
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hmbr20

Multivariate Behavioral Research

ISSN: 0027-3171 (Print) 1532-7906 (Online) Journal homepage: https://www.tandfonline.com/loi/hmbr20

An Introduction to Propensity Score Methods
for Reducing the Effects of Confounding in
Observational Studies

Peter C. Austin

To cite this article: Peter C. Austin (2011) An Introduction to Propensity Score Methods for
Reducing the Effects of Confounding in Observational Studies, Multivariate Behavioral Research,
46:3, 399-424, DOI: 10.1080/00273171.2011.568786

To link to this article:  https://doi.org/10.1080/00273171.2011.568786

Copyright Taylor and Francis Group, LLC

Published online: 09 Jun 2011.

Submit your article to this journal 

Article views: 45804

View related articles 

Citing articles: 2214 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=hmbr20
https://www.tandfonline.com/loi/hmbr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00273171.2011.568786
https://doi.org/10.1080/00273171.2011.568786
https://www.tandfonline.com/action/authorSubmission?journalCode=hmbr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=hmbr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00273171.2011.568786
https://www.tandfonline.com/doi/mlt/10.1080/00273171.2011.568786
https://www.tandfonline.com/doi/citedby/10.1080/00273171.2011.568786#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00273171.2011.568786#tabModule


Multivariate Behavioral Research, 46:399–424, 2011

Copyright © Taylor & Francis Group, LLC

ISSN: 0027-3171 print/1532-7906 online

DOI: 10.1080/00273171.2011.568786

An Introduction to Propensity Score
Methods for Reducing the Effects of

Confounding in Observational Studies

Peter C. Austin

Institute for Clinical Evaluative Sciences

Department of Health Management, Policy and Evaluation,

University of Toronto

The propensity score is the probability of treatment assignment conditional on

observed baseline characteristics. The propensity score allows one to design and

analyze an observational (nonrandomized) study so that it mimics some of the par-

ticular characteristics of a randomized controlled trial. In particular, the propensity

score is a balancing score: conditional on the propensity score, the distribution

of observed baseline covariates will be similar between treated and untreated

subjects. I describe 4 different propensity score methods: matching on the propen-

sity score, stratification on the propensity score, inverse probability of treatment

weighting using the propensity score, and covariate adjustment using the propensity

score. I describe balance diagnostics for examining whether the propensity score

model has been adequately specified. Furthermore, I discuss differences between

regression-based methods and propensity score-based methods for the analysis of

observational data. I describe different causal average treatment effects and their

relationship with propensity score analyses.

Randomized controlled trials (RCTs) are considered the gold standard approach

for estimating the effects of treatments, interventions, and exposures (hereafter

referred to as treatments) on outcomes. Random treatment allocation ensures that

treatment status will not be confounded with either measured or unmeasured

baseline characteristics. Therefore, the effect of treatment on outcomes can
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be estimated by comparing outcomes directly between treated and untreated

subjects (Greenland, Pearl, & Robins, 1999).

There is a growing interest in using observational (or nonrandomized) studies

to estimate the effects of treatments on outcomes. In observational studies,

treatment selection is often influenced by subject characteristics. As a result,

baseline characteristics of treated subjects often differ systematically from those

of untreated subjects. Therefore, one must account for systematic differences in

baseline characteristics between treated and untreated subjects when estimating

the effect of treatment on outcomes. Historically, applied researchers have relied

on the use of regression adjustment to account for differences in measured

baseline characteristics between treated and untreated subjects. Recently, there

has been increasing interest in methods based on the propensity score to reduce

or eliminate the effects of confounding when using observational data. Examples

of recent use of these methods include assessing the effects of kindergarten

retention on children’s social-emotional development (Hong & Yu, 2008), the

effectiveness of Alcoholics Anonymous (Ye & Kaskutas, 2009), the effects of

small school size on mathematics achievement (Wyse, Keesler, & Schneider,

2008), and the effect of teenage alcohol use on education attainment (Staff,

Patrick, Loken, & Maggs, 2008).

Our objective is to introduce the reader to the concept of the propensity

score and to describe how methods based on it can be used to reduce or

eliminate the effects of confounding when using observational data to estimate

treatment effects. The article is divided into six sections as follows: first, I briefly

describe the potential outcomes framework, causal treatment effects, RCTs,

and observational studies. Second, I introduce the concept of the propensity

score and describe four different methods in which it can be used to estimate

treatment effects. Third, I describe methods to assess whether the propensity

score model has been adequately specified. Fourth, I discuss variable selection

for the propensity score model. Fifth, I compare the use of propensity score-

based approaches with that of regression analyses in observational studies. Sixth,

I summarize our discussion in the final section. A recently published tutorial and

case study in this journal was written as a companion to this article to illustrate

the application of propensity score methods to estimate the reduction in mortality

due to provision of in-hospital smoking cessation counseling to current smokers

who had been hospitalized with a heart attack (Austin, 2011a).

RANDOMIZED CONTROLLED TRIALS VERSUS

OBSERVATIONAL STUDIES

Because propensity score methods allow one to mimic some of the characteristics

of an RCT in the context of an observational study, I begin this article by describ-
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ing a conceptual framework for RCTs. I first describe the potential outcomes

framework, which has also been described as the Rubin Causal Model (Rubin,

1974). I conclude this section by defining what I mean by an observational study

and highlighting the primary difference between an observational study and a

randomized experiment.

The Potential Outcomes Framework and Average
Treatment Effects

In the potential outcomes framework, there are two possible treatments (e.g.,

active treatment vs. control treatment) and an outcome. Given a sample of

subjects and a treatment, each subject has a pair of potential outcomes: Yi .0/

and Yi.1/, the outcomes under the control treatment and the active treatment,

respectively. However, each subject receives only one of the control treatment

or the active treatment. Let Z be an indicator variable denoting the treatment

received (Z D 0 for control treatment vs. Z D 1 for active treatment). Thus,

only one outcome, Yi .Yi D ZiYi .1/ C .1 � Zi /Yi .0//, is observed for each

subject: the outcome under the actual treatment received.

For each subject, the effect of treatment is defined to be Yi .1/ � Yi .0/.

