with the lid loosely fixed to allow residual volatiles to vent as the product continued to dry.  The 

product was ready to use for creating the TCPO solutions required for the POCL-FIA analyses.  

Recrystallization of the TCPO was not performed, and the purity was not tested. 

 A spare batch of TCPO was also produced by the same method, but magnetic stirring was applied 

during the addition of oxalyl chloride.  The spare batch material had a fine crystalline appearance and 

white in color.  This TCPO was not used for any experimental work due to injector plugging issues when 

adding the imidazole catalyst to the TCPO solution.  The plugging was a result insoluble 1, 1-

oxalylimidazole in acetonitrile (81). 

Determining the Optimum Imidazole Concentration for POCL-FIA Measurements 

Wide Range Determination 

 The optimum amount of imidazole catalyst for the POCL-FIA analyses was determined using the 

setup requiring its determination.  A solution of TCPO in acetonitrile was prepared by dissolving 2.7 g of 

synthesized TCPO into 360 mL of acetonitrile while soniccating for 60 minutes at 35
o
C.  The TCPO 

solution was used to dilute 5 mL of stock 1 M imidazole solution to 1.0 x 10
-1

 M in a 50-mL volumetric 
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flask.  Five subsequent standards were made serially diluting from the first following the same procedure 

using 5 mL of previous standard to 50 mL with TCPO solution.  The resulting set of standards of 

imidazole in TCPO solution ranged from 1.0 x 10
-6

 M to 1.0 x 10
-1

 M, where each standard concentration 

changed by a factor of ten. 

 Using the custom POCL-FIA instrument, the standards of imidazole prepared in TCPO solution 

were drawn through the configuration using the peristaltic pump set at “350”, or approximately 5 mL/min 

flowrate.  The standard was allowed to rinse the configuration for approximately one minute prior to any 

data being collected.  To create the chemiluminescence required for making the measurements, a 

preliminary product of immobilized quantum dots with polyisoprene was placed in the flowcell.  Once the 

configuration was ready for measurements per standard, triplicate injections of neat 3% hydrogen 

peroxide were made.  The flow was stopped between injections within seconds of the maximum signal 

being observed.  The intensities of the chemiluminescence produced were observed on the analog output 

of the POCL-FIA instrument, where the sensitivity setting was at “3”. 

 The recorded data set from this experiment was plotted with the chemiluminescence-intensity 

averages dependent on the imidazole concentration applied to a logarithmic scale. 

Narrow Range Determination 

 After determining the range that the optimum imidazole concentration existed in from the 

experiment previously mentioned, a second set of imidazole standards in TCPO solution was prepared.  

This set narrowed the range of possible concentrations that could be the optimum concentration.  

Following similar procedures from the “Wide Range Determination” experiment, this experiment only 

differed in the preparation of the required concentrations.  The range of choice here was chosen to be 1.0 

x 10
-5

 M to 5.0 x 10
-4

 M (10 M – 500 M) imidazole in 50-mL volumes.  These were prepared by 

making a temporary stock of imidazole at 5.0 x 10
-2

 M, then diluted aliquots of 500, 250, 150, 100, 50, 

and 10 L into 50 mL volumes. 
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 Again each standard was drawn through the custom POCL-FIA instrument, where neat 3% 

hydrogen peroxide was injected in triplicates.  The chemiluminescence-intensity averages were plotted 

dependent on the true concentration of the imidazole per standard to find the optimum concentration of 

imidazole that produced the maximum intensity for the upcoming POCL-FIA analyses used to 

characterize the immobilized-quantum dot preparations under study.  

Determining the Optimum Flowrate for POCL-FIA Measurements 

 Before performing any measurements to characterize the preparations of immobilized-quantum 

dots, the optimum flowrate for the instrument configuration must be determined.  Considerations for the 

optimum flowrate were peak height, peak shape, reaction solvent consumption, and configurational 

pressure capacity.  To determine the optimum flowrate, the flowrate was increased stepwise using the 

dial-selector on the peristaltic pump module.  Each time the flowrate was increased; triplicate injections 

of neat, 3% hydrogen peroxide were injected.  The corresponding chemiluminescence intensity averages 

were recoreded for plotting against the flowrate. 

Immobilization of CdSe Quantum Dots for Linearity, Robustness, Stability, and Variability Studies 

The following preparations of immobilized quantum dots were performed to create material for 

all analyses related to linearity, robustness, shelf-life stability, and variability.  The first set of 

immobilized-quantum dot preparations was made to provide sufficient amounts of material for the first 

three analyses listed.  The second set of immobilized-quantum dot preparations was made the same as the 

first, but only for the variability study.  The variability study required triplicates of each immobilized-

quantum dot preparation to be prepared.  There were 12 immobilized-quantum dot preparations in total 

stemming from the combinations of 2 different CdSe quantum dot sizes, three different polymers, and two 

different immobilization techniques.  Each immobilized-quantum dot preparation is described below. 
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PI-QD520-Melt / PI-QD555-Melt Preparations 

This preparation of immobilized-quantum dots, both sizes, in polyisoprene was done by simply 

melting the polymer in an oven at high temperature for a short time then mixing in the quantum dots.  In 

detail, 2 g of polyisoprene were placed into a 250-mL beaker followed by placement of the beaker into an 

oven at a temperature of approximately 250
o
C.  The polyisoprene was allowed to sit in the oven for 10 

minutes to melt becoming goop-like.   

Here the beaker was removed from the oven carefully while still very hot, and 2.5 mL of the 

desired quantum dots were added.  Immediate stirring with a glass rod followed prior to replacement in 

the oven for another 3 minutes.  After the 3 minutes, the preparation was pulled from the oven and stirring 

with a glass rod continued while the polymer cooled to near room temperature to mix in the quantum dots 

as best possible.  The cooled preparation was stored in a glass, amber jar till used for characterization. 

PI-QD520-Encapsulation / PI-QD555-Encapsulation Preparations 

This preparation of immobilized-quantum dots, both sizes, in polyisoprene was done following a 

slight modification of the encapsulation method described by Yin et al (50).  In detail, 2 g of polyisoprene 

were placed into a 250-mL beaker.  Next, 40 mL of chloroform solvent was added along with a stir bar.  

The beaker with materials was placed on a heat/stir plate to dissolve the polymer for addition of the 

designated quantum dots.  

