
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=geno20

Engineering Optimization

ISSN: 0305-215X (Print) 1029-0273 (Online) Journal homepage: https://www.tandfonline.com/loi/geno20

Combining Gaussian processes, mutual
information and a genetic algorithm for multi-
target optimization of expensive-to-evaluate
functions

N. Peremezhney, E. Hines, A. Lapkin & C. Connaughton

To cite this article: N. Peremezhney, E. Hines, A. Lapkin & C. Connaughton (2014) Combining
Gaussian processes, mutual information and a genetic algorithm for multi-target optimization
of expensive-to-evaluate functions, Engineering Optimization, 46:11, 1593-1607, DOI:
10.1080/0305215X.2014.881997

To link to this article: https://doi.org/10.1080/0305215X.2014.881997

© 2014 The Author(s). Published by Taylor &
Francis.

Published online: 28 Feb 2014.

Submit your article to this journal Article views: 3399

View related articles View Crossmark data

Citing articles: 8 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=geno20
https://www.tandfonline.com/loi/geno20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0305215X.2014.881997
https://doi.org/10.1080/0305215X.2014.881997
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2014.881997
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2014.881997
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2014.881997&domain=pdf&date_stamp=2014-02-28
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2014.881997&domain=pdf&date_stamp=2014-02-28
https://www.tandfonline.com/doi/citedby/10.1080/0305215X.2014.881997#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/0305215X.2014.881997#tabModule

Engineering Optimization, 2014
Vol. 46, No. 11, 1593–1607, http://dx.doi.org/10.1080/0305215X.2014.881997

Combining Gaussian processes, mutual information and a
genetic algorithm for multi-target optimization of

expensive-to-evaluate functions

N. Peremezhneya, E. Hinesb, A. Lapkinc∗ and C. Connaughtona

aCentre for Complexity Science, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK;
bEngineering Department, University of Warwick, Coventry CV4 7AL, UK; cDepartment of Chemical

Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street,
Cambridge CB2 3RA, UK

(Received 19 May 2013; accepted 9 December 2013)

A novel approach to multi-target optimization of expensive-to-evaluate functions is explored that is based
on a combined application of Gaussian processes, mutual information and a genetic algorithm. The aim of
the approach is to find an approximation to the optimal solution (or the Pareto optimal solutions) within
a small budget. The approach is shown to compare favourably with a surrogate based online evolutionary
algorithm on two synthetic problems.

Keywords: multi-target optimization; experimental design; information gain; hypervolume indicator

1. Introduction

In target optimization one is concerned not with finding the global optimum (unless the tar-
get happens to be one), but rather with finding solutions associated with desired values of the
underlying process/es. Such optimization problems often arise in product design. In particular,
when novel materials and/or methods are involved, it is usually required that certain desired
specifications/properties of the product are adhered to. For example, in designing a formulated
product such as facial cream (using a constantly updated set of ingredients) it is important that
certain product properties are achieved, for example viscosity and transparency, amongst other
characteristics. In general, this poses a challenging engineering problem in that accurate pre-
diction of properties of formulated consumer products based on composition is difficult, due to
the physical complexity of the system Peremezhney et al. (2012). Lack of knowledge about the
underlying process leads to the need for an often large number of interactions with the real system.
For some applications the number of interactions that can be performed is limited due to the high
cost of the resources involved. In these instances an attractive strategy is to sequentially select
experiments that are optimal both in terms of experimental design and in terms of identification
of suitable solution/s. The strategy is usually implemented via the employment of a surrogate
model for the approximation of values of the response variable in combination with a selective

∗Corresponding author. Email: aal35@cam.ac.uk

© 2014 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/Licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

mailto:aal35@cam.ac.uk
http://creativecommons.org/Licenses/by-nc-nd/4.0/

1594 N. Peremezhney et al.

one-at-a-time sampling strategy where information from past experiments is used to determine
the design of the next one. One of the most prominent algorithms for such sequential optimiza-
tion is the Efficient Global Optimization (EGO) algorithm Jones, Schonlau, and Welch (1998).
Since its introduction, the algorithm has been adapted for different types of optimization problem,
including target optimization. In Wenzel et al. (2010), for instance, the concepts of desirability
Harrington (1965) and virtual observations Cox and John (1997) are made use of to construct
an algorithm capable of identifying and, with each iteration, improving on a cluster of solutions
that best associate with target values. Even though the algorithm undoubtedly explores globally
throughout the search, it is not designed to actively search actively for solutions that would allow
one to gain the most information about the underlying process (i.e. solutions optimal in terms of
experimental design). In this article a novel approach to sequential multi-target optimization is
proposed that explicitly incorporates maximization of information gain as one of its objectives.

Let x ∈ R
d ; x ∈ �, where d is the dimension of the problem and � the decision space, be the

vector of values of the input variables, scalars y(x) and y∗ the corresponding observation obtained
via interacting with the real system and a target, and XL = {x1, x2, . . . , xn} the set of candidate
solutions (obtained via discretization of the decision space). Then, for a single-target optimization,
the objective is to minimize the sum of regrets

k∑
i=1

|y(xi) − y∗|, (1)

where i is the iteration number and | · | is used to mean absolute value or norm one. Or, in other
words, to find

x∗ = argmin
x∈XL

|y(x) − y∗| (2)

in as few iterations as possible. Note that the situation where there are multiple solutions to (2)
may arise. It is assumed that this scenario would be handled by the end user, ranking the solutions
further by applying relevant cost functions. For instance, if the solutions are compositions of
ingredients in a formulation, then they can be further ranked in terms of the cost of ingredients,
or the proportion of a particular ingredient, etc.

