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ABSTRACT
In the context of convex variational regularization, it is a
known result that, under suitable differentiability assumptions,
source conditions in the form of variational inequalities imply
range conditions, while the converse implication only holds
under an additional restriction on the operator. In this article,
we prove the analogous result for polyconvex regularization.
More precisely, we show that the variational inequality derived
by the authors in 2017 implies that the derivative of the regu-
larization functional must lie in the range of the dual-adjoint
of the derivative of the operator. In addition, we show how to
adapt the restriction on the operator in order to obtain the
converse implication.
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1. Introduction

Consider a nonlinear operator equation with inexact data

KðuÞ ¼ vd; jjvd � v†jj � d;

where K : U ! V acts between Banach spaces, v†; vd 2 V are exact and
noisy data, respectively, and d> 0 is the noise level. A common method for
the stable inversion of K is variational regularization which consists in com-
puting regularized solutions uda as minimizers of functionals of the form

u 7! T aðu; vdÞ ¼ jjKðuÞ � vdjjq þ aRðuÞ: (1.1)

Here, R is a typically convex regularization functional, a> 0 and q � 1: A
natural requirement for such methods is that regularized solutions converge, in
some sense, to an exact solution as the noise level tends to zero. Convergence
rates additionally provide bounds on the discrepancy between regularized and
exact solutions in terms of the noise level. In a Banach space setting, the most
common measure of discrepancy is the Bregman distance associated to R [1].

CONTACT Clemens Kirisits clemens.kirisits@ricam.oeaw.ac.at Johann Radon Institute for Computational
and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenberger Str. 69, Linz 4040, Austria.
� 2018 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
2018, VOL. 39, NO. 10, 1064–1076
https://doi.org/10.1080/01630563.2018.1467447

http://crossmark.crossref.org/dialog/?doi=10.1080/01630563.2018.1467447&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org./10.1080/01630563.2018.1467447
http://www.tandfonline.com


In order to guarantee convergence rates, one has to impose a source con-
dition of some sort. Traditionally, in a linear Hilbert space setting with
quadratic Tikhonov regularization, this was done by assuming that the min-
imum norm solution lies in the range of an operator closely related to the
adjoint of K. See [2, Ch. 5] for example. Generalizing this range condition
to the nonlinear Banach space setting outlined in the previous paragraph
yields

R0ðu†Þ 2 ran K0ðu†Þ#; (1.2)

where u† is an R-minimizing solution and K0ðu†Þ# is the dual-adjoint of
the Gâteaux derivative of K at u†.
More recently, it was shown by Hofmann et al. [3] that convergence rates

can also be obtained by assuming that a variational inequality like

hu�; u† � ui � b1Du� ðu; u†Þ þ b2jjKðuÞ � v†jj (1.3)

holds for all u in a certain neighborhood of u†. Here u� is a subgradient of
R at u† and Du�ðu; u†Þ denotes the corresponding Bregman distance
between u and u†. Note that (1.3) does not require K or R to be differenti-
able. If they are, however, then the variational inequality (1.3) implies the
range condition (1.2). The converse implication only holds under an add-
itional assumption on the nonlinearity of the operator K. For a more
detailed discussion of the relations between the various types of source con-
ditions, we refer to [4, pp. 70–73].
For certain inverse problems on W1;pðX;RNÞ, such as image or shape

registration models inspired by nonlinear elasticity [5, 6], convex regulariza-
tion is too restrictive, while the weaker notion of polyconvexity is more
appropriate. Indeed, nonconvex regularization functionals R with polycon-
vex integrands are well-suited for deriving stable and convergent regulariza-
tion schemes. However, since such functionals are not subdifferentiable in
general, the question is how to obtain convergence rates. According to
Kirisits and Scherzer [7], we addressed this issue by following Grasmair’s
approach of generalized Bregman distances [8]. First, we introduced the
weaker concept of Wpoly-subdifferentiability, specifically designed for func-
tionals with polyconvex integrands, and gave conditions for existence of
Wpoly-subgradients. By means of the corresponding Wpoly-Bregman dis-
tance, we were then able to translate the convergence rates result by
Hofmann et al. [3] to the polyconvex setting. The source condition derived
by Kirisits and Scherzer [7] reads