Once the polyisoprene was dissolved, 2.5 mL of the designated quantum dots were added and 

mixed in efficiently.  The mixture was then transferred to a 50-mL solution of previously prepared 

surfactant.  The polymer-quantum dot mixture was allowed to stir in the surfactant solution for 5 minutes.  

The immobilized-quantum dot preparation was produced by heating the surfactant to remove residual 

organic solvent.  Resulting product was collected through vacuum filtration then transferred to an amber 

jar for storage. 
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PMMA-QD520-Melt / PMMA-QD555-Melt Preparations 

This preparation of immobilized-quantum dots, both sizes, in polymethylmethacrylate was done 

by simply melting the polymer in an oven at high temperature for a short time with the designated 

quantum dots.  In detail, 2 g of polyisoprene were placed into a 250-mL beaker.  Next, 35 mL of acetone 

was added to the beaker plus 2.5 mL of designated quantum dots solution.  The beaker and contents were 

then placed in an oven at a temperature of approximately 250
o
C.  The polymethylmethacrylate mixture 

was allowed to sit in the oven for 5 minutes.   

After the 5 minutes in the oven, the preparation was pulled and allowed to cool.  The 

immobilized-quantum dot product was transferred to an amber jar for storage. 

PMMA-QD520-Encapsulation / PMMA-QD555-Encapsulation Preparations 

This preparation of immobilized quantum dots, both sizes, in polymethylmethacrylate was done 

following a slight modification of the encapsulation method described by Yin et al (50).  In detail, 2 g of 

polymethylmethacrylate were placed into a 250-mL beaker.  Next, 25 mL of acetone solvent was added 

along with a stir bar.  The beaker with materials was placed on a heat/stir plate to dissolve the polymer for 

addition of the designated quantum dots.  

Once the polymethylmethacrylate was dissolved, 2.5 mL of the designated quantum dots were 

added and mixed in efficiently.  The mixture was then transferred to a 50-mL solution of previously 

prepared surfactant.  The polymer-quantum dot mixture was allowed to stir in the surfactant solution for 5 

minutes.  The immobilized-quantum dot preparation was immediately produced upon addition to the 

surfactant.  The preparation was removed from the surfactant solution by draining some of the liquid, and 

using forceps to transfer to an amber storage vial. 
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LDPE-QD520-Melt / LDPE-QD555-Melt Preparations 

This preparation of immobilized quantum dots, both sizes, in low-density polyethylene was done 

by simply melting the polymer in an oven at high temperature for a short time then mixing in the quantum 

dots.  In detail, 2 g of low-density polyethylene powder were placed into a 250-mL beaker followed by 

placement of the beaker into an oven at a temperature of approximately 250
o
C.  The low-density 

polyethylene was allowed to sit in the oven for 3 minutes to melt becoming goop-like.   

Here the beaker was removed from the oven carefully while still very hot, and 2.5 mL of the 

desired quantum dots were added.  Immediate stirring with a glass rod followed while the polymer cooled 

to near room temperature to mix in the quantum dots as best possible.  The cooled preparation was stored 

in a glass, amber jar till used for characterization. 

LDPE-QD520-Encapsulation / LDPE-QD555-Encapsulation Preparations 

This preparation of immobilized-quantum dots, both sizes, in low-density polyethylene was done 

following a slight modification of the encapsulation method described by Yin et al (50).  In detail, 2 g of 

low-density polyethylene were placed into a 250-mL beaker.  Next, 25 mL of hexane solvent was added 

along with a stir bar.  The beaker with materials was placed on a heat/stir plate to dissolve the polymer for 

addition of the designated quantum dots.  

Once the low-density polyethylene was dissolved, 2.5 mL of the designated quantum dots were 

added and mixed in efficiently.  The mixture was then transferred to a 50-mL solution of previously 

prepared surfactant.  The polymer-quantum dot mixture was allowed to stir in the surfactant solution for 5 

minutes.  The resulting liquid was allowed to sit with no stir on mild heat to evaporate the hexane solvent 

leaving the immobilized-quantum dot product insoluble in the surfactant.  The immobilized-quantum dot 

preparation was collected through vacuum filtration.  The product was placed in an amber jar for storage. 
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Determining the Linearity of Immobilized Quantum Dot Preparations 

 The first characterization of the immobilized quantum dots was the dynamic range, or linearity, of 

each preparation.  This was done by analyzing each preparation with seven hydrogen peroxide standards 

spanning three orders of magnitude.  The range chosen was 1.0 x 10
-4

 M to 1.0 x 10
-1

 M for hydrogen 

peroxide concentrations to be injected.  The standards were prepared by diluting stock 30% hydrogen 

peroxide, 568-L up to 50 mL with deionized water in a 50-mL volumetric flask.  The 1.0 x 10
-1

 M 

standard was diluted serially down to 1.0 x 10
-4

 M by alternating between diluting 25 mL and 12.5 mL of 

the existing standard to create the next.  The standards made in the series of seven were 1.0 x 10
-4

, 5.0 x 

10
-4

, 1.0 x 10
-3

, 5.0 x 10
-3

, 1.0 x 10
-2

, 5.0 x 10
-2

, and 1.0 x 10
-1

 M. 

 For the hydrogen peroxide to react and create the energy-sustaining intermediate, TCPO reaction 

solution with the optimum amount of imidazole was prepared by weighing 0.75 g of synthesized TCPO 

per 100 mL of acetonitrile.  The imidazole was added at a ratio of 10 L per 100 mL of solution 

preparation.  The solution was soniccated for 60 minutes at 35
o
C to obtain complete dissolution prior to 

use in the custom POCL-FIA instrument.  Once the solution was ready it was pumped through the 

instrument to flush the system prior to any measurements.  The flowrate was approximately 5 mL/min at 

the setting of “350” on the peristaltic pump. 

