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ABSTRACT
We consider infinite-horizon deterministic dynamic programming
problems in discrete time. We show that the value function of such a
problem is always a fixed point of a modified version of the Bellman
operator. We also show that value iteration converges increasingly to
the value function if the initial function is dominated by the value
function, is mapped upward by the modified Bellman operator and
satisfies a transversality-like condition. These results require no assumption
except for the general framework of infinite-horizon deterministic dynamic
programming. As an application, we show that the value function can be
approximatedby computing thevalue functionof anunconstrainedversion
of the problem with the constraint replaced by a penalty function.
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1. Introduction

Infinite-horizondynamicprogramming indiscrete time is amajor tool in various areas of engineering,
operations research and economics. Of particular importance in dynamic programming is the
convergence of the value iteration algorithm to the (true) value function. While this convergence
property is fairly easy to establish for models with bounded returns,[1] unbounded returns are
common in practice, especially in economic models. Accordingly, various results on the convergence
of value iteration have been established for such models under numerous technical – especially
topological – assumptions; see [2–7] for deterministic problems. Stochasticmodels require additional
assumptions concerning measurability (e.g. [8,9]); it is beyond the scope of this paper to discuss
stochastic models in detail.

Recently, an order-theoretic approach that does not require topology was developed and applied
to deterministic dynamic programming.[10–12] This approach can be viewed as an extension of the
earlier order-theoretic approach of [13, Chapter 5]. One of the results based on the new approach is
the following [10, Theorem 2.2]: value iteration converges increasingly to the value function if the
initial function is dominated by the value function, is mapped upward by the Bellman operator and
satisfies a transversality-like condition.

This result requires only two assumptions in addition to the general framework of infinite-horizon
deterministic dynamic programming. First, the constraint correspondence is nonempty-valued.
Second, the value function never equals +∞. The second assumption ensures that the Bellman
operator is well defined for any function dominated by the value function, but can be nontrivial to
verify since the value function is a priori unknown.
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In this paper, we establish a more general result that does not require even the two assumptions
above. We call this result a monotone convergence principle since it requires no assumption except
for the general framework itself. To show this principle, we follow the approach of [14] in modifying
the Bellman operator in such a way that it is well defined for any function. We show that the value
function is a fixed point of this modified Bellman operator. The monotone convergence principle is
that value iteration converges increasingly to the value function if the initial function is dominated
by the value function, is mapped upward by the modified Bellman operator and satisfies the same
transversality-like condition as in the result of [10, Theorem 2.2].

As an application of this result, we consider an unconstrained problem with the constraint
replaced by a penalty function, which penalizes violations of the constraint. We apply the monotone
convergence principle to the unconstrained problem, showing that value iteration converges to the
value functionof theunconstrainedproblemunder the same conditions of themonotone convergence
principle mentioned above. Then, we show that the value function of the unconstrained problem
converges to that of the original constrained problem as the penalty function decreases to−∞ outside
the constraint set. This result facilitates applications of penalty methods to dynamic programming
problems.

The result seems significant since, to our knowledge, there have been very few applications of
penalty methods to dynamic programming in the literature; among the exceptions are [18,19].
Another related study is [20], where a dynamic programming approach was used to solve a problem
with penalty functions. See [21,22] for general discussion of penalty methods.

The rest of the paper is organized as follows. In the next section, we set out the general framework,
and show that the value function is always a fixed point of this operator. In Section 3, we present
the monotone convergence principle discussed above. In Section 4, we comment on our assumption
that the feasibility correspondence is allowed to be empty-valued. In Section 5, we consider an
unconstrained problem with a penalty function. We prove our main results in Section 6.

2. Dynamic programming

Our set-up closely follows those of [10,14]. Let X be a set, and let � be a correspondence from X to
X. Let D be the graph of �:

D = {(x, y) ∈ X × X : y ∈ �(x)}. (1)

Let u : D → [−∞,∞). A sequence {xt}∞t=0 inX is called a feasible path if xt+1 ∈ �(xt) for all t ∈ Z+.
A sequence {xt}∞t=1 in X is called a feasible path from x0 if the sequence {xt}∞t=0 is feasible. Let � and
�(x0) denote the set of feasible paths and that of feasible paths from x0, respectively:

� = {{xt}∞t=0 ∈ X∞ : ∀t ∈ Z+, xt+1 ∈ �(xt)}, (2)
�(x0) = {{xt}∞t=1 ∈ X∞ : {xt}∞t=0 ∈ �}, x0 ∈ X. (3)