The procedure for sequential single-target optimization in an expensive-to-evaluate function
scenario could be as follows

(1) Construct a cheap-to-evaluate surrogate model and train it on a sample of points XT =
{(x1; y(x1)), (x2; y(x2)), . . . , (xh; y(xh))}, h � n (the training set).

(2) Using the surrogate model’s predictions, select x∗ that
• maximizes information gain about the underlying process – exploration;
• minimizes predicted regret, i.e. satisfies (2) – exploitation.

(3) Evaluate x∗ via interacting with the real system and obtain y(x∗).
(4) Include the pair (x∗, y(x∗))in the training set and update the model.
(5) Iterate until there is no improvement on the current optimum or the available budget has

expired.

The above procedure requires that, at each iteration, two objectives are optimized simultane-
ously. One way to go about it is to search for a set of non-dominated solutions – the Pareto set
(where a solution is non-dominated if it cannot be superseded by another solution that improves
an objective without worsening another one). A good way to select just one x∗ from a Pareto set
is to choose a solution with the highest value of hypervolume indicator Zitzler and Thiele (1998).
The hypervolume indicator is the volume of the fitness space that is dominated by a solution and
is bounded by a reference point (see Figure 1). Also, the procedure entails choosing x∗ from a

Engineering Optimization 1595

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

f1

f2

R

P3

P2

P1

Figure 1. Hypervolume (shaded area), bounded by a reference point R, of a three point Pareto set {P1, P2, P3} . The
hypervolume of point P2 is the area of the rectangle whose diagonally opposite corners are P2 and R.

predetermined decision set. Although practical in terms of computational speed, this is limiting
in terms of accuracy. It would, hence, be beneficial to find a compromise between the increase in
the level of discretization and the search of the entire decision space. The proposed compromise
is first to identify a set of non-dominated solutions from a discrete set of candidate solutions,
then to search in the neighbourhood of these solutions, using a real-coded genetic algorithm –
non-dominated sorting genetic algorithm II (NSGA-II) Deb et al. (2002) is employed – for a
solution with the highest value of hypervolume indicator.

Industrial target optimization problems, however, often involve more than one target. For
instance, a formulator may need to optimize a formulation for a particular value of viscosity
and opacity. The procedure described above can be extended to a multi-target case by construct-
ing a separate surrogate model for each underlying process and for x∗, replacing the values of
information gain and regret associated with it with suitable aggregates. After the termination of
the multi-target optimization, all of the non-dominated solutions (in relation to the actual targets)
could be identified and presented to the end user for further consideration.

For the surrogate model, Gaussian processes, as they provide a principled way of assessing
uncertainty of the model, have successfully been used in many optimization problems and are the
choice for the approach discussed here. As has already been mentioned, the sampling criterion
is required to account for the need to exploit the knowledge acquired so far as well as to gain
more knowledge about the underlying processes. The former can be achieved by choosing x∗ that,
according to surrogate model’s prediction, is closest to the target; the latter can be achieved by
choosing x∗ that is predicted to reduce the uncertainty about the rest of the input space the most,
which can be interpreted as the greatest increase in mutual information Guestrin, Krause, and
Singh (2005) between XT ∪ x∗ and the rest of the input space. Gaussian processes allow one to
deal efficiently with both demands on the sampling criterion.

The approach proposed in this article is compared with a surrogate based online evolutionary
algorithm El-Beltagy and Keane (2001) that also uses Gaussian processes. It should be noted
that other surrogate based online evolutionary algorithms exist that are similar in their approach
– see, for instance, Emmerich, Giannakoglou, and Naujoks (2006) and Liu, Zhang, and Gielen
(2013). The attractive features of these algorithms are: (1) they have an evolutionary algorithm
at the core, capable of solving multi-dimensional multi-modal problems; and (2) they attempt to
strike a balance between the need to reduce the amount of expensive evaluations and the need
to improve on the quality of the surrogate model. Although both the approach presented in this
work and the algorithm it is compared with use Gaussian processes, their application is different,

1596 N. Peremezhney et al.

which makes for an interesting comparison. In the rest of the article, the proposed algorithm is
referred to as the Multi-Objective Active Learner (MOAL) algorithm and the abbreviation SOEA
is used for the Surrogate based Online Evolutionary Algorithm.

The article is organized as follows: in Section 2, Gaussian processes and ‘mutual information’
are briefly introduced, followed by a description of the MOAL algorithm in Section 3; in Sections 4
and 5, synthetic examples of the application of the MOAL and SOEA algorithms are presented;
results are discussed in Section 6, and conclusions are drawn in Section 7.