wðu†Þ � wðuÞ � b1D
poly
w ðu; u†Þ þ b2jjKðuÞ � v†jj; (1.4)

where w is a Wpoly-subgradient of R at u† and Dpoly
w ðu; u†Þ is the corre-

sponding generalized Bregman distance.
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The main results of this article are Theorems 3.1 and 3.2 in Section 3.
Theorem 3.1 states that the variational inequality (1.4) implies the range
condition (1.2), given that K and R are differentiable and R satisfies the
conditions guaranteeing existence of a Wpoly-subgradient. A major part of
the proof consists in showing that R0ðu†Þ ¼ w0ðu†Þ in this case. Conversely,
Theorem 3.2 states that

w0ðu†Þ 2 ran K0ðu†Þ#

implies (1.4), if the nonlinearities of K and w satisfy a certain inequality
around u†.

2. Polyconvex functions and generalized Bregman distances

This section is a brief summary of the most important prerequisites by
Kirisits and Scherzer [7]. For N; n 2 N we will frequently identify matrices
in RN�n with vectors in RNn.

2.1. Polyconvex functions

A function f : RN�n ! R [ fþ1g is polyconvex, if, for every A 2 RN�n,
f(A) can be written as a convex function of the minors of A. More pre-

cisely, let 1 � s � minðN; nÞ ¼: N�n and define rðsÞ :¼ n
s

� �
N
s

� �
as well

as s :¼
XN � n

s¼1
rðsÞ. Denote by adjsA 2 RrðsÞ the matrix of all s� s minors

of A and set

TðAÞ :¼ ðA; adj2A; :::; adjN � nAÞ 2 Rs:

Now, a function f : RN�n ! R [ fþ1g is polyconvex, if there is a con-
vex function F : Rs ! R [ fþ1g such that f ¼ F�T. Every convex func-
tion is polyconvex. The converse statement only holds, if N�n ¼ 1: The
importance of polyconvex functions in the calculus of variations is due to
the fact that they render functionals of the form

RðuÞ ¼
ð
X
f ðruðxÞÞ dx

weakly lower semicontinuous in W1;pðX;RNÞ, where X � Rn. For more
details on polyconvex functions, see [9, 10].

2.2. The set Wpoly

For the remainder of this article, unless stated otherwise, we let X � Rn be
an open set, p � N�n, and set U ¼ W1;pðX;RNÞ.
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The following variant of the map T will prove useful. Set s2 :¼XN � n

s¼2
rðsÞ and define

T2ðAÞ :¼ ðadj2A; :::; adjN � nAÞ 2 Rs2 :

If u 2 U, then adjsru consists of sums of products of s LpðXÞ functions,
and therefore, by H€older’s inequality, adjsru 2 Lp=sðX;RrðsÞÞ. This moti-
vates the following two definitions:

S :¼
YN � n

s¼1

L
p
sðX;RrðsÞÞ; S2 :¼

YN � n

s¼2

L
p
sðX;RrðsÞÞ:

We define Wpoly to be the set of all functions w : U ! R for which there
is a pair ðu�; v�Þ 2 U� � S�2 such that

wðuÞ ¼ hu�; uiU�;U þ hv�;T2ðruÞiS�2 ;S2 (2.5)

for all u 2 U. Note that, if v� ¼ 0, then w can be identified with u� 2 U�.
Thus, the dual U� can be regarded a subset of Wpoly in a natural way.

2.3. Generalized subgradients

Let R : U ! R [ fþ1g. We denote the effective domain of R by
dom R ¼ fu 2 U : RðuÞ<þ1g. Following [8, 7, 11] we define the
Wpoly-subdifferential of R at u 2 dom R as

@polyRðuÞ ¼ fw 2 Wpoly : RðvÞ � RðuÞ þ wðvÞ � wðuÞ for all v 2 Ug;

If RðuÞ ¼ þ1, we set @polyRðuÞ ¼ 1. The identification of U� with a
subset of Wpoly mentioned in the previous paragraph implies that
@RðuÞ � @polyRðuÞ, that is, the classical subdifferential can be regarded a
subset of the Wpoly-subdifferential. Elements of @polyRðuÞ are called
Wpoly-subgradients of R at u. Concerning existence of Wpoly-subgradients
we have shown the following result [7].

