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ABSTRACT

With computerized testing, it is possible to record both the responses of test takers to test questions
(i.e., items) and the amount of time spent by a test taker in responding to each question. Various mod-
els have been proposed that take into account both test-taker ability and working speed, with the
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many models assuming a constant working speed throughout the test. The constant working speed
assumption may be inappropriate for various reasons. For example, a test taker may need to adjust the
pace due to time mismanagement, or a test taker who started out working too fast may reduce the
working speed to improve accuracy. A model is proposed here that allows for variable working speed.
An illustration of the model using the Amsterdam Chess Test data is provided.

Introduction

Responses to items in a test of ability reveal information
about the accuracy of the responses (i.e., the degree of cor-
rectness), which is related to ability. With the introduction
of computer-based testing, both responses and response
times (RTs), or the amount of time taken to respond to
produce an answer, can be collected. RTs will reveal infor-
mation about the working speed of the respondent. Tra-
ditionally, in psychological research, a speed-accuracy
trade-off applies, with fast-working test takers often pro-
ducing a greater number of incorrect responses com-
pared to test takers who work slower. This is referred to
as a within-person relationship between speed and ability,
and in educational research this relationship is assumed
(e.g., van der Linden, 2007). When speed and ability are
assumed to be constant, however, no such relationship
can be studied. The between-person relationship between
ability and speed has also been studied, building on the
information that test takers differ from one another in
ability and working speed. Various studies have reported
a negative correlation, estimated at the population level,
between speed and ability of test takers. Empirical exam-
ples of Klein Entink, Fox, and van der Linden (2009)
showed that higher-ability test takers tended to work at a
slower speed than lower-ability test takers. Klein Entink,
Kuhn, Hornke, and Fox (2009), Roberts and Stankov
(1999), and van der Linden and Fox (2015) also have

reported a negative correlation between ability and speed
in their empirical examples.

In the common lognormal RT model of van der Linden
(2006), it is assumed that the working speed of a test taker
is constant throughout the test. The general item response
theory (IRT) models are based on the principle that a test
taker will use his or her cognitive knowledge to respond to
the test items. Therefore, the relationship between ability
and speed is assumed to be constant for each test taker
working with a constant speed level.

The assumption of a constant (latent) speed parameter
corresponds to the assumption of a constant (latent) abil-
ity. However, it is reasonable to assume that test takers will
vary their working speed during a test. Changes in time
management could be required to finish the test in time,
or test takers could decide to work slower to improve their
level of accuracy. Working speed can also vary when test
takers show aberrant response behavior, such as cheating
or guessing (Marianti, Fox, Avetisyan, Veldkamp, & Tijm-
stra, 2014).

Evidence of variable working speed can also be found
in psychological testing, where test takers are asked to
do different performance tasks. Manipulating the exper-
imental conditions results in changes in test takers’
response behavior. For example, test takers will work
faster when the time pressure is increased, but the level
of accuracy may or may not change; the speed-accuracy
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trade-off is different across different levels of the time-
pressure condition. For example, Vandekerckhove, Tuer-
linckx, and Lee (2011) defined a hierarchical diffusion
model for two-choice RTs, where the parameters of
the response process can vary across persons, items,
and experimental conditions to model the underlying
response process. Assink, van der Lubbe, and Fox (2015)
used the hierarchical drift diffusion model to identify tun-
nel vision (i.e., tendency to focus exclusively on a limited
view) due to time pressure. In an experiment, they found
an interaction effect between the time-pressure condition
and the RT but not the response accuracy.

In educational testing, different joint models for ability
and speed assume a constant speed parameter for persons.
The hierarchical latent variable modeling of responses
and RTs (Fox, Klein Entink, & van der Linden, 2007;
Klein Entink, Fox, et al., 2009; van der Linden, 2007; van
der Linden & Glas, 2010) and the generalized linear IRT
approach (Molenaar, Tuerlinckx, & van der Maas, 2015a)
both assume a constant latent working speed parame-
ter for each individual. The constant speed parameter is
also assumed in the IRT approach of categorical RTs (e.g.,
De Boeck & Partchev, 2012; Partchev & De Boeck, 2012;
Ranger & Kuhn, 2012) and the nonlinear regressions of
IRT parameters on RTs (Ferrando & Lorenzo-Seva, 2007a,
2007b).

To model nonconstant working speed, a latent growth
modeling approach is defined for the speed parameter.
For each test taker, the within-person systematic differ-
ences in observed RTs conditional on the time intensi-
ties (i.e., the population average time needed to complete
each item) are modeled using latent variable modeling.
An individual speed process is assumed, describing the
changes in speed across items. Thus, test takers can work
with different levels of speed during the test. Each indi-
vidual speed process will be defined using random effects
to model correlations between the RTs for each test taker.
A linear (within-person) relationship is defined between
individual RTs and random effects.

Furthermore, random effects are also used to define
differences in speed process between test takers. This will
generalize the common lognormal speed model, where a
random intercept is used to define differences in speed
across test takers. The latent growth speed process will be
a second level of the lognormal speed model.

