
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

8-2016

Silver-Polymer Nanocomposites
Anita N. Paul
East Tennessee State Universtiy

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Organic Chemistry Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Paul, Anita N., "Silver-Polymer Nanocomposites" (2016). Electronic Theses and Dissertations. Paper 3077. https://dc.etsu.edu/etd/
3077

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F3077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F3077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F3077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=dc.etsu.edu%2Fetd%2F3077&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


 Silver-Polymer Nanocomposites 

_______________________________________ 

 

A thesis 

 presented to 

the faculty of the Department of Chemistry 

 East Tennessee State University  

 

In partial fulfillment 

of the requirements for the degree 

 Master of Science in Chemistry 

_______________________________________ 

 

by 

Anita Paul 

August 2016 

_______________________________________ 

 

Dr. Aleksey Vasiliev, PhD, Chair 

Dr. Greg Bishop, PhD 

Dr. Hua Mei, PhD 

 

Keywords: Silver nanoparticles, Nanocomposites, Thiolation, Condensation, Colloidal 

dispersion, Polymers, Coating, Dispersibility, Bactericide.  



2 

 

ABSTRACT 

 

Silver-Polymer Nanocomposites 

by 

Anita Paul 

The objective of this research was the development of an efficient method for the preparation of 

silver-polymer nanocomposites containing finely dispersed silver nanoparticles. The surface of 

nanosilver was functionalized by thiolation with 2-aminoethanethiol. Amino-modified nanosilver 

was covalently bonded to polyacrylic acid, an acid terminated polylactic acid, ester terminated 

poly(D,L-lactide-co-glycolide) and acid terminated poly(D,L-lactide-co-glycolide) by 

carbodiimide method using diisopropyl carbodiimide. Esterification of the carboxyl groups of 

Ag-polyacrylic acid by hydrochloric acid in methanol resulted in the dispersion of Ag 

nanoparticles in the polymer. The reaction of the ester terminated polymer with the 

functionalized nanosilver was due to the aminolysis of the ester bond in the polymer chain by the 

surface amino groups. Silver-polymer nanocomposites obtained with acid terminated polymers 

contained highly dispersed nanosilver in the polymer as compared to the ester terminated 

polymer. The attained biodegradable nanocomposites confirmed X-ray contrast and bactericidal 

properties, which could be eventually used for biomedical applications. 
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CHAPTER 1 

INTRODUCTION 

Nanomaterials 

 Nanotechnology alludes to the field of science and engineering and is exclusively 

allocated to nanomaterials having dimensions in the order of 100 nm or less. The birth of 

nanoscience could be attributed to Michael Faraday who had reported in 1857 that the intense 

red color of certain stained glass was derived from small particles of gold. He had also indicated 

that the variation in the size of gold particles gave rise to a variety of resultant colors1 (Fig. 1). 

 

 Figure 1: Slide that Faraday used in his lecture in gold sols2 

Nanomaterials are of great importance in the scientific world due to the materials being a 

bridge between bulk materials and isolated atoms and molecules. The nanoscale materials are not 

made up of single atoms but clusters of atoms and molecules, for example, 3.5 atoms of gold or 8 

hydrogen atoms lined up in a row are nearly 1 nanometer long. The mass of a nanomaterial is 

exceedingly small and its gravitational force is insignificant due to the small size of the particle.3 

The fraction of atoms at the surface of the nanoparticles are increased due to the large surface to 

volume ratio. Consider a cube with edges 1 cm in length – divided into cubes with edges 1 mm 

in length – divided into cubes with edges 1 nm in length. Each time the 1cm cube is divided into 

smaller cubes, the volume of cubes remains constant whereas the surface area increases 
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significantly. The surface area of 1 cube is 0.0006 m2 whereas the surface area of 1021 nanocubes 

is 6000 m2. This is illustrated in the diagram of cubes in Fig. 2.4   

 

Figure 2: A simple model of the surface area of nanoparticles Adapted from 4 

 Nanomaterials have various properties as compared to bulk metals. They differ in 

quantum effects, optical properties, catalytic properties, melting point and mechanical properties. 

a) Quantum Effects. In bulk metal, as the atoms come closer, the lower and the higher energy 

bands overlap forming a continuous band of energy levels with the electrons moving freely. 

But as the particle size decreases below the Bohr radius of the semiconductor material, the 

electron becomes more confined in the particle leading to an increase in the band gap energy. 

The valence band and the conduction band breaks into quantized energy levels resulting in 

the formation of nanoparticles of various sizes. This band gap emission is observed to shift 

leading to a red emission for the largest particles and blue emission for the smallest 

particles.5 

b) Optical Properties. In a bulk metal, the electrons are excited to a higher energy level as the 

electrons on the surface of the metal absorbs the wavelength of incident light. These excited 

electrons then return to the lower energy level emitting a photon of light at the same 

wavelength. This causes a metallic glow and good reflectivity in silver metal due to the 
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inability of the absorption of light by the electrons bound to atoms in the metal. At the 

nanoscale level, depending on the size of the nanoparticles, the electron clouds will resonate 

with a particular wavelength of light and absorb that wavelength causing the color of the 

nanoparticles to change.6 This characteristic color change is due to the collective oscillation 

of the electrons in the conduction band known as the surface plasmon resonance.5 

c) Catalytic Properties. Since metal nanoparticles have a higher surface area, there is an 

increased catalytic activity on the surface. Gold is an inert material and it does not tarnish. It 

is also resistant to chemical attack. However, when bulk gold is broken down to nano size it 

can act as a catalyst and oxidize carbon monoxide. The exposed atoms at the surface of a 

gold nanomaterial are more reactive than gold atoms in the bulk form and this is the cause of 

the gold nanoparticles to act as a catalyst in chemical reactions.6 

d) Melting Point. A bulk gold melts at a specific melting temperature despite melting a bracelet 

or a big bar of gold whereas a nanomaterial melts at an extremely low temperature. Due to 

the exposure of number of atoms on the surface of a nanoparticle, heat can break the bond 

between these atoms at a low temperature and cause a decrease in the melting point of the 

nanoparticle.6 It was observed that the melting point of a 10 nm particle dropped below that 

of a bulk gold metal (1064 oC) due to the reduction in its particle size.7     

e) Mechanical Properties. The tensile strength and elasticity of a nanomaterial are higher than a 

bulk metal and this is visible in the case of silicon nanowires and bulk silicon. Silicon 

nanowires are resilient and can be deformed very easily whereas bulk silicon is very brittle 

and has less deformability.8  
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                                                        Silver Nanoparticles  

Synthesis by Chemical Reduction 

The reduction is the gain of electrons or a decrease in oxidation state by a molecule, atom 

or ion. In a chemical reaction, an oxidizing agent gains electrons and is itself reduced whereas a 

reducing agent loses electrons and is oxidized. The reduction method is well known for the 

preparation of silver nanoparticles which are to be used as stable dispersions in organic solvents. 