2. Methods

2.1. Gaussian processes

The assumption is that the observations associated with the inputs to the system have a (multi-
variate) Gaussian joint distribution. Here, a random variable is an observation associated with
a particular input. For any subset of the random variables, their joint distribution will also be
Gaussian. A Gaussian Process (GP) is a generalization of multivariate Gaussians to an infinite
number of random variables. According to a GP definition, the joint distribution over observations
associated with every finite subset of inputs is Gaussian. These joint distributions are defined by
a GP through the use of a mean function, m(·), and a covariance function, k(·, ·). For an obser-
vation associated with input x, its mean is given by m(x) and for a pair of observations x and x′
their covariance, K(x, x′), is given by k(x, x′). A common choice is to apply a Gaussian process
with zero mean function and Automatic Relevance Determination (ARD) squared exponential
covariance function

k(x, x′) = σ 2
f exp

[
−1

2

D∑
d=1

(
xd − x′

d

ld

)2
]

. (3)

In the above, σ 2
f is the signal variance and ld is an individual characteristic length scale for each

input dimension xd . However, it is sensible to assume measurement noise to be present. Hence,
each observation y(x) can be thought of as related to an underlying process f (x) through a Gaussian
noise model:

y(x) = f (x) + ε, (4)

where ε ∼ N (0, σ 2
n) are Independent Identically Distributed (IID) random errors. And so the final

expression for the covariance function – the prior on the noisy observations – can be written as

kfinal(x, x′) = σ 2
f exp

[
−1

2

D∑
d=1

(
xd − x′

d

ld

)2
]

+ δxx′σ 2
n , (5)

where δxx′ is the Kronecker delta function. θ =
{
σ 2

f , l1, l2, . . . , ld , σ 2
n

}
forms a set of hyperparame-

ters of the covariance function. To incorporate the knowledge that the training data provides about
the process, the joint distribution of the observed target values and function values at test loca-
tions under the prior is written and then conditioned on the observations. The necessary Gaussian
identities employed are [

x
y

]
∼ N

([
μx

μy

]
,

[
A C

CT B

])
,

Engineering Optimization 1597

where x and y are jointly Gaussian random vectors, and the marginal distribution of x together
with the conditional distribution of x given y

x ∼ N (μx, A) ,

x|y ∼ N
(
μx + CB−1

[
y − μy

]
, A − CB−1CT

)
.

So now, given a number of inputs X , corresponding observations y, and an unobserved input x∗,
for y(x∗), [

y
y(x∗)

]
∼ N

(
0,

[
K (X , X) K (X, x∗)
K (x∗, X) K (x∗, x∗)

])
. (6)

And the conditional probability, P(y(x∗)|y), follows a Gaussian distribution:

y(x∗)|y ∼ N
(
K
(
x∗, X

)
K (X , X)−1 y, K

(
x∗, x∗)− K

(
x∗, X

)
K (X, X)−1 K

(
X, x∗)) .

The mean and variance of this distribution is used to compute the best estimate and the uncertainty
of y(x∗):

ȳ(x∗) = K
(
x∗, X

)
K (X , X)−1 y, (7)

σ 2
y(x∗) = K

(
x∗, x∗)− K

(
x∗, X

)
K (X, X)−1 K

(
X, x∗) . (8)

A number of models can be constructed depending on the choice of the values of the hyper-
parameters of the covariance function. Figure 2 illustrates two output vectors where the mean
and variance of each output has been computed using (7) and (8), but where the values of the
hyperparameters of the covariance function are different. To choose the best model for the data
available, a search is carried out for the values of the hyperparameters that maximize the marginal
likelihood – the probability of the data given the hyperparameters,

log p(y|X , θ) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π ,

where n is the number of training examples. To set the hyperparameters, partial derivatives of the
marginal likelihood w.r.t. the hyperparameters are obtained and used in conjunction with a gradient

Figure 2. Two output vectors where the mean and variance of each output has been computed using (7) and (8), but
where the values of the hyperparameters of the covariance function are different. The training data are shown by ‘+’ signs.
The output predictions (dots) were generated using a GP with the covariance function as in (5) with: left – (l, σf , σn) = (1,
1, 0.1); right – (l, σf , σn) = (

√
3, 0.5, 0.8). Both plots also show the two standard-deviation error bars for the predictions

obtained using these values of the hyperparameters.

1598 N. Peremezhney et al.

based optimizer. To train a GP model, a choice has to be made (utilizing prior knowledge) between
different functional forms for the mean and covariance functions as well as the adaptation of the
hyperparameters of these functions. In the absence of prior knowledge, a variety of functional
forms could be investigated via the comparison of marginal likelihoods – for more details see
Rasmussen and Williams (2006). In this work, only GPs with zero mean function, a squared
exponential (ARD) covariance function, and GPs with zero mean function and Matérn(ν=3/2)

covariance function are considered.