The average treatment effect (ATE) is defined to be EŒYi.1/ � Yi .0/� (Imbens,

2004). The ATE is the average effect, at the population level, of moving an

entire population from untreated to treated. A related measure of treatment

effect is the average treatment effect for the treated (ATT; Imbens, 2004). The

ATT is defined as EŒY.1/ � Y.0/jZ D 1�. The ATT is the average effect of

treatment on those subjects who ultimately received the treatment. In an RCT

these two measures of treatment effects coincide because, due to randomization,

the treated population will not, on average, differ systematically from the overall

population.

Applied researchers should decide whether the ATE or the ATT is of greater

utility or interest in their particular research context. In estimating the ef-

fectiveness of an intensive, structured smoking cessation program, the ATT

may be of greater interest than the ATE. Due to potentially high barriers to

participation and completion of the smoking cessation program, it may be

unrealistic to estimate the effect of the program if it were applied to all current

smokers. Instead, greater interest may lie in the effect of the program on those

current smokers who elect to participate in the program. In contrast, when

estimating the effect on smoking cessation of an information brochure given

by family physicians to patients who are current smokers, the ATE may be of

greater interest than the ATT. The cost and effort of distributing an information

brochure is relatively low, and the barriers to a patient receiving the brochure

are minimal.
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Randomized Controlled Trials

In RCTs, treatment is assigned by randomization. As a consequence of random-

ization, an unbiased estimate of the ATE can be directly computed from the study

data. An unbiased estimate of the ATE is EŒYi.1/�Yi .0/� D EŒY.1/��EŒY.0/�

(Lunceford & Davidian, 2004). The aforementioned definition allows one to

define the ATE in terms of a difference in means (continuous outcomes) or a

difference in proportions or absolute risk reduction (dichotomous outcomes).

For dichotomous outcomes, alternative measures of effect include the relative

risk and the odds ratio. When outcomes are dichotomous, the number needed

treat (NNT), the reciprocal of the absolute risk reduction, denotes the number

of subjects that one must treat to avoid the occurrence of one event.

Observational Studies

Cochran (1965) defined an observational study to be an empirical investigation in

which the “objective is to elucidate cause-and-effect relationships : : : [in settings

in which] it is not feasible to use controlled experimentation, in the sense of

being able to impose the procedures or treatments whose effects it is desired

to discover, or to assign subjects at random to different procedures” (p. 234).

By this definition, an observational study has the same intent as a randomized

experiment: to estimate a causal effect. However, an observational study differs

from a randomized experiment in one design issue: the use of randomization to

allocate units to treatment and control groups.

In observational studies, the treated subjects often differ systematically from

untreated subjects. Thus, in general, I have that EŒY.1/jZ D 1� ¤ EŒY.1/� (and

similarly for the control treatment). Thus, an unbiased estimate of the average

treatment effect cannot be obtained by directly comparing outcomes between

the two treatment groups. In subsequent sections, I describe how the propensity

score can be used to estimate average treatment effects.

THE PROPENSITY SCORE AND PROPENSITY

SCORE METHODS

The propensity score was defined by Rosenbaum and Rubin (1983a) to be the

probability of treatment assignment conditional on observed baseline covariates:

ei D P r.Zi D 1jXi /. The propensity score is a balancing score: conditional on

the propensity score, the distribution of measured baseline covariates is similar

between treated and untreated subjects. Thus, in a set of subjects all of whom

have the same propensity score, the distribution of observed baseline covariates

will be the same between the treated and untreated subjects.
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The propensity score exists in both randomized experiments and in obser-

vational studies. In randomized experiments the true propensity score is known

and is defined by the study design. In observational studies, the true propensity

score is not, in general, known. However, it can be estimated using the study

data. In practice, the propensity score is most often estimated using a logistic

regression model, in which treatment status is regressed on observed baseline

characteristics. The estimated propensity score is the predicted probability of

treatment derived from the fitted regression model. Although logistic regression

appears to be the most commonly used method for estimating the propensity

score, the use of bagging or boosting (Lee, Lessler, & Stuart, 2010; McCaffrey,

Ridgeway, & Morral, 2004), recursive partitioning or tree-based methods (Lee

et al., 2010; Setoguchi, Schneeweiss, Brookhart, Glynn, & Cook, 2008), random

forests (Lee et al., 2010), and neural networks (Setoguchi et al., 2008) for

estimating the propensity score have been examined.

Four different propensity score methods are used for removing the effects

of confounding when estimating the effects of treatment on outcomes: propen-

sity score matching, stratification (or subclassification) on the propensity score,

inverse probability of treatment weighting (IPTW) using the propensity score,

and covariate adjustment using the propensity score (Austin & Mamdani, 2006;

Rosenbaum, 1987a; Rosenbaum & Rubin, 1983a). I describe each of these

methods separately in the following subsections.

Rosenbaum and Rubin (1983a) defined treatment assignment to be strongly

ignorable if the following two conditions hold: (a) .Y.1/; Y.0// � ZjX and

(b) 0 < P.Z D 1jX/ < 1. The first condition says that treatment assignment

is independent of the potential outcomes conditional on the observed base-

line covariates. The second condition says that every subject has a nonzero

probability to receive either treatment. They demonstrated that if treatment

assignment is strongly ignorable, conditioning on the propensity score allows

one to obtain unbiased estimates of average treatment effects. The aforemen-

tioned first condition is also referred to as the “no unmeasured confounders”

assumption: the assumption that all variables that affect treatment assignment

and outcome have been measured. Because this is the crucial assumption that

underlies propensity score analyses, Rosenbaum and Rubin (1983b) proposed

analyses to assess the sensitivity of study conclusions to the assumption that

there were no unmeasured confounders that influenced treatment assignment.

Furthermore, Rosenbaum (1987b) proposed the use of a second control group to

examine the plausibility that adjustment for measured covariates has eliminated

bias in estimating treatment effects. It should be noted that although the assump-

tion of strongly ignorable treatment assignment/no unmeasured confounding is

explicitly stated in the context of propensity score analyses, this assumption

also underlies regression-based approaches for estimating treatment effects in

observational studies.
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Propensity Score Matching

Propensity score matching entails forming matched sets of treated and untreated

subjects who share a similar value of the propensity score (Rosenbaum &

Rubin, 1983a, 1985). Propensity score matching allows one to estimate the ATT

(Imbens, 2004). The most common implementation of propensity score matching

is one-to-one or pair matching, in which pairs of treated and untreated subjects

are formed, such that matched subjects have similar values of the propensity

score. Although one-to-one matching appears to be the most common approach

to propensity score matching, other approaches can be used. These are discussed

at the end of this section. Unless stated otherwise, the following discussion is

in the context of 1:1 matching.