 With the TCPO/imidazole reaction solution, immobilized-quantum dot preparation, and hydrogen 

peroxide standards ready; the instrument was turned on after covering from residual lighting.  The 

sensivity setting was set to the lowest initially then increased as needed with increasing hydrogen 

peroxide concentrations.  For each standard measurement, five replicates were performed by injecting 50 

mL of sample into a Rheodyne injector loop of equal volume.  Regular practice was followed by injecting 

three amounts of the sample loop size prior to any measurements with the current standard for rinsing the 

sample loop. 
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 After injection of the standard into the Rheodyne injector module, the pump was turned on.  The 

flow was allowed to come to a stable rate, about 5 seconds after starting.  With a stable output being 

observed on the analog readout, the injection valve on the Rheodyne was moved from the “LOAD” 

position to the “INJECT” position.  When done the hydrogen peroxide was pushed through the sample 

loop via the TCPO/imidazole reaction solvent.  On its path towards the flow cell containing the 

immobilized-quantum dot preparation of choice, the intermediate was formed where its transfer of energy 

to the immobilized quantum dots was observed by the adjacent photomultiplier tube.   

The resulting chemiluminescence intensities were recorded along with the sensitivities at which 

the signals were observed.  The intensity results were averaged for the five replicate injections per 

hydrogen peroxide standard, and then plotted versus of the concentration of the standard to determine the 

linear range of the immobilized-quantum dot preparation currently under study.  The linear-regression 

values were also obtained using a trendline function found in Excel spreadsheets. 

Determining the Robustness of Immobilized Quantum Dot Preparations 

 The immobilized quantum-dot preparations were tested for robustness, or ability to withstand a 

number of sequential analyses.  To do this fresh TCPO/imidazole solution was prepared along with a 

fresh hydrogen peroxide standard of 1.0 x 10
-2

 M.  The TCPO/imidazole solution was passed through the 

POCL-FIA instrument at approximately 5 mL/min.  The hydrogen peroxide standard was injected in 50-

L increments with a 50-L loop. 

 Each immobilized-quantum dot preparation was exposed to 20 consecutive injections of the 

hydrogen peroxide standard at 1.0 x 10
-2

 M with 50-L injections.  To determine each preparation’s 

robustness, the signals per consecutive injections were plotted.  The difference between the average signal 

intensities of the first five injections and the final five injections were used to set a value of robustness to 

each preparation. 
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Determining the Stability of Immobilized Quantum Dot Preparations 

 The shelf-life of each immobilized-quantum dot preparation was determined by measuring the 

resulting POCL signal using material from the same preparation over the course or 30 days.  Each 

preparation was analyzed on four separate days of the 30-day period.  Those days were 1, 10, 20, and 30.  

Each day all preparations were tested with fresh TCPO/imidazole solution and 1.0 x 10
-2

 M hydrogen 

peroxide.  The hydrogen peroxide standard was injected at 50-L volumes. 

 The immobilized-quantum dot preparations were analyzed using five replicate injections.  The 

average signal of each preparation was plotted versus day tested.  Also, to conserve reagents, chemicals, 

and preparations the data obtained for the shelf-life stability on Day 1 was also data obtained in the 

“Linearity” experiment.  Also, for Day 10, the first five injection signals of the robustness experiment 

were used for this experiment.  Days 20 and 30 had no overlap with any other experiment. 

Determining the Variability in a Single Preparation of Immobilized Quantum Dots 

 The variability, or reproducibility, of making each immobilized-quantum dot preparations was 

analyzed using a fresh TCPO/imidazole solution with injections of 1.0 x 10
-2

 M hydrogen peroxide.  The 

variability within each single preparation was determined by sampling three portions of the preparation of 

choice for testing. 

 Each of the three sampled locations per immobilized-quantum dot preparation was analyzed with 

the POCL-FIA instrument and five replicate injections of the hydrogen peroxide standard in 50-L 

volumes.  The signals of the replicate injections were averaged, had standard deviations determined, and 

their respective relative standard deviation calculated.  The results of each preparation were tabulated into 

a column graph for easy comparisons. 
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Determining the Variability Among Multiple Preparations of Immobilized Quantum Dots 

The variability, or reproducibility, of making multiple immobilized-quantum dot preparations was 

analyzed using a fresh TCPO/imidazole solution with injections of 1.0 x 10
-2

 M hydrogen peroxide.  The 

variability among multiple preparations was determined by sampling each of the multiple preparations 

only once. 

 Each of the multiple immobilized-quantum dot preparations was analyzed with the POCL-FIA 

instrument and five replicate injections of the hydrogen peroxide standard in 50-L volumes.  The signals 

of the replicate injections were averaged, had standard deviations determined, and their respective relative 

standard deviation calculated.  The results of each preparation were tabulated into a column graph for 

easy comparisons. 

Determining Technique Applicability to Non-Aqueous Solvents 

 The POCL-FIA technique was tested for applicability by measuring known hydrogen peroxide 

concentrations in isopropanol and glacial acetic acid.  To do this the POCL-FIA instrument was calibrated 

using fresh preparations of the hydrogen peroxide in water standards at concentrations of 1.0 x 10
-1

, 5.0 x 

10
-2

, 1.0 x10
-2

, 5.0 x 10
-3

, 1.0 x 10
-3

, 5.0 x 10
-4

, and 1.0 x 10
-4

 M.   

 With the instrument configuration calibrated, hydrogen peroxide standards in isopropanol and 

glacial acetic acid were prepared.  Standards of 5.0 x 10
-2

 M hydrogen peroxide in each solvent were 

prepared by diluting 57 L of the 30% stock hydrogen peroxide to 10 mL per solvent.  The 5.0 x 10
-2

 M 

standards were then used to create a second standard per solvent.  The second standard was made by 

diluting 100 L of the 5.0 x 10
-2

 M standard to 10 mL.  The concentration for the second standard was 5.0 

x 10
-4

 M. 

 The four standards prepared, two concentrations and two solvents, were injected in 50-L 

volumes to obtain respective POCL volumes.  The average of five replicate injections per standard-



89 

 

solvent combination was applied to the recently constructed calibration curve.  The back-calculated 

concentration of hydrogen peroxide was compared to that of the known concentration to produce a value 

of recovery per solvent per concentration level. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 The experimental results of the procedures described in the previous chapter are discussed here.  

The preparations of CdSe quantum dots immobilized in the selected polymers were evaluated for 

analytical application in peroxyoxalate chemiluminescence (POCL) coupled with flow injection analysis 

(FIA).  Optimization of the constructed flow injection apparatus was conducted to be able to produce and 

report data on the immobilized-quantum dot preparations. 