2.2. Mutual information

The Mutual Information (MI) of two discrete random variables X and Y measures how much
knowing one of these variables reduces uncertainty about the other. It is expressed as

MI (X; Y) = H (X) − H (X | Y) , (9)

where H (X) is a marginal entropy – the amount of uncertainty about random variable X and
H (X | Y) is a conditional entropy – the amount of uncertainty remaining about X after Y is
known – computed as

H(X|Y) = H(X , Y) − H(Y). (10)

The entropy of a Gaussian random variable X conditioned on variable Y is a monotonic function
of its variance:

H(X|Y) = 1

2
log

(
2π exp σ 2

X|Y
)
. (11)

If X is assumed to be an observation associated with a particular input to the system as discussed
in the previous section, for instance, then, using GP regression, the predicted value of σ 2

X|Y is
easily computed using (8). Also, as the computation in (8) only depends on the inputs, it is
possible to compute H(X|Y) before the actual observation is made. It is useful, in the context of
optimization, to think of a discretized input space as a set of random variables. Let XL be such a
set of random variables, XT be any subset of XL and x any random variable in XL \ XT , then the
mutual information MI (XT ∪ x; XL \ XT ∪ x), expressed as

MI (XT ∪ x; XL \ XT ∪ x) = H (XL \ XT ∪ x) − H (XL \ XT ∪ x | XT ∪ x) ,

is the information gain, or the amount of uncertainty remaining about XL \ XT ∪ x (the rest of the
input space), if x is revealed.

3. The MOAL algorithm

Consider n objectives, associated with n targets, as in (2), and a budget of t evaluations. Two sets
of points are involved: (1) the training set XT , which is used to train the surrogate models and
which gains a point with each iteration of the algorithm; and (2) a set XL of other solutions from a
discretized decision space. A surrogate model is trained for each process. Then, at each iteration
of the algorithm, the following steps are performed.

(1) Using the surrogate models, estimates and the associated predicted variances of observations
for each point xj ∈ XL, j = 1, . . . , |XL|, are computed.

(2) In relation to i’s objective, every point is referenced in two ways:

Engineering Optimization 1599

(a) the increase in mutual information it would provide (Guestrin, Krause, and Singh 2005):

I(i)
(
xj
) = MI

(
XT ∪ xj; XL \ XT ∪ xj

)− MI (XT ; XL \ XT)

= H
(
XT ∪ xj

)− H
(
XT ∪ xj | XL \ XT ∪ xj

)− [H (XT) − H (XT | XL \ XT)]

= H
(
XT ∪ xj

)− H (XT) − H
(
XT ∪ xj | XL \ XT ∪ xj

)+ H (XT | XL \ XT)

= H
(
xj | XT

)− [
H (XL) − H

(
XL \ XT ∪ xj

)]+ H (XL) − H (XL \ XT)

= H
(
xj | XT

)− [
H (XL \ XT) − H

(
XL \ XT ∪ xj

)]
= H

(
xj | XT

)− H
(
xj | XL \ XT ∪ xj

)
= 1

2
log 2πeσ 2(i)

(xj |XT) − 1

2
log 2πeσ 2(i)

(xj |XL\xj)

= 1

2
log

⎛
⎝ σ 2(i)

(xj |XT)

σ 2(i)

(xj |XL\xj)

⎞
⎠ (12)

where (9), (10) and (11) were employed and Equation (8) is used to compute σ 2(i)

(xj |XT)

and σ 2(i)

(xj |XL\xj)
;

(b) the predicted value of regret

r(i)(xj) = |ȳ(i)(xj) − y∗(i)|, (13)

where ȳ(i)(xj) and y∗(i) are the predicted value of the response variable i at xj and the
target value of the response variable i, respectively.

(3) The sets
{
I(i)(x1), I(i)(x2), . . . , I(i)(x|XL |)

}
and

{
r(i)(x1), r(i)(x2), . . . , r(i)(x|XL |)

}
are mapped

onto interval [0, 1]. The information about every point is first summarized as

I(xj) =

⎡
⎢⎢⎣

I(1)(xj)

I(2)(xj)

. . .

I(n)(xj)

⎤
⎥⎥⎦ , r(xj) =

⎡
⎢⎢⎣

r(1)(xj)

r(2)(xj)

. . .

r(n)(xj)

⎤
⎥⎥⎦ , (14)

then the magnitudes ‖I(xj)‖2 and ‖r(xj)‖2 are computed. The following procedure1 is then
used to choose one point for sampling.
(a) All of the points are sorted according to non-domination, using the magnitudes ‖I(xj)‖2

and ‖r(xj)‖2, and a Pareto set χ is identified. The point xc satisfying

xc = argmax
xj

‖I(xj)‖2 × (√
n − ‖r(xj)‖2

)
(15)

is chosen as the ‘current best’. Set χ is first reduced to size z � |XL| (to include only xc

and at most z − 1 ‘next best’ non-dominated points selected according to Equation 15)
and then used as the first population for an NSGA-II algorithm (without crossover) to
conduct a search for the maximizer.

(b) The NSGA-II algorithm is iterated M times. At each iteration:
• following sorting and selection steps, mutations are carried out (by performing small

perturbations of the input vectors) to obtain a set (of size |χ |) of new points within the
decision space;

1600 N. Peremezhney et al.

• each of the new points is referenced using (12) and (13) and one point is chosen
according to (15). If the value computed for it using (15) is higher than that of the
‘current best’ point, it becomes the ‘current best’ point;

• the ‘current best’ point after the last iteration is chosen for evaluation.
(4) The evaluated point is added to the training set and the hyperparameters of the surrogate

models are reoptimized.