Once a matched sample has been formed, the treatment effect can be esti-

mated by directly comparing outcomes between treated and untreated subjects

in the matched sample. If the outcome is continuous (e.g., a depression scale),

the effect of treatment can be estimated as the difference between the mean

outcome for treated subjects and the mean outcome for untreated subjects in the

matched sample (Rosenbaum & Rubin, 1983a). If the outcome is dichotomous

(self-report of the presence or absence of depression), the effect of treatment can

be estimated as the difference between the proportion of subjects experiencing

the event in each of the two groups (treated vs. untreated) in the matched sample.

With binary outcomes, the effect of treatment can also be described using the

relative risk or the NNT (Austin, 2008a, 2010; Rosenbaum & Rubin, 1983a).

Thus, the reporting of treatment effects can be done in same metrics as are

commonly used in RCTs.

Once the effect of treatment has been estimated in the propensity score

matched sample, the variance of the estimated treatment effect and its statistical

significance can be estimated. Schafer and Kang (2008) suggest that, within

the matched sample, the treated and untreated subjects should be regarded as

independent. In contrast to this, Imbens (2004) suggests that, when using a

matched estimator, the variance should be calculated using a method appropri-

ate for paired experiments. I argue that the propensity score matched sample

does not consist of independent observations. Rather, treated and untreated

subjects within the same matched set have similar values of the propensity

score. Therefore, their observed baseline covariates come from the same mul-

tivariate distribution. In the presence of confounding, baseline covariates are

related to outcomes. Thus, matched subjects are more likely to have similar

outcomes than are randomly selected subjects. The lack of independence in

the propensity score matched sample should be accounted for when estimat-

ing the variance of the treatment effect. Recent studies using Monte Carlo

simulations demonstrated that, for a range of scenarios, variance estimators

that account for matching more accurately reflected the sampling variability
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of the estimated treatment effect (Austin 2009c, in press). Thus, a paired t

test could be used for assessing the statistical significance of the effect of

treatment on a continuous outcome. Similarly, McNemar’s test can be used to

assess the statistical significance of a difference in proportions for a dichotomous

outcome.

The analysis of a propensity score matched sample can mimic that of an

RCT: one can directly compare outcomes between treated and untreated subjects

within the propensity score matched sample. In the context of an RCT, one

expects that, on average, the distribution of covariates will be similar between

treatment groups. However, in individual RCTs, residual differences in baseline

covariates may exist between treatment groups. Regression adjustment can be

used to reduce bias due to residual differences in observed baseline covariates

between treatment groups. Regression adjustment results in increased precision

for continuous outcomes and increased statistical power for continuous, binary,

and time-to-event outcomes (Steyerberg, 2009). Similarly, in propensity score

matched samples, covariate balance is a large sample property. Propensity score

matching can be combined with additional matching on prognostic factors or

regression adjustment (Imbens, 2004; Rubin & Thomas, 2000).

I now discuss different methods for forming matched pairs of treated and

untreated subjects when matching on the propensity score. In doing so, several

decisions must be made. First, one must choose between matching without

replacement and matching with replacement (Rosenbaum, 2002). When using

matching without replacement, once an untreated subject has been selected to be

matched to a given treated subject, that untreated subject is no longer available

for consideration as a potential match for subsequent treated subjects. As a

result, each untreated subject is included in at most one matched set. In contrast,

matching with replacement allows a given untreated subject to be included in

more than one matched set. When matching with replacement is used, variance

estimation must account for the fact that the same untreated subject may be in

multiple matched sets (Hill & Reiter, 2006).

A second choice is between greedy and optimal matching (Rosenbaum, 2002).

In greedy matching, a treated subject is first selected at random. The untreated

subject whose propensity score is closest to that of this randomly selected

treated subject is chosen for matching to this treated subject. This process is

then repeated until untreated subjects have been matched to all treated subjects

or until one has exhausted the list of treated subjects for whom a matched

untreated subject can be found. This process is called greedy because at each

step in the process, the nearest untreated subject is selected for matching to the

given treated subject, even if that untreated subject would better serve as a match

for a subsequent treated subject. An alternative to greedy matching is optimal

matching, in which matches are formed so as to minimize the total within-pair

difference of the propensity score. Gu and Rosenbaum (1993) compared greedy
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and optimal matching and found that optimal matching did no better than greedy

matching in producing balanced matched samples.

In the previous paragraphs I described two sets of options for forming propen-

sity score matched sets. However, I have not provided criteria for selecting

untreated subjects whose propensity score is “close” to that of a treated subject.

There are two primary methods for this: nearest neighbor matching and nearest

neighbor matching within a specified caliper distance (Rosenbaum & Rubin,

1985). Nearest neighbor matching selects for matching to a given treated subject

that untreated subject whose propensity score is closest to that of the treated

subject. If multiple untreated subjects have propensity scores that are equally

close to that of the treated subject, one of these untreated subjects is selected

at random. It is important to note that no restrictions are placed upon the

maximum acceptable difference between the propensity scores of two matched

subjects.

Nearest neighbor matching within a specified caliper distance is similar to

nearest neighbor matching with the further restriction that the absolute difference

in the propensity scores of matched subjects must be below some prespecified

threshold (the caliper distance). Thus, for a given treated subject, one would

identify all the untreated subjects whose propensity score lay within a specified

distance of that of the treated subject. From this restricted set of untreated

subjects, the untreated subject whose propensity score was closest to that of

the treated subject would be selected for matching to this treated subject. If

no untreated subjects had propensity scores that lay within the specified caliper

distance of the propensity score of the treated subject, that treated subject would

not be matched with any untreated subject. The unmatched treated subject would

then be excluded from the resultant matched sample.