This is done by the reduction of silver ions. Reducing agents such as sodium borohydride, 

hydrazine and formaldehyde can be said to reduce silver salts such as silver acetate, silver 

nitrate, to produce nano silver particles. Zielinska et al. prepared silver nanoparticles by the 

addition of silver precursor (silver nitrate) dropwise into an aqueous solution of sodium 

borohydride resulting in the formation of Ag nanoparticles. Sodium borohydride was also used 

for stabilizing the growing silver nanoparticles by providing a particle surface charge.9     

Sodium borohydride on reaction with AgNO3, formed a light yellow solution, which then 

changed to violet color and ultimately grayish color Ag nanoparticles.10 

                                  2 AgNO3 + 2 NaBH4                 2 Ag + H2 + B2H6 + 2 NaNO3  

Also, silver nanoparticles were prepared by mixing silver nitrate as a precursor with sodium 

dodecyl sulfate, sodium citrate, and hydrazine hydrate. Sodium citrate and sodium dodecyl 

sulfate were used as stabilizing agents to stabilize the nanoparticles against aggregation by steric 

repulsion and hydrazine hydrate was used as a reducing agent.11  

 Photochemical Method  

This method is based on the reduction of the metal cation Mn+ to M0 by light assisted methods. 

Here the mechanism is based on the addition of one or more electrons to a photoexcited species. 

Silver perchlorate (AgClO4) in aqueous and alcoholic solution was subjected to photoreduction 
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by irradiation with UV-light at 254 nm. This photochemical reaction was based on the electron 

transfer from a solvent molecule to the electronically excited state of Ag+ to form Ag0.  

 

UV excitation is usually required in most instances since the metal cations and / or the metal 

salts absorb only in this region. It is advantageous as harsh conditions such as increased 

temperatures are avoidable resulting in easier control of shape and size of AgNP.12 

Properties of silver nanoparticles 

 Surface Plasmon Resonance 

Surface plasmon resonance (SPR) is the fundamental cause of the optical properties of 

silver nanoparticles. Surface plasmon resonance occurs when light incident on the nanoparticles 

is resonant with the collective oscillation of free conduction band electrons of the nanoparticle. 

This is dependent on the nanoparticle size, shape, inter-particle distance, dielectric properties of 

the nanoparticle and the surrounding medium.13 It was observed that certain wavelengths of light 

could cause the conduction electrons of the nanoparticle to oscillate and when the resonances 

were excited, the absorption and scattering intensities were found to be higher than similar sized 

non-plasmonic particles (Fig. 3). 
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Figure 3: Surface plasmon resonance14  

The absorption and scattering properties could be adjusted by regulating the particle size, shape 

and the local refractive index near the particle surface. It was noticed that small sized 

nanospheres absorbed light and had peaks toward shorter wavelength while large spheres had 

increased scattering and had peaks toward longer wavelength. This phenomenon was also 

perceived with the increase in the refractive index near the nanoparticle surface. There was also a 

noticeable change in the surface plasmon resonance of agglomerated silver nanoparticles with 

the shift toward lower energies (red shift). The aggregated silver nanoparticles looked gray in 

color whereas the deagglomerated particles appeared yellow in color.15 

Hydrophilicity of Silver Surface 

Hydrophilic molecules are those that form ionic or hydrogen bond with the water 

molecule. Silver nanoparticles, when exposed to the environmental surroundings, undergo 

oxidation and are contaminated. These metal oxides are susceptible to hydrogen bonding with 

the moisture in the environment. The bonds are strong and hence, water completely prefers to 

wet the surface 16 making silver more hydrophilic. 
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 Bactericidal Properties   

 Silver nanoparticles can affect the viability of bacteria through four distinct mechanisms.    

a) The permeability of the nanoparticles inside the cell membrane of the bacteria. The 

nanoparticles were visible not only on the surface of the cell membrane but also inside the 

cell membrane of the bacteria. When silver binds to the enzymes located on the bacterial 

plasma membrane, the enzymes change shape causing the enzymes to be activated. Due to 

the activation of the enzymes, silver nanoparticles easily permeate the membrane and enter 

into the bacterial cell. This prevents the nutrients from entering into the bacterial cell causing 

bacterial cell death (Fig. 4).17  

b) Binding of the nanoparticles to sulfur containing proteins of the cell membrane of the 

bacteria. After binding to the sulfur containing proteins, silver easily enters into the cell. 

Once inside the cell, silver reacts with other sulfur-containing proteins in the cell as well as 

sugar-phosphate backbone of DNA. Since bacterial cells do not contain membrane-bound 

organelles, silver nanoparticles can easily enter into the DNA of the bacteria to inhibit the 

cell division causing bacterial cell death.17 

c) Electrostatic interaction of the nanoparticles with the bacteria. The surface of the bacteria is 

negatively charged due to the dissociation of an excess number of carboxylic and other 

groups in the membrane. The nanoparticles immobilized in the carbon matrix experiences 

friction of the nanoparticles due to the movement inside the matrix and produces a charge on 

the surface. This causes an electrostatic interaction of the nanoparticles with the bacteria 

which may lead to the possibility of the bacteria’s inhibition.17 
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Figure 4: Interaction of E. coli, typhus, P. aeruginosa and V. cholera with silver nanoparticles17 

d) The presence of silver ions. The release of silver ions by the oxidation of nanoparticles upon 

contact with proteins in the cytoplasm liberates Ag+ ions thus increasing the toxicity and 

thereby playing a major role in the bactericidal effect of silver nanoparticles. Ionic silver 

interacts with the enzymes of the bacterial respiratory chain causing the death of the cell.18 It 

has also been proved that silver ions cause the DNA to lose its replication ability and 

therefore cause the inhibition of the bacteria.17 
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The ability of silver nanoparticles to penetrate into the human cell depends on their size. The 

smaller nanoparticles have stronger activity because of the increased surface to volume ratio. It 

has been reported by Zhang et al. that smaller AgNPs (5 nm to 28 nm) confined in the 

mitochondrial complex can produce large amounts of hydrogen peroxide and induce 

considerable inflammasome formation because they can cause intense leakage of cathepsins 

from lysosomes. This can also cause more efflux of intracellular K+ and produce a vast amount 

of superoxide. It has also been validated that silver nanoparticles and ionic silver can cause DNA 

damage from oxidation stress.19  

Applications of Silver Nanoparticles 

 The antibacterial effect of silver nanoparticles enables their use in the food industry as 

food storage containers, fresh food bags, disinfecting sprays, deodorants and other cosmetics. 