Quantum Dot Batch Preparation 

 Synthesis of the quantum dot batch solutions proved successful.  Several early attempts of 

producing the selenium precursor failed due to the insolubility of selenium powder in the 1-octadecene 

solvent.  The use of fresh of tri-n-octylphosphine oxide provided immediate dissolution of the selenium 

powder.  This demonstrated that reagent purity is of high importance during quantum dot synthesis. 

The smaller size quantum dots were produced first, QD520.  The nomenclature for naming the 

quantum dots synthesized stemmed from “QD” for quantum dot and the peak emission wavelength in 

subscript.  After injection of the selenium precursor, the reaction was carried out for approximately 5 

seconds between 270
o
 and 275

o
 Celsius.  The colloidal solution immediately became bright yellow 

throughout.  The flask containing the quantum dots was carefully placed into an ice-water bath to halt the 

reaction, and thus colloidal growth of the quantum dots.  Removing the chilled solution of quantum dots 

from the bath, the bright yellow had changed to a darkened and golden tint.  The change in color is 

suggested to be continued colloidal growth occurring in the center of the flask, where a temperature 

gradient had been formed. 

 The larger quantum dots, QD555, were synthesized by the same procedures as QD520, but were 

allowed to react for 60 seconds.  As reaction time continued, the color of the quantum dot solution 
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changed from bright yellow to golden yellow to burnt-orange and finally red.  The color shift from bright 

yellow to red could be described as following an exponential trend with red being observed for the 

longest time.  No color change was observed when placing the batch solution in the ice-water bath as seen 

with in the QD520 solution.  Both QD520 and QD555 solutions are displayed under white- and UV-light 

illumination in Figures 19 and 20, respectively. 

 

Figure 19.  Photos of synthesized yellow quantum dots with fluorescence emission at 520 nm 
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Figure 20.  Photos of synthesized red quantum dots with fluorescence emission at 555 nm 

Characterization of CdSe Solutions Using Fluorescence Emission Spectra 

 The prepared CdSe quantum dots were diluted in cyclohexane to 5% of their synthesized 

concentrations.  The diluted quantum dot solutions were then each transferred to a quartz cuvette for 

fluorescence emission characterization.  The emission spectra were used to provide size comparison 

between the CdSe dots due to the lack of transmission electron microscopy, TEM.  Several providers of 

colloidal CdSe quantum dots have labeled sizes by emission wavelengths. 

 The emission spectra were to also ensure that the size dispersity of the quantum dots did not 

overlap.  No overlap would distinguish size as a factor if results in the immobilized-quantum dot 

preparations had trending differences.  Fluorescence characterization was also performed on a portion of 

quantum dot solution extracted from both melt preparations in polymethylmetharcylate, PMMA.  These 

extracted solutions were also diluted to the same 5% as the original quantum dots prior to immobilization. 

 Holding the ex = 400 nm, the emission spectra of all CdSe solutions were scanned by recording 

the emission intensities at 5-nm intervals between the full instrument range of 200 nm to 800 nm.  Figure 

21 presents an overlay spectrum of all four solutions tested.  Peak intensities for the CdSe quantum dots 
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observed as yellow and red in visible light was at 520 nm and 555 nm, respectively.  It was observed for 

the extracted solutions that the peak wavelengths did not shift when exposed to high temperatures and a 

mixed acetone-octadecene solvent.  Spectral bandwidths were noted to change, however, providing 

insight to a change in the size dispersity.  Differences between the intensities were minimally suggestive 

that the environment during immobilization was not harsh on the non-passivated CdSe dots. 

 Sizes of the quantum dots were determined by applying the respective emission wavelengths to 

the polynomial equation presented by Dai et al. (112).  The sizes calculated were 2.6 nm and 3.2 nm for 

the quantum dots emitting at =520 nm and =555 nm, respectively.  These calculated sizes when 

compared with commercially produced CdSe are very agreeable (113). 

 

Figure 21.  Fluorescence spectra of CdSe quantum dots before and after immobilization 
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 Review of the fluorescence spectra overlay in Figure 21 presented observations that can be 

explained through quantum dot growth.  The differences between the solid and hashed lines for the QD520 

sample suggested additional growth during the immobilization procedure with applied heat.  

Confirmation can be made by the widening of the emission band, which is characteristic of increasing 

size dispersity of the colloidal quantum dots. 

 In reverse fashion, however, the QD555 dots exhibited a narrowing effect from the immobilization 

process with applied heat.  Statements (12) regarding Ostwald ripening coincide with the observation in 

Figure 21.  As the emission band narrowed, the size dispersity of the QD555 dots decreased through 

agglomeration creating larger quantum dots with smaller variation in size.   

It was noticed that no significant shifts in the peak emission wavelengths were apparent.  

Therefore, dramatic changes in the average quantum dot size were irrelevant as a change in the band gap 

due to dot size would have shifted the emission.  Also, stability of the quantum dots during exposure to 

high heat, near synthesis temperature, did not degrade.  The changes in emission intensity were suspected 

to be due to differences in the amounts of quantum dots immobilized with the PMMA substrate creating a 

concentration or dilution effect of the extracted portions tested.  

Optimization of Imidazole Concentration for POCL-FIA Measurements 

 Two series of solutions were prepared for determining the optimal concentration of imidazole for 

the POCL-flow system employed.   The solutions contained serially-diluted concentrations of imidazole 

in acetonitrile with 20 mM TCPO.  The first range of imidazole was wide covering five orders of 

magnitude, 1.0 x 10
-6

 M to 1.0 x 10
-1

 M.  After review of the first series data, a second and narrower range 

was analyzed.  The second range was 1.0 x 10
-5

 M up to 5.0 x 10
-4

 M. 

 Prior to analyzing each standard, the flow system was flushed with approximately 10 mL of the 

respective standard.  Peak intensities plotted dependent of the imidazole concentrations were averages 

from triplicate injections of locally purchased 3% hydrogen peroxide.  Because the initial series covered a 
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wide range of concentrations, the imidazole concentrations were converted to a logarithmic scale for ease 

in plotting.  The average peak intensity for the 1.0 x 10
-4

 M, or -4 by log scale, was the highest intensity.  

Figure 22 is a depiction of the initial range of imidazole standards. 