In latent growth curve analysis, a time scale is needed
to model the speed process and to define the individual
variation in initial status and growth rate. In the present
approach, the order in which the items are solved will
define the underlying time scale describing the sequence
of observed item RTs. Each item functions as a mea-
surement occasion for speed, and each pattern of RTs is
treated as longitudinal RT data with respect to the speed
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process. The measurement occasions (defining the time
scale of the speed process) are defined on a scale from 0 to
1. The chosen time scale values are arbitrary and only rep-
resent the order in which the items are solved and reflect
that the observations are made at equidistant time points.
The time variable will be defined on this scale, where the
first (last) measurement corresponds to the response to
the first (last) item.

It will be shown that the latent growth model for
working speed can be integrated with an IRT model
for ability. Under the variable speed model, the ability
parameter is influenced by the speed process parame-
ters. This generalizes the univariate relationship between
ability and a single speed variable within a test since
multiple speed components are involved in this relation-
ship. In this approach, ability will be influenced by a
weighted average of the person-specific speed process
parameters.

The Markov chain Monte Carlo (MCMC) is used for
parameter estimation, which enables joint estimation of
all model parameters. The developed MCMC method is
built on the estimation methods of Klein Entink, Fox, et al.
(2009) and Fox (2010), who developed MCMC schemes
for joint models for responses and RTs assuming a con-
stant working speed model.

Simulated and real data examples will be given to illus-
trate the modeling framework. Data from the Amsterdam
Chess Test (ACT; van der Maas & Wagenmakers, 2005)
are used to model variable working speed using a linear
and a quadratic speed component. A direct comparison
is made with the hierarchical model of van der Linden
(2007) and Klein Entink, Fox, et al. (2009).

The variable working speed model

Van der Linden (2006, 2007) proposed a lognormal model
for RTs using two parameters to describe item and indi-
vidual variations in RTs. An item factor is defined that
represents the time intensity of an item, and each time-
intensity parameter represents the population-average
time needed to complete the item. A person parameter
is defined that represents the constant working speed as
the systematic differences in RTs given the time intensi-
ties. For example, a test taker works slower (faster) than
the average level in the population when the differences
between RTs and time intensities are all positive (nega-
tive) since, over items, more (less) time is needed than the
population-average time.

Let Ty denote the response time of person i
(i=1,...,N) on item k (k=1,...,K). A lognor-
mal response time distribution is assumed, to account for
the positively skewed characteristic of RT distributions,
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which leads to
In Ty = A — & + ik, € ~ N (0,07). (1)

The time-intensity parameter is represented by A, and
the common speed parameter by ¢;. The time-intensity
parameter represents the population-average time needed
to complete the item. The test takers are assumed to
be randomly selected from a population. Therefore, the
speed parameter is assumed to follow a normal popula-
tion distribution

&~ N (1, 0f) . (2)

In Fox et al. (2007) and Klein Entink, Fox, et al. (2009),
a time-discrimination parameter, ¢, has been included
as a slope parameter for speed. The time-discrimination
parameter characterizes the sensitivity of the item for dif-
ferent speed levels of the test takers. This leads to the fol-
lowing specification of the lognormal speed model:

In Ty = A — @x&i + €ix, ek ~ N (0, Gi) . (3)

From Equation (3), it follows that the time-discrimination
parameter is also used to model the unexplained het-
erogeneity between time-pattern responses. This follows
from the fact that the covariance between the RT to item k
and [/ of person i includes the time discriminations, which
are given by

cov (T, Ty) = cov (Ax — Pk&i + ik, i — G1&i + €ir)
= cov (Px&i + €ik, P1&i + €ir)
= cov (¢k&i, 1gi)
= ¢var (&) ¢ = Pro 1. (4)

Van der Linden (2015) defined the time-discrimination
parameter to be a measurement error variance parameter
such that 0 = 1/¢. In that case, the time discrimina-
tion (or error variance parameter) will not influence the
covariance between RTs.

In latent growth modeling, a time scale is required for
the observed responses. The times that the observations
were made are represented on this scale. From this per-
spective, the items in a test can be viewed as measure-
ment occasions for speed and ability. Therefore, a natu-
ral time scale can be defined from the collected RTs since
each RT also defines the time between two subsequent
response observations. Subsequently, the RTs of each test
taker, in the order in which the items were solved, also
define the time between his or her measurement occa-
sions. This time scale would be inappropriate if the test
taker were permitted to take a break after finishing an item
and before moving on to the next question.

When estimating all model parameters simultane-
ously, generating a unique timeline for each test taker
increases the computational burden. Furthermore, the

latent growth model is applied to a test situation that
might take a few hours, such that the nonequidistant
property of the time scale can hardly influence the results.
Therefore, an equidistant timeline is defined, which leads
to a common time scale for all test takers.

Letatime variable, X; = Xj;, Xi, ..., Xijx, where X;; =
0, represent the measurement occasions of test taker i.
This time variable represents only the order of the items,
which is used to model the speed process over time on
an equidistant scale. The measurement of speed from the
first item observation is defined as the intercept, and sub-
sequent item observations can be used to model change in
speed. Let X(;) = Xi1), X(i2), - - - » X(ix) denote the order
in which the K items are made by person i. Then, a con-
venient time scale is defined by Xjx = (X(x) — 1)/K. The
times are defined on a scale from 0 to 1, where 1 is the
upper bound representing an infinite number of items.

