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ABSTRACT
The classical unconditional exact p-value test can be used to com-
pare two multinomial distributions with small samples. This gen-
eral hypothesis requires parameter estimation under the null which
makes the test severely conservative. Similar property has been
observed for Fisher’s exact test with Barnard and Boschloo pro-
viding distinct adjustments that produce more powerful testing
approaches. In this study, we develop a novel adjustment for the
conservativeness of the unconditionalmultinomial exactp-value test
that produces nominal type I error rate and increased power in com-
parison to all alternative approaches. We used a large simulation
study to empirically estimate the 5th percentiles of the distribu-
tions of the p-values of the exact test over a range of scenarios
and implemented a regression model to predict the values for two-
sample multinomial settings. Our results show that the new test
is uniformly more powerful than Fisher’s, Barnard’s, and Boschloo’s
tests with gains in power as large as several hundred percent in cer-
tain scenarios. Lastly, we provide a real-life data example where the
unadjusted unconditional exact test wrongly fails to reject the null
hypothesis and the correctedunconditional exact test rejects thenull
appropriately.
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1. Introduction

Contingency tables are used to display sample data arising from given distributions with
respect to either categories defined by characteristics inherent to the underlying distribu-
tions or by external factor variables. These tables facilitate subsequent analysis focused on
the presence of relationships among the parameters of the distributions imposed on the
data or among the external classification variables. In particular, a large sample compari-
son of r (r ≥ 2)multinomial distributions with c (c ≥ 2) categories is implemented via the
classical chi-square testing procedure that contrasts the observed and expected cell counts
for all samples under the null as shown by Agresti [2], Fisher [9], and Yates [19,20]. In the
following study we will use the classical r × c contingency table notation where nij denotes
the element of the table on row i and column j, and corresponds to the observed number of
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jth level observations in the ith sample and ni. denotes the ith sample size and n.j denotes
the total number of the jth level observations i = 1, 2, . . . , r, j = 1, 2, . . . , c.

For a completely specified null hypothesis that the samples arise from the same spec-
ified multinomial distribution with category probabilities p1, p2, . . . , pc, the test statistic∑r

i=1
∑c

j=1(nij − eij)2/eij, where eij = pjni. is the expected (i,j)th cell count under the
null, follows a χ2 distribution with r(c − 1) degrees of freedom. Similarly, for a gen-
eral null hypothesis that the samples arise from the same but unspecified multinomial
distribution, the test statistic

∑r
i=1

∑c
j=1(nij − êij)2/êij, where êij = p̂jni. is the estimated

expected cell count on row i and column j under the null, follows a χ2 distribution with
degrees of freedom (compared to the prior scenario) reduced by (c − 1), and thus equal
(r − 1)(c − 1). Here, the reduction of the degrees of freedom is necessitated by the number
of estimated parameters under the null p̂j = ∑r

i=1 nij/
∑r

i=1
∑c

j=1 nij, j = 1, 2, . . . , c − 1.
Via this adjustment, the unspecified null hypothesis is also naturally accommodated by
the χ2 distribution. These testing procedures are inappropriate for small sample or sparse
data analyses, rather an implementation of exact testing procedures is required. Accord-
ing to Mehta et al. [15], small sample or sparse data is usually defined as settings where
the expected contingency table cell counts do not exceed 5. The small sample testing alter-
natives include: the multinomial extension of the Fisher’s exact tests that conditions on
the margins of the contingency table by Fisher [8], and Mehta and Patel [14], permuta-
tion tests that conditions on the observed data by Efron and Tibshirani [7], and Hastie and
Tibshirani, and lastly the classical unconditional exact p-value test (UEPT) that explicitly
enumerates all possible contingency tables compatible with the observed data, evaluates
their corresponding probabilities under the null and obtains an exact p-value by adding
the probabilities of all data configurations as likely or less likely to occur than that of the
observed data under the null [11–13].