Throughout the paper, we follow the convention that

sup∅ = −∞. (4)

Let β ≥ 0. The value function v∗ : X → [−∞,∞] is defined by

v∗(x0) = sup
{xt }∞t=1∈�(x0)

L
T↑∞

T∑
t=0

βtu(xt , xt+1), x0 ∈ X, (5)

where L ∈ {lim, lim}with lim = lim inf and lim = lim sup. Though L can be lim or lim, its definition
is fixed for the rest of the paper. Since u(x, y) < ∞ for all (x, y) ∈ D, the right-hand side of (5) is well
defined for any feasible path. This together with (4) means that v∗ is always well defined.
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Let W be the set of functions from X to [−∞,∞]. Let V = {v ∈ W : ∀x ∈ X, v(x) < ∞}. The
Bellman operator B on V is defined by

(Bv)(x) = sup
y∈�(x)

{u(x, y) + βv(y)}, x ∈ X. (6)

Although Bv is well defined for any function v ∈ V , it may not be well defined for all functions in
W . This is because the right-hand side of (6) is not well defined if u(x, y) = −∞ and v(y) = ∞ for
some (x, y) ∈ D. This problem and its consequences are discussed in [14].

Following [14], we avoid the above problem by slightly modifying the right-hand side of (6). For
this purpose, we define

�̌(x) = {y ∈ �(x) : u(x, y) > −∞}, x ∈ X, (7)

�̌ =
{

{xt}∞t=0 ∈ � : L
T↑∞

T∑
t=0

βtu(xt , xt+1) > −∞
}
, (8)

�̌(x0) = {{xt}∞t=1 ∈ �(x0) : {xt}Tt=0 ∈ �̌}, x0 ∈ X. (9)

Recalling (4), we see that

∀x0 ∈ X, v∗(x0) = sup
{xt }∞t=1∈�̌(x0)

L
T↑∞

T∑
t=0

βtu(xt , xt+1). (10)

We define themodified Bellman operator B̌ onW by

(B̌v)(x) = sup
y∈�̌(x)

{u(x, y) + βv(y)}, x ∈ X. (11)

The right-hand side above is well defined for any v ∈ W and x ∈ X since for any y ∈ �̌(x), we have
u(x, y) ∈ ( − ∞,∞), which implies that the sum u(x, y) + βv(y) is well defined even if v(y) = −∞
or +∞. The following result shows that B̌ is an extension of B toW .
Lemma 2.1: For any v ∈ V, we have B̌v = Bv.
Proof: Let v ∈ V and x ∈ X. We claim that

∀y ∈ �(x) \ �̌(x), u(x, y) + βv(y) = −∞. (12)

To see this, let y ∈ �(x) \ �̌(x). Then, u(x, y) = −∞. Since v ∈ V , we have v(y) < −∞. Hence,
u(x, y) + βv(y) = −∞; thus, (12) follows.

To simplify notation, let g(x, y) = u(x, y) + βv(y) for y ∈ �(x). We have

(Bv)(x) = max

⎧⎨
⎩ sup

y∈�̌(x)
g(x, y), sup

y∈�(x)\�̌(x)
g(x, y)

⎫⎬
⎭ (13)

= max

⎧⎨
⎩ sup

y∈�̌(x)
g(x, y),−∞

⎫⎬
⎭ (14)

= sup
y∈�̌(x)

g(x, y) = (B̌v)(x), (15)

where (14) uses (12). Since x was arbitrary, it follows that Bv = B̌v. �
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A function v ∈ W satisfying B̌v = v is called a fixed point of B̌. A fixed point of B is defined
similarly. We have the following result.
Theorem 2.1: Any fixed point of B in V is a fixed point of B̌. Furthermore, v∗ is a fixed point of B̌; i.e.

∀x ∈ X, v∗(x) = sup
y∈�̌(x)

{u(x, y) + βv∗(y)}. (16)

Proof: See Subsection 6.2. �
The first statement above is immediate from Lemma 2.1. The second statement uses the argument

of [14, Theorem 1]. We call (16) the modified optimality equation. Since β is only required to be
nonnegative, Theorem 2.1 applies to undiscounted problems of the type studied by [15,16].

