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ABSTRACT

Optimal control problems for PDEs arise in many important
applications. A main step in the solution process is the solution
of the arising linear system, where the crucial point is usually
�nding a proper preconditioner. We propose both proper block
diagonal and more involved preconditioners, and derive mesh
independent superlinear convergence of the preconditioned
GMRES iterations based on a compact perturbation property of
the underlying operators.
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1. Introduction

Optimal control problems for partial di�erential equations (PDEs), where we

want to steer the solution of the modeled process close to some desired target

solution by use of a control function, arise inmany important applications. Such

problems have been dealt with in several publications, such as [2, 3, 10, 16, 21],

see also the references therein. Earlier publications have mostly dealt with

problems when the control and observation domains coincide, however, in

recent papers theymay be allowed to be di�erent. The general approaches are the

discretize-then-optimize or optimize-then-discretize processes: recent research

shows that one should use discretization schemes for which both approaches

coincide. A main step in the solution process is the solution of the arising linear

system, where the crucial point is usually �nding a proper preconditioner.

We propose both proper block diagonal and more involved preconditioners.

Mesh independent superlinear convergence is derived for the preconditioned

generalizedminimumresidualmethod (GMRES) iterations, based on a compact

perturbation property of the underlying operators. These are new contributions

to the topic, since previous results for such problems only studied linear con-

vergence properties. The paper begins with the required preliminaries, then the
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new results are presented in detail for a time-independent distributed control

problem, �nally some related problems are mentioned in the last section.

2. Preliminaries

We elaborate our preconditioning approach for a time-independent distributed

control problem, described below, where the control and observation domains

are di�erent. Further related problems will be mentioned in Section 4.

2.1. Formulation of the problem

We consider a time-independent distributed control problem, with target

solution y and control function u, using H1-regularization, as described in

[10]. Let � ⊂ Rd be a bounded domain, and �1, �2 given subsets of �: the

observation region �1 and the control region �2. Minimize

J(y, u) := 1

2
‖y − y‖2L2(�1)

+ β

2
‖u‖2H1(�2)

(2.1)

subject to the PDE constraint




−1y =
{

u on �2

0 on � \ �2

y
∣∣
∂� = g.

(2.2)

Here g is a �xed boundary term that admits a Dirichlet li� g̃ ∈ H1(�), and

β > 0 is a regularization constant.

This leads to the following system of PDEs in weak form for the state and

control variables and the Lagrange multiplier:

�nd y ∈ g̃ + H1
0(�), u ∈ H1(�2), λ ∈ H1

0(�) such that
∫

�1

yµ −
∫

�

∇λ · ∇µ =
∫

�1

yµ (∀µ ∈ H1
0(�)),

β

∫

�2

(∇u · ∇v + uv) +
∫

�2

λv = 0 (∀v ∈ H1(�2)),

∫

�

∇y · ∇z −
∫

�2

uz = 0 (∀z ∈ H1
0(�)).

(2.3)

The system can be homogenized, using the splitting y = y0 + g̃ where

y0 ∈ H1
0(�). Therefore, in what follows, we may assume that g = 0, and hence

y ∈ H1
0(�).

The �nite element solution is then carried out in a usual way: we introduce

suitable �nite element subspaces

Yh ⊂ H1
0(�), Uh ⊂ H1(�2), 3h ⊂ H1

0(�)
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and replace the solution and test functions in (2.3) with functions only in the

above subspaces. Let us �x proper bases in the subspaces and denote by y, u,

and λ the coe�cient vectors of these �nite element solutions. Then we obtain a

systems of equations in the following form:

Myy − Kλ= y

β(Mu + Ku)u + MTλ = 0

Ky − Mu= 0,

(2.4)

Here My and Mu are the mass matrices corresponding to the subdomains �1

and �2 (i.e., that are used to approximate y and u), and similarly, K and Ku

are the sti�ness matrices corresponding to � and �2, respectively, further, the

rectangular mass matrix M corresponds to function pairs from � × �2. We

note that λ and y have the same dimension, they both represent functions on�,

whereas u only corresponds to nodepoints in�2. We also note that the last r.h.s

is 0 due to g = 0. In the general case g 6= 0 we would have some g 6= 0 on the

last r.h.s, i.e., non-homogenity would only a�ect the r.h.s. and our results would

remain valid.