The first two procedures reduce the computational complexity by condition on themar-
gins of the table or on the observed data. However, in certain scenarios as indicated in
Agresti [1], Fisher’s Exact test has been known to be conservative and several approaches
that correct for the level of conservativeness have been proposed by Barnard [4,5],
Boschloo [6], Lin and Yang [10], Röhmel and Mansmann [17], and Routledge [18]. In a
recent work, Oliveira et al. [16] showed that the exact likelihood ratio approach possesses
performance advantages over Barnard’s test and extended its use to handle the hypothesis
of independence as well.

In this work we investigate the effect of parameter estimation on the type I error rates of
the classical UEPT when applied to a general (unspecified) comparison of several multi-
nomial distributions in small samples. We also provide the necessary correction for the
conservativeness that adjusts the type I error rate to nominal levelswith substantial increase
in power. As mentioned above, in the case of a not-completely specified null hypothesis for
equality of several multinomial distributions, c−1 parameters need to be estimated from
the data in order to obtain the necessary parameters of the common distribution under
the null. There is a natural test adjustment for the estimation of these parameters in large
sample analysis – the decrease in degrees of freedom of the χ2 distribution. However, the
classical exact p-value test is distribution free and therefore does not allow such a straight-
forward mode of adjustment. Consequently, we derive regression-based estimations of the
level of conservativeness and the 5th percentile of the exact p-values under the null includ-
ing sample sizes, number of multinomial categories and their interactions. We provide a
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real-world application of the results of our study by applying our corrections to ‘uncor-
rected’ p-values from a multinomial test of homogeneity obtained in a study on the effect
of exercise on the biobehavioral outcomes of fatigue during cancer treatement by Al-Majid
et al. [3].

2. Methods

Formally, both the completely specified and the general null hypotheses that several inde-
pendent samples (represented in rows of the corresponding contingency table) are drawn
from the same multinomial distributions (the latter known as hypothesis of homogeneity)
can respectively be written as

H0 : p1i = p2i = · · · = pri = p0i, i = 1, 2, . . . c, (1)

when the p0i’s are given and,

H0 : p1i = p2i = · · · = pri, i = 1, 2, . . . c. (2)

In large samples, the corresponding test statistics are,

r∑
j=1

c∑
i=1

(nij − eij)2

eij
∼ χ2(r(c − 1)) (3)

and
r∑

j=1

c∑
i=1

(nij − êij)2

êij
∼ χ2((r − 1)(c − 1)). (4)

As discussed earlier, the asymptotic parametric case naturally adjusts the transition
between hypotheses (1) and (2) by subtracting (c − 1) degrees of freedom from the χ2

distribution due to the estimation of the (c − 1) common category probabilities of the
underlying multinomial distribution,

p̂j =
∑r

i=1 nij∑r
i=1

∑c
j=1 nij

, j = 1, 2, . . . , c − 1. (5)

Moreover, in the latter case of a general unspecified null hypothesis, if one fails to adjust
the degrees of freedom by subtracting the number of estimated parameters under the null,
the resulting α = 0.05 type I error rate will be conservative as the integral below has the
correct limits but reflects the area under the wrong curve,

TI =
∫ χ2

0.05((r−1)(c−1))

0
fr(c−1)(x) dx, (6)

where fr(c−1)(x) = [2r(c−1)/2�(r(c − 1)/2)]−1xr(c−1)/2−1e−x/2, x>0 is the pdf of χ2 dis-
tribution with r(c − 1) degrees of freedom.