Note that the scale on which the latent variable working
speed is measured is arbitrary. Therefore, the numerical
values of the time scale for the speed process only need to
address the order in which the items were solved and the
assumed equidistant property of the measurements.

The lognormal random linear variable speed model

To introduce the latent growth model for speed, the log-
normal RT model is extended with a linear growth term.
This model will not be of particular interest in itself since
it is not realistic to assume that test takers will acceler-
ate their speed of working in a linear way. However, the
linear trend component can be used in combination with
higher-order time components to model more complex
processes of working speed.

The lognormal RT model with a linear trend for speed
can be defined using the time variable X; it follows that

In Tix = Ak — éx (Gio + S Xix) + €k
Cio ~ 0 agz() Pio )>
(2)~~((0) (2 %) @

The parameter ¢;y represents the value of speed measured
with the first item solved, also referred to as the initial
value of speed. The parameter ¢;; represents the random
slope in speed, which means that test takers can differ in
their growth rate of speed. Note that both random effects
have a population mean of zero. This means that the aver-
age of time intensities defines the average time to com-
plete the test. Furthermore, the population-average speed
trajectory is constant, and shows no changes in speed,
since the means of the random effects are zero. Thus,
the population-average trajectory with zero values for the
random speed variables represents a constant population-
average level of speed throughout the test. Test takers can
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Figure 1. The lognormal random linear variable speed model. | = the random intercept; S = the growth rate; T = response time.

work faster than this average level, which corresponds to
a positive initial speed value. Furthermore, test takers can
show an increasing or decreasing trend in their speed rate,
which is represented by a positive or negative growth rate,
respectively.

Figure 1 represents this (random linear) variable speed
model. The bottom scale represents the order in which
the items are solved. The upper axis represents the real-
time scale. For each item, an RT is observed to measure
speed, and for each RT observation, an error term rep-
resents the measurement error that is involved in mea-
suring speed. The latent speed measurements are mod-
eled using a random intercept, referred to as I, and a ran-
dom growth rate, referred to as S. The average level of
speed I is measured by all item observations, where the
growth rate is measured by all item observations exclud-
ing the first item. The variances of the growth model vari-
ables, I and S, define the between-person variability in ini-
tial speed value and growth rates. A covariance term is
specified between the growth model variables. Test tak-
ers who worked too slowly at the start of the test might
improve their speed to finish the test in time. Test takers
who started working very fast might later decrease their
speed (possibly improving their accuracy level) since by
working fast initially they would have sufficient time to
finish the test. This corresponds to a negative correlation
between the growth model parameters.

The lognormal random quadratic variable
speed model

As stated, to define a more complex speed process, the lin-
ear trend component is extended with a quadratic term.
The linear trend can be used to model the speed processes
of a test taker who starts to work faster and continues to
work fast until the end of the test. However, a quadratic

term can be used to decelerate or accelerate this linear
trend. For example, a positive linear trend for speed can
be decelerated by a negative quadratic term.

A random quadratic time component is included to
define person-specific growth parameters. Then, each tra-
jectory of working speed is modeled by an intercept, a
linear trend, and a quadratic time component using indi-
vidual parameters. The lognormal model with a random
quadratic time variable is represented by

In T = Ak — b (Sio + S X + LX) + e

Cio 0 GZZ() P Py,
Cin ~N 0], Pior U{Zl Pry - (6)
Si2 0 Py Py G(ZZ

In Figure 2, a graphical representation of the model is
given. The bottom scale represents the order of responses
to the items. The upper scale is the true time scale. The
random intercept refers to the initial or average speed
level; the linear trend is given by S; and a quadratic time
component is given by Q. The random growth compo-
nents are assumed to be correlated with common covari-
ances across persons, according to the covariance matrix
in Equation (6). In this model, the individual speed trajec-
tories are modeled using three random effects, each with a
mean of zero, such that the average time intensities define
the average time to complete the test.

Joint model for responses and response times

Besides observing RTs, let Yj, denote the response of
person i(i=1,...,N) to item k (k=1,...,K). An
IRT model is considered to model the item responses
and to measure ability of each test taker. When con-
sidering binary response data, a two-parameter normal
ogive model with item discrimination parameter a; and
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Figure 2. The lognormal random quadratic variable speed model. | = the random intercept; S = the growth rate; Q = the quadratic time

component; T = the response time.

difficulty parameter by. Using the underlying latent
response formulation, a latent response Zj is used, which
is normally distributed with mean a;0; — by and variance
1, and truncated from below (above) by zero when the
response is correct (incorrect). Thus, a correct response,
Yix =1, is the indicator that Zj is positive. The joint
model for responses and RTs, allowing for variable speed,
is given by

Zix = ab; — by + wix, wix ~ N (0, 1)
InTj = Ax — o (Cio + ¢ Xix + EiZXz%c) + iks
ek ~ N (0,07)

2
Ty Por,  Pory  Pog,

0; Mo ;

Lo ~ N 0 Pogy 9y Pra P

Sin 0 Do Py ngl %3
i 0

iz Pog, Py Proy O_é

(7)

The prior distribution of the person parameters (6;, {;) =
(05, Coi» C1is £2i) can be given as

0\ _ 77 o] EGC))
<§i) N((O)’<Zw ) ®)