Spherical silver nanomaterials are found in antimicrobial plant sprays and are used to protect 

plants from bacteria, virus, fungi, and algae. They are utilized in wound dressings, dental 

hygiene, treatment of eye conditions, vascular prosthesis, catheters, and orthopedics. Various 

forms of nanosilver have been used in the field of electronics (transparent conducting films, 

transparent electrodes for touch screens). Solar cells use these nanoparticles to generate power 

and also to re-charge the batteries to supply power in the night.20 AgNP with localized surface 

plasmon resonance shift is used as a biosensor in detecting p53 protein levels in samples from 

head and neck squamous cell carcinoma (HNSCC) patients.21 Due to quantum confinement, 

semiconductor quantum supralattices (regular arrays of monodispersed semiconductor quantum 

dots) represented by a sodalite lattice containing silver halide [(8Ag,2X-SOD), where SOD = 

Si6Al6O24] can be used for non-linear optical materials like second harmonic generator.22 
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Silver-Polymer Nanocomposites 

 Nanocomposites are multiphase solid materials where one of the phases has dimensions 

of less than 100 nm. Silver nanoparticles can be incorporated into the polymer matrix to enhance 

its performance. Polymer functions not only as an excellent host for embedding nanoparticles but 

also for terminating the growth of the particles by controlling their nucleation.23 

Silver-polymer nanocomposites can be obtained using two main approaches. 

In situ Polymerization  

In the in situ method, the silver nanoparticles are produced inside a polymer by chemical 

reduction of a metallic precursor which is dissolved in the polymer. The reduction potential is 

from Ag+ to Ag0 and it uses several reducing agents like sodium borohydride, hydrazine etc. 

Curcumin-loaded chitosan-PVA silver nanoparticles film (CCPSNP) was prepared by the 

addition of AgNO3 to chitosan solution resulting in the formation of AgNP solution to which, 

poly(vinyl alcohol), glutaraldehyde (a crosslinker) and curcumin solution were added. Here the 

Ag+  ions were reduced to Ag nanoparticles on irradiation with sunlight (Fig. 5). 24 

 

Figure 5: Formation of chitosan-PVA silver nanoparticles film and curcumin-loaded chitosan 

nanoparticles film Adapted from 24 

Porel and his group synthesized Ag-PVA film by mixing an aqueous solution of AgNO3 and 

poly(vinyl alcohol) (PVA) wherein the precursor Ag ions from AgNO3 was reduced by the 
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hydroxyl groups of the PVA macromolecule.25 Ag-polyaniline nanocomposite was prepared by 

mixing aniline and silver nitrate as precursor after well rinsing with nitric acid.26 

Ex situ Polymerization  

In the ex situ method, silver nanoparticles are formed first and then dispersed into a 

polymer matrix. The nanoparticles that are formed possess higher dispersibility in the polymer 

and have long term stability against aggregation. Dispersion of nanoparticles was obtained by 

sonication27 (Fig. 6).  

 

Figure 6: Ex situ method 28 

Ag-poly(ethylene-co-propylene)-p-benzoquinone polymer matrix was prepared by dispersing Ag 

nanoparticles and para-benzoquinone in a toluene solution containing ethylene-co-propylene.29  

Fortunati et al. produced Ag-PLGA nanocomposites film by mixing PLGA (dissolved in 

chloroform) with Ag nanoparticles (dispersed in chloroform).30 Thin nanocomposites films, 

containing silver nanocrystal in a polystyrene matrix, were prepared by sonicating silver 

nanoparticles with toluene and polystyrene for even dispersion of the nanoparticles.31 

Ag-poly(methyl methacrylate)-poly(ethylene terephthalate) (Ag-PMMA-PET) film was prepared 

by electron beam evaporation of silver with PMMA-PET structure.32 Zeng et al. formed Ag-

polystyrene film by homogeneous dispersion of Ag nanoparticles in polystyrene solution with 

chloroform as solvent utilizing  ultrasonic agitation.33 Polyurethane nanocomposites were 
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prepared by dispersion of silver nanoparticles in polymer along with hexamethylene diisocyanate 

(HDI) and poly(butadiene adipate).34 Ag-polylactic acid was produced by dispersing 

carboxylated silver (prepared by thiolation with 3-mercaptopropionic acid) in a solution of 

polylactic acid.35 

Applications of Silver-Polymer Nanocomposites 

Optical Applications 

The optical activity is because of the surface plasmon resonance exhibited by the 

nanoparticles. 

Ag nanoparticles of smaller size in Ag-poly(N-vinylpyrrolidone) (Ag-PVP) showed surface 

plasmon resonance absorption maximum at 410 nm and also a feature at 350 nm signifying its 

quantum effects and hence can be used as color filters and /or UV absorbers.36Ag-poly(vinyl 

alcohol) (Ag-PVA) plasmonic optical sensor is used for monitoring chicken meat spoilage at 

room temperature by the color change of the Ag-PVA label from yellow to colorless.37   

Electrical Applications 

Ag nanoparticles in polyaniline resulted in an increase in electrical conductivity and 

dielectric properties by two orders of magnitude as compared to pure polyaniline matrix and is 

used in microelectronic devices.38 Nanocomposites of silver nanowires with polyamide 11 has 

good electrically conductive applications and hence used for protection of sensitive electrical 

systems in transportation, automotive industries.39 

Antimicrobial Applications  

Silver has antimicrobial properties and therefore it inhibits the growth of bacteria. A 

polymer with its characteristic morphology, serves as a matrix for silver, to be used as an 

antimicrobial agent. It is accordingly used in various applications. Silver with poly(ethylene 
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glycol)-poly(urethane-TiO2) demonstrated excellent activity against E. coli and Bacillus 

subtilis.40   

Ag-poly(vinyl alcohol)-poly(methyl methacrylate) nanocomposites synthesized using radical 

mediated dispersion polymerization was used as a semitransparent antimicrobial coating.41 