A�er rearrangement, we obtain in matrix form that



K −M 0

0 β(Mu + Ku) MT

−My 0 K






y

u

λ


 =



0

0

y


 (2.5)

Problem (2.3) has a unique solution, as well as system (2.4). See [2, 3, 10] for

more details on the problem.

Our goal is to de�ne an e�cient preconditioned iterative solution method

for the above linear system, and to derive a mesh independent superlinear con-

vergence rate. Previous work of the authors includes such superlinear estimates

on coercive or complex-valued equations [4–7]. The present paper includes its

extension to inde�nite real-valued systems.

2.2. Superlinear convergence of the GMRES

In what follows, we will need the solution of linear systems

Au = b (2.6)

with a given nonsingular matrix A ∈ Rn×n. When A is large and sparse, one

generally uses a Krylov type iterative method, see, e.g., [1, 11, 20]. In this paper

we are interested in superlinear convergence rates of the iteration. Here we

summarize brie�y the required background.

For the symmetric positive-de�nite case, thewell-known superlinear estimate

of the standard CG method is obtained as follows, see, e.g., [1]. Let us consider
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the decomposition

A = I + E, (2.7)

where I is the identity matrix, and let λj(E) =: µj. Let us de�ne the polynomial

Pk(λ) :=
k∏

j=1

(
1 − λ

λj

)
, where λj := λj(A) are ordered according to |λj − 1|, i.e.,

such that |µ1| ≥ |µ2| ≥ ... ≥ |µn|. Since Pk(λi) = 0 (i = 1, . . . , k), and using

that |µj − µi| ≤ 2|µj| (i ≥ k + 1, 1 ≤ j ≤ k) and 1
λj

≤ ‖A−1‖, one obtains

max
λ∈σ(A)

|Pk(λ)| = max
i≥k+1

|Pk(λi)| = max
i≥k+1

k∏

j=1

|µj − µi|
λj

≤
(
2‖A−1‖

)k k∏

j=1

|µj|

(2.8)

whereµj = λj−1. Using theminimax property of the CGmethod, (2.8) and the

arithmetic-geometric means inequality, and returning to the notation λj(E) =
µj, we �nally obtain that

(‖ek‖A
‖e0‖A

)1/k

≤ 2‖A−1‖
k

k∑

j=1

∣∣λj(E)
∣∣ (k = 1, 2, . . . , n). (2.9)

In the present paper the matrix is nonsymmetric, for which also several

Krylov algorithm s exist, in particular, GMRES and its variants are most widely

used. There exist similar e�cient superlinear convergence estimates for the

GMRES, based on the decomposition (2.7). In fact, the sharpest one has been

proved in [17], using products of singular values and the residual error vectors

rk := Auk − b, on the Hilbert space level for an invertible operator A ∈ B(H).

One has

‖rk‖
‖r0‖

≤
k∏

j=1

sj(E)sj(A
−1) (k = 1, 2, . . .) (2.10)

where the singular values for a general bounded operator are de�ned as the

distances from the best approximations with rank less than j. Hence, clearly,

sj(A
−1) ≤ ‖A−1‖ for all j, thus the right hand side (r.h.s.) above is bounded by

( k∏
j=1

sj(E)
)
‖A−1‖k. Using the inequality between the geometric and arithmetic

means, we obtain the following estimate:

(‖rk‖
‖r0‖

)1/k

≤ ‖A−1‖
k

k∑

j=1

sj(E) (k = 1, 2, . . .), (2.11)

where the r.h.s. is a sequence decresing towards zero.



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 925

3. Numerical solution andmesh-independent superlinear convergence

3.1. Discretization and blockmatrix formulations

We consider a �nite element discretization of problem (2.3) as described in

Section 2.1 . The convergence of the �nite element solutions to the exact one is

ensured by the standard approximation property: denotingVh := Yh×Uh×3h

for all considered h > 0, and letting n be the dimension of Vh,

for any x ∈ H, dist(x,Vh) := min{‖x−wh‖ : wh ∈ Vh} → 0 (as n → ∞).

(3.1)
Let us denote byAh the global sti�ness matrix of system (2.5):

Ah :=




K −M 0

0 β(Mu + Ku) MT

−My 0 K


 (3.2)

and let us also use compressed notations for the solution vector and the r.h.s. as

c :=



y

u

λ


 , b :=



0

0

y


 , (3.3)

i.e., the system (2.5) which we wish to solve is

Ahc = b. (3.4)

We will denote the total degrees of freedom (DOF) by n, i.e., the size of above

system is n × n.