When using caliper matching, there is no uniformly agreed upon definition of

what constitutes a maximal acceptable distance. Indeed, in the medical literature,

a wide range of caliper widths have been used (Austin, 2007a, 2008b). Cochran

and Rubin (1973) examined the reduction in bias due to a single normally

distributed confounding variable by matching on this confounding variable us-

ing calipers whose widths were proportional to the standard deviation of the

confounding variable. Based on these results, there are theoretical arguments for

matching on the logit of the propensity score, as this quantity is more likely to

be normally distributed, and for using a caliper width that is a proportion of the

standard deviation of the logit of the propensity score. Building on the prior work

of Cochran and Rubin on matching on a single normally distributed confounding

variable, Rosenbaum and Rubin (1985) suggested that similar reduction in bias

can be achieved by matching on the logit of the propensity score using caliper

widths similar to those described by Cochran and Rubin. For instance, if the

variance of the logit of the propensity score in the treated subjects is the same

as the variance in the untreated subjects, using calipers of width equal to 0.2 of
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the pooled standard deviation of the logit of the propensity score will eliminate

approximately 99% of the bias due to the measured confounders. Recently,

Austin (2011b) examined optimal caliper widths when estimating risk differences

and differences in means. It was suggested that researchers use a caliper of width

equal to 0.2 of the standard deviation of the logit of the propensity score as this

value (or one close to it) minimized the mean squared error of the estimated

treatment effect in several scenarios.

In this paragraph, I briefly describe alternatives to one-to-one pair matching

when matching on the propensity score and refer the reader to the cited articles.

In many-to-one (M:1) matching, M untreated subjects are matched to each

treated subject. Ming and Rosenbaum (2000) modified this approach by allowing

for a variable number of untreated subjects to be matched to each treated subject.

They found that improved bias reduction was obtained when matching with

a variable number of controls compared to matching with a fixed number of

controls. Full matching (Gu & Rosenbaum, 1993; Hansen, 2004; Rosenbaum,

1991) involves forming matched sets consisting of either one treated subject and

at least one untreated subject or one untreated subject and at least one treated

subject. The reader is referred to Gu and Rosenbaum for an in-depth comparison

of different matching methods.

Propensity score matching can be conducted using a variety of statistical

packages. Methods to conduct propensity score matching using SAS® are de-

scribed in Chapter 3 of Faries, Leon, Maria Haro, and Obenchain (2010). In R,

the Matching (Sekhon, in press), MatchIt (Ho, Imai, King, & Stuart, 2011), and

Optmatch (Hansen & Klopfer, 2006) packages allow one to implement a variety

of different matching methods. In Stata®, the PSMATCH2 module can be used

for propensity score matching.

Stratification on the Propensity Score

Stratification on the propensity score involves stratifying subjects into mutually

exclusive subsets based on their estimated propensity score. Subjects are ranked

according to their estimated propensity score. Subjects are then stratified into

subsets based on previously defined thresholds of the estimated propensity score.

A common approach is to divide subjects into five equal-size groups using the

quintiles of the estimated propensity score. Cochran (1968) demonstrated that

stratifying on the quintiles of a continuous confounding variable eliminated

approximately 90% of the bias due to that variable. Rosenbaum and Rubin

(1984) extended this result to stratification on the propensity score, stating that

stratifying on the quintiles of the propensity score eliminates approximately 90%

of the bias due to measured confounders when estimating a linear treatment

effect. Increasing the number of strata used should result in improved bias

reduction, although the marginal reduction in bias decreases as the number
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of strata increases (Cochran, 1968; Huppler Hullsiek & Louis, 2002). Within

each propensity score stratum, treated and untreated subjects will have roughly

similar values of the propensity score. Therefore, when the propensity score has

been correctly specified, the distribution of measured baseline covariates will be

approximately similar between treated and untreated subjects within the same

stratum.

Stratification on the propensity can be conceptualized as a meta-analysis of

a set of quasi-RCTs. Within each stratum, the effect of treatment on outcomes

can be estimated by comparing outcomes directly between treated and untreated

subjects. The stratum-specific estimates of treatment effect can then be pooled

across stratum to estimate an overall treatment effect (Rosenbaum & Rubin,

1984). Thus, stratum-specific differences in means or risk differences can be

estimated. These can be averaged to produce an overall difference in means

or risk difference. In general, stratum-specific estimates of effect are weighted

by the proportion of subjects who lie within that stratum. Thus, when the

sample is stratified into K equal-size strata, stratum-specific weights of 1=K are

commonly used when pooling the stratum-specific treatment effects, allowing

one to estimate the ATE (Imbens, 2004). The use of stratum-specific weights that

are equal to that proportion of treated subjects that lie within each stratum allow

one to estimate the ATT (Imbens, 2004). A pooled estimate of the variance

of the estimated treatment effect can be obtained by pooling the variances

of the stratum-specific treatment effects. For a greater discussion of variance

estimation, the reader is referred to Rosenbaum and Rubin (1984) and Lunceford

and Davidian (2004). As with matching, within-stratum regression adjustment

may be used to account for residual differences between treated and untreated

subjects (Imbens, 2004; Lunceford & Davidian, 2004).

Inverse Probability of Treatment Weighting Using the

Propensity Score

Inverse probability of treatment weighting (IPTW) using the propensity score

uses weights based on the propensity score to create a synthetic sample in which

the distribution of measured baseline covariates is independent of treatment

assignment. The use of IPTW is similar to the use of survey sampling weights

that are used to weight survey samples so that they are representative of specific

populations (Morgan & Todd, 2008).

As mentioned earlier, let Zi be an indicator variable denoting whether or not

the i th subject was treated; furthermore, let ei denote the propensity score for the

i th subject. Weights can be defined as wi D Zi

ei
C

.1�Zi /

1�ei
. A subject’s weight is

equal to the inverse of the probability of receiving the treatment that the subject

actually received. Inverse probability of treatment weighting was first proposed

by Rosenbaum (1987a) as a form of model-based direct standardization.



PROPENSITY SCORE METHODS 409

Lunceford and Davidian (2004) review a variety of estimators for treatment

effects based on IPTW. Assume that Yi denotes the outcome variable measured

on the i th subject. An estimate of the ATE is 1
n

Pn
iD1

Zi Yi

ei
� 1

n

Pn
iD1

.1�Zi /Yi

1�ei
,

where n denotes the number of subjects. Lunceford and Davidian describe the

theoretical properties of this estimator (along with other IPTW estimators) of

the ATE and compare their performance to stratification.