In small sample and sparse data scenarios, both asymptotic approaches (1) and (2)
are inapplicable. The properties of the multinomial extension of the Fisher’s exact test
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and permutation tests have previously been studied and are well-known. Here, we are
particularly interested in studying the classical UEPT type I error rates encountered
under the second type of hypotheses. In the subsequent presentation, we assume that
Xi ∼ Mult(ni., pi1, pi2, . . . , pic), i = 1, . . . , r and equate every observed or possible k sample
multinomial data with c categories with the corresponding contingency table T (repre-
senting its cross-classification representation). Given hypotheses (1) and (2), the classical
unconditional exact test calculates a p-value associated with the observed data by adding
the probabilities of all contingency tables that occur with probabilities not exceeding that
of the observed data,

Pexact =
∑
i
P(Ti)I{P(Ti) ≤ P(Tobs)}, (7)

where Ti enumerates all possible contingency tables. Furthermore, all probabilities are cal-
culated either under the completely specified null hypothesis (1) or under the general null
hypothesis that the samples come from the same unspecified multinomial distribution (2).
The bijective correspondence betweenmultinomial samples and contingency tables allows
us to immediately see that the number of possible values for Xi, i = 1, 2, . . . , r equals,

Ni =
(
ni. + c − 1

c

)
(8)

and therefore the number of possible contingency tables associated with r multinomial
samples with c categories and sample sizes n1, n2, . . . , nr is given by

N =
r∏

i=1

(
ni. + c − 1

c

)
. (9)

The probability of each of these N tables can be directly calculated under hypothesis (1),

P(T) =
r∏

i=1

ni.!
ni1!ni2! · · · nic!p

ni1
10 p

ni1
20 · · · pnicc0 (10)

and estimated under hypothesis (2) after having performed calculations (5),

P̂(T) =
r∏

i=1

ni.!
ni1!ni2! · · · nic! p̂

ni1
1 p̂ni12 · · · p̂nicc . (11)

The absence of parametric distribution and its natural degrees of freedom adjustment
between hypotheses (1) and (2) presents an interesting problem when the exact p-values
test (7) is used for hypothesis (1) via probabilities (10) and for (2) via probabilities (11).
The exact test possesses nominal type I error rates under the completely specified null
hypotheses but the effect of parameter estimation (necessary under the general null) on
the type I error rates is unknown. We implemented an extensive simulation study in an
effort to empirically estimate the type I error rates and the correct 5th percentile of the
exact p-value distribution under the general null hypothesis under a range of sample sizes,
number of multinomial categories and various underlying null hypotheses. Further, we
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Table 1. Simulation configuration.

c (n1, n2) (p1, p2, . . . , pc) Configurations

2 (3, 3), (3, 7), (3, 10)
2 (3, 15), (3, 25), (7, 7)
2 (7, 10), (7, 15), (7, 25) (0.1, 0.9), (0.3, 0.7), (0.5, 0.5) 45
2 (10, 10), (10, 15), (10, 25)
2 (15, 15), (15, 25), (25, 25)
3 (3, 3), (3, 7), (3, 10) (0.1, 0.1, 0.8), (0.1, 0.3, 0.6)
3 (3, 15), (3, 25) (0.25, 0.25, 0.50), (0.33, 0.33, 0.34) 20
3 (7, 7), (7, 10), (7, 15) (0.1, 0.1, 0.8), (0.1, 0.3, 0.6)
3 (7, 25), (10, 10), (10, 15) (0.33, 0.33, 0.34) 27
3 (10, 25), (15, 15), (15, 25)
3 (25, 25) (0.1, 0.1, 0.8), (0.33, 0.33, 0.34) 2
4 (3, 3), (3, 7), (3, 10) (0.1, 0.1, 0.1, 0.7), (0.1, 0.1, 0.3, 0.5)
4 (3, 15), (3, 25), (7, 7) (0.1, 0.3, 0.3, 0.3), (0.25, 0.25, 0.25, 0.25) 32
4 (7, 10), (7, 15)

averaged the simulated data over the unobservable (under (2) null hypothesis) probabili-
ties and used linear regression modeling to obtain the best predictive models for the type I
error rates and the 5th percentile of the exact p-value distribution in an effort to derive an
exact test alternative to the asymptotic formula (6). Lastly, the computational complexity
of the exact p-value method combined with the simulation on tens of thousand instances
makes this study possible only for r=2, and c=2,3,4. However, these happen to be the
most common scenarios that occur in data analysis.