Let us de�ne the block diagonal and the split part, respectively:

Sh :=



K 0 0

0 β(Mu + Ku) 0

0 0 K


 , Qh := Ah −Sh =




0 −M 0

0 0 MT

−My 0 0


 .

(3.5)

By the de�nition of the used sti�ness and mass matrices, we have the following

relation between the above matrices and the underlying inner product 〈., .〉H
and operators Q, L. Let

y, z ∈ Yh, u, v ∈ Uh, λ,µ ∈ 3h

be given functions and let y, z, u, v, µ, and λ be their coe�cient vectors,

respectively. Following (3.14) and (3.3), let

x :=



y

u

λ


 , w :=



z

v

µ


 , c :=



y

u

λ


 and d :=



y

u

λ


 . (3.6)

Then we have

〈x, w〉H = Shc · d, 〈Qx, w〉H = Qhc · d and 〈Lx, w〉H = Ahc · d (3.7)
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where · denotes the ordinary inner product on Rn. Accordingly, the natural

inner product on Rn for our problem is the Sh-inner product .

SinceAh is regular, we note that it satis�es an inf-sup condition:

inf
c∈Rn
c6=0

sup
d∈Rn
d6=0

Ah c · d
‖c‖Sh

‖d‖Sh

=: mh > 0 (3.8)

where, on the other hand,mh might in general depend on h.

3.2. Iterative solution and block diagonal preconditioning

Wewill use the block diagonalmatrixSh as preconditioner. SinceAh = Sh+Qh,

we obtain S−1
h Ah = Ih + S−1

h Qh, where Ih denotes the identity matrix. Hence

the preconditioned form of (3.4) becomes

(Ih + S−1
h Qh) c = b̃ (3.9)

where b̃ := S−1
h b. We apply a preconditioned GMRES method to solve (3.9).

The preconditioner is based on the idea of equivalent operators [6, 12]. Let us

introduce the uniformly positive elliptic operator

S



y

u

λ


 :=




−1y

β(−1u + u)

−1λ


 for y|∂� = λ|∂� = 0 (3.10)

in the product space H, where β > 0 is the constant used in (2.3). Then the

sti�ness matrix of S coincides with the diagonal preconditioner Sh introduced

in (3.5). The auxiliary problems with Sh are thus discretizations of uncoupled

positive de�nite elliptic equations with constant coe�cients, and hence can be

solvedwith an optimal order of the number of operations [15, 19]. Consequently,

if we prove mesh independent rate of convergence, then the overall number of

operations is also of optimal order.

As seen above, the preconditioned system takes the form (3.9), i.e., we have a

counterpart of (2.7). Applying theGMRES algorithm for thematrixA = S−1
h Ah

(with inverse (S−1
h Ah)

−1 = A−1
h Sh) and inner product 〈c, d〉Sh

:= Sh c · d, we
obtain the following counterpart of estimate (2.11):

(‖rk‖Sh

‖r0‖Sh

)1/k

≤
‖A−1

h Sh‖Sh

k

k∑

i=1

si(S
−1
h Qh) (k = 1, 2, . . . , n). (3.11)

Our goal is to give a bound on (3.11) that is independent of the sub-

spaces Yh,Uh,3h. This will be shown by a suitable modi�cation of our results

in [4, 5].
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3.3. Hilbert space background

We introduce the Hilbert space

H := H1
0(�) × H1(�2) × H1

0(�)

with inner product

〈

y

u

λ


 ,



z

v

µ




〉

H

:= 〈y, z〉H1
0(�) + 〈u, v〉H1(�2)

+ 〈λ,µ〉H1
0(�) ,

where

〈y, z〉H1
0(�) :=

∫

�

∇y · ∇z, 〈u, v〉H1(�2)
:= β

∫

�2

(∇u · ∇v + uv)

with β > 0 de�ned in (2.3). De�ne b ∈ H1
0(�) by

〈b,µ〉H1
0(�) := −

∫

�1

yµ (∀µ ∈ H1
0(�))

(i.e., b is the Riesz representant of the integral functional), and also the bounded

linear operators Q1 : H
1
0(�) → H1

0(�) and Q2 : H
1(�2) → H1

0(�) via

〈Q1y,µ〉H1
0(�) :=

∫

�1

yµ (y,µ ∈ H1
0(�)),

〈Q2u, z〉H1
0(�) :=

∫

�2

uz (u ∈ H1(�2), z ∈ H1
0(�)).