Joffe, Ten Have, Feldman, and Kimmel (2004) describe how regression mod-

els can be weighted by the inverse probability of treatment to estimate causal

effects of treatments. When used in this context, IPTW is part of a larger family

of causal methods known as marginal structural model (Hernan, Brumback,

& Robins, 2000, 2002). It is important to note that variance estimation must

account for the weighted nature of the synthetic sample, with robust variance

estimation commonly being used to account for the sample weights (Joffe et al.,

2004).

The weights may be inaccurate or unstable for subjects with a very low

probability of receiving the treatment received. To address this issue, the use

of stabilizing weights has been proposed (Robins, Hernan, & Brumback, 2000).

The weights described earlier allow one to estimate the ATE. However, using

weights equal to wi;ATT D Zi C
.1�Zi /ei

1�ei
allows one to estimate the ATT, whereas

the use of weights equal to wi;ATC D Zi .1�ei /

ei
C .1 � Zi / allows one to estimate

the average effect of treatment in the controls (Morgan & Todd, 2008).

Covariate Adjustment Using the Propensity Score

The fourth propensity score method is covariate adjustment using the propensity

score. Using this approach, the outcome variable is regressed on an indicator

variable denoting treatment status and the estimated propensity score. The choice

of regression model would depend on the nature of the outcome. For continuous

outcomes, a linear model would be chosen; for dichotomous outcomes, a logistic

regression model may be selected. The effect of treatment is determined using

the estimated regression coefficient from the fitted regression model. For a linear

model, the treatment effect is an adjusted difference in means, whereas for a

logistic model it is an adjusted odds ratio. Of the four propensity score methods,

this is the only one that requires that a regression model relating the outcome to

treatment status and a covariate (the propensity score) be specified. Furthermore,

this method assumes that the nature of the relationship between the propensity

score and the outcome has been correctly modeled.

Comparison of the Different Propensity Score Methods

Several studies have demonstrated that propensity score matching eliminates

a greater proportion of the systematic differences in baseline characteristics
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between treated and untreated subjects than does stratification on the propensity

score or covariate adjustment using the propensity score (Austin, 2009a; Austin,

Grootendorst, & Anderson, 2007; Austin & Mamdani, 2006). In some settings

propensity score matching and IPTW removed systematic differences between

treated and untreated subjects to a comparable degree; however, in some settings,

propensity score matching removed modestly more imbalance than did IPTW

(Austin, 2009a). Lunceford and Davidian (2004) demonstrated that stratification

results in estimates of average treatment effects with greater bias than does a

variety of weighted estimators.

Propensity score matching, stratification on the propensity score, and IPTW

differ from covariate adjustment using the propensity score in that the three

former methods separate the design of the study from the analysis of the study;

this separation does not occur when covariate adjustment using the propensity

score is used. Appropriate diagnostics exist for each of the four propensity

score methods to assess whether the propensity score model has been ade-

quately specified. However, with propensity score matching, stratification on

the propensity score, and IPTW, once one is satisfied with the specification of

the propensity score model, one can directly estimate the effect of treatment

on outcomes in the matched, stratified, or weighted sample. Specification of a

regression model relating the outcome to treatment is not necessary. In contrast,

when using covariate adjustment using the propensity score, once one is satisfied

that the propensity score model has been adequately specified, one must fit a

regression model relating the outcome to an indicator variable denoting treatment

status and to the propensity score. In specifying the regression model, one must

correctly model the relationship between the propensity score and the outcome

(e.g., specifying whether the relationship is linear or nonlinear). In doing so,

the outcome is always in sight because the outcome model contains both the

propensity score and the outcome. As Rubin (2001) notes, when using regression

modeling, the temptation to work toward the desired or anticipated result is

always present. Another difference between the four propensity score approaches

is that covariate adjustment using the propensity score and IPTW may be more

sensitive to whether the propensity score has been accurately estimated (Rubin,

2004).

The reader is referred elsewhere to empirical studies comparing the results

of analyses using the different propensity score methods on the same data set

(Austin & Mamdani, 2006; Kurth et al., 2006). Prior Monte Carlo studies have

compared the relative performance of the different propensity score methods

for estimating risk differences, relative risks, and marginal and conditional

odds ratios (Austin, 2007b, 2008c, 2010; Austin, Grootendorst, Normand, &

Anderson, 2007). It is important to note that two of these studies found that

stratification, matching, and covariate adjustment using the propensity score

resulted in biased estimation of both conditional and marginal odds ratios.
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BALANCE DIAGNOSTICS

The true propensity score is a balancing score: conditional on the true propen-

sity score, the distribution of measured baseline covariates is independent of

treatment assignment. In an observational study the true propensity score is

not known. It must be estimated using the study data. An important com-

ponent of any propensity score analysis is examining whether the propensity

score model has been adequately specified. In this section, I discuss meth-

ods for assessing whether the propensity score model has been adequately

specified.

The true propensity score is a balancing score. Therefore, in strata of subjects

that have the same propensity score, the distribution of measured baseline

covariates will be the same between treated and untreated subjects. Appro-

priate methods for assessing whether the propensity score model has been

adequately specified involve examining whether the distribution of measured

baseline covariates is similar between treated and untreated subjects with the

same estimated propensity score. If, after conditioning on the propensity score,

there remain systematic differences in baseline covariates between treated and

untreated subjects, this can be an indication that the propensity score model has

not been correctly specified. With propensity score matching, assessing whether

the propensity score model has been adequately specified involves comparing

treated and untreated subjects within the propensity score matched sample. For

IPTW this assessment involves comparing treated and untreated subjects in the

sample weighted by the inverse probability of treatment. For stratification on

the propensity score, this assessment entails comparing treated and untreated

subjects within strata of the propensity score.

In this section, I summarize an extensive previous discussion of methods for

assessing the comparability of treated and untreated subjects in a propensity

score matched sample (Austin, 2009b). The methods described are for use in

the context of one-to-one matching on the propensity score. Adaptations for

use with many-to-one matching on the propensity score are provided elsewhere

(Austin, 2008d). These methods can be readily adapted to stratification on the

propensity score and IPTW using the propensity score (see Joffe et al., 2004;

Morgan & Todd, 2008, for use with IPTW). Goodness-of-fit diagnostics for use

with covariate adjustment using the propensity score are provided elsewhere

(Austin, 2008e).