Lemma 2.1. Let

F : X� RN � Rs ! R�0 [ fþ1g

be a Carath�eodory function. Assume that, for almost every x 2 X, the map
ðu; nÞ7!Fðx; u; nÞ is convex and differentiable throughout its effective domain
and denote its derivative by F0u;n. Let p 2 ½1;1Þ and define the following
functional on U ¼ W1;pðX;RNÞ

RðuÞ ¼
ð
X
Fðx; uðxÞ;TðruðxÞÞÞ dx:

If Rð�vÞ 2 R and the function x 7!F0u;nðx;�vðxÞ;Tðr�vðxÞÞÞ lies in
Lp

�ðX;RNÞ � S�, where p� denotes the H€older conjugate of p, then this func-
tion is a Wpoly-subgradient of R at �v.
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Remark 1. If F0u;nð	;�vð	Þ;Tðr�vð	ÞÞÞ is a Wpoly-subgradients
w 2 @polyRð�vÞ � Wpoly, as postulated by Lemma 2.1, then it must be pos-
sible to write its action on u 2 U in terms of a pair ðu�; v�Þ 2 U� � S�2 as in
(2.5). In order to do so recall that TðAÞ ¼ ðA;T2ðAÞÞ. We can split the
variable n 2 Rs accordingly into ðn1; n2Þ 2 RNn � Rs2 : Similarly, we can
write F0u;n ¼ ðF0u; F0nÞ ¼ ðF0u; F0n1 ; F

0
n2
Þ: Now we have

wðuÞ ¼
ð
X
F0u;nðx;�vðxÞ;Tðr�vðxÞÞÞ 	 ðu;TðruÞÞ dx

¼
ð
X
F0
uðx;�vðxÞ;Tðr�vðxÞÞÞ 	 uðxÞ dx

þ
ð
X
F0n1ðx;�vðxÞ;Tðr�vðxÞÞÞ 	 ruðxÞ dx

þ
ð
X
F0n2ðx;�vðxÞ;Tðr�vðxÞÞÞ 	 T2ðruðxÞÞ dx:

The integral in the bottom line corresponds to the dual pairing
hv�;T2ðruÞiS�2;S2 in (2.5), while the previous two terms correspond to
hu�; uiU�;U . Therefore, u

� is given by ðF0u; F0n1Þ and v� by F0n2 . Also, note that
all integrals are well defined and finite because of the integrability condi-
tions on the derivative of F in Lemma 2.1.

2.4. Generalized Bregman distances

Whenever R has a Wpoly-subgradient w 2 @polyRðuÞ we can define the
associated Wpoly-Bregman distance between v 2 U and u as

Dpoly
w ðv; uÞ ¼ RðvÞ � RðuÞ � wðvÞ þ wðuÞ:

Note that, just like the classical Bregman distance, the Wpoly-Bregman
distance is nonnegative, satisfies Dpoly

w ðu; uÞ ¼ 0 whenever defined, and is
not symmetric with respect to u and v. In addition, if
w ¼ ðu�; 0Þ 2 RpolyðuÞ, then u� 2 @RðuÞ and the classical and
Wpoly-Bregman distances coincide, that is,

Dpoly
w ðv; uÞ ¼ Du� ðv; uÞ:

See [8, 4] for more details on (generalized) Bregman distances.
In order to be able to quote the source condition by Kirisits and Scherzer

[7], we need one more definition: We call u† 2 U an R-minimizing solu-
tion, if it solves the exact operator equation and minimizes R among all
other exact solutions, that is,

u† 2 arg minfRðuÞ : u 2 U;KðuÞ ¼ v†g:
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Assumption 2.1. Assume that R has a Wpoly-subgradient w at an R-mini-
mizing solution u† and that there are constants b1 2 ½0; 1Þ; b2; �a> 0 and
q> �aRðu†Þ such that

wðu†Þ � wðuÞ � b1D
poly
w ðu; u†Þ þ b2jjKðuÞ � v†jj (2.6)

holds for all u with T a�ðu; v†Þ � q.