Then system (2.3) can be rewritten as follows:

〈y, z〉H1
0(�) − 〈Q2u, z〉H1

0(�) = 0 (∀z ∈ H1
0(�)),

〈u, v〉H1(�2)
+ 〈λ,Q2v〉H1

0(�) = 0 (∀v ∈ H1(�2)),

〈λ,µ〉H1
0(�) − 〈Q1y,µ〉H1

0(�) = 〈b,µ〉H1
0(�) (∀µ ∈ H1

0(�)).

(3.12)

System (3.12) can be formulated in a more concise way. Let us de�ne the

operator

Q :=




0 −Q2 0

0 0 Q∗
2

−Q1 0 0


 (3.13)

and denote

x :=



y

u

λ


 , w :=



z

v

µ


 and b :=



0

0

b


 (3.14)
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inH. Then (3.12) is equivalent to

〈x, w〉H + 〈Qx, w〉H = 〈b, w〉H (∀w ∈ H)

or simply the operator equation

(I + Q) x = b (3.15)

inH. Using notation

L := I + Q,

we may just write

Lx = b.

Since L is a compact perturbation of the identity, the well-posedness of the above

equation implies using Fredholm theory that L is invertible, in particular the inf-

sup condition holds:

inf
x∈H
x 6=0

sup
w∈H
w 6=0

〈Lx, w〉H
‖x‖H‖w‖H

=: m > 0. (3.16)

Our estimates will involve compact operators in a real Hilbert space H, see,

e.g., [13, Chapter VI], and the following notions:

De�nition 3.1.

(i) We call λj(F) (j = 1, 2, . . . ) the ordered eigenvalues of a compact self-

adjoint linear operator F in H if each of them is repeated as many times

as its multiplicity and |λ1(F)| ≥ |λ2(F)| ≥ ...

(ii) The singular values of a compact operator C in H are

sj(C) := λj(C
∗C)1/2 (j = 1, 2, . . . )

where λj(C
∗C) are the ordered eigenvalues of C∗C.

A basic property of compact operators is that sj(C) → 0 as j → ∞.

Now we verify that the operators in our decomposition of the problem are

compact.

Proposition 3.1. The operators Q1 and Q2 in (3.12) are compact.

Proof. It is well-known that the Riesz representant of the L2 inner product in

a Sobolev space de�nes a compact operator, see, e.g., [14] (in fact, it is the

inverse of the Laplacian or its shi�ed version). The operators Q1 and Q2 de�ne

the Riesz representants of L2 inner products on �1 resp. �2, i.e., the above-

mentioned compact operator is only composed with a restriction operator from

� to�1 or�2 in L
2(�). Since this restriction is obviously bounded, it preserves

compactness.
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This proposition readily yields the same for the corresponding operator

matrix:

Corollary 3.1. Operator Q in (3.13) is compact.

We will also need the following result for the inf-sup condition:

Proposition 3.2. [7] Let L ∈ B(H) be an invertible operator in a Hilbert spaceH,

that is,

m := inf
u∈H
u6=0

sup
v∈H
v 6=0

|〈Lu, v〉|
‖u‖‖v‖ > 0, (3.17)

and let the decomposition L = I + Q hold for some compact operator Q. Let

(Vn)n∈N+ be a sequence of closed subspaces of H such that the approximation

property (3.1) holds. Then the sequence of real numbers

mn := inf
un∈Vn
un 6=0

sup
vn∈Vn
vn 6=0

|〈Lun, vn〉|
‖un‖‖vn‖

(n ∈ N+)

satis�es lim inf mn ≥ m.

3.4. The superlinear convergence result

Proposition 3.3. LetSh andQh be de�ned as in (3.5), and let si(Q) (i = 1, 2, . . . )

denote the ordered singular values of the operator Q de�ned in (3.13). Then the

following relations hold:

(a)

si(S
−1
h Qh) ≤ si(Q) (k = 1, . . . , n),

(b)

‖A−1
h Sh‖Sh

≤ 1

m0
,

for some constant m0 > 0 independent of h.

Proof. (a) The �rst estimate is a special case of our result in [7], but such that we

now have a better constant in the bound due to the symmetric preconditioner.