The relationship between speed and ability is defined
by the covariance between ability and the speed compo-
nents and is given by X,. The ability parameter is influ-
enced by the different speed components. This follows
directly from the conditional distribution of ability given
the speed variables. This distribution is given by

0;

&~ N (1o + Zoc B (6= 110) 07 — Tor B, B0
)

Ability is influenced by the weighted average of the
speed components, where the weights are defined by the
covariance matrix X, times the inverse of the variance
of speed components. When test takers do not vary their
speed, only the first diagonal component of %, will be
larger than zero, showing the variability in constant speed
values across test takers. The linear trend and quadratic
change in speed will be around zero, which leads to a neg-
ligible influence of the remaining variable speed compo-
nents on ability. When test takers vary their speed accord-
ing to the quadratic variable speed model, the diagonal
components of X, will be larger than zero and, together
with the covariance matrix X4,, will define the relation
with ability. It follows that the constant speed model is
generalized by allowing variable speed components to
influence ability.

It will depend on the application whether changes in
working speed will improve the accuracy of the responses.
By measuring changes in working speed and modeling
the relationship between speed and ability, it is possible
to estimate the speed trajectories of test takers with dif-
ferent levels of ability. High-ability test takers may have
different speed trajectories than low-ability test takers.
The speed trajectories of test takers may also differ across
tests. It will be possible to investigate the effects of time
limits on test takers’ speed changes, including those of
proficient test takers. However, the benefits of estimating
speed trajectories in relation to ability will depend on the
application.

Identification

The latent scale of ability and speed needs to be identi-
fied. The mean and variance of the ability scale can be
restricted to identify the scale. This can be accomplished
by restricting the sum of item difficulties and product of



discriminations or by directly restricting the mean and
variance of the ability parameter.

Next, for the variable speed model, the scale of the
latent speed variable needs to be identified. This can
also be accomplished by two restrictions. In the present
description of the model, the mean of the speed parameter
is set to zero to identify the mean of the speed scale. The
average of the time-intensity parameters represents the
population-average time needed to finish the test given
an average working speed of zero. The variance of the
speed scale is identified by fixing this variance directly or
by restricting the product of time discriminations to one.
For the joint model, the mean of each person parameter is
restricted to zero, and the product of discriminations and
time discriminations is restricted to one. These identifica-
tion restrictions are also used by Klein Entink, Fox, et al.
(2009) and Fox (2010).

In the variable working speed model, an additional
restriction is required since the covariance between speed
components is modeled by the time-intensity parame-
ters and by the covariance matrix of the speed compo-
nents, X,. As mentioned previously, the time-intensity
parameters will influence the correlation between the RTs,
which leads to an indeterminacy between the covari-
ance parameters of speed and the time-intensity parame-
ters. Therefore, as an additional constraint, the covariance
matrix of the speed components is restricted to have zero
nondiagonal terms, and the covariance between speed
components is modeled by the time-intensity parame-
ters. When the time-intensity parameters are all fixed to
one, the covariance matrix of the speed components is
a free matrix, and no additional restriction is required.
The residual errors are assumed to be independently
distributed and do not influence the covariance mod-
eling structure. When the ability and speed scale are
identified, all higher-level model parameters will also be
identified.

Parameter estimation

The model parameters can be estimated using MCMC.
The MCMC algorithms for the joint model with variable
speed will follow the algorithms for the constant speed-
ability joint models. In Fox (2010), the MCMC steps are
fully explained for the so-called (constant speed) RTIRT
model. The MCMC method was implemented in a mod-
ified version of the cirt R-program of Fox et al. (2007).
The following sampling steps are required. At iteration
m=1,..., M,

1. For k = I,...,K, sample item parameters from
P(Pks Mk, ak, bilzk, t, 0, &, py, Xp), using a multi-
variate normal prior with mean g; and covariance
matrix X;.
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2. Fork=1,...,K, sample the residual variance in the
lognormal model from p(crazk [te, &, Ak, D).

3. ForI=1,...,N, sample the ability parameter from
pBil&;, o, o, i, t;).

4. Sample the hyperparameters pu; and X; from
p(irlg, X, a, b, Xp) and p(Z;|¢p, X, a, b).

5. For the constant speed model, sample the hyper-
parameter Xy, from p(Xy.|0, ¢, ¢, A, a, b).

For the variable speed model, several additional sam-
pling steps are required. With an identification restric-
tion on the covariance matrix of the person parameters,
the sampling of the speed components ¢ and the free
parameters of the covariance matrix requires a stepwise
approach. The speed components are a priori indepen-
dently and normally distributed. Each diagonal compo-
nent of the covariance matrix X, is inverse-gamma dis-
tributed with an inverse gamma prior with parameters
& and g. The conditional distribution of the variance
parameter of speed component §; (j = 0,1,2) is given by

N 2
o s & T ~IG (5 +g2’Z(§ji_“§j) /2+g1>,

(10)
and the three variance parameters define the diagonal of
the covariance matrix X, . The speed components are con-
ditionally normally distributed, and it follows that

£ |60 ~ N (r, + Teo0, > (0 — 1) . T — Teo0, > Zoc) -

(11)
In this conditional distribution, the covariance X in the
mean term is considered to be a regression parameter. The
conditional distribution of this parameter is normal with
variance