Intuitively, the marginal increase in mutual information (Equation 12) decreases for points that
are near the one that was just sampled, which means that the area will not be sampled again for
a number of iterations. This has a direct affect on the accuracy of the algorithm. To overcome
this problem, the decision set XL can be re-sampled with density p̂X∗

L |x̃ (where x̃ is the matrix of
solutions collected so far), when, for instance, there has been no improvement in the value of the
hypervolume indicator of the Pareto set for a number of iterations. Re-sampling with p̂X∗

L |x̃ can be
done using a mixture of Gaussians (with n components) as a density estimator, for instance. The
value of the hypervolume indicator of the Pareto set is obtained as follows: first, the observations{

y(1)
1 , . . . , y(n)

1 ; y(1)
2 , . . . , y(n)

2 ; . . . ; y(1)
m , . . . , y(n)

m

}
, collected so far, are transformed as

|y(i)
j − y∗(i)|

R(i)
, i = 1, ..., n j = 1, ..., m, (16)

where

R(i) = max |y(i)
j − y∗(i)|; (17)

then, from the transformed observations, the non-dominated set is identified and the value of
hypervolume indicator (for the whole of the non-dominated set), bounded by a reference point
[1, 1], is computed.

The algorithm stops once the budget of evaluations is exhausted. The final Pareto set is presented
to the end user. For comparison of performance against other algorithms (or against optimum
performance, if such information is available), the value of the hypervolume indicator for the final
Pareto set (bounded by a reference point [1, 1]) can also be computed. To reduce computational
complexity, σ 2(i)

(xj |XL\xj)
is calculated using only k points, where

2|XT | ≤ k ≤ |XL \ xj|. (18)

Namely, points x′ ∈ XL \ xj are arranged in decreasing order according to their respective values
of covariance with xj (computed using Equation 5) and the first k are selected.

4. Illustration of the approach

To illustrate the potential use of the approach, it is applied to simulate two multi-target optimization
problems. The first problem illustrates the application of the algorithm to a two-target uncon-
strained optimization problem in which: (1) the two fictitious physical processes are simulated
by the Ackley and the Booth functions (see Figure 3);

fAckley(x, y) = −20 exp

{
−0.2

√
0.5

(
x2 + y2

)}

− exp
{
0.5

[
cos (2πx) + cos (2πy)

]}+ 20 + exp (1) , (19)

where fmin (0, 0) = 0,

fBooth(x, y) = (x + 2y − 7)2 + (2x + y − 5)2 , (20)

Engineering Optimization 1601

Figure 3. The Ackley function (a) and the Booth function (b) in two dimensions.

where fmin (1, 3) = 0; (2) the number of design variables is two, with each one ranging from
−30 to 30; and (3) both targets are global minima. Thus, the target vector is [0 0]T. The set of
candidate solutions XL comprises 1200 uniformly spread out over the decision space input vectors.
The initial training set XT comprises 16 input vectors, obtained as a Latin Hyper Cube (LHC)
sample, and the corresponding values of two processes. The values of the Booth function are log
transformed prior to regression. For this problem, a GP with zero mean and the Matérn covariance
function were employed:

kMatérn
(
x, x′) = σ 2

f

21−ν

	 (ν)
(√

2νr/l
)ν

Kν

(√
2νr/l

) , (21)

with positive parameters ν, σ 2
f and l, where Kν is a modified Bessel function and r = |x − x′|;

ν = 3/2 was chosen for this problem, for which (21) can be simplified Abramowitz and Stegun
(1965) to

kMatérn
(
x, x′) = σ 2

f

(
1 +

√
3r

l

)
exp

(
−

√
3r

l

)
. (22)

Parameters σ 2
f and l in (21) and (22) play the same role as in (3).

The first problem is challenging as, in order to approximate the optimal Pareto set well, the
algorithm is required to find solutions that are near both global minima. A big proportion of the
landscape of the Ackley function is featureless, thus a surrogate model trained on a small initial
training set may not be able to produce satisfactory predictions for points in the target area, and
the algorithm will be required to explore efficiently (i.e. to update the surrogate model with the
most informative points quickly), for an optimization to converge on a satisfactory set of solutions
within a small budget of evaluations. For the Booth function, the global optimum is inside a long,
flat valley. To find the valley is not difficult; however, convergence to the global optimum is
challenging. For the Ackley function, the global optimum is inside a narrow funnel, making it
also non-trivial to locate.

The second problem illustrates the application of the algorithm to a two-target constrained
optimization problem in which: (1) the two fictitious physical processes are simulated by the
Levy and the Dixon & Price functions:

fLevy(x) = sin2 (πy1) +
n−1∑
i=1

(yi − 1)2
[
1 + 10 sin2 (πyi+1)

]+ (yn − 1)2 , (23)

1602 N. Peremezhney et al.

where

yi = 1 + xi − 1

4
,

fDixonPrice(x) = (xi − 1)2 +
n∑

i=2

i
(
2x2

i − xi−1
)2

; (24)

and (2) there are four design variables and one constraint. A constraint often encountered in
industrial applications is applied:

4∑
i=1

xi = T , (25)

where xi ∈ R≥0 and T is user defined (T = 10 is used for this problem). The situation is often
encountered in experiments with formulated products, for instance where xi are volumes of
ingredients and T is the total volume per formulation.