Namely, by Axelsson et al. [7, Proposition 5.4], ifNh is the sti�ness matrix of an

operator N inH that satis�es

inf
uh∈Vh
u6=0

sup
vh∈Vh
v 6=0

|〈Nuh, vh〉H|
‖u‖H‖v‖H

=: m1 > 0,
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then

λi(S
−1
h QT

h N
−T
h ShN

−1
h Qh) ≤ 1

m2
1

si(QS)
2 (j = 1, 2, . . . , n). (3.18)

Now we can set N = I (the identity operator), in which case m1 = 1, further,

we haveNh = N T
h = Sh. Hence (3.18) becomes

λi(S
−1
h QT

h S
−1
h Qh) ≤ si(QS)

2 (j = 1, 2, . . . , n).

Taking square roots, this is the same as we wanted to prove.

(b) From (3.8) we have

inf
c∈Rn
c6=0

‖S−1
h Ahc‖Sh

‖c‖Sh

= inf
c∈Rn
c6=0

sup
d∈Rn
d6=0

〈S−1
h Ahc, d〉Sh

‖c‖Sh
‖d‖Sh

= inf
c∈Rn
c6=0

sup
d∈Rn
d6=0

Ah c · d
‖c‖Sh

‖d‖Sh

=: mh > 0

from (3.8). Using (3.7),

inf
x∈Vh
x 6=0

sup
w∈Vh
w 6=0

〈Lx, w〉H
‖x‖H‖w‖H

= inf
c∈Rn
c6=0

sup
d∈Rn
d6=0

Ah c · d
‖c‖Sh

‖d‖Sh

= mh > 0.

On the other hand, (3.16) holds on the whole spaceH:

inf
x∈H
x 6=0

sup
w∈H
w 6=0

〈Lx, w〉H
‖x‖H‖w‖H

=: m > 0.

However, Proposition 3.2 yields

lim inf mh ≥ m (> 0)

as the dimension n ofVh tends to∞. This implies thatmh is bounded away from

zero, i.e., there existsm0 > 0 such that

inf
c∈Rn
c6=0

‖S−1
h Ahc‖Sh

‖c‖Sh

≥ m0

independently of h. Hence �nally

‖A−1
h Sh‖Sh

= ‖(S−1
h Ah)

−1‖Sh
= sup

c∈Rn
c6=0

‖c‖Sh

‖S−1
h Ahc‖Sh

≤ 1

m0
.

In virtue of (3.11) and Proposition 3.3, we have proved

Theorem 3.1. Under the setting of Proposition 3.3, for any subspace Vh := Yh ×
Uh × 3h ⊂ H, the GMRES iteration for the n × n preconditioned system (3.9)
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provides the mesh independent superlinear convergence estimate
(‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (k = 1, 2, . . . , n), (3.19)

where εk = 1

km0

k∑

i=1

si(Q) → 0 (ask → ∞) (3.20)

and (εk)k∈N+ is a sequence independent of n and Vh.

4. Some generalizations

4.1. Block preconditioners of PRESB type

Instead of the block diagonal preconditioner used in the previous sections, one

can apply a more general block preconditioner of “preconditioned square block

matrix” (PRESB) type, extending the method in [8].

For this, one �rst rewrites system (2.5) by eliminating the variable u. Namely,

substituting u = − 1
β
(Mu +Ku)

−1MTλ, system (2.5) can be reduced to the 2 by

2 system

(
K 1

β
M(Mu + Ku)

−1MT

−My K

)(
y

λ

)
=

(
0

−y

)
. (4.1)

Here one introduces the scaled vector λ̂ := 1√
β
λ and multiplies the second

equation with − 1√
β
λ to get

Âh

(
y

λ̂

)
≡

(
K M̂

M̂y −K

)(
y

λ̂

)
=

(
0

ŷ

)
,

where M̂y := 1√
β
My, M̂ := 1√

β
M(Mu + Ku)

−1MT and ŷ := 1√
β
y.

We de�ne the preconditioner

Ŝh :=
(
K + 2M̂y M̂y

M̂y −K

)
.

As shown in [3], an explicit form of Ŝ−1
h is

Ŝ−1
h =

(
I 0

−I I

)(
(K + M̂y)

−1 0

0 I

)(
I −M̂y

0 I

)

×
(
I 0

0 −(K + M̂y)
−1

)(
I 0

−I I

)
.