—1
Q@ =E(Z) = (ag — ):9;):;1):;0>

x ((E;l (6 ne)) 5 (8- u;)) + %!
(12)

and mean

Z(@ = ﬂ_l (Z{_l(cl - ﬂ;)t (91 - I'LG)

-1
x <ag - zggzglzw) ) (13)

From the conditional distribution of 8; given ¢;, the dis-
tribution of the variance parameter can be derived. This
variance parameter, o = 002 — Xo; z;lzw, is inverse-
gamma distributed with scale parameter

$5= 3 (60— o)~ TS (6 - ) 2481

1

(14)
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Table 1. Simulated and estimated parameter values (over 50 data replications) of the joint model with a lognormal random quadratic
variable speed component for 1,000 test takers and with K =20 and K = 40 items.

LNIRTQ
K=20 K=40
Variance Components True Mean Mean sD Mean sD
Person covariance matrix
Ability 092 1 1.031 0.059 1.009 0.052
Por 0.7 0.704 0.046 0.699 0.044
0
Speed ag 1 0.998 0.054 1.001 0.052
0
Poc 0.2 0.194 0.052 0.187 0.039
1
‘7;2 0.5 0.508 0.083 0.486 0.060
1
Poc 0.1 0.m 0.048 0.107 0.037
2
(T{Z 0.5 0.486 0.092 0.526 0.07
2
Item covariance matrix
Discrimination o 0.05 0.065 0.033 0.057 0.016
o 0 —0.005 0.067 —0.002 0.043
s 0 0 0.019 0.000 0.010
Yo 0 0.001 0.073 0.002 0.042
Difficulty Y 1 1.054 0.365 1.040 0.244
D0 0 0 0.063 —0.005 0.040
Do 0 0.034 0.258 —0.017 0.163
Time discrimination s 0.05 0.068 0.027 0.059 0.014
D 0 0.018 0.069 0.007 0.040
Time intensity D 1 1122 0.388 0.981 0.230

Note. SD = standard deviation; Cor. = correlation; LNIRTQ = lognormal-IRT model with quadratic time component.

and shape parameter N/2 + g. Subsequently, from the
sampled variance parameter, o, a sampled value of the
variance parameter o can be obtained using the sampled
value for X,.

Without the identification restriction on the covari-
ance matrix, X, the values of the complete covariance
matrix of the person parameters,

2
_ (9% Zoc
= (Zw % ) (13

are sampled from an inverse-Wishart distribution with
scale matrix
9i—M9> <9i_M9)t
+ (16)
Z(Ci_ﬂ; Ci_”'{ &
and degrees of freedom N+Q, where Q is the number of

random effects. The mean of the speed components, ¢
is fixed to zero.

Simulation study

In this simulation study, attention was focused on a vari-
able speed process in the joint modeling of responses and
RTs. The RTs were modeled according to a lognormal
random quadratic variable speed model. This RT model
included a random trend and a random quadratic time

variable, which is represented by
In Ty = Ak — (Sio + Xk + KiZXi) + Eiks
e~ N (0.02). (17)

The random speed components had a mean of zero to
identify the time intensities. The responses were modeled
according to a two-parameter normal ogive model. The
ability and speed parameters were assumed to be multi-
variate normally distributed, according to Equation (8).

The joint model for responses and RTs was used to gen-
erate the data, and a modified version of the cirt program
of Fox et al. (2007) was used to estimate all model param-
eters. The item parameters were simulated from a mul-
tivariate normal distribution with the covariance matrix
given in Table 1. The mean of the time discriminations
and discrimination parameters was set to one, and the
mean of the difficulty and time-intensity parameters was
set to zero. The measurement error variance was set to .50
for each item. Furthermore, the model was identified by
restricting the covariance between random speed compo-
nents to zero and restricting the product of time discrim-
ination and discrimination parameters to one.

To evaluate the performance of the developed MCMC
algorithm, a total of 50 data sets were simulated accord-
ing to the joint model for 1,000 test takers responding to
20 and 40 items. A burn-in period of 1,000 iterations was



used, and a total of 5,000 iterations were made to estimate
all model parameters.

In Table 1, the true and final parameter estimates are
given across the 50 simulated data sets. Under the header
“LNIRTQ,” the parameter estimates are represented for
replicated data sets of 20 and 40 items. The true value
of the covariance matrix of the person parameters shows
that the speed trajectories differ a lot across test takers.
The random variation over test takers in the trend and
quadratic components was around .50, given a variance of
one across the average levels of speed. Furthermore, there
was a positive covariance simulated between the random
person components.

For the 20-item test-length condition, the estimated
values of the person covariance matrix are close to the
true values, despite the high level of variation in simu-
lated speed trajectories. The variability in speed trajec-
tories, which differed in their trend and quadratic com-
ponents, was accurately estimated. Estimates of the item
covariance parameters also showed a good recovery of the
true parameter values.

Subsequently, the test length was increased from 20 to
40 items. Thus, twice as many RT observations were gen-
erated for each speed trajectory. In Table 1 under the label
“K =40, the final estimates of the person and item covari-
ance parameters for the 40-item test are given. It can be
concluded that the estimated parameter values are close
to the true values. Furthermore, it follows directly that
the estimated standard deviations are smaller than those
based on the 20-item test data. Although not shown, the
item parameters of the 20- and 40-item test and the mea-
surement error variance were also accurately recovered
across 50 simulated data sets.