3. Simulation design

We carried out a large-scale simulation study by varying sample sizes, number of multi-
nomial categories and null hypotheses probabilities in an effort to empirically estimate the
type I error rates for the UEPT used for the general multinomial null hypothesis (2) and
the 5th percentile of the distribution. In particular, the following combinations of number
of categories, samples sizes, and a set of corresponding probabilities were implemented in
our study design as shown in Table 1. We varied the actual values that define the grid and
showed that the performance of the method is robust to such changes.

For each particular combination of parameters, 104 datasets were simulated, the exact
p-value calculated, the corresponding empirical type I error rate at α-level of 0.05, and the
5th percentile of the distribution of p-values were obtained. Consequently, the study was
based on a total of 1.26 × 106 simulated contingency tables. Below is an enumeration of
the steps we took for clarity to the reader:

(1) Set the number of multinomial categories, c
(2) Set the sample sizes, n1 and n2
(3) Set the multinomial category probabilities p(1)

1 = p(2)
1 , p(1)

2 = p(2)
2 , . . . , p(1)

c = p(2)
c

(4) Generate 10,000 multinomially distributed 2 × c tables using values from steps 1 to 3.
(5) Calculate the unconditional multinomial exact p-value under the null (since p(1)

i =
p(2)
i for i = 1, 2, . . . , c)

(6) Estimate the empirical 5th percentiles of the distributions of the p-values, P0.05
(7) Repeat steps one to six for all combination of parameters shown in Table 1
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Table 2. Estimation of the 5th percentile of the fully unconditional multinomial exact test as an α-level
correction for conservativeness of the test.

Coefficients β Standard error t-Value p-Value

n1 0.0095 0.00450 2.10 .04
n2 −0.0039 0.00230 −1.66 .10
c 0.0950 0.00410 23.01 < .01
n1:c −0.0054 0.00170 −3.25 < .01
n2:c 0.0015 0.00080 1.89 .06

(8) Use the empirical 5th percentiles of the distributions of the p-values, P0.05, as the
dependent variable in a linear regression model with the number of multinomial cat-
egories c, sample sizes n1 and n2, and all two way statistical interactions. Pick the best
model from all possible models.

4. Results

4.1. Regression-based adjustment for the 5th percentiles UEPT

Our results indicate that in all scenarios defined by number of samples, number of multi-
nomial categories, and particular choices of the multinomial category probabilities under
the null, the type I error rates of the unadjusted unconditional multinomial exact test
were severely conservative and, consequently, the 5th percentiles of the distributions of
p-values of the exact test were severely inflated in comparison to the nominal 0.05 level.
The probabilities of the multinomial categories are unknown and could not appear in the
regression as predictors. We simulated data over a range of multinomial category prob-
abilities but integrated over these unknown parameters by averaging the distributions of
the p-values over the scenarios with common sample sizes and number of multinomial
categories. In essense, we used the empirically estimated 5th percentiles of the distribu-
tion of p-values of the exact test as the outcome variable of interest in a best subset linear
regression model building step with the sample sizes and number of categories and all
their possible interactions as candidate predictors. The resulting model is the basis of our
proposed adjustment for the conservativeness of the unconditional multinomial exact p-
value test, and it depends on the sample sizes and number of multinomial categories. The
regression formula of the best model is shown in Equation (12), where n1 ≤ n2 ≤ 30 and
2 ≤ c ≤ 5. In other words, whenever n1 �= n2, n1 is chosen to be the smaller of the two.
Additional details of the regression fit such as standard errors and p-values are shown
in Table 2.