3. A range condition

At the end of this section, we prove our main results, Theorems 3.1 and
3.2. Before that, we have to state a few preliminary results. First, we recall
the definition of the dual-adjoint operator together with a characterization
of its range (Lemma 3.2). Next, we compute the Gâteaux derivative of

RðuÞ ¼
ð
X
f ðx; uðxÞ;ruðxÞÞ dx

in Lemma 3.3, and of w 2 Wpoly in Lemma 3.4, respectively.
For every bounded linear operator A : U ! V acting between locally

convex spaces there exists a unique operator A# : V� ! U�, also linear and
bounded, satisfying

hA#v�; uiU�;U ¼ hv�;AuiV�;V

for all u 2 U and v� 2 V�: See, for instance, Section VII.1 of Ref. [12]. The
operator A# is called the dual-adjoint of A.

Lemma 3.2. Let U, V be normed linear spaces, A : U ! V a bounded linear
operator and u� 2 U�. Then u� 2 ran A#, if and only if there is a C> 0
such that

jhu�; uiU�;U j � CjjAujj

for all u 2 U.

Proof. See Lemma 8.21 in Ref. [4].
Let K : DðKÞ � U ! V be a map acting between normed spaces and let

u 2 DðKÞ; h 2 U: If the limit

K0ðu; hÞ ¼ lim
t!0þ

1
t
ðKðuþ thÞ � KðuÞÞ

exists in V, then K0ðu; hÞ is called the directional derivative of K at u in dir-
ection h. If K0ðu; hÞ exists for all h 2 U and there is a bounded linear oper-
ator K0ðuÞ : U ! V satisfying

K0ðuÞh ¼ K0ðu; hÞ

for all h 2 U, then K is Gâteaux differentiable at u and K 0ðuÞ is called the
Gâteaux derivative of K at u.
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Lemma 3.3. Let

f : X� RN � RN�n ! R�0 [ fþ1g

be a nonnegative Carath�eodory function. Assume that, for almost every
x 2 X, the map ðu;AÞ7!f ðx; u;AÞ is differentiable throughout its effective
domain and that

jf 0u;Aðx; u;AÞj � aðxÞ þ bjujp�1 þ cjAjp�1 (3.1)

holds there for p � 1 and some a 2 Lp
�ðXÞ and b; c � 0. Then, the functional

R : U ¼ W1;pðX;RNÞ ! R�0 [ fþ1g;

defined by

RðuÞ ¼
ð
X
f ðx; uðxÞ;ruðxÞÞ dx;

is Gâteaux differentiable in the interior of its effective domain. Its Gâteaux
derivative at u 2 int dom R is given by

hR0ðuÞ; ûiU�;U ¼
ð
X
f 0uðx; uðxÞ;ruðxÞÞ 	 ûðxÞ dx

þ
ð
X
f 0Aðx; uðxÞ;ruðxÞÞ 	 rûðxÞ dx; û 2 U:

(3.2)

Proof. Fix u 2 int dom R and û 2 U. Assuming we can differentiate under
the integral sign we have

R0ðu; ûÞ ¼ limt!0þ
1
t
ðRðuþ tûÞ � RðuÞÞ

¼
ð
X
lim
t!0þ

1
t
ðf ðx; uþ tû;ruþ trûÞ � f ðx; u;ruÞÞ dx

¼
ð
X
@tf ðx; uþ tû;ruþ trûÞjt¼0 dx

¼
ð
X

f 0uðx; u;ruÞ 	 û þ f 0Aðx; u;ruÞ 	 rû
� �

dx;

which is just Equation (3.2).
It remains to show that differentiation and integration are interchange-

able. For �> 0 sufficiently small (see below) we define
g : ð��; �Þ � X ! R�0 [ fþ1g,

gðt; xÞ ¼ f ðx; uðxÞ þ tûðxÞ;ruðxÞ þ trûðxÞÞ:

The identity @t
Ð
Xgðt; xÞ dx ¼

Ð
X@tgðt; xÞ dx holds true, if the following

three conditions are satisfied.

1. Integrability: The function x7!gðt; xÞ is integrable for all t 2 ð��; �Þ.
2. Differentiability: The partial derivative @tgðt; xÞ exists for almost every

x 2 X and all t 2 ð��; �Þ.
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3. Uniform upper bound: There is a function h 2 L1ðXÞ such that
j@tgðt; xÞj � hðxÞ for almost every x 2 X and all t 2 ð��; �Þ.