Modeling variable speed in the Amsterdam
Chess Test data

The Amsterdam Chess Test (ACT) data of Van der Maas
and Wagenmakers (2005) were used to identify the vari-
able speed trajectories of 259 test takers who responded
to 40 chess tasks. The chess items were divided over
three sections: tactical skill (20 items), positional skill (10
items), and end-game skill (10 items). Each item con-
cerned a chessboard situation, and the problem-solving
task was to select the best possible move. The dichoto-
mous response observations, 1 (correct) and 0 (incorrect),
as well as the RTs were stored. Fox (2010, p. 253), using
the joint model of Klein Entink, Fox, et al. (2009), ana-
lyzed the data using the RTIRT model to identify items
not fitting the data.

The purpose of the present study was to investigate
whether test takers worked with variable speed and what
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type of speed trajectories could be identified. Further-
more, the complex between-person relationship between
ability and random speed components was investigated.
In a different approach, Molenaar et al. (2015b) consid-
ered a function of ability on speed in their generalized lin-
ear model for responses and RTs. They found a common
curvilinear effect of ability on speed for the end-game
items, where higher-ability test takers tended to use more
time in contrast to lower-ability test takers, who started
to answer faster at the end of the test. In their approach,
higher-order interaction terms between ability and speed
were used to obtain more insight into the relation between
speed and ability, but the higher-order ability compo-
nents were assumed to be fixed deterministic compo-
nents (with a common effect across test takers), and it
was assumed that speed did not have an influence on
ability.

The RTIRT lognormal (constant) speed model and
the lognormal (random quadratic) variable speed model
(Equation [7]) were used to analyze the data. The MCMC
algorithm was run for 10,000 iterations to estimate all
model parameters, where a burn-in period of 1,000 iter-
ations was used. In Figure 3, for the variable speed
model, trace plots of four (variance and covariance) per-
son parameters are given to show the fast convergence
and the stable behavior of the MCMC chains. The MCMC
algorithm converged rapidly without specifying infor-
mative starting values. The other trace plots showed
similar behavior. The R-coda package (Plummer, Best,
Cowles & Vines, 2006) was used to investigate the chains,
and the commonly used convergence diagnostics (e.g.,
Geweke, Heidelberger, and Welch) did not show any
issues.

The RTIRT with a constant speed factor was fitted to
the data. In Figure 4, the item parameter estimates of the
40-item test are given. It can be seen that there is sufficient
variation in difficulty and item intensity to measure the
ability and speed factors accurately at the different levels
of the scale. The time discriminations are higher for the
first 10 items (they define the tactical skill cluster), which
means that responses to those items show more variation
between slow- and fast-working test takers. The time dis-
criminations for the end-game items were not as high,
indicating less power to discriminate between the work-
ing speeds of the test takers. Most items discriminated suf-
ficiently between test takers’ ability levels; only around five
items had a low discriminating value of < 0.5.

The covariance estimates of the test taker’s random
factors and the item parameters of the joint model with
a constant speed factor are given in Table 2. There is
substantial between-item variation in difficulty and inten-
sity but less in discrimination and time discrimination.
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Figure 3. Trace plots of the ability and average speed population variance parameters and the covariance between ability and the slope
and quadratic speed components.
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Table 2. Amsterdam chess test: covariance components and correlation estimates.

Constant speed Variable speed
Variance components Mean SD Cor. Mean SD Cor.
Person covariance matrix
Ability 092 0.317 0.040 0.425 0.139
Pa, 0.105 0.013 0.640 0.115 0.016 0.720
Speed afo 0.085 0.008 0.06 0.009
Pa, —0.004 0.014 —0.018
531 0.113 0.024
Pa, —0.014 0.015 —0.086
agz 0.062 0.015
Item covariance matrix
Discrimination >n 0.479 0.175 0.533 0.188
Yo 0.252 0.138 0.352 0.289 0.150 0371
> 0.030 0.052 0.108 0.019 0.064 0.053
D 0.067 0.151 0.079 0.147 0.07 0.408
Difficulty > 1.073 0.259 114 0.271
Y0 —0.268 0.085 —0.645 — 0317 0.105 —0.603
Yoo 1.008 0.272 0.794 0.414 01m 0.786
Time discrimination Y a 0.161 0.047 0.242 0.076
Y —0.450 0123 —0.915 —0.130 0.047 —0.536
Time intensity Y oaa 1.503 0375 0.243 0.058

Note. SD = standard deviation; Cor. = correlation.



The mean RT residual variance was around .25 and
ranged from .15 to .50. The correlation between discrim-
ination and difficulty was around .35, and between time
discrimination and intensity was around -.92. This strong
negative correlation of -.92 showed that, for high time-
intensive items, the speed factor did not explain much
variation in RTs, whereas the speed factor did explain
it for low time-intensive items. According to the model,
for a time-intensive item an increase in working speed
does not have much effect on RT due to the low time-
discrimination parameter. The influence on the RT due to
a change in speed is much higher for low time-intensive
items, which have high time discriminations.