Preservation testing on the Ag-poly(ethylene glycol dimethacrylate) [Ag-poly(EGDMA)] 

microspheres had shown powerful antimicrobial properties over various bacterial strains and 

could be used as a preservative.42 Ag-chitosan was used in packaging films to protect against 

moisture, oxygen, flavor, aroma and oil thereby improving the quality of the food products.42 Ag 

nanoparticles with polyurethane was used as an efficient water filter to reduce the risk of water- 

related diseases like diarrhea and dehydration. Moreover, this nanocomposite was found to be 

stable and could not be washed by water flow because of the nanoparticles interaction with the 

nitrogen atom of polyurethane.43 The anti–microbial and anti-fungal activity of the Ag-chitosan-

poly(vinyl alcohol) nanocomposites films had demonstrated significant effects against 

Escherichia coli (E. coli), Pseudomonas, Staphylococcus, Micrococcus, Candida albicans and 

Pseudomonas aeruginosa.23 To enhance their remedial vigor as anti-microbial agents, curcumin 

encapsulated chitosan-PVA silver nanocomposites films were developed which showed 

enormous growth inhibition of E. coli.23 The antibacterial activities of the silver-poly(lactic acid) 

nanocomposite (Ag-PLA-NC) films were studied against gram-negative bacteria (Escherichia 

coli and Vibrio parahaemolyticus) and gram-positive bacteria (Staphylococcus aureus) and it was 

noticed that Ag-PLA-NC films possessed a strong antibacterial activity with an increase in the 

percentage of AgNPs in the PLA. Thus, Ag-PLA-NC films could be used as an antibacterial 

scaffold for tissue engineering and medical application.44 Silver–silica nanocomposite material 
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exhibited a very good antimicrobial activity against a wide range of microorganisms because of 

the release of Ag+ ions in a more controlled manner and at a lower rate.45 

Modification of Silver Surface by Thiolation 

SAMs are organic assemblies formed by the adsorption of molecular constituents from 

solution or the gas phase onto the surface of solids or in regular arrays on the surface of liquids 

(in the case of mercury and probably other liquid metals and alloys). The adsorbates organize 

spontaneously and sometimes epitaxially into crystalline or semicrystalline structures. There are 

innumerable head groups that bind to specific metals, alkanethiols (HS(CH2)nX), dialkyl 

disulfides (X(CH2)mS-S(CH2)nX), and dialkyl sulfides (X(CH2)mS(CH2)nX), where n and m are 

the number of methylene units and X represents the end group of the alkyl chain (-CH3, -OH, -

COOH). The most widely used head group is acquired from the adsorption of alkanethiols on 

silver. The thiols largely used are mercaptodecanoic acid, mercaptoethanol, 

mercaptoethanesulfonic acid and alkyl thiols C6-C18 which will make them well dispersible in 

aqueous and organic media.46 The tendency to agglomerate was reduced due to the increase in 

carbon atoms on the silver surface. These long chain alkyl thiols are stable because long chain 

alkyl thiols are highly ordered on the AgNPs providing an excellent protection of the metal 

surface against oxidation. They also protect the metal surface by removing the contaminating 

layers from the surface (Fig. 7).46 

The alkyl chains are also perpendicular to the silver surface in a self-assembled monolayer of 

alkane thiolates.47 The molecules in a SAM take conformations, that allow intense van der Waals 

interactions, to minimize the free energy of the organic layer and also to form hydrogen bonds 

with the neighboring molecules. The binding of an alkanethiol to the surface of the silver 
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changes the local refractive index and also cause a shift in the surface plasmon frequency. As the 

length of the alkyl chain increases so is the shift (~ 3 nm to the red for every additional carbon).46  

  

Figure 7: Self-assembled monolayer 46 

The chemical interaction of silver on treatment with organothiols is 48 

  

The Ag-S bond is a strong covalent bond and this interaction retains the chains on the surface in 

a long lasting fashion. 

Manz et al. reported that the adsorption of benzeneethanethiol, 3-mercaptopropanoic acid, and 3-

mercaptopropan-1-ol formed a monolayer on the surface of silver nanoparticles whereas a 

multilayer was formed due to the significant adsorption of 2-aminoethanethiol on the silver 

surface. This was due to the formation of ionic bonds by amine groups of adsorbed molecules 

with slightly acidic thiol groups of the molecules in solution thereby increasing the amount of 

adsorbed thiol. 

 

It was observed that amino-modified silver exhibited less agglomeration when compared with 

bare nanosilver. This confirmed that coating of AgNPs created a steric barrier on the surface 

preventing agglomeration and also increasing the stability of dispersions in organic media. It was 
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also observed that the presence of the dipole moment in the amino-modified samples favored 

their solvation by polar solvents like DMF and also adsorption of polymer molecules through 

their polar functional groups.49  

Objective 

The objective of this work was the development of an effective method for the preparation 

of silver-polymer nanocomposites containing finely dispersed silver nanoparticles and to utilize 

these nanocomposites as X-ray contrast and bactericidal agents for biomedical applications.  
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CHAPTER 2 

EXPERIMENTAL METHODS 

Chemicals and Reagents 

The chemicals used for the synthesis are listed in Table 1. 

Table 1: Chemicals 

Name Structure Characteristics Manufacturer 

Silver nitrate 

N
+

O

O
-

O
-

Ag
+

 

purity ≥ 99.0% 

MW=169.87 g/mol 

mp = 212 oC 

Sigma-Aldrich, 

St. Louis, MO 

2-Aminoethane-

thiol 
 

purity > 95.0%               

MW=77.15 g/mol  

mp = 94 - 99 oC 

TCI America, 

Portland, OR 

 

Silver 

nanoparticles 

 particle size =         

20-100 nm 

Ferro corporation, 

South Plainfield, NJ 

Diisopropyl-

carbodiimide 

 

purity ≥ 98.0% 

MW=126.20 g/mol 

bp = 145-148 °C 

Sigma-Aldrich, 

St. Louis, MO 

Polyacrylic acid 

 

MW = 1800 

Tg = 106 °C 

Sigma-Aldrich, 

St. Louis, MO 

Poly(D,L-

lactide) acid 

terminated 

 

MW=75,000- 

120,000  

Tg = 32.9 °C 

Sigma-Aldrich, 

St. Louis, MO 
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Table 1 (continued) 

Poly(D,L-

lactide-co-

glycolide) 

ester terminated 

 

lactide: glycolide 

85:15  

MW=50,000-75,000 

Tg = 45-50 oC 

Sigma-Aldrich, 

St. Louis, MO 

Poly(D,L-

lactide-co-

glycolide) 

acid terminated 

 

lactide:glycolide 

50:50  

MW=12,000-15,000 

Tg = 42-46 °C  

Lakeshore 

Biomaterials, 

Birmingham, AL 

 

Difco LB agar 

medium 

  Becton, Dickinson 

and Company, 

Sparks, MD 

Hydrochloric 

acid in methanol 

 3 M solution  Sigma-Aldrich, 

St. Louis, MO 

 

The culture used for microbiological study is Escherichia coli strain Dh5a. 