Comparing the similarity of treated and untreated subjects in the matched

sample should begin with a comparison of the means or medians of continuous

covariates and the distribution of their categorical counterparts between treated

and untreated subjects. The standardized difference can be used to compare the

mean of continuous and binary variables between treatment groups (multilevel

categorical variables can be represented using a set of binary indicator vari-
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ables; Austin, 2009e; Flury & Riedwyl, 1986). For a continuous covariate, the

standardized difference is defined as

d D
.xtreatment � xcontrol/
s

s2
treatment

C s2
control

2

;

where xtreatment and xcontrol denote the sample mean of the covariate in treated and

untreated subjects, respectively, whereas s2
treatment

and s2
control

denote the sample

variance of the covariate in treated and untreated subjects, respectively. For

dichotomous variables, the standardized difference is defined as

d D
. Optreatment � Opcontrol/

r

Optreatment.1 � Optreatment/ C Opcontrol.1 � Opcontrol/

2

;

where Optreatment and Opcontrol denote the prevalence or mean of the dichotomous

variable in treated and untreated subjects, respectively. The standardized differ-

ence compares the difference in means in units of the pooled standard deviation.

Furthermore, it is not influenced by sample size and allows for the comparison

of the relative balance of variables measured in different units. Although there

is no universally agreed upon criterion as to what threshold of the standardized

difference can be used to indicate important imbalance, a standard difference

that is less than 0.1 has been taken to indicate a negligible difference in the mean

or prevalence of a covariate between treatment groups (Normand et al., 2001).

The standardized difference provides a framework for comparing the mean

or prevalence of a baseline covariate between treatment groups in the propensity

score matched sample. However, a thorough examination of the comparability

of treated and untreated subjects in the propensity score matched sample should

not stop with a comparison of means and prevalences. The true propensity

score is a balancing score: within strata matched on the true propensity score,

the distribution of observed baseline covariates is independent of treatment

status. Thus, the entire distribution of baseline covariates, not just means and

prevalences, should be similar between treatment groups in the matched sam-

ple. Therefore, higher order moments of covariates and interactions between

covariates should be compared between treatment groups (Austin, 2009b; Ho,

Imai, King, & Stuart, 2007; Imai, King, & Stuart, 2008; Morgan & Todd,

2008). Similarly, graphical methods such as side-by-side boxplots, quantile-

quantile plots, cumulative distribution functions, and empirical nonparametric

density plots can be used to compare the distribution of continuous baseline

covariates between treatment groups in the propensity score matched sample

(Austin, 2009b).
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Rosenbaum and Rubin (1984) describe an iterative approach to specifying

a propensity score model (stratification on the propensity score was used in

their illustration; in this paragraph I describe how one would proceed when

using propensity score matching). One begins by specifying an initial propen-

sity score model. The comparability of treated and untreated subjects in the

resultant matched sample is then assessed. If important residual systematic

differences between treated and untreated subjects are found to remain, the

initial propensity score model can be modified. One can modify the propensity

score by including additional covariates, by adding interactions between covari-

ates that are already in the model, or by modeling the relationship between

continuous covariates and treatment status using nonlinear terms (e.g., using

cubic smoothing splines). One proceeds in an iterative fashion until system-

atic differences in observed baseline covariates between treated and untreated

subjects have either been eliminated or reduced to an acceptable level. It is

important to note that at each step of the iterative process, one is not guided

by the statistical significance of the estimated regression coefficients in the

propensity score model (assuming one is using a logistic regression model).

Rather, one is working toward the objective of creating a matched sample in

which the distribution of observed baseline covariates is similar between treated

and untreated subjects.

Rubin (2001) proposed a set of criteria based on comparing the distribution

of the propensity score between treated and untreated subjects in a sample to

determine whether regression adjustment may inadequately eliminate bias when

comparing outcomes between treatment groups. Some authors have suggested

that the comparison of baseline covariates may be complemented by comparing

the distribution of the estimated propensity score between treated and untreated

subjects in the matched sample (Ho et al., 2007). This approach may be useful

for determining the common area of support or the degree of overlap in the

propensity score between treated and untreated subjects. Furthermore, it may

serve as a rough assessment of whether the means of covariates included in

the propensity score model are similar between treatment groups. However,

recent research has found that this approach is insufficient for determining

whether an important variable has been omitted from the propensity score

model or for assessing whether the propensity score model has been correctly

specified (Austin, 2009b). For instance, in a sample matched on a misspecified

propensity score, the mean of an interaction between two covariates was im-

balanced between treatment groups. Despite this imbalance, the distribution of

the misspecified propensity score was similar to that of the correctly specified

propensity score.

Applied authors have frequently used statistical significance testing to com-

pare the mean of continuous covariates or the distribution of categorical variables

between treated and untreated subjects in propensity score matched samples
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(Austin, 2007a, 2008b, 2008c). This approach has been criticized by several

authors for two reasons (Imai et al., 2008; Austin, 2008b, 2009b). First, signifi-

cance levels are confounded with sample size. The propensity score matched

sample is almost invariably smaller than the original sample. Thus, relying

on significance testing to detect imbalance may produce misleading results;

findings of nonsignificant differences between groups may be due only to the

diminished sample size of the matched sample (furthermore, for large samples,

statistically significant differences may be found merely due to the high power

of the test when covariate means are trivially different). Second, Imai et al.

suggested that balance is a property of a particular sample and that reference

to a superpopulation is inappropriate. For these reasons, the use of statistical

significance testing to assess balance in propensity score matched samples is

discouraged.

Finally, a recent review of propensity score methods (Stürmer et al., 2006)

documented that many authors report the c-statistic of the propensity score

model. The c-statistic indicates the degree to which the propensity score model

discriminates between subjects who are treated and those who are untreated.

Recent research has indicated that this statistic provides no information as to

whether the propensity score model has been correctly specified (Austin, 2009b;

Austin, Grootendorst, & Anderson, 2007; Weitzen, Lapane, Toledano, Hume, &

Mor, 2005).