The strong correlation of around .80 between item dif-
ficulty and item intensity was also apparent. The difficult
items were clearly taking much more time to solve than
the easy items.

For the person parameters, there was not much vari-
ation in speed levels (around .085) or in ability levels
(around .32). Under the constant working speed assump-
tion, the correlation between ability and speed was around
.65, which showed that high-ability test takers were also
completing the items faster. They were able to identify the
solution to the chess problem faster than the low-ability
test takers.

This covariance structure holds under the assumption
that test takers were working with a constant speed. To
investigate variable speed trajectories of test takers, the
joint model with the random quadratic variable speed
model was also fitted. In Table 2, the covariance esti-
mates are given under the header “Variable speed.” For
the covariance between item parameters, it can be seen
that the strong correlation between time discrimination
and time intensity diminished to —.54. Apparently, the
additional speed components explained the greater varia-
tion in RTs, reducing the strong correlation between time
discrimination and intensity. The correlation between the
item discrimination and time intensity increased to .41.
The chess items that were highly discriminating in abil-
ity were also the time-intensive items. This relates to the
positive correlation between ability and speed. It is likely
that the test takers showed different speed behavior in
responding to well-discriminating items depending on
their ability.

The correlation between the average speed level and
ability was around .72, which was slightly higher than it
was under the constant speed model. The correspond-
ing 95% highest posterior density (HPD) interval was
[0.637, 0.785]. A slightly negative correlation of —.02 was
estimated between ability and the random slope speed
component (95% HPD interval equaled [—0.157, 0.099]).
This means that high-ability test takers were more likely
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to decrease their speed in a linear way. The correlation
between ability and the quadratic speed component was
around —.09 (95% HPD interval equaled [—0.266,0.035]),
which means that high-ability test takers were more likely
to show an acceleration in the negative trend in speed.
However, both estimated correlation parameters were not
significantly different from zero, since zero was included
in the 95% HPD intervals.

From the trace plots of the covariance parameters, see
Figure 3, it can also be seen that the drawn covariance val-
ues are not significantly different from zero. Since the cor-
relations with ability were not significantly different from
zero, the characteristics of the speed trajectories could not
be explained by differences in ability.

In Figure 5, the estimated ability estimates are plot-
ted against the random components of speed. It can be
seen that there is a strong positive relation between abil-
ity and average speed, where the relation between abil-
ity and the slope and quadratic speed components is
not significantly different from zero. The estimated aver-
age speed component was conditionally estimated on the
two other random speed components, which accounted
for nonconstant-speed behavior. The positive correla-
tion between the linear and quadratic speed component
showed that a more negative (positive) trend in speed was
accelerated, leading to an even slower (higher) working
speed.

In Figure 6, from the total sample of N = 259 test tak-
ers, the fitted item-specific working-speed measurements
of 20 high- and low-ability test takers were plotted. The
test takers started working at different speeds: The high-
ability group started to work faster than the low-ability
group. Some high-ability test takers increased their work-
ing speed toward the end of the test, but others decreased
their level of working speed around halfway through
the test. The low-ability test takers showed the oppo-
site behavior. Most of the low-ability test takers increased
their working speed halfway through the test; only a few
showed a constant decrease in working speed. It is possi-
ble that high-ability test takers (the 10% highest scoring
test takers) were more focused and eager to ensure that
all items were correct, whereas low-ability test takers (the
10% lowest-scoring test takers) might have been less moti-
vated halfway through the test, proceeding more quickly
through the latter half of the test. Molenaar et al. (2015b)
reported on this pattern, based on a higher-order interac-
tion effect between ability and speed. With the quadratic
variable speed model, each test taker’s trajectory of work-
ing speed was estimated, showing the patterns while con-
trolling for the correlation with ability. This made it pos-
sible to estimate the variable working speed behavior of
each test taker.
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Discussion

Computer-based testing makes it possible to collect RT
information as well as response information by simply
recording the total time spent on each item and the
response to each item, respectively. RTs can be used to
make more accurate inferences about test takers™ ability
(e.g., van der Linden, Klein Entink, & Fox, 2010) and item
characteristics. RTs can also reveal new information about
test characteristics, test takers’ response behavior, and test
takers’ ability that would not be identified when using
response information alone.

The latent growth model for working speed can be
used to measure variable working speed according to
a time scale defined by the order in which the items
were answered. In the present model, the random slope
of speed and random quadratic speed components were
added to model deviations from a constant speed model.
The extension to higher-order random effect components
can be made. However, this will require a sufficient num-
ber of item observations to estimate all model param-
eters. The higher-order terms can also be included for
groups of test takers using discrete latent random effects.

00 02 04 06 08 1.0

fem

Figure 6. Fitted latent speed trajectories over items of high- and
low-ability test takers.

When the trajectory of speed includes higher-order com-
ponents, the relation between working speed and ability
can be defined as the weighted correlation between ability
and all the speed components. In that case, the additional
random speed components are used to control for non-
constant speed to improve the estimation of the relation
between speed and ability.

Note that the order in which the items are answered
does not influence the ability estimate. The estimation of
the latent speed trajectories depends on both the RT infor-
mation and the order in which the items are answered. In
the estimation of each speed trajectory, the information
both for each item-specific RT observation and for the
relationships between RTs is used. Thus, if the order of
observed RTs were changed, a different trajectory would
be estimated since the relationships between RTs would
be different.