Three random target vectors were chosen from the box
[
f (1)
min(x), f (1)

max(x)
]

×
[
f (2)
min(x), f (2)

max(x)
]
.

The set of feasible solutions XL comprises 2000 uniformly spread out input vectors satisfying
(25). The initial training set XT comprises 30 uniformly spread out feasible input vectors and the
corresponding values of two processes. Function values of both processes are log transformed prior
to regression. For this problem, a GP with zero mean and squared exponential (ARD) covariance
function was employed.

For both problems:

• process values are perturbed by noise drawn from N (0, 0.12);
• in (18), k = 2|XT | is used;
• the NSGA-II algorithm is iterated 100 times per iteration of the main algorithm with a population

size at most 1% of |XL|. For each mutation, the value of perturbation is drawn from the uniform
distribution on the interval (0, α60] and (0, α10] for the first and second problems, respectively.
Values of the parameter α from the interval [0.01, 0.1] were tested and α = 0.01 selected;

• the decision set is re-sampled if there has been no improvement in the value of the hypervolume
indicator for three consecutive iterations. To re-sample, only the solutions so far collected, Xx∗ ,
are considered. Xx∗ are assumed to belong to a mixture of Gaussian distributions with the
number of components being that of the dimension of the input space. A Gaussian mixture
model is fitted McLachlan and Peel (2000) and the parameter estimates (the components’
means, covariances and mixture proportions) are obtained using an Expectation Maximization
(EM) algorithm. A set of random input vectors X∗

L (of the same cardinality as XL) is then drawn
from the resulting distribution.

The hyperparameters2 of surrogate models are fitted by optimizing the marginal likelihood using
a conjugate gradient optimizer. To avoid bad local minima, five random restarts are tried, picking
the run with the best marginal likelihood. Leave-one-out cross-validation is used to validate the
models. Namely, for each point in the training set, its predicted function value along with the
variance of the predicted value are computed using the rest of the set. Following Jones, Schonlau,
and Welch (1998), cross-validated standardized residuals Sr are computed:

Srx = y(x) − ȳ(x)√
σ 2

y(x)

, (26)

and a check is carried out that the standardized residuals are all in the interval [−3, +3]. The
optimizations are run for 30 iterations. The observations thus collected are transformed using

Engineering Optimization 1603

(16). From the transformed observations, the non-dominated set is identified and the value of the
hypervolume indicator for the whole of the set (bounded by a reference point [1, 1]) is computed.
The value is then compared against the one computed for the SOEA algorithm and the optimum
or a suitably chosen baseline. In this work, a baseline is obtained by computing the value of
the hypervolume indicator for non-dominated observations obtained having evaluated 10,000
uniformly spread out input vectors.

5. Brief description of the SOEA algorithm for multi-target optimization

In this work the approach proposed by El-Beltagy and Keane (2001) is adapted. The SOEA
algorithm proceeds as follows.

(1) An initial population of solutions of size N is chosen. The initial population of solutions and
the corresponding observations are used as a training set to train surrogate models.

(2) A GP with zero mean and squared exponential (ARD) covariance function is used. The
setting up of the surrogate models, the validation and the hyperparameter optimization are as
described in Section 4.

(3) Using a multi-objective evolutionary algorithm (NSGA-II), the next population of solutions
is obtained.

(4) The trained surrogate models are used to predict the mean values and the corresponding
variances of process values (see Equations 7 and 8) for each of the solutions obtained. From the
predicted variances of the process values, the corresponding standard deviations are computed
and normalized to be in the interval [0, 1].

(5) Solutions for which the normalized standard deviation of each predicted process value is below
the currently allowable tolerance, Tolerancec, are assigned the predicted process values. For
the rest, the values are established through interaction with the real system. These points are
added to the training set. The value of Tolerancec is updated after each iteration of the overall
algorithm. It is reduced as follows:

Tolerance(i)
c = Tolerancem × t − Total(i−1)

s

t − N
, (27)

where Tolerancem is the maximum allowable tolerance (initialized prior to optimization), t is
the maximum number of interactions with the real system that are budgeted for, Total(i−1)

s is
the total number of solutions (up to the iteration i − 1) that were evaluated via interacting with
the real system, and N is the number of solutions in a population. Prior to the first iteration,
Tolerancec is equal to Tolerancem. To avoid the infinite loop scenario, where evaluations are
carried out using the surrogate models only, Tolerancem is reduced by half if, at iteration i,
all of the solutions in the population have been assigned their predicted values.

(6) The hyperparamteters of the surrogate models are reoptimized after each iteration. The overall
algorithm is iterated until the budget is exhausted.

Once the budget of evaluations has been exhausted, the algorithm is stopped. The corresponding
observations are transformed using (16). From the transformed observations, the non-dominated
set is identified and the value of the hypervolume (using ([1, 1] as a reference point) is computed.
The same decision set and the initial training set as for the MOAL algorithm are used. The initial
value of the Tolerancem parameter is established through experimentation. Values between 0.05
and 0.5 are tested and a value of 0.1 selected.

1604 N. Peremezhney et al.

Table 1. Mean and standard deviation of the
hypervolume indicator of the Pareto set for the
target vector in problem 1 (after 10 runs of the
algorithms).