Other solvents and reagents used are tetrahydrofuran, N, N-dimethylformamide, acetone, 

concentrated HNO3, d-CHCl3, acetonitrile, NaOH. 

Synthetic Procedures 

Thiolation of Silver Surface 

Ultra-fine, high purity silver powder with the particle size in the range of 20 -100 nm was 

used for thiolation (Fig. 8). Preceding thiolation, silver was thoroughly washed with deionized 

water to remove any traces of surfactants. The grafting on the silver surface was accomplished 
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by adding 10 g sample of nanosilver to 15 mL of THF containing 2 x 10-3 mmol of 2-

aminoethanethiol. This suspension was stirred for 1 h, filtered, washed with THF and then air-

dried overnight. 

 

Figure 8: Thiolation of silver surface 

Synthesis of Silver-Polymer Nanocomposites 

The silver-polyacrylic acid (Ag-PAA) material was obtained by condensation of carboxyl 

groups of PAA with amino groups of the grafted 2-aminoethanethiol. 

PAA (2 g) was dissolved in 20 mL DMF on a hot plate. Amino-modified AgNPs weighing    

0.002 g, 0.01 g, 0.02 g, 0.04 g and 0.1 g were then dispersed in 20 mL of 10% solution of PAA 

in DMF using an Ultra-Turrax T25 disperser (IKA Works, Inc., Wilmington, NC). This was 

followed by dropwise addition of 0.05 g of crosslinker, diisopropylcarbodiimide (DIPC), 

dissolved in 1 mL DMF, to the amino-modified AgNPs, which had been dispersed in PAA.  

These solutions were stirred for 3 h at room temperature. They were then transferred to a rotary 

evaporator for the evaporation of DMF. The residue was then washed with acetone and air-dried 

overnight to form Ag-PAA material.  

Silver-poly(methylacrylate) (Ag-PMA) (1) nanocomposites were prepared by acid-

catalyzed esterification of the remaining COOH groups of grafted PAA. The obtained Ag-PAA 

samples (1 g) were weighed and dispersed in 50 mL hydrochloric acid in methanol. This reaction 

mixture was refluxed for 30 min. The solvent was then evaporated on an ultrasonic base for even 
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dispersion of nanoparticles. The residue attained was dried under vacuum at 110 oC for 2 h (Fig. 

9). 

 

Figure 9: Synthesis of Ag-PMA (1) 

Acid terminated PLA (2 g) was dissolved in 40 mL DMF, ester terminated PLGA (3 g) 

was dissolved in 60 mL DMF, an acid terminated PLGA (3 g) was dissolved in 60 mL DMF and 

DIPC (0.5 g) was dissolved in 10 mL of DMF respectively. This was subsequently superseded 

by the dispersion of different amounts of 0.02 g, 0.03 g, and 0.03 g of amino-modified AgNPs in 

20 mL of PLA solution, 30 mL of PLGA (ester terminated) solution and 30 mL of PLGA (acid 

terminated) solution. DIPC solution (0.1 mL) was added dropwise to each dispersion of amino-

modified AgNPs. The dispersion was then sonicated for 10 min on a Fisher Scientific ultrasonic 

bath. The sonication was repeated once again for 10 min with the remaining 20 mL of PLA 

solution, 30 mL of PLGA (ester terminated) solution and 30 mL of PLGA (acid terminated) 

solution for even dispersion of Ag nanoparticles. The non-dispersed silver was separated and the 

solvent was evaporated in the rotary evaporator for 2.5 h. The obtained product silver-poly(DL-
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lactide), the acid terminated Ag-PLA (2); silver-poly(DL-lactide-co-glycolide), ester terminated 

Ag-PLGA (3), and silver-poly(DL-lactide-co-glycolide), acid terminated Ag-PLGA (4) were 

washed with ethanol and then dried under vacuum overnight (Fig. 10).   

 

Figure 10: Scheme of the synthesis of nanocomposites 2-4 

Characterization 

Atomic Absorption Spectroscopy  

The contents of silver in the samples were determined by a Shimadzu AA 6300 atomic 

absorption spectrometer at λ = 328 nm. Ag-PAA samples (0.043 g) were dissolved in 

concentrated HNO3 and diluted to 50 mL with distilled water.  

The samples 2-4 (0.08 g) were dissolved in 5 mL concentrated HNO3 by slight warming. 

The solution was then diluted to 20 mL with distilled water and filtered. The filtrate was 

collected separately in a beaker. The residue was washed well with distilled water and then 
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washed with 5 mL concentrated 20% NaOH. This filtrate was added drop by drop to the filtrate 

that was collected initially in a beaker (prepared with concentrated HNO3) and then tested with 

the pH paper until it turned neutral. The residue on the filter paper was added to the filtrate and 

was dissolved by heating. The solution that was obtained was diluted to 50 mL with distilled 

water.  

Determination of Polymer Contents by Weight Method 

The amount of polymers bonded to silver were calculated using weight method. The 

nanocomposites 2-4 (0.5 g), containing known amount of silver, were weighed and dispersed in 

15 mL of acetonitrile. The insoluble silver was separated using a Sorvall Legend XI centrifuge 

(Thermo Fischer Scientific, Waltham, MA) for 15 min at 14,000 rpm. The solution was removed 

from the precipitate and the procedure was repeated with pure acetonitrile twice. The precipitate 

that was obtained was dried under vacuum overnight and the weight of the coated silver was 

determined on analytical balances. 

NMR Spectroscopy 

NMR spectra of Ag-PMA (1) sample were obtained using d-CHCl3 in a JEOL Oxford 

AS400 spectrometer at 399.8 (1H) and 100.5 (13C) MHz. 

X-ray Diffraction Analysis 

X-ray diffraction analysis of Ag-PMA (1) was conducted on a DRON 2.0 X-ray 

diffractometer. The monochromatic Cu-Kα radiation filtered by Ni, with λ = 0.154 nm was 

provided by an IRIS-M7 generator at 30 kV and a current of 30 mA. The scattering intensities 

were measured by a scintillation detector at 0.2o steps in the range of 2θ = 3-60o. 
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Transmission Electron Microscopy   

TEM image of Ag-PMA (1) was obtained with a Topcon EM 200 electron microscope 

at 80 kV. The sample was dispersed in a 50% ethanol solution using a W-385 sonicator for 2 min 

before imaging.  