 

Figure 22.  Determination of optimal POCL-FIA catalyst concentration with wide range of imidazole 

standards 

 The data in Figure 23 showed a concentration range to bracket for pinpointing the optimal 

imidazole catalyst concentration.  A range from 1.0 x 10
-5

 M to 5.0 x 10
-4

 M, 10-500 M, was analyzed in 

identical fashion to the wide-range standards.  The results from the narrow range suggested that the 

optimal concentration was 50 M.  Figure 23 represents the narrow range of imidazole concentrations and 

respective average intensities.  With a minimal difference in average peak intensities between 50 M and 

100 M, the optimal concentration of imidazole for remaining analyses was chosen to be 100 M to 

simplify the FIA reaction solution preparation.  In regards to the 150 M standard’s low intensity, the FIA 

flow was reversed by mistakenly switching the peristaltic pump in reverse dispensing an unknown 
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volume from the analyzer into the standard prior to analysis.  As the higher concentration standards 

yielded a linear decrease of intensity with increasing concentration, the 150 M standard was ignored. 

 

Figure 23.  Determination of optimal POCL-FIA catalyst concentration with narrow range of imidazole 

standards 

Flowrate Optimization for POCL-FIA Measurements 

 The preparations of immobilized CdSe quantum dots in this study were subjected to FIA.  

Flowrates of the FIA configuration were taken into consideration due to the affects upon the injected 

sample’s diffusion into the reaction solvent, and thus the reaction kinetics.  This is one factor of many that 

influence the POCL-QD emission intensity that can be easily controlled. 

 The flowrate was determined through performing a series of injections of locally purchased, 3%, 

hydrogen peroxide into the optimal reaction solvent recipe.  The reaction solvent was a combination of 20 

mM TCPO and 100 mM imidazole in acetonitrile.  A portion of preliminary QDs immobilized with PI 

was used to create a POCL signal.   
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Beginning with the lowest pump speed, reaction solvent was introduced to flush the system prior 

to the first standard and between subsequent standards.  The peak intensity and peak life time was 

recorded per each injection of hydrogen peroxide.  The intensities recorded were plotted versus of the 

peristaltic pump’s flowrate per speed setting.  The data in Figure 24 presents the maximum CL intensities 

per flowrate.  Flowrates based on the pump’s speed settings were determined in preliminary experimental 

work.  Data in Figure 25 displays the peak shape and lifetime characteristics associated with the 

increasing flowrates.  The data in both Figures 24 and 25 were collected from the same experiment, 

however, the two highest flowrates were difficult of monitoring CL intensity as a function of time.  The 

CL signal was immediate upon injection. 

 

Figure 24.  Determination of optimal flowrate for POCL-FIA configuration 

Table 1.  Preliminary experimental data relating peristaltic pump speed setting to flowrates 
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Figure 25.  Shapes of POCL emission curves based on the flowrate of the FIA configuration 

 Based on the flowrate data and emission curve shape, the peristaltic pump speed was set at 250.  

The relative flowrate produced at this setting was approximately 6.3 mL/min.  This moderately high 

flowrate was selected for two reasons.  The first was its corresponding emission curve shape reaching its 

peak emission within 5 seconds, and returning to below 5% of the peak emission intensity.  Secondly, 

variations in the flowrate would not drastically affect the peak emission as seen by Figure 24.  If variation 

of the flowrate occurred by ± 1 mL/min, the peak emission would not differ by more than a few percent. 

 Data plotted in Figure 24 that peak intensity continued to increase with increasing flowrates.  

Flowrates above 6.3 mL/min were not used.  As the flowrate was increased to 10 mL/min and above the 

tubing of the FIA configuration began to fail.  Failure by tubing leaks and ruptures were observed, 

however, a 25% increase in peak emission intensity was noted. 
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Linearity of Immobilized Quantum Dot Preparations 

 The immobilized quantum dot preparations were evaluated for linear response to the 

concentration of aqueous hydrogen peroxide.  Concentrations ranging from 1.0 x 10
-4

 M to 1.0 x 10
-1

 M 

were injected into the flowing reaction solvent of 20 mM TCPO and 100 M imidazole.  Each 

immobilized quantum dot preparation was inserted into the flowcell then rinsed with the reaction solvent.  

The rinsing was performed to remove any residual 1-octadecene solvent from the preparation that may 

have remained.  A control of PI preparation without quantum dots was tested here with no CL signal 

resulting.  No controls for PMMA or LDPE were tested for such, and assumed to not contribute to CL in 

the absence of quantum dots. 

With the preparation readied in the flowcell, each individual hydrogen peroxide standard was 

injected in five replicates.  The POCL emission of one injection was allowed to deplete prior to the 

following injection was introduced.  Aliquots of 150 L were injected into the Rheodyne injector’s 50 L 

loop to rinse and remove the TCPO reaction solvent.  The final 50 L injected remained in the loop 

awaiting introduction to the flow path and reaction with TCPO to produce POCL. 

Resulting regression values for each immobilized quantum dot preparation were exceptionally 

linear.  Regression values, R
2
, were above 0.9750 for 10 of the 12 preparations.  The two preparations 

failing the linearity test were both quantum dot sizes encapsulated in PMMA.  Integrity of the quantum 

dots encapsulated was compromised by the solubility of the preparation in the acetonitrile-based reaction 

solvent.  Upon the second injection of the lowest hydrogen peroxide standard, the emission intensity had 

diminished completely.  This suggested that the quantum dots were leaching from the entrained polymer 

matrix. 
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Figure 26.  Linear plot of POCL emission dependent of hydrogen peroxide concentration with PI-QD 

melt and encapsulated immobilizations 
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Figure 27.  Linear plot of POCL emission dependent of hydrogen peroxide concentration with PMMA-

QD melt and encapsulated immobilizations 
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Figure 28.  Linear plot of POCL emission dependent of hydrogen peroxide concentration with LDPE-QD 

melt and encapsulated immobilizations 

The remaining 10 preparations exhibited linearity across three orders of magnitude.  Improved 

linearity above R
2
 = 0.9900 was observed by bracketing the concentration range between 5.0 x 10

-4
 M to 

5.0 x 10
-2

 M.  This concentration range of aqueous hydrogen peroxide relates to 17 ppm to 1700 ppm.  

This is a decent range for trace measurements, however, increased sensitivity has been observed for other 

POCL applications (47, 65, 96, 100).  The PI-QD520-E and LDPE-QD520-M immobilized preparations, 

however, decreased in linear response when bracketing the concentration to R
2
 = 0.9194 and R

2
 = 0.9506, 

respectively.  This decrease in linearity displayed the effect of the 1.0 x 10
-1

 M standard influencing the 

linearity of the trendline.  Table 2 presents a summarized layout of the linear regression values to their 

respective hydrogen peroxide concentration ranges and immobilized quantum dot preparations. 
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The regression values remaining above R
2
 = 0.9000 as increasing concentrations of hydrogen 

peroxide are injected were promising.  This suggested two points of interest; one being that hydrogen 

peroxide did not attack the polymer substrates leaching quantum dots.  The second point was that 

numerous consecutive injections could be made on a single preparation.  Additional data on the second 

point were produced by determining the robustness of each preparation, which is discussed later. 