MOAL SOEA Baseline

49.43%(4.11) 27.55%(15.86) 64.66%

Table 2. Mean and standard deviation of the hypervolume indicator of the
Pareto set for the target vectors in problem 2 (after 10 runs of the algorithms).

MOAL SOEA Optimum/Baseline

Target vector 1 98.44%(0.68) 91.71%(3.90) 100%
Target vector 2 87.01%(3.31) 81.98%(4.00) 93.12%
Target vector 3 97.92%(0.50) 91.84%(1.78) 100%

6. Results and discussion

The MOAL and SOEA algorithms were tested on the problems presented in Section 4. Ten
optimization runs were performed for each target vector and the mean values of the hypervolume
indicator of the Pareto set, along with the corresponding standard deviations, were recorded (see
Tables 1 and 2). These values were used to compare the performance of the algorithms. For both
algorithms, the R(i) in (16) were computed using observations from 10,000 uniformly spread out
solutions. In real applications, these values would be established using all available observations
after the last iteration of the algorithm.

As can be seen from the results, the MOAL algorithm performed better than the SOEA algorithm
on both problems. The plausible explanation is that the MOAL algorithm is able to improve actively
on the prediction quality of the surrogate models over the target area, and to do so rapidly (see
Figure 4). Locating the areas of the decision space least well covered by the training set, whilst at
the same time ‘promising’in terms of gaining on the targets, allows the MOAL algorithm efficiently
to discover the relevant [for the optimization] features of the underlying function landscape. By
contrast, the SOEA algorithm is only concerned with reducing uncertainty in the search areas. In
a situation where the underlying function landscape is challenging and the budget of evaluations
is small, the algorithm can be very successful or unsuccessful depending on how quickly the
evolutionary part of it can converge on solutions near the target area/s. This is reflected in the
high value of the standard deviation of the hypervolume indicator for problem 1 (see Table 1).

The following performance criteria can be used to assess the quality of the predictions of
surrogate models.

(1) The Standardized Mean Squared Error (SMSE) loss, which is the Mean Squared Error (MSE)
normalized by the variance of the targets of the test cases (MSE on its own is sensitive to the
overall scale of the target values).

(2) The Negative Log Probability (NLP) of the target under the model,

− log p (y∗|XT , x∗) = 1

2
log

(
2πσ 2

∗
)+ (y∗ − ȳ (x∗))2

2σ 2∗
, (28)

where ȳ (x∗) and σ 2∗ are the estimated mean and variance of the predictive distribution, respec-
tively. This can be summarized by the Mean Negative Log Probability (MNLP), by averaging
over the test set. This loss can be standardized by computing it relative to the NLP of a pre-
dictive model that ignores the inputs and always predicts using a Gaussian with the mean

Engineering Optimization 1605

Figure 4. Contour plot of the Booth function with: (a) input locations of the initial training set, and (b) solutions obtained
using the MOAL algorithm for an optimization run of 30 evaluations. Empty squares – solutions from the initial training
set; filled triangles – solutions chosen by the MOAL algorithm; squares with a cross inside – the global minima of the
Booth and the Ackley functions.

Figure 5. Average SMSE values (a) and average MNLP values (b) computed for surrogate models approximating the
Booth function in problem 1. The averages were computed over 10 optimization runs for budget sizes from 5 to 30
evaluations in increments of 5. Zero evaluations corresponds to the values computed for the model constructed using the
initial training set.

and variance of the training data. The MNLP will then be approximately zero for a simple
predictive model and negative for a better one. The prediction quality of the surrogate models
approximating the Booth function (as in problem 1) is used as an example (see Figure 5). The
test set is chosen to be the solutions in and around the target area (a [−5, 5] × [−5, 5] box).

As can be seen from Figure 5, the surrogate models employed to approximate the Booth function
during optimization runs of the MOAL algorithm produced predictions with on average smaller
errors (see the SMSE plot). There is a big drop in the value of SMSE after just five evaluations,
and a steady decrease thereafter, which indicates that the target area was found quickly, and that
solutions are being chosen from it (the target area). The MNLP value also decreases rapidly by
five evaluations, although the improvement is less pronounced thereafter. It can be argued that,
for the SOEA algorithm, on average 30 evaluations were not enough to narrow down the search
and hence adequately update its surrogate models.

The overall complexity of the MOAL algorithm is mostly due to the computation of the inverse
of the covariance matrix (using Cholesky decomposition) for obtaining conditional entropies
H
(
xj | XT

)
and H

(
xj | XL \ XT ∪ xj

)
using (11) in Section 2. The computational complexity

for the approximation of the conditional entropies are O(t4|X̃L|) and O(tk3|X̃L|) for H
(
xj | XT

)

1606 N. Peremezhney et al.

and H
(
xj | XL \ XT ∪ xj

)
, respectively, where |X̃L| = |XL| + M × z (the number of points in the

decision space, as per discretization, plus the additional points obtained through the application
of the genetic algorithm) and t is the budget (number of evaluations). The increase in complexity
comes with an increase in the number of evaluations and an increase in the discretization of the
input space, where the latter is dependent on the dimensionality of the problem. With this in
mind, it is thought that the MOAL algorithm is most suited for problems where the cost of the
resources outweighs the computational burden. For instance, a formulator may need to optimize
a formulation and have a very limited number of experiments to conduct, duo to the high cost of
a particular ingredient. Or, in chemical reaction optimization, a particular process may require a
long time to run its course.

