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A second-order dynamical system with Hessian-driven damping
and penalty term associated to variational inequalities
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ABSTRACT
We consider the minimization of a convex objective function subject to
the set of minima of another convex function, under the assumption that
both functions are twice continuously differentiable. We approach this
optimization problem from a continuous perspective by means of a second-
order dynamical system with Hessian-driven damping and a penalty term
corresponding to the constrained function. By constructing appropriate
energy functionals, we prove weak convergence of the trajectories
generated by this differential equation to a minimizer of the optimization
problem as well as convergence for the objective function values along
the trajectories. The performed investigations rely on Lyapunov analysis
in combination with the continuous version of the Opial Lemma. In
case the objective function is strongly convex, we can even show strong
convergence of the trajectories.
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1. Introduction

The Newton-like dynamical system

{
ẍ(t)+ γ ẋ(t)+ λ∇2�(x(t))(ẋ(t))+ ∇�(x(t)) = 0
x(0) = u0, ẋ(0) = v0,

(1)

has been investigated by Alvarez et al. [1] in connection with the optimization problem

inf
x∈H

�(x). (2)

Here, H is a real Hilbert space endowed with inner product 〈·, ·〉 and associated norm ‖ · ‖=√〈·, ·〉,
u0, v0 ∈ H are the initial data, λ, γ > 0, while ∇� and ∇2� denote the gradient and Hessian of the
function� : H → R, respectively. We speak here about a second-order system in time (through the
presence of the acceleration term ẍ(t), which is associated to inertial effects) and in space (through
∇2�(x(t))). One can also notice the presence of the geometric damping that acts on the velocity
through the Hessian of the function�.
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As underlined in [1], the dynamical system (2) can be seen as a mixture of the continuous Newton
method

∇2�(x(t))(ẋ(t))+ ∇�(x(t)) = 0, (3)

investigated by Alvarez and Pérez in [2], with the heavy ball with friction system

ẍ(t)+ γ ẋ(t)+ ∇�(x(t)) = 0, (4)

studied for the first time in Polyak [3] and Antipin [4]. Due to this remarkable fact, the dynamical
system (1) possesses most of the advantages of the systems (3) and (4). We refer the reader to [1,2,5–
8] for more insights on Newton-type dynamics and their motivations coming from mechanics and
control theory.

The aim of this paper is to associate a second-order Newton-type dynamical system to the
optimization problem

inf
x∈argmin�

�(x), (5)

where�,� : H → R are convex and twice differentiable functions, and to investigate its asymptotic
properties.

Let us notice that, due to the first-order optimality conditions, solving (5) can be formulated as a
variational inequality of the form

find x ∈ argmin� such that 〈∇�(x), y − x〉 ≥ 0 ∀y ∈ argmin� , (6)

where argmin� denotes the set of minimizers of� over H.
Attouch and Czarnecki have assigned in [9] to (5) the nonautonomous first-order dynamical

system
ẋ(t)+ ∇�(x(t))+ β(t)∇�(x(t)) = 0, (7)

where β : [0,+∞) → (0,+∞) is a function of time assumed to tend to +∞ as t → +∞, which
penalizes the constrained function. Several convergence results of the trajectories generated by (7) to
the solution set of (5) have been reported in [9] under the key assumption

∀p ∈ ranNargmin�

∫ +∞

0
β(t)

[
�∗

(
p
β(t)

)
− σargmin�

(
p
β(t)

)]
dt < +∞, (8)

where�∗ : H → R ∪ {+∞} is the Fenchel–Legendre transformation of� :

�∗(p) = sup
x∈H

{〈p, x〉 −�(x)} ∀p ∈ H;

σargmin� : H → R ∪ {+∞} is the support function of the set argmin� :

σargmin�(p) = sup
x∈argmin�

〈p, x〉 ∀p ∈ H;

and Nargmin� is the normal cone to the set argmin� , defined by

Nargmin�(x) = {p ∈ H : 〈p, y − x〉 ≤ 0 ∀y ∈ argmin�}

for x ∈ argmin� and Nargmin�(x) = ∅ for x �∈ argmin� . Finally, ranNargmin� denotes the range
of the normal cone Nargmin� , that is, p ∈ ranNargmin� if and only if there exists x ∈ argmin� such
that p ∈ Nargmin�(x). Let us notice that for x ∈ argmin� one has p ∈ Nargmin�(x) if and only if
σargmin�(p) = 〈p, x〉.
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We present a situation where the above condition (8) is fulfilled. According to [9], if we take

ψ(x) = 1
2
inf
y∈C ‖x − y‖2,

for a nonempty, convex and closed set C ⊆ H, then the condition (8) is fulfilled if and only if
∫ +∞

0

1
β(t)

dt < +∞,

which is trivially satisfied for β(t) = (1 + t)α with α > 1.
The paper of Attouch and Czarnecki [9] was the starting point of a considerable number of

research articles devoted to this subject, including those addressing generalizations to variational
inequalities formulated with maximal monotone operators (see [9–20]). We refer also to the above-
listed references for more general formulations of the key assumption (8) and for further examples
for which these conditions are satisfied.

In [20], we approached the optimization problem (5) through the the second-order nonau-
tonomous dynamical system

ẍ(t)+ γ ẋ(t)+ ∇�(x(t))+ β(t)∇�(x(t)) = 0, (9)

where γ > 0 and β : [0,+∞) → (0,+∞) is a function of time. Under the assumption that β
tends to +∞ as t → +∞, we proved weak convergence of the generated trajectories generated to a
minimizer of (5) as well as convergence for the objective function values along the trajectories. We
refer to [21] for another variant of this system, where the objective function is penalized instead of
the constraint function.