The action of Ŝ−1
h includes two solutions of linear systems with matrixK+ M̂y,

which corresponds to �nite elementmethod (FEM) solutions of standard elliptic
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equtions. Hence these auxiliary systems can be solved with an optimal order of

the number of operations, and in case of mesh independent rate of convergence,

the overall number of operations is also of optimal order as before. Let us

summarize the convergence properties.

4.1.1. Superlinear convergence

We have the decomposition Âh = Ŝh + Q̂h, where

Q̂h :=
(

−2M̂y M̂ − M̂y

0 0

)
.

Here, similarly to the 3 by 3 case (3.5), the remainder matrix Q̂h contains only

massmatrices, whereas the preconditioner Ŝh includes sti�nessmatrices in both

block diagonal terms, i.e., it corresponds to a Sobolev inner product. Hence one

can similarly derive that the preconditioned matrix corresponds to a compact

perturbation of the identity, and thus we obtain mesh independent superlinear

convergence analogously to (3.19).

4.1.2. Linear convergence

In the above results the estimates depend on the parameter β > 0. If β is small,

then superlinear convergence (although valid) is exhibited with large constant

multipliers, i.e., it is not a really useful property. On the other hand, one can see

that linear convergence can be bounded uniformly w.r.t. β . For this, we estimate

the spectrum of Ŝ−1
h Âh as follows. Let λ be one of its eigenvalues, i.e., let

Âh

(
ξ

η

)
= λŜh

(
ξ

η

)

for some vector (ξ , η)T 6= (0, 0)T . Since Âh = Ŝh+Q̂h, we have (1−λ)Ŝh

(
ξ
η

)
=

−Q̂h

(
ξ
η

)
, i.e.,

(1 − λ)

(
K + 2M̂y M̂y

M̂y −K

)(
ξ

η

)
=

(
2M̂y M̂y − M̂

0 0

) (
ξ

η

)
.

The second row yields M̂yξ = Kη. Substituting this in the �rst equation, we

obtain

(1 − λ)
(
Kξ + (2K + M̂y)η

)
= (2K + M̂y)η − M̂η.

Taking the inner product with η, and using that Kξ · η = Kη · ξ = M̂yξ · ξ , we
obtain

(1 − λ)
(
M̂yξ · ξ + (2K + M̂y)η · η

)
= (2K + M̂y)η · η − M̂η · η,

i.e.,

M̂yξ · ξ + M̂η · η = λ
(
M̂yξ · ξ + (2K + M̂y)η · η

)
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or

λ =
M̂yξ · ξ + M̂η · η

M̂yξ · ξ + (2K + M̂y)η · η
.

Let

R(η) := M̂η · η

(2K + M̂y)η · η
, θmin := min

η 6=0
R(η), θmax := max

η 6=0
R(η),

(4.2)

then we readily obtain

Proposition 4.1. The eigenvalues of Ŝ−1
h Âh are real and satisfy

min{1, θmin} ≤ λ
(
Ŝ−1
h Âh

)
≤ max{1, θmax}

with θmin and θmax from (4.2).

In order to observe the uniform behaviour of θmin and θmax as β → 0, note

that the de�nition of M̂y and M̂ implies

R(η) := M(Mu + Ku)
−1MTη · η

(2
√

β K + My)η · η
≈ M(Mu + Ku)

−1MTη · η

Myη · η
as β → 0.

More precisely, we can estimate as follows.We have (2
√

β K+My)η·η ≥ Myη·η
in the denominator, hence R(η) is bounded above uniformly in β . On the

other hand, the previously seen equality M̂yξ = Kη implies that Kη has zero

coordinates where M̂yξ has, i.e., in the nodes outside �1, hence Kη · η =∫
�1

|∇zh|2 and Myη · η =
∫
�1

z2h (where zh ∈ Yh has coordinate vector η).

Thus the standard condition number estimates yieldKη ·η ≤ O(h−2)(Myη ·η).

If we choose β = O(h4), then the denominator satis�es (2
√

β K + My)η · η =
O(h2)(Kη·η)+Myη·η ≤ const.Myη·η, henceR(η) is bounded below uniformly

in β . Hence, altogether, θmin, θmax and ultimately the spectrum of Ŝ−1
h Âh are

bounded uniformly w.r.t β .