Item 1 is satisfied, since u lies in the interior of dom R and therefore,ð
X
jgðt; xÞj dx ¼ Rðuþ tûÞ<1; � �< t<�;

for � sufficiently small. In particular, gðt; xÞ<1 for almost every x and
every t 2 ð��; �Þ. Thus, item 2 holds as well. Concerning item 3, we use
inequality (3.1) to obtain for almost every x 2 X

j@tgðt; xÞj ¼ jf 0uðx; uþ tû;ruþ trûÞ 	 û þ f 0Aðx; uþ tû;ruþ trûÞ 	 rûj
� jf 0uðx; uþ tû;ruþ trûÞjjûj þ jf 0Aðx; uþ tû;ruþ trûÞjjrûj
� ðjûj þ jrûjÞðaþ bjuþ tûjp�1 þ cjruþ trûjp�1Þ:

We estimate further

juþ tûjp�1 � juj þ jtjjûjð Þp�1 � maxf1; 2p�2g jujp�1 þ �p�1jûjp�1
� �

and similarly

jruþ trûjp�1 � maxf1; 2p�2g jrujp�1 þ �p�1jrûjp�1
� �

:

Thus, we have found an upper bound for j@tgðt; xÞj, which is independ-
ent of t. This bound is essentially a sum of products of the form
yðxÞzðxÞp�1, where y; z 2 LpðXÞ. Since, in this case, zp�1 lies in Lp

�ðXÞ,
H€older’s inequality shows that yzp�1 2 L1ðXÞ:

Lemma 3.4. The functions w 2 Wpoly are Gâteaux differentiable on all of U.
Identifying w with ðu�; v�Þ 2 U� � S�2 its Gâteaux derivative at u 2 U is
given by

hw0ðuÞ; ûiU�;U ¼ hu�; ûiU�;U þ
ð
X
v�ðxÞ 	 T0

2ðruðxÞÞrûðxÞ dx; û 2 U;

where T0
2ðruðxÞÞ denotes the derivative of the map T2 : R

Nn ! Rs2

at ruðxÞ.

Proof. Identify w 2Wpoly with ðu�; v�Þ 2 U� � S�2 and let u; û 2 U: First, we
separate the linear and nonlinear parts of w.

w0ðu; ûÞ ¼ limt!0þ
1
t
ðwðuþ tûÞ � wðuÞÞ

¼ limt!0þ
1
t
ðhu�; uþ tûiU�;U þ hv�;T2ðruþ trûÞiS�2 ;S2

� hu�; uiU�;U � hv�;T2ðruÞiS�2 ;S2Þ

¼ hu�; ûiU�;U þ limt!0þ
1
t
hv�;T2ðruþ trûÞ � T2ðruÞiS�2 ;S2
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Assuming we can differentiate under the integral sign, the remaining
limit equals

limt!0þ
1
t
hv�;T2ðruþ trûÞ � T2ðruÞiS�2 ;S2

¼
ð
X
lim
t!0þ

1
t
½v� 	 ðT2ðruþ trûÞ � T2ðruÞÞ
 dx

¼
ð
X
@t½v� 	 T2ðruþ trûÞ
t¼0 dx

¼
ð
X
v� 	 T0

2ðruÞrû dx:

As in the proof of Lemma 3.3, we have to check the conditions for inter-
changing integration and differentiation. Define the function

gðt; xÞ ¼ v�ðxÞ 	 T2ðruðxÞ þ trûðxÞÞ

on ð��; �Þ � X. It is integrable for all t, since T2 maps LpðX;RN�nÞ into S2
and v� lies in S�2. It is also differentiable with respect to t, since the entries
of T2ðruðxÞ þ trûðxÞÞ are polynomials in t. Finally, @tg can be bounded
in the following way

j@tgj ¼ j@t
Xn
s¼2

v�s 	 adjsðruþ trûÞj

¼ j
Xn
s¼2

v�s 	 adj0sðruþ trûÞrûj

� jrûj
Xn
s¼2

jv�s jjadj0sðruþ trûÞj

(3.3)

where v�s denotes the Lð
p
sÞ
�ðX;RrðsÞÞ-component of v�: The derivative

adj0sðruþ trûÞ consists of sums of products of s � 1 terms of the form
@xiuj þ t@xi ûj. After expanding, every such product can be bounded by