Table 2.  Summarized comparison of linear regression values for immobilized quantum dot preparations 

 

In regards to the sensitivity, the detection limit was determined to be between the lowest 

standards of hydrogen peroxide, 1.0 x 10
-4

 M and 5.0 x 10
-4

 M.  Standards down to 1.0 x 10
-8

 M, 0.34 ppb, 

were also prepared by serially diluting the 1.0 x 10
-4

 M standard.  Injections of these ultra-trace standards 

did not produce any observable emission as read by the analog output of the FIA instrument.  A response 

was not observed until the 1.0 x 10
-4

 M, 3.4 ppm, standard was injected.  For all acceptable preparations 

the response of the 3.4 ppm standard provided an emission signal value of three or lower.  In the case of 

the FIA instrument configuration used for the experimental studies, the noise was considered to be less 

than three on the most sensitive setting.  This provided a signal-to-noise ratio of 3/N, and thus a LOD for 

all preparations at approximately 5 ppm to15 ppm. 
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Robustness of Immobilized Quantum Dot Preparations 

 An important analytical characteristic of immobilized reagents in a flow system is the number of 

sample injections it can withstand.  This is the definition as to how robust the immobilized reagent is in 

its respective configuration.  Design and results of the linear range evaluations provided insight that 

consecutive injections of the analyte, aqueous hydrogen peroxide, could be made with slight change in 

emission intensity. 

 The robustness of each immobilized quantum dot preparation was measured as a decrease of the 

intensity over 20 injections.  Twenty was chosen as it is one-fifth of 100, allowing an easily extrapolated 

value to be calculated.  Hydrogen peroxide, 1.0 x 10
-2

 M, was injected producing a signal centered in the 

sensitivity range selected.  After 20 injections were made, the first three and final three injections were 

averaged separately.  This was done to reduce any injection-to-injection variability.  The difference 

between the two averages was calculated.  Dividing the difference by the larger average yielded the 

percentage drop in emission intensity.  The immobilized quantum dot preparations along with their 

experimental and extrapolated percentage drops are presented in Table 3. 

Table 3.  Summary of the robustness values of the immobilized quantum dot preparations 
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 The extrapolated injection values suggested that with a linear assumption over 100 consecutive 

injections can be made on a single portion of the preparation.  Unfortunately, no significant correlation 

could be made between the intensity loss and quantum dot size or polymer substrate.  It was observed that 

the smaller quantum dots in melted preparations for each polymer substrate exhibited better robustness 

than others.  If size of the quantum dot was a factor, the larger QD555 dots would be better retained and 

not as easily leached as the smaller QD520 dots.   

The non-correlated values could simply be variation of the orientation of the portions of 

immobilized quantum dot preparations in the flowcell.  The flowcell’s primary consideration for 

construction was to be reusable through the course of the study.  The design proved well in that 

consideration; however, holding the portion in a fixed position relative to the photomultiplier tube 

window was not accurately controlled.  The portion if disturbed by the flow of reaction solvent could be 

twisted or tilted from its original orientation during the experiment.  The flowcell’s compartment was 

small enough to make this a negligible factor for this study.  In more strenuous studies, location of the 

portion with respect to the detector would need to be fixed. 

Stability of Immobilized Quantum Dot Preparations 

Oxidation is an inevitable effect of the surrounding atmosphere.  Unpassivated quantum dots are 

known to undergo optical changes when oxidized (30,35).  The quantum dots prepared for this study were 

not passivated prior to immobilization.  Thus for acceptable application to FIA and other analyses, the 

immobilized quantum dots need to be stable over a period of time.  Stable immobilized quantum dots 

would involve less materials and time preparing for analyses. 

The immobilized CdSe quantum dots were subjected to a 30-day stability study.  Once every 10 

days, fresh portions of each immobilized preparation were placed in the FIA instrument for POCL 

intensity measurements.  Day zero intensity measurements were taken within hours of preparing all 

immobilized quantum dot preparations.  The plots in Figures 29-31 show an offset from zero that 
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accounts for the time between preparation and analysis.  Each intensity measurement used to plot the 

stability over time was an average from five replicate injections.  Aqueous hydrogen peroxide at 1.0 x 10
-2

 

M, 340 ppm, was used as the standard. 

Figures 29-31 show the time plots of the stability for the quantum dots immobilized in PI, 

PMMA, and LDPE, respectively.  The average POCL intensities increased by 35% to 417% of the Day 0 

intensity averages by Day 10.  The overall intensity increase was suggestive of residual quantum dot 

solvent, 1-octadecene, present during Day 0.  Quantum dots remaining in the residual solvent were 

possibly rinsed from the preparations in the FIA instrument.  Following 10 days of sitting in a storage 

vial, presence of residual solvent was non-existent.  This observation alluded to the intensity increasing as 

a result of the dried residual solvent.  The CdSe quantum dots remaining in the solvent were considered to 

be adsorbed on the polymer surface.  Further evidence of the adsorption to the polymer surface is the 

similar intensities following on days 20 and 30. 

In respect to the stability exclusively, the immobilized quantum dots were very stable for a one-

month period.  This proved that quantum dots could be immobilized with any of the three selected 

polymers and be used for multi-day analyses.  This decreased the need to immobilize the quantum dots 

prior to every experiment.  Stability of the quantum dots was not compromised either.  Though 

fluorescence measurements were not performed on the preparations individually for changes in 

wavelengths; ultraviolet light illuminations did not show any dramatic color shift.  No color changes were 

indicative of alterations in the surface chemistry of the CdSe quantum dots. 