4.2. Boundary control problems

A modi�cation of the distributed control problem (2.1)–(4.3), also studied in

[10], is the boundary control problem, in which the same functional (2.1) is

minimized subject to the PDE constraint




−1y = f in �

∂y
∂n

∣∣
∂� = u

(4.3)

where f represents a �xed forcing term and the control function u is

applied on the boundary. The FEM solution of this problem leads to a
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system very similar to (2.5). The mass matrix M is replaced by an (also

rectangular) matrix N that connects interior and boundary basis functions,

further, the mass and sti�ness matrices for u act on the boundary, and are

denoted by Mu,b and Ku,b, respectively. Thus the global system matrix takes

the form

Ah :=




K −N 0

0 β(Mu,b + Ku,b) NT

−My 0 K


 . (4.4)

Then our previous results hold for this problem as well with slight changes. In

particular, the matrix N corresponds to the embedding of the boundary space

L2(∂�) into H1(�). Hence, in a similar way, we obtain that the preconditioned

matrix corresponds to a compact perturbation of the identity. Thus we can

again derive mesh independent superlinear convergence of the preconditioned

GMRES.

4.3. Box constraints

The functions y and/or u are o�en assumed to satisfy additional pointwise

constraints (box constraints). For instance, for the state variable y, one prescribes

ya ≤ y ≤ yb

for some given constants ya and yb. The corresponding constraint for u is ua ≤
u ≤ ub. Box constraints can be dealt with e�ciently using a penalty term of

so-calledMoreau-Yosida type, see [9, 10, 18]. For the distributed control studied

in this paper, the objective function (2.1) is modi�ed as

JMY(y, u) := J(y, u) + 1

2ε
‖max{0, y − yb}‖2 + 1

2ε
‖max{0, y − ya}‖2

for the state constrained case (where ε > 0 is a small penalty parameter)

and similarly for control constraints. Applying a semi-smooth Newton scheme,

one obtains linear systems with small modi�cations of the system (2.4). A�er

rearrangement as in (2.5), the global system matrix becomes



K −M 0

0 β(Mu + Ku) MT

−(My + 1
ε
GAMyGA) 0 K


 , (4.5)

where GA is a diagonal matrix with values 0 or 1, depending whether the actual

value of y in that coordinate satis�es or not the box constraint. The new factors

GA at the mass matrix My do not change the fact that the term GAMyGA

corresponds to a compact perturbation of the identity, as well as the whole block

matrix as before. Hence we obtain mesh independent superlinear convergence

again.
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We note, however, that the superlinear rate is exhibited with large constant

multipliers when ε is small. Hence it is worth mentioning that the linear

convergence rate is not sensitive to ε. Namely, as shown in [9], for this problem

the eigenvalues cluster in two or three intervals: one near the upper bound 1,

one in the middle and one near 0. The middle interval is [1+ε
2+ε

, 1), the upper

bound takes values arbitrarily close to unity when ε → 0. If β = O(h
2

ε
) then the

lower eigenvalues are bounded below by ε
1+ε

if ε < 1. For very small values of ε,

the behaviour is similar to the case when there are several zero eigenvalues [1],

i.e., the small eigenvalues have a negligible e�ect on the solution when a Krylov

subspace iteration is used.

4.4. Time-harmonic parabolic optimal control problems

In some problems the control and discrete state functions are time-harmonic,

see [8] including an example when the target solution and the control funcion

are time-harmonic for a parabolic PDE constraint. This reduces the problem to

minimizing J(y, u) := 1
2‖y − y‖2

L2(�)
+ β

2 ‖u‖2
L2(�)

subject to the elliptic PDE

constraint {
−1y + iωy = u

y
∣∣
∂�

= 0

where y and y are real-valued but the control u must be complex-valued. A�er

rearrangement, the global system matrix becomes

Ah :=
(
K + iωM −M

M β(K + iωM)

)

Introducing the block diagonal preconditioner and the corresponding remain-

der matrix

Sh :=
(
K 0

0 βK

)
and Qh :=

(
iωM −M

M iβωM

)
,

respectively, we see thatQh contains only mass matrices, whereas the precondi-

tioner Ŝh includes sti�ness matrices in both block diagonal terms. Then our

previous results can be used with a direct adaptation to the complex case (just

replacing the transposedQT
h with the complex adjointQ∗

h), and we obtain mesh

independent superlinear convergence again.
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