Xs�1

k¼0

jtjk
X
m

jgkmj �
Xs�1

k¼0

�k
X
m

jgkmj; (3.4)

where each gkm is a product of s� 1 Lp functions and therefore lies in L
p

s�1.
Combining (3.3) with (3.4) gives an upper bound for @tg which is inde-
pendent of t. Using H€older’s inequality, it is now straightforward to verify
that this bound is indeed an L1 function.

Theorem 3.1. Let R satisfy the requirements of Lemma 2.1 at an R-mini-
mizing solution u† 2 int dom R and let w be the Wpoly-subgradient thus
provided. Suppose Assumption 2.1 holds for this u† and w. Moreover,
assume that the integrand f of R satisfies inequality (3.1) and that K is
Gâteaux differentiable at u†. Then R is Gâteaux differentiable at u† and

R0ðu†Þ ¼ w0ðu†Þ 2 ran K0ðu†Þ#:
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Proof. The proof consists of two steps. First, we show that the source condi-
tion implies that

0 � b1hR0ðu†Þ; ûiU�;U þ ð1� b1Þhw0ðu†Þ; ûiU�;U þ b2jjK0ðu†Þûjj (3.5)

holds for all û 2 U. Second, the derivatives of R and w at u† agree, which
leads to

hR0ðu†Þ; ûiU�;U � b2jjK0ðu†Þûjj

for all û 2 U. Finally, Lemma 3.2 implies R0ðu†Þ 2 ran K 0ðu†Þ#.
Step 1: Inequality (2.6) can be equivalently written as

0 � b1ðRðuÞ � Rðu†ÞÞ þ ð1� b1ÞðwðuÞ � wðu†ÞÞ þ b2jjKðuÞ � Kðu†Þjj:

Since R satisfies the requirements of Lemma 2.1 as well as inequality (3.1),
Lemma 3.3 applies. Now, because of differentiability of both R and K at u†

and because T aðu†; v†Þ<q by Assumption 2.1, there is a t0> 0 for every û 2
U such that T aðu† þ tû; v†Þ< q for 0 � t< t0. Therefore,
0 � b1ðRðu† þ tûÞ � Rðu†ÞÞ þ ð1� b1Þðwðu† þ tûÞ � wðu†ÞÞ þ b2jjKðu† þ tûÞ � Kðu†Þjj:

Dividing by t and letting t ! 0 yields (3.5).

Step 2: We now show that R0ðu†Þ ¼ w0ðu†Þ. By Lemma 3.3 the derivative of
R is given by

hR0ðu†Þ; ûiU�;U ¼
ð
X
f 0uðx; u†;ru†Þ 	 û dxþ

ð
X
f 0Aðx; u†;ru†Þ 	 rû dx:

Since f ðx; u;AÞ ¼ Fðx; u;TðAÞÞ, the chain rule yields

hR0ðu†Þ; ûiU�;U ¼
ð
X
F0uðx; u†;Tðru†ÞÞ 	 û dx

þ
ð
X
F0nðx; u†;Tðru†ÞÞ 	 T0ðru†Þrû dx:

Now we split F0n into ðF0n1 ; F
0
n2
Þ as in Remark 1 and, accordingly, T0ðru†Þ

into ðId;T2
0ðru†ÞÞ where Id is the identity mapping on RNn. This leads to

hR0ðu†Þ; ûiU�;U ¼
ð
X
F0
uðx; u†;Tðru†ÞÞ 	 û dxþ

ð
X
F0n1ðx; u

†;Tðru†ÞÞ 	 rû dx

þ
ð
X
F0n2ðx; u

†;Tðru†ÞÞ 	 T0
2ðru†Þrû dx:

On the other hand, recall Remark 1 to see that the Wpoly-subgradient
w 2 @polyRðu†Þ provided by Lemma 2.1 is given by

wðuÞ ¼
ð
X
F0uðx; u†Þ;Tðru†ÞÞ 	 u dxþ

ð
X
F0n1ðx; u

†;Tðru†ÞÞ 	 ru dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼hu�;uiU� ;U

þ
ð
X
F0n2ðx; u

†;Tðru†ÞÞ 	 T2ðruÞ dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼hv�;T2ðruÞiS�

2
;S2

:
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Computing the derivative of w according to Lemma 3.4 shows
that R0ðu†Þ ¼ w0ðu†Þ.