The preparation PI-QD555-M showed a decrease in POCL intensity rather than increase.  The 

decrease was suspected to be related to the portioning of the preparation used on Day 0.  It was noticed 

that the quantum dots were not uniformly mixed into the polymer matrix of the melted preparations.  Use 

of ultraviolet light proved that concentrated areas of quantum dots existed.  No change was observed for 
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LDPE-QD520-M.  Because this preparation was made by the polymer melting technique, the residual 

quantum dot solvent must have been completely dried before any POCL-FIA measurements. 

Table 4.  Summary of average POCL intensity changes during one-month stability study 

 

 

Figure 29.  Stability of PI-QD preparations during one-month period based on POCL intensity 
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Figure 30.  Stability of PMMA-QD preparations during one-month period based on POCL intensity 
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Figure 31.  Stability of LDPE-QD preparations during one-month period based on POCL intensity 

Variability of Immobilized Quantum Dot Preparations 

 Analytical methods or techniques that are fit-for-use must have low variability in analyte 

response.  For trace analyses variability must be minimal.  If a sample was to normally exhibit 5 ± 6 ppm 

with upper and lower specification limits of 0 ppm and 10 ppm, the sample would fail to meet acceptable  

specifications.  This creates confusion in the true result, and the method is unacceptable for use. 

 The study performed evaluated the variability in each immobilized quantum dot preparation.  

Three replicate preparations were made for each polymer, quantum dot size, and immobilization 

technique combination.  The variability was tested within a single replicate, and also across the three 

replicates.  Five replicate injections of 1.0 x 10
-2

 M, 340 ppm, aqueous hydrogen peroxide were made into 

the FIA instrument containing a portion of each immobilized quantum dot preparation.  The resulting 
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POCL signals were recorded and statistical analysis on them followed.  The variability data were 

summarized into Tables 5 and 6. 

Table 5.  Variability of Immobilized Quantum Dot Preparations within Single Batch Preparation 
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Table 6.  Variability of Immobilized Quantum Dot Preparations across Multiple Batch Preparations 

 

 Only four immobilized quantum dot preparations were tested.  Stock TCPO solids used for 

preparing the FIA reaction solvent was in diminishing supply.  Another batch of TCPO was synthesized; 

however, the FIA instrument injector began developing plugging issues from its use.  This plugging 

required many injector rebuilds and cleanings.  Observations during the repetitive troubleshooting 

revealed white crystalline material that was insoluble in the FIA reaction solvent acetonitrile.  The 

crystals though were soluble in distilled water used to rinse the injector parts.  Crystalline matter was also 

found in the flask containing the reaction solvent.  Literature (81) states similar observations leading to 

the insolubility of the 1,1-oxalylimidazole intermediate in acetonitrile.  Because imidazole was added to 

the TCPO in acetonitrile, this was suspected to cause the injector plugging. 

 The four immobilized preparations tested all contained the QD520 size quantum dots.  Design in 

polymer selection and immobilization technique was such that comparison could be made.  Review of 

Table 5 shows that variability within the portions of single batches was acceptable.  The variability was 
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3.2% RSD to 8.6% RSD for all portions except those associated with PI-QD520-M.  Combined statistics 

of each single batch preparation showed that variability ranged from 6.2% RSD to 26.9% RSD.  This 

suggested that concentrated areas of immobilized quantum dots existed in the polymer matrices.  The 

difference between portions of the LDPE-QD520-M preparation supported the previous statement.  Low 

variability of the PMMA-QD520-M preparation was considered a result of the immobilization technique.  

Because the acetone co-solvent was required to mediate the quantum dots to the polymer; the polymer 

likely soaked in the quantum dots evenly as their solvent evaporated. 

 Variability was also tested across multiple batches of immobilized quantum dot preparations.  

The results displayed in Table 6 show similar character and response as with the single batch variabilities.  

Portions individually from multiple batches yielded 3.2% RSD to 11.3% RSD that are acceptable for 

analytical procedures.  The overall variabilities ranged from 7.7% RSD to 26.9% RSD.  The PI-QD520-M 

preparation exhibited this highest individual batch variability between 10.8% RSD and 14.4% RSD.  This 

preparation was made by melting chips of PI, which took longer to liquefy and mix into solution with the 

quantum dot solvent.  As for the LDPE-QD520-M preparation, the large % RSD value of 18.8% was 

another suggestive set of data related to concentrated areas of quantum dot population. 

 Comparisons of the polymers selected for immobilizing the CdSe quantum dots did show a 

difference between PI and the other two polymers.  No significant difference in variability was observed 

between PMMA and LDPE when looking at individual portions.  As mentioned previously the melt 

technique to immobilize quantum dots with PI required melting chips of the polymer.  The polymers 

PMMA and LDPE were in powder and flake forms that made liquification easier than seen with the PI 

chips.  Better mixing with the respective quantum dot solvents provided better color uniformity in the 

PMMA and LDPE preparations.  This was not the case observed when mixing melted PI chips.  Minor 

swirling was observed if the PI chips were not completely melted. 
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 Immobilization technique comparison did not show any significant difference.  These data are 

evidence that the melt preparation is equally acceptable as the encapsulated preparations.  The 

comparable variabilities mean that less labor and materials are required to immobilize CdSe quantum dots 

in LDPE.  Ignoring the data from the first batch of LDPE-QD520-M due to a concentration of quantum 

dots; reduces the variability to approximately 13% RSD.  This corrected combined variability was then 

comparable to the encapsulated preparation of immobilized quantum dots. 

Recovery of Hydrogen Peroxide in Non-Aqueous Solvents 

 Most applications of POCL coupled with FIA lie in the aqueous realm for immunoassays due to 

biological compatibility.  The POCL-FIA configuration in this study was tested for application with non-

aqueous solvents.  The solvents of choice were isopropanol and glacial acetic acid.  These are common 

organic solvents with multiple uses. 

 The FIA instrument was first calibrated using aqueous standards of hydrogen peroxide ranging 

from 1.0 x 10
-4

 M to 1.0 x 10
-1

 M, 3.4 – 3400 ppm.  Following the calibration standards of 17 ppm and 

1700 ppm hydrogen peroxide were prepared in each non-aqueous solvent.  Each non-aqueous standard 

was injected in five replicates.  The resulting POCL signals were recorded and compared against the 

aqueous calibration curve.  Signals by both non-aqueous solvent systems provided intriguing 

observations. 