VARIABLE SELECTION FOR THE PROPENSITY
SCORE MODEL

There is a lack of consensus in the applied literature as to which variables to

include in the propensity score model. Possible sets of variables for inclusion

in the propensity score model include the following: all measured baseline

covariates, all baseline covariates that are associated with treatment assignment,

all covariates that affect the outcome (i.e., the potential confounders), and all

covariates that affect both treatment assignment and the outcome (i.e., the true

confounders). The propensity score is defined to be the probability of treatment

assignment .ei D Pr.Zi D 1jXi //. Thus, there are theoretical arguments in favor

of the inclusion of only those variables that affect treatment assignment.

A recent study (Austin, Grootendorst, & Anderson, 2007) examined the

relative benefits of including the different sets of baseline covariates described

earlier in the propensity score model. It was shown that there were merits

to including only the potential confounders or the true confounders in the

propensity score model. In the context of propensity-score matching, the use of

any of the four different sets of covariates in the propensity score model resulted

in all prognostically important variables being balanced between treated and
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untreated subjects in the matched sample. When only the potential confounders

or only the true confounders were included in the propensity score model, the

variables that were imbalanced between treated and untreated subjects were

those variables that affected treatment assignment but that were independent

of the outcome. However, a greater number of matched pairs were formed

when these two propensity score models were used compared with when the

two alternative propensity score models were used. Furthermore, these two

propensity score models (i.e., the potential confounders or the true confounders)

resulted in estimates of a null treatment effect that had lower mean squared error

compared with estimates obtained when the other two propensity score models

were used. Thus, using these two propensity score models did not result in the

introduction of additional bias but resulted in estimates of treatment effect with

greater precision. Similar findings were observed by Brookhart et al. (2006),

who suggested that variables that do not affect exposure but that affect the

outcome should always be included in the propensity score model. Furthermore,

they noted that including variables that affect exposure but not the outcome will

increase the variance of the estimated treatment effect without a concomitant

reduction in bias.

It should be noted that, in practice, it may be difficult to accurately classify

baseline variables into the true confounders, those that only affect the outcome,

those that only affect exposure, and those that affect neither treatment nor the

outcome. In specific settings, the published literature may provide some guidance

for identifying variables that affect the outcome. In practice, in many settings,

most subject-level baseline covariates likely affect both treatment assignment and

the outcome. Therefore, in many settings, it is likely that one can safely include

all measured baseline characteristics in the propensity score model. Variables

that may require greater investigation are policy-related variables or variables

denoting different temporal periods. For instance, in a study comparing the affect

of an older treatment with that of a newer treatment, subjects who entered the

study in an earlier period may be more likely to receive the older treatment,

whereas subjects who entered the study in a later period may be more likely

to receive the newer treatment. Thus a variable denoting a temporal period

would affect treatment assignment. However, if the outcome was conditionally

independent of temporal period, the inclusion of a variable denoting temporal

period in the propensity score model could result in the formation of fewer

matched pairs compared with if this variable were excluded from the propensity

score model (e.g., the examination of the effect of atypical vs. typical neurolep-

tic agents on death in elderly nursing home residents with dementia; Austin,

Grootendorst, & Anderson, 2007). Finally, one should stress that the propen-

sity score model should only include variables that are measured at baseline

and not post-baseline covariates that may be influenced or modified by the

treatment.
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PROPENSITY SCORE METHODS VERSUS

REGRESSION ADJUSTMENT

Historically, regression adjustment has been used more frequently than propen-

sity score methods for estimating the effects of treatments when using observa-

tional data. In this section, I compare and contrast these two competing methods

for inference.

Conditional Versus Marginal Estimates of Treatment Effect

A conditional treatment effect is the average effect of treatment on the individual.

A marginal treatment effect is the average effect of treatment on the population.

A measure of treatment effect is said to be collapsible if the conditional and

marginal effects coincide. For instance, in the absence of confounding, the

difference in means and risk difference are collapsible (Greenland, 1987). Thus,

an intervention that, on average, increases a student’s test score by five units

will, if applied to the entire population, increase the population’s test scores

by five units compared with if the intervention were withheld from the entire

population.

Thus, in a randomized controlled trial, in which all covariates were balanced

between treatment groups, the crude difference in means and the adjusted dif-

ference in means will coincide. Propensity score methods allow for estimation

of the marginal treatment effect (Rosenbaum, 2005). Thus, in an observational

study in which (a) there was no unmeasured confounding, (b) the outcome

was continuous, and (c) the true outcome model was known, the marginal

and conditional estimates would coincide. Assuming that both the outcome

regression model and the propensity score model were correctly specified, it

follows that propensity score methods should result in conclusions similar to

those obtained using linear regression adjustment.

However, when the outcome is either binary or time-to-event in nature and if

the odds ratio or the hazard ratio is used as the measure of treatment effect, then,

even in the absence of confounding, the marginal and conditional estimates of the

treatment effect need not coincide (Gail, Wieand, & Piantadosi, 1984; Greenland,

1987). Thus, in an observational study, even in the absence of unmeasured

confounding, and even if the true outcome regression model were known, the

conditional odds ratio or the conditional hazard ratio need not coincide with

the estimate obtained using propensity score methods. This phenomenon was

examined in greater depth in the context of propensity score methods in a

previous study (Austin, Grootendorst, Normand, et al., 2007). When data were

simulated to induce a specific conditional odds ratio or hazard ratio, propensity

score methods were found to result in biased estimation, even when the true

propensity score model was used. These findings from a Monte Carlo simulation
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mirror those from an empirical study that examined articles published in the

medical literature that reported using both regression adjustment and propensity

score methods to estimate treatment effects (Shah, Laupacis, Hux, & Austin,

2005). Although similar effect sizes were reported, estimates obtained using

propensity score methods tended to be modestly closer to the null compared

with when regression-based approaches were used for estimating odds ratios or

hazard ratios.

The aforementioned suggest that researchers need to carefully distinguish

between marginal and conditional treatment effects. In part, study design and

the analytic plan should reflect which treatment effect is more meaningful in a

given context. However, researchers should note that both RCTs and propensity

score methods allow one to estimate marginal treatment effects. Thus, if the

objective of an observational study is to answer the same question as an RCT,

the marginal effect may be of greater interest to researchers using observational

data.