P0.05 = 0.0095n1 − 0.0039n2 + 0.095c − 0.0054n1c + 0.0015n2c. (12)

We used the predicted 5th percentile of the exact p-value tests (using Equation (12)) as
the value for α and estimated the type I error rates from data simulated under the null.
The average type I error rate was 0.06 indicating that our proposed adjustment corrects
the conservativeness of the multinomial exact p-value test. We proceeded to simulate data
under the alternative (by setting p(1)

i �= p(2)
i , for any i = 1, 2, . . . , c) in order to estimate the

resulting gain in statistical power.
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Table 3. Average power comparisons with Fisher’s, Barnard’s, and Boschloo’s test for 2 × 2 tables.

Power Power gain (%) over

(n1, n2) p(1)
1 p(2)

1 Fisher Barnard Boschloo Multinomial αa Fisher Barnard Boschloo

(3, 3) 0.10 0.20 0 0.005 0.005 0.095 0.183 – 1636 1636
(3, 3) 0.15 0.30 0 0.018 0.018 0.167 0.183 – 820 820
(3, 3) 0.25 0.50 0 0.056 0.056 0.056 0.183 – 0 0
(3, 3) 0.20 0.80 0 0.268 0.268 0.268 0.183 – 0 0
(3, 15) 0.10 0.20 0.001 0.011 0.011 0.015 0.173 1227 35 35
(3, 15) 0.15 0.30 0.003 0.012 0.012 0.039 0.173 1404 215 215
(3, 15) 0.25 0.50 0.025 0.073 0.073 0.137 0.173 452 88 88
(3, 15) 0.20 0.80 0.441 0.639 0.639 0.66 0.173 50 3 3
(7, 10) 0.10 0.20 0.016 0.019 0.018 0.084 0.172 414 346 358
(7, 10) 0.15 0.30 0.051 0.055 0.055 0.139 0.172 171 150 152
(7, 10) 0.25 0.50 0.137 0.144 0.156 0.158 0.172 15 10 2
(7, 10) 0.20 0.80 0.651 0.680 0.732 0.854 0.172 31 26 17
(10, 10) 0.10 0.20 0.011 0.043 0.043 0.177 0.168 1521 311 311
(10, 10) 0.15 0.30 0.035 0.086 0.086 0.135 0.168 290 57 57
(10, 10) 0.25 0.50 0.084 0.170 0.170 0.170 0.168 101 0 0
(10, 10) 0.20 0.80 0.634 0.802 0.802 0.91 0.168 44 13 13
(15, 15) 0.10 0.20 0.039 0.083 0.094 0.142 0.157 263 70 51
(15, 15) 0.15 0.30 0.076 0.132 0.141 0.156 0.157 104 19 10
(15, 15) 0.25 0.50 0.161 0.282 0.258 0.388 0.157 141 38 50
(15, 15) 0.20 0.80 0.871 0.946 0.944 0.976 0.157 12 3 3
(15, 25) 0.10 0.20 0.053 0.096 0.096 0.126 0.148 138 31 31
(15, 25) 0.15 0.30 0.118 0.164 0.164 0.173 0.148 47 6 6
(15, 25) 0.25 0.50 0.280 0.325 0.346 0.369 0.148 32 14 7
(15, 25) 0.20 0.80 0.968 0.979 0.976 0.988 0.148 2 1 1
aAdjusted α-level, multinomial exact test.

4.2. Average power gain by the corrected unadjusted exact p-value test (CUEPT)

We estimated the average power of the CUEPT over a range of alternative hypothesis.
As mentioned earlier, simulation under the alternative hypothesis was achieved by set-
ting p(1)

i �= p(2)
i , for any i = 1, 2, . . . , c. We show the power gain obtained in comparison

to Fisher’s, Barnard’s, and Boschloo’s test for 2 × 2, 2 × 3, and 2 × 4 tables in Tables 3, 4,
and 5 respectively.

In all cases considered, the average power of the CUEPT increased with increase in the
values of n1 and n2. The gain in average power was greatest for pair of the smallest sample
size, (3, 3), compared to Fisher’s, Barnard’s, Boschloo’s and the multinomial UEPT. The
adjustment to the multinomial exact test led to equal or substantial percent gain in power
over the other tests. As sample size increased, the power of all tests/methods increased but
the gain in power due to our adjustment decreased.