This model, which is a generalization of the constant
speed model proposed by van der Linden (2007), can be
used to measure a more complex relationship between
ability and speed. From a model-building perspective, it
is reccommended that one first evaluate the fit of the hier-
archical model for responses and RTs before fitting a dif-
ferential speed component. More research is needed to
develop information criteria (e.g., Bayesian information
criterion [BIC], deviance information criterion [DIC])
that are able to identify the best joint model for responses
and RTs among a set of competing models. For exam-
ple, a straightforward implementation of the DIC is not
going to produce reliable results since the estimation of
the number of effective parameters, which is required
to compute the DIC, is very complex when the model
contains many random effects, multiple outcomes of dif-
ferent types (categorical and continuous), and multiple



link functions (linear and nonlinear). Future research will
focus on the procedure of Klein Entink, Fox, et al. (2009)
and Fox (2010, p. 241-242), who considered a DIC based
on the integrated likelihood (e.g., see Berger, Brunero, &
Wolpert, 1999), where ability and speed were integrated
out. This simplifies the computation of the penalty term,
since it is no longer based on the random person parame-
ters, and leads to a more accurate estimate of the number
of model parameters.

The so-called cross relation between speed and accu-
racy was also modeled by Molenaar et al. (2015b), who
considered different functions of higher-order ability
components on speed. They introduced two person fac-
tors: ability and speed. In the proposed model, sev-
eral random person variables were introduced to better
describe this relationship by assuming a variable speed
model. The MCMC algorithm developed in this article
(see section titled “Parameter estimation”) can handle
numerous random effects since it is a simulation-based
estimation procedure.

The situation where test takers are limited in their
responding due to time constraints is referred to as test
speededness. However, when speed is not of interest, it
should also not interfere with the measurement of abil-
ity. Speededness is considered to be a threat to the valid-
ity of the test scores; it inadvertently interferes with the
performance level of the test takers. Research has focused
on detecting test speededness as a threat to test validity.
Chang, Tsai, and Hsu (2014) and Goegebeur, De Boeck,
Wollack, and Cohen (2008) considered a mixture model-
ing approach and defined a speeded class to identify test
takers whose performance is affected by the time limit.
The general idea is that the time limit influences the prob-
ability of an item being answered, without considering
RT information. Shao and Cheng (2015) considered a
change-point model to identify speeded test takers and
considered removing the speeded responses to improve
ability estimation. Given the RT and response informa-
tion, the joint model for ability and speed, using a latent
growth model for speed, can provide insight into test
speededness. Test takers’ fitted speed trajectories can be
used to identify (strategic) speed behavior while account-
ing for differences in ability. An increase in speed at the
end of the test would indicate the influence of a time
limit on the test performance, whereas a decrease in speed
would show the opposite.

Test speededness has a negative influence on test-taker
performance. Test fraud, in contrast, is intended to have
an opposite effect on performance. Test takers may try to
positively distort their responses to improve their achieve-
ment scores, which overestimates the test takers’ true
achievement level. Nowadays, there is an increased inter-
est in test fraud detection (e.g., Kingston & Clark, 2014),
where attention is focused on test-taking effort. Test
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takers may show solution behavior or rapid guessing
behavior, where the guessed responses provide no infor-
mation about the true achievement level of the test tak-
ers. Schnipke and Scrams (1997) considered the use of
RTs to identify rapid guessing behavior for a speeded
test. Wise and Kong (2005) also considered RTs to mea-
sure RT effort, which addresses the proportion of true
solution behavior in contrast to rapid guessing behavior.
Wang and Xu (2015) developed a hierarchical mixture
model to determine whether test takers’ response strate-
gies could be identified as rapid guessing behavior or solu-
tion behavior. Although these approaches consider two
different strategies that a test taker might use, they do
not consider the actual speed trajectory that underlies the
observed RTs. Under the joint model, the speed trajectory
in relation to ability will give a more accurate descrip-
tion of the test engagement of the test taker. Therefore,
extreme speed trajectories, indicating that responses are
given without evaluating the meaning of the question, can
indicate rapid guessing behavior, where the speed com-
ponents are related to ability. Furthermore, a test taker’s
quadratic time-component effect will show whether a test
taker accelerates or decelerates rapidly during the test.
This information can be used to address inconsistencies in
response patterns. More generally, potential threats to the
validity of the test scores (e.g., guessing, cheating) can be
evaluated by exploring the speed trajectories of test takers
in relation to ability. Statistical tests similar to the tests for
aberrant speed behavior reported by Marianti et al. (2014)
could be developed to identify extreme changes in speed
behavior.

Several model extensions could be considered to make
this model suitable for multiple group or multiple latent
group settings or for polytomous or nominal response
data. The multiple group modeling approach of Azevedo,
Andrade, and Fox (2012) might be used to extend the
joint modeling of responses and RTs to a multiple group
setting. Another interesting extension would be to con-
sider a latent growth model for ability. This would lead
to a multivariate latent growth modeling framework for
ability and speed, to model changes in the factor variables
(speed and ability) over time. Then, changes in speed and
ability could be jointly modeled to investigate, for exam-
ple, changes in the accuracy-speed trade-off over time.
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