3. Amonotone convergence principle

We define the partial order ≤ onW as follows:

v ≤ w ⇔ ∀x ∈ X, v(x) ≤ w(x). (17)

It is easy to see that B̌ is order-preserving in the sense that for any v,w ∈ W ,

v ≤ w ⇒ B̌v ≤ B̌w. (18)

We are ready to state what we call amonotone convergence principle:
Theorem 3.1: Let v ∈ W satisfy

v ≤ v∗, (19)

v ≤ B̌v. (20)

Then, the sequence {B̌nv}n∈N converges increasingly to a fixed point v∗ of B̌ pointwise. Furthermore, if

∀{xt}∞t=0 ∈ �̌, lim
t↑∞

βtv(xt) ≥ 0, (21)

then v∗ = v∗; i.e. {B̌nv}n∈N converges increasingly to v∗ pointwise.
Proof: See Subsection 6.3. �

The results of [10, Theorem 2.2] and [12, Theorems 2, 3] easily follow from the above result; see
[10,12] for discussion of other related results in the literature.

In Section 6, we prove Theorem 3.1 by extending the proof of [12, Theorem 3]. Unlike the latter
proof, we directly show the first conclusion of Theorem 3.1 without using Kleene’s fixed point
theorem. It is worth emphasizing that Theorem 3.1 requires no additional assumption; thus, it can
be regarded as a principle in deterministic dynamic programming.

4. Comments on possible emptiness of �(x)

Possible emptiness of �(x) is useful even if it is known that �(x) 
= ∅ for all x ∈ X. For example,
suppose that X is a subset of some space S. If we extend � to S by setting �(x) = ∅ for all x ∈ S \ X,
then the modified optimality equation still holds on S:

∀x ∈ S, v∗(x) = sup
y∈�̌(x)

{u(x, y) + βv∗(y)}, (22)
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where we apply (4) before evaluating u(x, y) + βv∗(y). This trivial extension is possible exactly
because our approach allows for emptiness of �(x). Extensions like (22) are useful when one views
the original modified optimality equation (16) as a special or limiting case of an optimality equation
holding on a larger space.

5. A penalty method

A penalty method is an approach to solving a constrained optimization problem through an approx-
imating sequence of unconstrained problems with ‘penalty functions’, which penalize violations of
the constraint. Since penalty functions are often unbounded, our results are useful even for problems
with bounded returns. To highlight this point, we assume that u is bounded in this section.
Assumption 5.1: There exists μ > 0 such that 0 ≤ u(x, y) ≤ μ for all (x, y) ∈ D. Furthermore,
β ∈ (0, 1).

Note that the existence of suchμ can be assumedwithout loss of generality as long as u is bounded.
Let us first consider a trivial example. Let S be some superset of X; i.e. X ⊂ S. We define ρ :

S × S → {0,−∞} as follows:

ρ(x, y) =
{
0 if (x, y) ∈ D,
−∞ otherwise.

(23)

This is a simple penalty function that can be added to the return function u to remove the constraints
from (5) and (6). To add ρ to u, however, we need to extend u to S × S. These two steps can be
accomplished in one step by extending u to S × S by setting

u(x, y) = −∞, ∀(x, y) ∈ (S × S) \ D. (24)

Now we can remove the constraint {xt}∞t=1 ∈ �(x0) from (5):

v∗(x0) = sup
{xt }∞t=1∈S×S×···

∞∑
t=0

βtu(xt , xt+1), x0 ∈ X. (25)

The above infinite sum exists since u is bounded above here.
For the rest of this section, we assume the following.

Assumption 5.2: There exists v ∈ W satisfying (19)–(21).
In what follows, we take such v as given. We extend v and v∗ to S by setting

v(x) = v∗(x) = −∞, ∀x ∈ S \ X. (26)

We extend the modified Bellman operator B̌ to the functions from S to [−∞,∞]:

(B̌v)(x) = sup
y∈�̌(x)

{u(x, y) + βv(y)}, x ∈ S. (27)

Then, (19) and (20) hold on S; more precisely

∀x ∈ S, v(x) ≤ v∗(x), v(x) ≤ (B̌v)(x). (28)

To see this, note that if x ∈ X, both inequalities directly follow from (19) and (20). If x ∈ S \ X,
both inequalities are immediate since v(x) = −∞ by (26). Since (21) is unaffected by the extensions
defined in (24) and (26), the conclusion of Theorem 3.1 holds for the extended versions of v and v∗.
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For the rest of the section, u, v, and v∗ are understood as the extended versions given by (24) and
(26).