Fourier Transform Infrared Spectroscopy 

FT-IR spectra of the Ag-PMA (1) samples were recorded on a Shimadzu Prestige-21 FT-

IR spectrometer (Kyoto, Japan). The preparation of samples 2-4 for FTIR was similar to the 

method described in 2.3.2. A small amount of well-powdered samples 2-4 were placed on the 

sample holder and FT-IR spectra were recorded. 

Ultraviolet-Visible Spectroscopy 

UV-vis spectra of surface plasmon resonance of samples 2-4 were recorded on a 

Shimadzu UV-1700 PharmaSpec instrument (Kioto, Japan). The samples were dispersed in DMF 

on a Fisher Scientific ultrasonic bath for 10 min before the measurements were taken. The 

solutions of corresponding polymers were used as reference solutions. 

Scanning Electron Microscopy 

SEM images of samples 2-4 were obtained utilizing a Zeiss DSM 940 scanning electron 

microscope (Jena, Germany) at 20 kV. The samples were deposited on a copper support without 

sputter coating and then loaded onto the SEM holder. 

X-ray Imaging 

X-ray images of samples 2-4 were obtained using a Philips Bucky Diagnost apparatus 

(Amsterdam, Netherlands) at 40 kV and 0.8 mA. The exposure time was 4 ms. The samples for 

imaging were prepared by placing the materials between two glass slides and the thickness of the 

samples was 1mm. 
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Microbiological Study  

The solutions for the toxicological study of samples 2-4 were prepared by dissolving 

these materials (5 wt%) in acetonitrile. The solutions were well sonicated in an ultrasonic bath to 

achieve the fine dispersion of AgNPs. Solutions of corresponding polymers of the same 

concentration were used as control solutions. A 20 μL portion of each sample solution was 

transferred on an agar medium in a petri dish. After drying the samples, E. coli was cultured on 

the media at 37 oC for 24 h. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

Ag-PAA Nanocomposites 

Composition 

Ag-PAA samples were prepared by the reaction of five different amounts of amino-

modified silver nanoparticles with polyacrylic acid. Atomic absorption spectroscopy (AAS) was 

used to determine the Ag content in the five Ag-PAA samples and it appeared that these samples 

consisted 0.2, 0.5, 0.9, 1.4 and 2.7 wt% of silver. The samples were dark gray and contained 

fully agglomerated Ag nanoparticles (Fig. 11). 

Esterification reaction was performed on these samples and the samples with 0.2-0.9 wt% of 

silver rapidly became clear demonstrating its total dissolution and formation of fine colloidal 

dispersions of Ag nanoparticles. It was perceived that the sample with 1.4 wt% of silver 

displayed some cloudiness in the solution, nonetheless the solution was stable without any 

precipitation. The evaporation of the solvent resulted in a light yellowish transparent composite 

material. The sample with 2.7 wt% of silver was not dispersed wholly and the precipitation of 

silver was noticed (Fig. 11) 

 

Figure 11: Agglomeration and deagglomeration of silver nanoparticles (a: Ag-PAA, b: Ag-PMA) 
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Fourier Transform Infrared Spectroscopy 

 The esterification of carboxyl groups was confirmed by FT-IR spectroscopy. The √(C=O) 

band observed at 1703 cm-1 in the IR spectrum of PAA (Fig. 12) 50 was shifted to 1720 cm-1 in 

the Ag-PMA (1) sample. The broad band of COOH groups at 3500-2500 cm-1 was moved to 

3372 cm-1 depicting a decrease in intensity of the COOH band. This band could be associated 

with the still existing free COOH groups which have a diminished aptitude to H-bonding. There 

was an increase in the intensity of √ (CH) bands which was visible by its shift from 2939 to 2955 

cm-1 proving the presence of the OCH3 group.51 A band at 887 cm-1 also confirmed the existence 

of OCH3 group (Fig. 13) 

 

Figure 12: IR spectrum of Polyacrylic acid 

 

Figure 13: FT-IR spectrum of Ag-PMA 

Wavenumber cm 
-1

 



38 

 

Nuclear Magnetic Resonance Spectroscopy 

NMR spectroscopy was used to confirm the esterification of carboxyl groups in the 1H 

NMR spectrum of Ag-PMA (1). The signals at 1.5-2.2 ppm (bm, CH2) and 3.4 ppm (s, CH) were 

similar to the corresponding signals for PAA.52 However, an additional signal was observed at 

3.6 ppm pertaining to a singlet, CH3O group. The signal at 8.9 ppm (bs, COOH) could be 

attributed to the existing isolated carboxyl groups.53 This signal was not present in the spectrum 

of PAA, as the H-bonding between COOH groups shifted this signal to 12.2 ppm. In the 13C 

NMR spectrum, the signals at 23, 26 and 28 ppm represented CH2 group and the signal at 41 

ppm was identified as CH group. The signals at 52 ppm and 176 ppm were portrayed as CH3O 

and C=O groups respectively (Fig. 14).  

 

 

 Figure 14: NMR Spectra of Ag-PMA (a: 13C NMR; b: 1H NMR) 
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Transmission Electron Microscopy 

The presence of silver in Ag-PMA was confirmed by TEM. This imaging showed no 

agglomeration of the Ag nanoparticles (Fig. 15) and the mean particle diameter calculated using 

Image J v.1.47 software was 62 nm. 

 

Figure 15: TEM image of Ag-PMA 

X-ray Diffraction Spectrometry 

X-ray diffraction occurs when X-rays are scattered from the periodic array of atoms 

within a crystal. The positions of the diffraction peaks are associated to the distance between 

parallel planes of atoms and the intensity of the peaks are determined by the arrangement of the 

atoms in the crystal. These planes of atoms produce a diffraction peak at a specific angle 2θ.54 It 

was observed that Ag [111] and Ag [200] attained characteristic diffraction peaks at 2θ = 38.2o 

and 44.4o, respectively.  The peak at the detector angle 2θ = 44.4o was found to be very weak. 