Regression Adjustment Versus Propensity Score Methods:

Practical Concerns

There are several practical reasons for preferring the use of propensity score-

based methods to regression-based methods when estimating treatment effects

using observational data. First, it is simpler to determine whether the propensity

score model has been adequately specified than to assess whether the regression

model relating treatment assignment and baseline covariates to the outcome has

been correctly specified. The propensity score is a balancing score: conditional

on the propensity score, the distribution of measured baseline covariates is

similar between treated and untreated subjects. In a previous section I described

diagnostics for assessing whether the propensity score model has been ade-

quately specified. These diagnostics were based on comparing the distribution

of measured baseline covariates between treated and untreated subjects, either

in the propensity score matched sample, within strata of the propensity score, or

within the weighted sample. In contrast, it is much more difficult to determine

whether the regression model relating treatment selection and baseline covariates

to the outcome has been correctly specified. Goodness-of-fit measures, such as

model R2, do not provide a test of whether the outcome model has been correctly

specified. Furthermore, goodness-of-fit tests do not allow one to determine

the degree to which the fitted regression model has successfully eliminated

systematic differences between treated and untreated subjects.

Second, these methods allow one to separate the design of the study from the

analysis of the study. This is similar to an RCT, in which the study is designed

first; only after the study has been completed is the effect of treatment on the

outcome estimated. When using propensity score matching, stratification on the
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propensity score, and IPTW using the propensity score, the propensity score can

be estimated and a matched, stratified, or weighted sample can be constructed

without any reference to the outcome. Only once acceptable balance in measured

baseline covariates has been achieved does one progress to estimating the effect

of treatment on the outcome. However, when using regression adjustment, the

outcome is always in sight, and the researcher is faced with the subtle temptation

to continually modify the regression model until the desired association has

been achieved (Rubin, 2001). When using matching, stratification, or weighting

using the propensity score, subsequent regression adjustment may be used to

eliminate residual imbalance in prognostically important covariates. However,

as in an RCT, this regression may be specified prior to the analysis.

Third, there may be increased flexibility when outcomes (when binary or

time-to-event in nature) are rare and treatment is common (Braitman & Rosen-

baum, 2002). When outcomes are either binary or time-to-event in nature, prior

research has suggested that at least 10 events should be observed for every

covariate that is entered into a regression model (Peduzzi, Concato, Feinstein,

& Holford, 1995; Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996).

Thus, in some settings, insufficient outcomes may be observed to allow one

to adequately adjust for all baseline variables that one would like to include in

the regression model. However, if the occurrence of treatment or nontreatment

is more common than outcomes, there may be increased flexibility in modeling

the propensity score.

Fourth, one can explicitly examine the degree of overlap in the distribution

of baseline covariates between the two treatment groups. When using propensity

score matching and stratification, one is explicitly comparing outcomes be-

tween treated and untreated subjects who have a similar distribution of observed

baseline covariates. If there are substantial differences in baseline covariates

between treated and untreated subjects, this will be evident by either the small

number of matched subjects or by the observation that most strata consist

primarily of either treated subjects or primarily of untreated subjects. When

faced with the sparse overlap between the treated and untreated subjects, the

analyst is faced with a choice between two alternatives: first, to restrict the

analysis to comparing outcomes between the minority of treated and untreated

subjects who have similar covariate patterns, and second, to discontinue the

analysis, concluding that treated and untreated subjects are so different that a

meaningful comparison of outcomes between the two groups is not plausible.

When using regression-based approaches, it may be difficult to assess the degree

of overlap between the distribution of baseline covariates for the two groups.

In a setting in which there is a strong separation between the two groups,

a naïve analyst may proceed with a regression-based analysis without being

aware that the fitted regression model is interpolating between two distinct

populations.
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DISCUSSION

In this article I have introduced the concept of the propensity score and de-

scribed how its use can allow one to design and analyze an observational

study so as to mimic some of the characteristics of a randomized study. First,

the propensity score is a balancing score: conditional on the propensity score,

the distribution of observed baseline covariates is similar between treated and

untreated subjects. Thus, just as randomization will, on average, result in both

measured and unmeasured covariates being balanced between treatment groups,

so conditioning on the propensity score will, on average, result in measured

baseline covariates being balanced between treatment groups. However, it should

be reinforced that conditioning on the propensity score need not balance unmea-

sured covariates (Austin, Mamdani, Stukel, Anderson, & Tu, 2005). Second,

propensity score methods allow one to separate the design of an observa-

tional study from its analysis (Rubin, 2007). Third, similar to RCTs, propensity

score methods allow one to estimate marginal (or population-average) treat-

ment effects. This is in contrast to regression-based approaches that allow one

to estimate conditional (or adjusted) estimates of treatment effects. Fourth,

propensity score methods allow one to estimate treatment effects in metrics

similar to those reported in RCTs. When outcomes are binary, one can report

risk differences, numbers needed to treat, or the relative risk. Whereas, the

odds ratio is most commonly reported when logistic regression models are

used.

In this article, I have also paid attention to a frequently overlooked aspect

of study design: assessing whether the propensity score model has been ad-

equately specified. Methods for assessing the specification of the propensity

score model are based on comparing the distribution of measured baseline

covariates between treated and untreated subjects with similar values of the

propensity score. I have also argued that balance diagnostics for assessing the

specification of the propensity score are more transparent than are comparable

diagnostics for assessing whether an outcome regression model has been cor-

rectly formulated. Similarly, with propensity score methods, one can more easily

assess whether observed confounding has been adequately eliminated, whereas

this is more difficult to assess when regression-based approaches are used.

This article was intended to provide an introductory overview of propensity

score methods. The reader is referred to the following books for a more in-

depth discussion (Guo & Fraser, 2009; Morgan & Winship, 2007; Rosenbaum,

2002, 2010; Rubin, 2006). Similarly, the reader is referred to previous in-

troductory overview articles (D’Agostino, 1998; Luellen, Shadish, & Clark,

2005; Rosenbaum, 2005; Rubin, 1997; Schafer & Kang, 2008). In a recently

published tutorial and case study in this journal, I illustrated the application of

propensity score methods to address a specific research question (Austin, 2011a).
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In conclusion, propensity score methods allow one to transparently design

and analyze observational studies. I encourage greater use of these methods in

applied psychological and behavioral research.
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