To consider a more interesting case, we make more specific assumptions in addition to Assump-
tions 5.1 and 5.2:
Assumption 5.3: (i) S = R

N . (ii) X is closed (in R
N). (iii) D is closed. (iv) For each x ∈ X, �(x) is

nonempty and bounded (thus compact). (v) u : D → R is upper semicontinuous.
We define ũ : R

N × R
N → [0,μ] by

ũ(x, y) =
{
u(x, y) if (x, y) ∈ D,
0 otherwise.

(29)

Note that ũ is upper semicontinuous and is an extension of u to R
N × R

N .
Let d : (RN × R

N )2 → R+ be the Euclidean distance on R
N × R

N . For x, y ∈ R
N define

p(x, y) = inf
(x′,y′)∈D

{d((x, y), (x′, y′))}2. (30)

Given any x ∈ X and y ∈ R
N , since�(x) is compact, we have y ∈ �(x) if and only if p(x, y) = 0. This

function can be thought of as a quadratic penalty function. We assume (30) merely for concreteness;
indeed, we can use any strictly increasing function of any equivalent norm or metric on R

N × R
N .

For i ∈ N and x, y ∈ R
N , define

ui(x, y) = ũ(x, y) − ip(x, y). (31)

It is easy to see that {ui}i∈N is a decreasing sequence satisfying u ≤ ui for all i ∈ N. Since ip(x, y)
tends to ρ(x, y) as i ↑ ∞ for each (x, y) ∈ R

N × R
N , it follows that {ui} converges decreasingly to u

pointwise.
For i ∈ N, let v∗

i be the value function corresponding to ui:

v∗
i (x0) = sup

{xt }∞t=1∈RN×RN×···

∞∑
t=0

βtui(xt , xt+1), x0 ∈ R
N . (32)

Let Bi be the Bellman operator corresponding to ui:

(Biv)(x) = sup
y∈RN

{ui(x, y) + βv(y)}, x ∈ R
N . (33)

We are ready to state the main result of this section:
Proposition 5.1: (i) For each i ∈ N, the sequence {(Bi)nv}n∈N converges increasingly to v∗

i pointwise.
(ii) The sequence {v∗

i }i∈N converges decreasingly to v∗ pointwise.
Proof: For i ∈ N, let B̌i be the modified Bellman operator corresponding to ui. Since ui(x, y) > −∞
for all x, y ∈ R

N , we have Bi = B̌i. Since u ≤ ui for all i ∈ N, for any i ∈ N we have

v ≤ v∗ ≤ v∗
i , (34)

v ≤ B̌v ≤ B̌iv. (35)

By Assumption 5.2, v also satisfies (21), which is independent of i. Thus, part (i) holds by
Theorem 3.1. See Subsection 6.4 for the proof of part (ii). �

Part (ii) of the above result shows that the value function v∗ of the original problem (5) can
be approximated by the value function of the unconstrained problem (32) with the penalty function
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sufficiently large in absolute value. Part (i) shows that the value function of the unconstrained problem
can be computed by the monotone convergence principle.

6. Proofs

6.1. A preliminary result

In this subsection, we state an elementary result shown in [14]. Recall from (4) that supA is well
defined for any A ⊂ R. We emphasize that none of the sets in the following result is required to be
nonempty.
Lemma 6.1: Let Y and Z be sets. Let � ⊂ Y × Z, and let f : � → R. For y ∈ Y and z ∈ Z, define

�y = {z ∈ Z : (y, z) ∈ �}, (36)
�z = {y ∈ Y : (y, z) ∈ �}. (37)

Then,
sup

(y,z)∈�

f (y, z) = sup
y∈Y

sup
z∈�y

f (y, z) = sup
z∈Z

sup
y∈�z

f (y, z). (38)

Proof: See [14, Lemma 1]. �
Essentially, the same result is shown in [17, Lemma 3.2] under the additional assumption that the

sets Y ,Z and � are all nonempty.

6.2. Proof of Theorem 2.1

Let v ∈ V be a fixed point of B. Then, v = Bv = B̌v by Lemma 2.1. Hence, v is a fixed point of B̌.
To show that v∗ is a fixed point of B̌, let x0 ∈ X. Note that {xt}∞t=1 ∈ �̌(x0) if and only if

u(x0, x1) > −∞, L
T↑∞

T∑
t=1

βtu(xt , xt+1) > −∞. (39)

Therefore,

�̌(x0) = {{xt}∞t=1 ∈ X × X × · · · : x1 ∈ �̌(x0), {xt}∞t=2 ∈ �̌(x1)}. (40)