7. Summary and conclusions

In this article a novel approach to multi-target optimization of expensive-to-evaluate functions
based on the combined application of Gaussian processes, mutual information and NSGA-II was
proposed. To illustrate the potential use of the approach, it was applied to simulate the optimization
of target values of fictitious physical processes. Constrained and unconstrained optimization, using
the proposed algorithm, was illustrated. The algorithm was compared against a surrogate based
online evolutionary algorithm specifically designed for the optimization of expensive-to-evaluate
functions. Results indicate that, using the hypervolume indicator as performance criteria, the
proposed approach compares favourably against the surrogate based online evolutionary algorithm
on tasks involving a small budget of evaluations. Although the computational complexity of the
proposed algorithm is high, it is not foreseen to be a hindrance for the type of applications it is
designed for. The authors appreciate that, at the time of writing the article, the performance of
the proposed algorithm has not yet been tested on a large number and a variety of multi-target
optimization problems. The proposed algorithm is intended to be employed in experimentation
with formulated products in the near future.

Funding

Nicolai Peremezhney is grateful for a PhD scholarship from the University of Warwick Complexity Doctoral Training
Centre; the Engineering and Physical Sciences Research Council (EPSRC).

Notes

1. Note that other techniques, alternative to the genetic algorithm (the ‘branch-and-bound’ algorithm, for instance)
could be used to find a solution to the single objective, constrained (by the boundaries of the decision space)
optimization problem posed in (15).

2. The Gaussian Process Regression and Classification Toolbox version 3.1 for MATLAB™ by Carl Edward
Rasmussen and Hannes Nickisch, downloaded from http://gaussianprocess.org/gpml/code was used.

References

Abramowitz, M., and I. A. Stegun. 1965. Handbook of Mathematical Functions, 84–85. New York: Dover.
Cox, D., and S. John. 1997. “A Statistical Method for Global Optimization.” In Multidisciplinary Design Optimization:

State of the Art, edited by N. Alexandrow and M. Hussaini, 315–329. Philadelphia, PA: SIAM.
Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.”

IEEE Transactions on Evolutionary Computation 6 (2): 182–197.

http://gaussianprocess.org/gpml/code was used

Engineering Optimization 1607

El-Beltagy, M. A., and A. J. Keane. 2001. “Evolutionary Optimization for Computationally Expensive Problems Using
Gaussian Processes.” In Proceedings of the International Conference on Artificial Intelligence, 708–714.: CSREA
Press.

Emmerich, M., K. Giannakoglou, and B. Naujoks. 2006. “Single and Multiobjective Evolutionary Optimization Assisted
by Gaussian Rrandom Field Metamodels.” IEEE Transactions on Evolutionary Computation 10 (4): 421–439.

Guestrin, C., A. Krause, and A. Singh. 2005. “Near-Optimal Sensor Placements in Gaussian Processes.” In International
Conference on Machine Learning (ICML), Bonn, Germany, August 7–11.

Harrington, J. 1965. “The Desirability Function.” Industrial Quality Control 21 (10): 494–498.
Jones, D., M. Schonlau, and W. Welch. 1998. “Efficient Global Optimization of Expensive Black-Box Functions.” Journal

of Global Optimization 13 (4): 455–492.
Liu, B., Q. Zhang, and G. Gielen. 2013. “A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for

Medium Scale Expensive Optimization Problems.” IEEE Transactions on Evolutionary Computation, PP (99).
doi:10.1109/TEVC.2013.2248012.

McLachlan, G., and D. Peel. 2000. Finite Mixture Models. Hoboken, NJ: Wiley.
Peremezhney, N., C. Connaughton, G. Unali, E. Hines, and A. A. Lapkin. 2012. “Application of Dimensionality Reduction

to Visualisation of High-Throughput Data and Building of a Classification Model in Formulated Consumer Product
Design.” Chemical Engineering Research and Design 90 (12): 2179–2185.

Rasmussen, C. E., and C. K. I. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press.
Wenzel, S., S. Straatmann, L. Kwiatkowski, P. Schmelzer, and J. Kunert. 2010. “A Novel Multi-Objective Target Value

Optimization Approach.” In Classification as a Tool for Research: Studies in Classification, Data Analysis, and
Knowledge Organization, edited by H. Locarek-Junge and C. Weihs, 801–809, Berlin: Springer-Verlag.

Zitzler, E., and L. Thiele. 1998. “Multiobjective Optimization Using Evolutionary Algorithms – A Comparative Case
Study.” In Parallel Problem Solving From Nature, V, edited by A. E. Eiben, T. Bäck, M. Schoenauer, and H. P.
Schwefel, 292–301. Berlin: Springer-Verlag.

http://dx.doi.org/10.1109$/$TEVC.2013.2248012

	1 Introduction
	2 Methods
	2.1 Gaussian processes
	2.2 Mutual information

	3 The MOAL algorithm
	4 Illustration of the approach
	5 Brief description of the SOEA algorithm for multi-target optimization
	6 Results and discussion
	7 Summary and conclusions
	Funding
	Notes
	References