Remark 2. Theorem 3.1 is an extension of its counterpart from convex
regularization theory, Ref. [4, Prop. 3.38], in the following sense. If the lat-
ter applies to a variational regularization method on U with R being as in
Lemma 3.3 but convex, then Theorem 3.1 applies as well with w 2
@polyRðu†Þ and Dpoly

w ðu; u†Þ reducing to their classical analogs and the
respective variational inequalities and range conditions being identical. See
also [10, Remark 4.5].

Theorem 3.2. Assume K is Gâteaux differentiable at an R-minimizing solu-
tion u† and that R has a Wpoly-subgradient w there. In addition, suppose
there is a x� 2 V� as well as constants b1 2 ½0; 1Þ; �a> 0; q> �aRðu†Þ such
that

w0ðu†Þ ¼ K0ðu†Þ#x�; and (3.6)

jjx�jjjjKðuÞ � v† � K0ðu†Þðu� u†Þjj þ wðu†Þ � wðuÞ
� hw0ðu†Þ; u† � uiU�;U � b1D

poly
w ðu; u†Þ (3.7)

for all u satisfying T �aðu; v†Þ � q: Then, Assumption 2.1 holds.

Proof. The proof is along the lines of Ref. [11, Prop. 3.35]. We include it
here in order to clarify the main differences.
By virtue of (3.6), we have for every u 2 U

hw0ðu†Þ; u† � uiU�;U ¼ hK0ðu†Þ#x�; u† � uiU�;U

¼ hx�;K0ðu†Þðu† � uÞiU�;U

¼ jjx�jjjjK0ðu†Þðu† � uÞjj
� jjx�jjjjKðuÞ � v†jj þ jjx�jjjjKðuÞ � v† � K0ðu†Þðu� u†Þjj:

Adding wðu†Þ � wðuÞ � hw0ðu†Þ; u† � uiU�;U on both sides and using
(3.7) we arrive at

wðu†Þ � wðuÞ � jjx�jjjjKðuÞ � v†jj þ b1D
poly
w ðu; u†Þ;

which is just (2.6) with b2 ¼ jjx�jj.

Remark 3. Note that the expression

wðu†Þ � wðuÞ � hw0ðu†Þ; u† � uiU�;U (3.8)

in (3.7) is just the difference between w and its continuous affine approxi-
mation around u†: Therefore, condition (3.7) is essentially a restriction on
the nonlinearity of K plus the nonlinearity of w, both computed in a neigh-
borhood of u†:
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Theorem 3.2 extends [4, Prop. 3.35] in the same way Theorem 3.1
extends [4, Prop. 3.38]. If w ¼ ðu�; 0Þ, then w0ðu†Þ ¼ u� and the nonlinear-
ity (3.8) vanishes.

4. Conclusion

In recent years, several authors have shown that nonconvex regularization
of inverse problems is not only a viable possibility, but can even be prefer-
able to convex regularization in certain situations, see for instance [5–8, 13,
14]. However, convergence rates results for nonconvex regularization are
exceedingly rare, let alone results relating different types of
source conditions.
In this article, we have shown that two such results can be translated to

the polyconvex setting by Kirisits and Scherzer [7]. The first one states that,
under suitable differentiability assumptions, source conditions in the form
of variational inequalities imply range conditions. One of the reasons why
this statement remains true is the fact that the derivative of R is equal to
the derivative of its Wpoly-subgradient. This fact can be interpreted as a
generalization of the well-known identity @RðuÞ ¼ fR0ðuÞg for convex and
differentiable functions R. Second, we have demonstrated that a converse
statement can be obtained as well, given that the sum of the nonlinearities
of K and of the Wpoly-subgradient can be bounded by the Wpoly-Bregman
distance around u†.
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