We apply Lemma 6.1 with y = x1, z = {xt}∞t=2, � = �̌(x0),Y = �̌(x0), Z = X × X × · · · , and
�y = �̌(x1). Note from (10) that

v∗(x0) = sup
{xt }∞t=1∈�̌(x0)

{
u(x0, x1) + L

T↑∞

T∑
t=1

βtu(xt , xt+1)
}

(41)

= sup
x1∈�̌(x0)

sup
{xt }∞t=2∈�̌(x1)

{
u(x0, x1) + L

T↑∞

T∑
t=1

βtu(xt , xt+1)
}

(42)

= sup
x1∈�̌(x0)

{
u(x0, x1) + sup

{xt }∞t=2∈�̌(x1)
L

T↑∞

T∑
t=1

βtu(xt , xt+1)
}

(43)

= sup
x1∈�̌(x0)

{u(x0, x1) + βv∗(x1)} = (B̌v∗)(x0), (44)

where (42) uses Lemma 6.1 and (40). Since x0 was arbitrary, it follows that B̌v∗ = v∗.
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6.3. Proof of Theorem 3.1

We first prove two lemmas.
Lemma 6.2: Suppose that there exists v ∈ W satisfying (19) and (20). Define v∗ = supn∈N

(B̌nv),
where the supremum is taken pointwise. Then, {B̌nv}n∈N converges increasingly to v∗ pointwise.
Furthermore, v∗ is a fixed point of B̌.
Proof: For n ∈ N, let vn = B̌nv. It follows from (18) and (20) that {vn}n∈N is an increasing sequence.
Hence, {vn}n∈N converges increasingly to v∗ pointwise. To see that v∗ is a fixed point of B̌, fix x ∈ X.
Note that

v∗(x) = sup
n∈N

(B̌vn)(x) = sup
n∈N

sup
y∈�̌(x)

{u(x, y) + βvn(y)} (45)

= sup
y∈�̌(x)

sup
n∈N

{u(x, y) + βvn(y)} (46)

= sup
y∈�̌(x)

{u(x, y) + βv∗(y)} = (B̌v∗)(x), (47)

where (46) uses Lemma 6.1. Since x ∈ X was arbitrary, it follows that v∗ = B̌v∗; i.e. v∗ is a fixed point
of B̌. �
Lemma 6.3: Let v ∈ W satisfy (21). Let v ∈ W be a fixed point of B̌ with v ≤ v. Then, v∗ ≤ v.
Proof: Let v ∈ W be a fixed point of B̌ with v ≤ v. Let x0 ∈ X. If �̌(x0) = ∅, then v∗(x0) = −∞ ≤
v(x0). For the rest of the proof, suppose that �̌(x0) 
= ∅. Let {xt}∞t=1 ∈ �̌(x0). Then, xt+1 ∈ �̌(xt) for
all t ∈ Z+. We have

v(x0) = sup
y∈�̌(x0)

{u(x0, y) + βv(y)} (48)

≥ u(x0, x1) + βv(x1) (49)
≥ u(x0, x1) + βu(x1, x2) + β2v(x2) (50)
... (51)

≥
T−1∑
t=0

βtu(xt , xt+1) + βTv(xT ) (52)

≥
T−1∑
t=0

βtu(xt , xt+1) + βTv(xT ). (53)

Let δ > 0. By (21), we have βTv(xT ) ≥ −δ for sufficiently large T . For such T , we have

v(x0) ≥
T−1∑
t=0

βtu(xt , xt+1) − δ. (54)

Hence, we have

v(x0) ≥ L
T↑∞

T−1∑
t=0

βtu(xt , xt+1) − δ. (55)
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Since this holds for any {xt}∞t=1 ∈ �̌(x0), applying sup{xt }∞t=1∈�̌(x0) to the right-hand side of (55) and
recalling (10), we have v(x0) ≥ v∗(x0) − δ. As δ was arbitrary, we obtain v(x0) ≥ v∗(x0). Because
this is true for any x0 ∈ X, we have v ≥ v∗. �

To complete the proof of Theorem 3.1, let v ∈ W satisfy (19) and (20). Then, by Lemma 6.2,
{B̌nv}n∈N converges increasingly to v∗ pointwise, and v∗ is a fixed point of B̌. Assume (21). We have
v∗ ≤ v∗ since v ≤ v∗ by (19), B̌ is order-preserving, and v∗ is a fixed point of B̌ by Theorem 2.1. We
also have v∗ ≥ v∗ by Lemma 6.3. Hence, v∗ = v∗.