The broadening of X-ray diffraction line, determines the particle size, for crystallites smaller 

than 1000 Å diameter. This broadening was observed at Ag [111] and can be attributed to the 
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small size of the nanoparticles. The crystallite size was estimated from the Ag [111] peak width 

at half maximum using Debye-Scherrer formula and was found to be 27 nm. Debye-Scherrer 

formula is 

  D = Kƛ / B cos Ɵ 

 where D is the diameter of the particle, K = 0.89 (constant), B is the broadening of the line, ƛ is 

the wave-length of the X-ray radiation, and Ɵ is the Bragg angle. B must be corrected for the 

width of the diffraction line for large particles, known as the instrument width. The correction 

appears as  

B = B' – b'   

 where B is once again the broadening, B' is the width of the line from the small particles, and b' 

is the instrument width or the width of the line from particles larger than 1000 Å 55 (Fig. 16). 

 

Figure 16: XRD Spectrum of Ag-PMA 

Ag-PLA and Ag-PLGA Nanocomposites 

Composition 

The content of dispersed silver in Ag-PLA (2), Ag-PLGA (3), Ag-PLGA (4) 

nanocomposites were determined using atomic absorption spectrometry. The largest amount of 
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nanosilver was found to be dispersed in PLA. Ester-terminated PLGA showed lower ability to 

disperse nanosilver as compared to acid terminated PLGA. Nevertheless, the amount of surface 

bonded polymer in ester terminated PLGA determined by weight method was found to be 

maximum (Table 2). 

Table 2: Contents of Silver in Materials 

Material Contents of pure Ag (wt%) Contents of coated Ag  

 (Ag + polymer) (wt%) 

Ag-PLA 0.12 0.38 

Ag-PLGA (ester terminated) 0.05 0.88 

Ag-PLGA (acid terminated) 0.09 0.47 

 

FT-IR Spectra 

FT-IR spectrum did not display any notable bands in case of bare nanosilver. Material 2 

exhibited distinctive bands in agreement with polylactic acid. A band at 1739 cm-1 revealed the 

presence of a carbonyl group. The bands at 2839-2947 and 1453 cm-1 could be connected to 

stretching and bending vibrations of CH3 groups. Deformational and asymmetric vibrations of  

C-H bond was accounted for the band at 1372 cm-1. The weak band at 1215 cm-1 was correlated 

to C-O-C stretching vibrations in polyesters. A band at 1102 cm-1 was associated with C-O-C 

asymmetric vibrations.56 A broad band visible at 1592 cm-1 was identified with carboxylate ions. 

The spectra of materials 3 and 4 were almost identical to the spectrum of sample 2 except for the 

weak bands of CH3 groups. Overall, the bands in the fingerprint region (1500 cm-1) were very 

intense and broad (Fig. 17).    
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Figure 17: FT-IR spectra (a: AgNPs, b: Ag-PLA (2), c: Ag-PLGA (3), d: Ag-PLGA (4)) 

UV-Vis Spectra 

The spectra of dispersion of materials 2-4 displayed broad bands at 454-479 nm. 

However, the dispersion of bare nanosilver in DMF did not exhibit any surface plasmon 

resonance absorption band (Fig. 18). 

SEM  

The images obtained by SEM confirmed high dispersibility of silver nanoparticles in 

PLA. The average particle size of material 2 presented 100 nm without any agglomerates. Even 

though the silver nanoparticles in material 3 were densely agglomerated with the average particle 

size to be 1-2 μm, few isolated nanoparticles were visible in this material. Material 4 had some 

small agglomerates, nonetheless, a great amount of nanosilver emerged as isolated nanoparticles 

and their average particle size was observed as 200 nm (Fig. 19). 
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Figure 18: UV-vis spectra (a: AgNPs, b: Ag-PLA (2), 

c: Ag-PLGA (3), d: Ag-PLGA (4)) 

 

Figure 19: SEM images (a: Ag-PLA (2), b: Ag-PLGA (3), c: Ag-PLGA (4)) 
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X-ray Images 

X-ray images of the materials 2-4 are shown in Fig. 20. Despite the contents of silver 

being low, X-rays were absorbed by silver and its absorption was clearly visible on the image. 

 

Figure 20: X-ray images (a: Ag-PLA (2), b: Ag-PLGA (3), c: Ag-PLGA (4)) 

Toxicological Effect against E. coli. 

The inhibiting effect of the polymers was not detected in the control experiment, 

however, the inhibiting effect of nanosilver against E. coli was distinctly visible after incubating 

the media. The sizes of the inhibitory zones were 4-8 nm for samples 2 and 4 and 6-12 nm for 

sample 3 (Fig. 21). 

 

 

 

 

 

 

Figure 21: Antibacterial activity of pure polymers (1): 

(a: PLA, b: PLGA (ester terminated), c: PLGA (acid 

terminated)) and silver-polymer materials (2): (a: Ag-

PLA (2), b: Ag-PLGA (3), c: Ag-PLGA (4)) 
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Discussion 

Ag-PAA Nanocomposites 

The development of self–assembled monolayers with end functional groups, on the 

surface of silver, using thiolation, is quite popular. Hydrophobization of the silver surface 

employing 2-aminoethanethiol enhances the dispersibility of silver nanoparticles considerably. 

But, it is perceived that the amination of AgNPs could not restrain its agglomeration fully, 

necessitating more modification.49  

The modification was done using polyacrylic acid, which was covalently bonded to the silver 

nanoparticles, by condensation of carboxyl groups with the surface amino groups using the 

carbodiimide method. Considering the solubility of its by-product, diisopropylurea in almost all 

organic solvents, DIPC was selected as a coupling reagent. 

The product acquired in the condensation reaction contained highly agglomerated AgNPs. This 

immense agglomeration of nanoparticles in Ag-PAA was a result of a large number of free 

carboxylic acid groups that could participate in intermolecular hydrogen bonding interactions 

with like molecules functioning both as a H-bond donor and acceptor. It was also reported that 

polyacrylic acid favored agglomeration of nanosilver, synthesized by the reduction method.57 

The free carboxylic acid groups of PAA were subjected to acid-catalyzed esterification with 

methanol in the presence of HCl as a catalyst for the elimination of hydrogen bonding 

interactions. The disappearance of intermolecular H-bonds between carboxylic groups of PAA, 

which were responsible for agglomeration, 58 in the esterification reaction, resulted in the 

deagglomeration of amino-modified AgNPs as well as significant softening of the composite. 
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The average particle size of AgNPs estimated from X-ray diffraction data was lower than TEM 

data because larger size particles did not contribute to the broadening of the peak. In any case, 

both the methods proved that the nanoparticles were not agglomerated.  

It had been recorded that stable colloidal solutions of AgNPs were obtained only at low contents 

of silver (up to 0.1 wt %) 59. Silver-polymer nanocomposites with the average particle size below 

20 nm were found to be less stable due to the low-temperature sintering of silver nanoparticles. 