5. Real data example

In a study on the effects of exercise on behavioral outcomes of fatigue during cancer treat-
ment, Al-Majid et al. [3] randomly assigned 14 women (who completed the study) into 2
groups consisting of subjects who were assigned to exercise, and those who receive ‘usual
care’ as the control group. The study was a randomized prospective longitudinal study on
cancer patients from two cancer centers in Virginia and Southern California. Inclusion
criteria for the study included female patients 21 years or older who have been diagnosed
with Stage I or II breast cancer and scheduled to receive chemotherapy. They described the
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Table 4. Statistical power comparisons with Fisher’s test for 2 × 3 tables.

Power

(n1, n2) (p(1)
1 , p(1)

2 ) (p(2)
1 , p(2)

2 ) Fisher Multinomial αa Power gain (%)

(3, 3) (0.10, 0.20) (0.20, 0.30) 0 0.087 0.267 –
(3, 3) (0.15, 0.50) (0.30, 0.30) 0 0.060 0.267 –
(3, 3) (0.20, 0.10) (0.80, 0.10) 0 0.469 0.267 –
(3, 3) (0.25, 0.40) (0.50, 0.10) 0 0.088 0.267 –
(3, 15) (0.10, 0.20) (0.20, 0.30) 0.013 0.045 0.274 245
(3, 15) (0.15, 0.50) (0.30, 0.30) 0.047 0.060 0.274 30
(3, 15) (0.20, 0.10) (0.80, 0.10) 0.523 0.721 0.274 38
(3, 15) (0.25, 0.40) (0.50, 0.10) 0.185 0.292 0.274 58
(7, 10) (0.10, 0.20) (0.20, 0.30) 0.066 0.128 0.244 93
(7, 10) (0.15, 0.50) (0.30, 0.30) 0.082 0.136 0.244 66
(7, 10) (0.20, 0.10) (0.80, 0.10) 0.721 0.881 0.244 22
(7, 10) (0.25, 0.40) (0.50, 0.10) 0.226 0.333 0.244 47
(10, 10) (0.10, 0.20) (0.20, 0.30) 0.089 0.136 0.224 53
(10, 10) (0.15, 0.50) (0.30, 0.30) 0.105 0.150 0.224 43
(10, 10) (0.20, 0.10) (0.80, 0.10) 0.784 0.922 0.224 18
(10, 10) (0.25, 0.40) (0.50, 0.10) 0.234 0.355 0.224 52
(15, 15) (0.10, 0.20) (0.20, 0.30) 0.135 0.152 0.193 13
(15, 15) (0.15, 0.50) (0.30, 0.30) 0.159 0.186 0.193 17
(15, 15) (0.20, 0.10) (0.80, 0.10) 0.943 0.975 0.193 3
(15, 15) (0.25, 0.40) (0.50, 0.10) 0.382 0.480 0.193 26
(15, 25) (0.10, 0.20) (0.20, 0.30) 0.153 0.188 0.200 23
(15, 25) (0.15, 0.50) (0.30, 0.30) 0.196 0.220 0.200 12
(15, 25) (0.20, 0.10) (0.80, 0.10) 0.981 0.990 0.200 1
(15, 25) (0.25, 0.40) (0.50, 0.10) 0.535 0.607 0.200 13
aAdjusted α-level, multinomial exact test.

Table 5. Average power comparisons with Fisher’s test for 2 × 4 tables.