6.4. Proof of Proposition 5.1(ii)

Note that {v∗
i }i∈N is a decreasing sequence since {ui}i∈N is a decreasing sequence. It remains to show

that {v∗
i } converges to v∗ pointwise.

Fix x0 ∈ R
N . We show that v∗

i (x0) → v∗(x0) as i ↑ ∞. Let ε > 0. For each i ∈ N, by the definition
of v∗

i in (32), there exists {xit}∞t=1 ∈ R
N × R

N · · · such that

v∗
i (x0) − ε ≤

∞∑
t=0

βtui(xit , x
i
t+1) ≤ μ

1 − β
− i

∞∑
t=0

βtp(xt , xt+1), (56)

where the second inequality holds by Assumption 5.1 and (31).
Suppose that x0 
∈ X. Then, x0 belongs to the open set R

N \ X. Recalling (30), we see that
there exists δ > 0 such that p(x0, y) ≥ δ for all y ∈ R

N . This together with (56) implies that
v∗
i (x0) → −∞ = v∗(x0) as i ↑ ∞.
Suppose that x0 ∈ X. Since v∗

i ≥ v∗ ≥ 0 on X for all i ∈ N, it follows from (56) that

∞∑
t=0

βtp(xit , x
i
t+1) ≤ 1

i

[
μ

1 − β
+ ε

]
. (57)

Since the right-hand side tends to 0 as i ↑ ∞, we have p(xit , xit+1) → 0 as i ↑ ∞ for each t ∈ Z+. This
together with Assumption 5.3 implies that there exist a subsequence of {{xit}∞t=1}i∈N, again denoted
by {{xit}∞t=1}i∈N, and a feasible path {x∗

t }∞t=1 ∈ �(x0) such that xit → x∗
t as i ↑ ∞ for each t ∈ N.

Note that for any i ∈ N, we have

∞∑
t=0

βtui(xit , x
i
t+1) ≤

∞∑
t=0

βt ũ(xit , x
i
t+1). (58)

Since ũ is bounded, by (56), (58) and the dominated convergence theorem, we have

lim
i↑∞ v∗

i (x0) − ε ≤
∞∑
t=0

βt lim
i↑∞ ũ(xit , x

i
t+1) ≤

∞∑
t=0

βt ũ(x∗
t , x

∗
t+1) (59)

=
∞∑
t=0

βtu(x∗
t , x

∗
t+1) ≤ v∗(x0), (60)

where the second inequality in (59) holds by upper semicontinuity of ũ, and the equality in (60) holds
since {x∗

t } ∈ �(x0). Since ε > 0 was arbitrary, we have limi↑∞ v∗
i (x0) ≤ v∗(x0). Recalling (34) we

conclude that limi↑∞ v∗
i (x0) = v∗(x0).



1908 T. KAMIHIGASHI ANDM. YAO

Acknowledgements

We would like to thank an anonymous referee for helpful comments and suggestions. In particular, Sections 4 and 5
are written based on his or her suggestions.

Funding

This work was financially supported from the Japan Society for the Promotion of Science [KAKENHI grant number
15H05729 and grant number 15K17026] and is gratefully acknowledged.

References

[1] Stokey N, Lucas Jr. RE. Recursive methods in economic dynamics. Cambridge, MA: Harvard University Press;
1989.

[2] Alvarez F, Stokey NL. Dynamic programming with homogeneous functions. J. Econ. Theor. 1998;82:167–189.
[3] Durán J. On dynamic programming with unbounded returns. Econ. Theor. 2000;15:339–352.
[4] Le Van C, Morhaim L. Optimal growth models with bounded or unbounded returns: a unifying approach. J.

Econ. Theor. 2002;105:158–187.
[5] Rincón-Zapatero JP, Rodríguez-Palmero C. Existence and uniqueness of solutions to the Bellman equation in the

unbounded case. Econometrica. 2003;71:1519–1555.
[6] Rincón-Zapatero JP, Rodríguez-Palmero C. Corrigendum to “Existence and uniqueness of solutions to the

Bellman equation in the unbounded case” Econometrica, Vol. 71, No. 5 (September, 2003), 1519–1555.
Econometrica. 2009;77:317–318.

[7] Martins-da-Rocha VF, Vailakis Y. Existence and uniqueness of a fixed point for local contractions. Econometrica.
2010;78:1127–1141.

[8] Matkowski J, Nowak AS. On discounted dynamic programming with unbounded returns. Econ. Theor.
2011;46:455–474.
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