 Standards of hydrogen peroxide in glacial acetic acid did not produce any POCL signals.  Both 

concentrations of hydrogen peroxide had no observable POCL emission.  The sensitivity of the 

instrument was increased, however, emission remained undetectable.  Standards in isopropanol on the 

other hand produced POCL signals above the selected sensitivity ranges.  Blank isopropanol injections 

were recorded to produce POCL signals equivalent to the aqueous 5.0 x 10
-4

 M hydrogen peroxide 

standard.  It was determined that non-aqueous POCL reactions cannot be compared to an aqueous 

calibration curve for recovery studies.   
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Consideration of the chemistry behind the POCL reaction proposed that glacial acetic acid may 

inhibit the cyclization of the peroxyoxalate following the release of imidazole from 1,1-oxalylimidazole.  

Sterics and electron repulsion by the acid’s carbonyls could be the inhibiting factors.  Isopropanol, 

however, undergoing nucleophillic attack on the peroxyoxalate does not create a steric effect.  The 

cyclization of the peroxyoxalate compound is essential to create the proposed high-energy intermediate, 

1,2-dioxetanedione.  A final mention regarding the isopropanol solvent is that the observation of its 

intense signal compared to those of aqueous injections may provide means of increasing the POCL-FIA 

system’s sensitivity to reach sub-ppm detection limits. 
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CHAPTER 5 

CONCLUSIONS 

 Synthesis of batch quantities of CdSe quantum dots yielded two moderately disperse sizes of 

quantum dots.  The colors of the quantum dots were an indicator to the size differences.  Fluorescence 

spectra for both batches isolated emission peaks at wavelengths of 520 nm and 555 nm.  Their 

immobilization with polymers such as polyisoprene, polymethylmethacrylate, and low-density 

polyethylene proved promising for application to peroxyoxalate chemiluminescence coupled with flow 

injection analysis.  Comparisons between the immobilization techniques of melting and encapsulating 

exhibited minimal differences.  This suggested that the quicker and less expensive route of melting the 

polymer was as reliable as the encapsulated quantum dots. 

 During the immobilization of quantum dots in polymethylmethacrylate, excess quantum dot 

solvent were available for extraction.  The quantum dots when diluted in cyclohexane retained 

fluorescence at the wavelengths, 520 nm and 555 nm.  Changes in the size dispersity were evident by the 

spectra.  It was observed that quantum dot growth could be halted then restarted, while Ostwald ripening 

was occurring during the melt immobilization process. 

Preparations of the immobilized quantum dots showed exceptional linear response to 

concentrations of aqueous hydrogen peroxide standards.  Linear regressions over three orders of 

magnitude were 0.9775 and above.  The range of concentrations was 1.0 x 10
-4

 M to 1.0 x 10
-1

 M, or 3.4 

ppm to 3400 ppm.  A few immobilized preparations had R
2
 > 0.9900, such as PI-QD555-E, PMMA-

QD520-M, and LDPE-QD520-E. 

Consecutive injections on each immobilized quantum dot preparation revealed that they were 

robust through 20 injections.  Based on POCL intensity decreases, an efficiency decrease up to 16.2% 

was calculated.  The loss in efficiency was assumed to be the leaching of CdSe quantum dots from the 
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polymer substrate into the reaction solvent.  By also assuming that efficiency loss was a linear function, 

100 consecutive injections of aqueous hydrogen peroxide are possible.  The degrading efficiency over 

injections, however, would require controls to be randomly injected for intensity correction.  A promising 

observation for application was with the LDPE-QD520-M showing no efficiency loss over the 20 

consecutive injections made. 

Stability also provided promising results.  Ten days after preparing the immobilized quantum 

dots, the stability for most preparations increased between 35% and 417% from their initial intensities.  

These increased intensities were consistent through the remaining 20 days of testing.  The PMMA-

QD520-M preparation displayed the 417% increase.  This was suspected to be a result of residual 

quantum dot solvent on the surface of the polymethylmethacrylate substrate drying over time.  Quantum 

dots under this circumstance would be expected to adsorb to the polymer surface and possibly form a thin 

film to protect them. 

The variability in the preparations was acceptable for analytical application.  Several preparations 

had less than 10% RSD.  Within a single batch and across multiple batches of immobilized quantum dots, 

PMMA-QD520-M showed the least variability at 6.0% RSD and 7.2% RSD, respectively.  The largest 

variability was seen in the LDPE-QD520-E preparation.  Single, 19% RSD, and multiple, 27% RSD, 

batches provide insight that the quantum dots were concentrating in areas of the polymer substrate.  This 

non-uniformity sets the stage for experiencing variability when portioning for testing.  Improved mixing 

of the quantum dot solvents with the polymers should negate the high variability. 

Determination of hydrogen peroxide in non-aqueous solvents such as isopropanol and glacial 

acetic using immobilized CdSe quantum dots was not a direct application.  The chemistries involved 

between each solvent with the POCL system showed that glacial acetic actually quenches the POCL 

reaction as no emission was detected.  Moderate concentrations of hydrogen peroxide and the most 

sensitive setting was still absent of a POCL signal.  Isopropanol acted in opposite fashion of glacial acetic 
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acid.  Emission intensities from standards in isopropanol had higher maximum values.  The lifetime of the 

emission curve was much shorter also.  The observation of isopropanol to the POCL system suggested 

that sub-ppm detection may be possible. 

The integrities evaluated for the immobilized CdSe quantum dots showed that techniques used 

created materials suitable for analytical applications in POCL-FIA.  Particular preparations of PMMA-

QD520-M and LDPE-QD520-E performed the best.  Ignoring the portion of LDPE-QD520-E that skewed 

the variability results, the preparation was deemed fit-for-use.  Several opportunities, however, were 

identified for improvement.  Addition of a semiconductor layer to the CdSe quantum dots would increase 

the photoluminescence efficiency and intensity.  Also, improved mixing control while heating the 

polymers should reduce the variability due areas concentrating with quantum dots.  Finally, the crude and 

laboratory-built FIA instrument had several improvement factors such as tubing length, rigidity of the 

configuration, and more sensitive electronics. 
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