Power

(n1, n2) (p(1)
1 , p(1)

2 , p(1)
3 ) (p(2)

1 , p(2)
2 , p(2)

3 ) Fisher Multinomial αa Power gain (%)

(3, 3) (0.10, 0.10, 0.10) (0.20, 0.20, 0.10) 0 0.096 0.350 –
(3, 3) (0.15, 0.50, 0.20) (0.30, 0.30, 0.15) 0 0.067 0.350 –
(3, 3) (0.25, 0.40, 0.20) (0.50, 0.10, 0.20) 0 0.085 0.350 –
(3, 3) (0.20, 0.10, 0.50) (0.80, 0.10, 0.05) 0 0.377 0.350 –
(3, 15) (0.10, 0.10, 0.10) (0.20, 0.20, 0.10) 0.014 0.064 0.375 356
(3, 15) (0.15, 0.50, 0.20) (0.30, 0.30, 0.15) 0.050 0.062 0.375 24
(3, 15) (0.25, 0.40, 0.20) (0.50, 0.10, 0.20) 0.171 0.227 0.375 33
(3, 15) (0.20, 0.10, 0.50) (0.80, 0.10, 0.05) 0.564 0.704 0.375 25
(7, 10) (0.10, 0.10, 0.10) (0.20, 0.20, 0.10) 0.057 0.109 0.316 92
(7, 10) (0.15, 0.50, 0.20) (0.30, 0.30, 0.15) 0.099 0.132 0.316 33
(7, 10) (0.25, 0.40, 0.20) (0.50, 0.10, 0.20) 0.227 0.277 0.316 22
(7, 10) (0.20, 0.10, 0.50) (0.80, 0.10, 0.05) 0.738 0.822 0.316 11
(10, 10) (0.10, 0.10, 0.10) (0.20, 0.20, 0.10) 0.100 0.129 0.280 29
(10, 10) (0.15, 0.50, 0.20) (0.30, 0.30, 0.15) 0.124 0.138 0.280 12
(10, 10) (0.25, 0.40, 0.20) (0.50, 0.10, 0.20) 0.244 0.300 0.280 23
(10, 10) (0.20, 0.10, 0.50) (0.80, 0.10, 0.05) 0.780 0.873 0.280 12
aAdjusted α-level, multinomial exact test.

baseline demographic characteristics of the participants by comparing the ‘exercise’ and
the control group using exact two-sample multinomial test without correction for the con-
servativeness of the test under an unadjusted significance level of 0.05. The p-value of the
(uncorrected) exact two-sample multinomial test indicated that there was no difference in
demographics between the two groups of patients at the 0.05 α-level. We set out to assess
whether the conclusion of no difference in demographics for both groups of patients holds
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Table 6. Baseline demographic characteristics of studyparticipants – effect of exercise onbiobehavioral
outcomes of fatique during cancer treatment study.

Variable Exercise groupa Control groupa pb Regression adjusted α-level

Age 47.9± 10.4 52.7± 10.7 – –
Cancer stage 2.0± 0.5 1.6± 0.6 – –
Ethnicity 1.00 0.17
Hispanic 2 (28.6) 2 (28.6)
Non-hispanic 5 (71.4) 5 (71.4)
Marital status 0.59 0.17
Married 5 (71.4) 3 (42.9)
Unmarried 2 (28.6) 4 (57.1)
Education 0.37 0.38
< High school 1 (14.3) 0 (0.0)
High school 1 (14.3) 3 (42.9)
Technical school 0 (0.0) 3 (42.9)
College 2 (28.6) 0 (0.0)
Postcollege 3 (42.9) 1 (14.3)
Employment 0.91 0.17
Employed 4 (57.1) 5 (71.4)
Unemployed 3 (42.9) 2 (28.6)

an(%) orM ± SD.bUnconditional exact multinomial p-value.

after correcting the multinomial test using the method we have described herein as well as
in comparison to Boschloo’s and Barnard’s test.

In Table 6, we replicate the data from the study by Al-Majid et al. [3] including
our model-based correction for the significance level. Based on our correction of the
α-level, there is a statistically significant difference between the exercise and control group
by Education which would otherwise be unknown given the conservativeness of the
unconditional multinomial exact p-value used to compare the treatment arms in the study.