60, 61 The average particle size of 27 nm obtained by XRD analysis, and the average particle size 

of 62 nm attained by TEM, confirmed that the uniform embedding of AgNPs onto the polymer 

matrix could be accomplished at a relatively large size of the particles (up to 100 nm).  

Ag-PLA and Ag-PLGA Nanocomposites 

Carbodiimide chemistry proved high efficacy in coating silver nanoparticles with PLA, 

ester terminated PLGA and acid terminated PLGA. Carbodiimides were utilized as stabilizing 

agents, coupling agents and as condensation agents during the reaction. Different types of 

substituted carbodiimides form amide bond in the reaction between COOH and NH2 groups. 62 

DIPC was preferred among numerous carbodiimides, not only due to the enhanced solubility of 

its by-product, diisopropylurea in many organic solvents but also its easy removal from the 

material by repeated washings. 

The reaction of amines with acid-terminated polymers PLA and PLGA took place. It was 

assumed that the reaction of ester terminated polymer PLGA with the amines would not occur. 

But it was found that the product (3) also contained polymer-coated silver nanoparticles despite 

the low content of silver in the polymer matrix. This unusual reaction was due to the aminolysis 

of the ester bond in the polymer chain by the surface amino groups (Fig. 22) producing OH and 
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surface CONH groups. Similarly, Croll et al. had performed surface modification of PLGA by 

aminolysis under mild conditions using polar aprotic solvents.63 

 

Figure 22: Surface aminolysis of Ag-PLGA (3) 

Chemisorption of a large amount of ester terminated PLGA on Ag nanoparticles could be 

interpreted to the smaller size of AgNPs in Ag-PLGA (3) in contrast with Ag-PLA (2) and Ag-

PLGA (4). The dispersibility of nanosilver in PLGA (ester terminated) was very low proving the 

dispersal of only small sized AgNPs. However, large AgNPs got precipitated from the reaction 

mixture. Acid terminated polymers had higher stabilizing ability than ester terminated polymers 

due to a large range of sizes of nanoparticles. 
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FT-IR spectra of polymer coated AgNPs included primarily the same characteristic bands of the 

corresponding polymers confirming the coating of AgNPs with the polymers. 

The surface plasmon resonance, absorption maximum of amino-modified silver nanoparticles 

dispersed in DMF was found to be 470 nm.49 The samples Ag-PLA (2) and Ag-PLGA (4) had 

their absorption maxima band shifted to 472 and 479 nm (longer wavelengths) whereas Ag-

PLGA (3) had its absorption maximum at 454 nm (shorter wavelength). Since the SPR 

absorption maximum changed due to the size of the particle, it was inferred that this shift to 

shorter wavelength had been caused by the small size of AgNPs in sample 3.64 The content of 

silver in this sample was nearly twice lower than those of Ag in samples 2 and 4. The small size 

of the Ag nanoparticles in ester-terminated Ag-PLGA (3), resulted in the significant reduction in 

its dispersibility as compared to the acid-terminated polymers. Moreover, it was observed that 

almost all the large nanoparticles in Ag-PLGA (3) were precipitated. Huang et al. had indicated 

that SPR absorption maximum depended on the size of the particle and increase in particle size 

resulted in the shift to longer wavelengths 65 which was observed in acid terminated Ag-PLA (2) 

and Ag-PLGA (4). This outcome was in accordance with the chemical composition data. The 

spectra also displayed the absorbance of bare Ag nanoparticles to be greater than 550 nm, which 

was indicative of complete agglomerated silver. 

Agglomerated AgNPs along with few isolated nanoparticles were observed in the SEM image of 

ester-terminated Ag-PLGA (3), indicating the small size of the nanoparticles and its low 

dispersibility. However, the acid terminated polymers Ag-PLA (2) had no agglomerates and Ag-

PLGA (4) had isolated nanoparticles signifying greater dispersibility due to the large size of the 

nanoparticles. 
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X-ray imaging showed almost similar absorption of X-rays in samples 2-4. This was due to the 

higher atomic number of Ag (Z = 47) and the K-edge of silver (25.5).65 This K-edge is the ideal 

binding energy for the absorption of the X-ray beam. Ag being an anti-microbial agent has 

greater advantages and could be used as X-ray visible biomaterials in the field of medicine (for 

example, orthopedic or cardiovascular applications). 

The obtained nanocomposites showed inhibition in the growth of bacteria. Ag-PLGA (3) with 

low silver content had stronger bactericidal effect in comparison with samples 2 and 4. This 

inhibition effect was on account of the small size of the AgNPs and / or the release of Ag+ ions 

from the surface. The particle size plays an important role in the inhibition of bacteria.67, 68, 69 

This was evident from UV-vis study which confirmed that material 3 contained predominantly 

smaller Ag nanoparticles in contrast to samples 2 and 4 and that could be one of the reasons of  

the difference in bio-toxicity of these materials. 

Conclusions 

1. The surface of nanosilver was successfully modified by 2-aminoethanethiol. 

2. Amino-modified nanosilver was covalently bonded to polyacrylic acid, biodegradable 

polymers like acid terminated polylactic acid, ester terminated poly(D,L-lactide-co-

glycolide) and acid terminated poly(D,L-lactide-co-glycolide) in the presence of 

diisopropylcarbodiimide by carbodiimide method.  

3. Esterification of Ag-PAA by hydrochloric acid in methanol resulted in deagglomeration of 

agglomerated AgNPs, thereby producing Ag-poly(methylacrylate) (Ag-PMA) with finely 

dispersed nanosilver.  

4. Ag-PMA samples containing silver up to 1.4 wt% showed good dispersibility. The materials 

obtained were transparent and light yellowish in color. 
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5. The average particle size of 27 nm obtained by XRD analysis, and the average particle size 

of 62 nm attained by TEM, confirmed that the uniform embedding of AgNPs onto the 

polymer matrix could be accomplished at a relatively large size of the particles (up to 100 

nm). 

6. Poly(D,L-lactide-co-glycolide), ester terminated reacted with amino-modified nanosilver by 

aminolysis of the ester bond.  

7. Silver-polymer nanocomposites obtained using acid-terminated polymers PLA and PLGA 

contained highly dispersed nanosilver in polymer matrix whereas dispersibility of AgNPs in 

ester-terminated PLGA was very low.  

8. Absorption of X-rays by samples 2-4 demonstrated X-ray contrast properties of silver.  

9. The obtained nanocomposites 2-4 showed inhibition in the growth of bacteria, however, 

material 3 manifested stronger bactericidal effect.  
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