6. Discussion

Parameter estimation adjustment in the degrees of freedom of the asymptotic χ2 statistic
when testing a general null hypothesis of equality of several multinomial distributions con-
trasted with the completely specified null that multinomial distributions are the same with
given category probabilities is well known. In an effort to extend the theory to small sam-
ple analysis, we carried out a methodological study that explores the effect of parameter
estimation on the classical exact p-value test where the absence of parametric distribu-
tion makes proper adjustment intricate. We implemented a large-scale simulation design
in our study to empirically estimate the 5th percentiles of the exact p-values of the UEPT
under extensive set of data generating parameters. In particular, we considered 126 param-
eter combinations including sample sizes, number of categories, andmultinomial category
probabilities and simulated 104 datasets for each scenario – 104 simulated datasets is the
most optimal choice computationally and there is only a marginal effect on results if the
number of simulated datasets is increased. We addressed the most common data analy-
sis settings that are computationally feasible. The sample sizes encompass a grid of values
that span small sample territory. The p was chosen based on a grid of multinomial cat-
egories that covers a wide range of values. We investigated both the dependence of the
results on the values of the parameters that define each simulation data scenario and on
the number of datasets simulated for each scenario. Further, we aggregated the data over all
unobservable parameters (the multinomial category probabilities) and linearly regressed
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the 5th percentiles of the distributions of the classical unconditional multinomial exact p-
value against the sample sizes, the number ofmultinomial categories and their interactions.
In all scenarios, parameter estimation of the unknownmultinomial category probabilities,
using data from both samples, leads to inflation of the 5th percentiles of the distribution of
the p-values of UEPT compared to the nominal level. Consequently, estimating the empir-
ical 5th percentile of the distribution of p-values of the UEPT can be used as adjustment
required to correct the type I error rate to nominal levels while increasing the power of the
test. Our subsequent regression analysis reveals the proper adjustment of the 5th percentile
as a function of the sample sizes, number of multinomial categories and their interactions.
This regression model achieved an R2 value of 0.95 and this correction establishes the cor-
rect hypothesis testing under the assumption of a multinomial distribution. Results of this
study indicate that our adjustment results in a test more power than Fisher’s, Barnard’s, and
Boschloo’s tests – the most common alternatives to the unconditional multinomial exact
p-value test.

Boschloo’s test, Boschloo [6], is conceptually similar to our idea. It provides an adjust-
ment for the Fisher’s exact test by a scenario-specific significance level inflation for all 2 × 2
contingency tables. The UEPT is conservative in the presence of parameter estimation
and our adjustment via a scenario-specific significance level inflation for all c × r contin-
gency tables based on a regression model applied to a dense set of simulated data leads to
improved power better than Barnard’s and Boschloo’s tests. Barnard’s test, Barnard [4,5],
similar to our approach, is fully unconditional as it considers all tables compatible with
the observed sample sizes and the two categories since it applies to only for binomial data.
However, this test does not estimate the common value of p under the null via maximum
likelihood, but it finds the value of p that maximizes the exact p-value (defined as the sum
of the probabilities of contingency tables as likely or less likely to occur than the observed
table). Thus, Barnard’s test treats the exact p-value expression as a ‘new’ likelihood for p
that ismaximized. Barnard treats the value of themaximum it attained as the exact p-value.
Taking themaximumof the exact p-value expression as a function of p is an alternative way
to adjust for the conservativeness of the UEPT. In contrast, we estimate p using maximum
likelihood on the product of multinomial likelihoods (which does not maximize the exact
p-value expression) and then adjust using scenario-specific significance level inflation for
all 2 × c contingency table based on the aforementioned regression model.

In this work we proposed and implemented a novel approach for adjustment of the 5th
percentiles of the exact p-value test when applied to comparisons of several multinomial
distributions in small samples. We used best subset regression model applied to a dense
set of simulated data to develop a scenario-specific adjustment to the significance level
resulting in nominal type I error rates and increased power that equals several hundred
percent over all other competing testing approach. This approach can be extended to more
than two multinomial samples as well as including corrections for tests of independence.
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