The aim of this paper is to combine Newton-like dynamics with systems of the form (9) in order
to approach from a continuous perspective the solving of the optimization problem (5). To this end,
we propose ourselves to investigate in ths paper the asymptotic behaviour of the dynamical system

ẍ(t)+ γ ẋ(t)+ λ∇2�(x(t))(ẋ(t))+ λβ(t)∇2�(x(t))(ẋ(t))
+ ∇�(x(t))+ (β(t)+ λβ̇(t))∇�(x(t)) = 0. (10)

Condition (8) will be again crucial in the analysis performed. By using Lyapunov analysis in combina-
tion with the continuous version of the Opial Lemma, we prove weak convergence of the trajectories
to a minimizer of the optimization problem (5) as well as convergence for the objective function
values along the trajectories. In case the objective function is strongly convex, we can even show
strong convergence of the trajectories.

2. Preliminaries

In this section, we will introduce preliminary notions and results that will be useful throughout the
paper.

The following statement can be interpreted as the continuous counterpart of the convergence
result of quasi-Fejér monotone sequences. For its proofs we refer the reader to [22, Lemma 5.1].
Lemma 1: Suppose that F : [0,+∞) → R is locally absolutely continuous and bounded from below
and that there exists G ∈ L1([0,+∞)) such that for almost every t ∈ [0,+∞)

Ḟ(t) ≤ G(t).

Then there exists limt→+∞ F(t) ∈ R.



We will focus our investigations on the following second-order dynamical system⎧⎨
⎩
ẍ(t)+ γ ẋ(t)+λ∇2�(x(t))(ẋ(t))+ λβ(t)∇2�(x(t))(ẋ(t))+ ∇�(x(t))

+(β(t)+ λβ̇(t))∇�(x(t)) = 0
x(0) = u0, ẋ(0) = v0,

(11)

where γ , λ > 0, u0, v0 ∈ H, provided that the following assumptions are satisfied:

(H�) � : H → [0,+∞) is convex, twice differentiable such that ∇� and ∇2�

are Lipschitz continuous and argmin� = �−1(0) �= ∅;
(H�) � : H → R is convex, twice differentiable, bounded from below, such that ∇� and ∇2�

are Lipschitz continuous and S := {z ∈ argmin� : �(z) ≤ �(x) ∀x ∈ argmin�} �= ∅;
(Hβ) β : [0,+∞) → (0,+∞) is a C1-function with lim

t→+∞β(t) = +∞ and it satisfies the growth

condition 0 ≤ β̇ ≤ kβ , where 0 < k <
θ

1 + λγ
min

{
2γ
3
,
2
λ

}
for θ ∈ (0, 1).

We look at strong global solutions x : [0,+∞) → H of the dynamical system of (11), that is, x
and ẋ are locally absolutely continuous (in other words, absolutely continuous on each interval [0, b]
for 0 < b < +∞), x(0) = u0, ẋ(0) = v0 and

ẍ(t)+γ ẋ(t)+λ∇2�(x(t))(ẋ(t))+λβ(t)∇2�(x(t))(ẋ(t))+∇�(x(t))+(β(t)+λβ̇(t))∇�(x(t)) = 0

for almost every t ∈ [0,+∞).
In view of the Lipschitz continuity of ∇� ,∇2� and ∇�,∇2�, assumed in (H�) and (H�),

respectively, the existence and uniqueness of strong global solutions of (11) is a consequence of the
Cauchy-Lipschitz-Picard Theorem (see for example [1,19,23,24]).
Remark 2:

(a) In case� = 0, the dynamical system (11) becomes{
ẍ(t)+ γ ẋ(t)+ λ∇2�(x(t))(ẋ(t))+ ∇�(x(t)) = 0
x(0) = u0, ẋ(0) = v0,

(12)

the convergence of which has been investigated in [1] in connection with the minimization of
the function� over H.

(b) The time discretization of second-order dynamical systems leads to iterative algorithms
involving inertial terms, which basically means that every new iterate is constructed in terms
of the previous two iterates (see for example [25,26]). In view of this observation, it makes
sense to investigate a time discretized version of (11) and to study the convergence properties
of the generated iterates in relation with the solving of the optimization problem (5).We leave
these topic as future research work.

3. Convergence of the trajectories and of the objective function values

This section is devoted to the asymptotic analysis of the trajectory generated by the dynamical system
(11). We show weak convergence of the trajectory x( · ) to an optimal solution of (5) as well as
convergence for the objective function values along the trajectory as t → +∞, under the following
assumption:

(H) ∀p ∈ ranNargmin�
∫ +∞
0 β(t)

[
�∗

(
p
β(t)

)
− σargmin�

(
p
β(t)

)]
dt < +∞.
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Remark 3:

(a) Let δargmin� : H → R ∪ {+∞} be the indicator function of argmin� , which is the function
that takes the value 0 on the set argmin� and +∞, otherwise. Due to � ≤ δargmin� (see
(H�)), we have

�∗ ≥ δ∗argmin� = σargmin�.

(b) Considering the case when � = 0 (see Remark 2(a)), we have Nargmin�(x) = {0} for every
x ∈ argmin� = H,�∗ = σargmin� = δ{0} and (H) trivially holds.

For δ > 0, we consider the following energy functional that will play an important role in the
analysis below:

Eδ(t) = δ
(
�(x(t))+ β(t)�(x(t))

)+ 1
2

‖ẋ(t)+ λ∇�(x(t))+ λβ(t)∇�(x(t))‖2 ∀t > 0. (13)

For its derivative we have for almost every t ∈ [0,+∞)

Ėδ(t) = δ〈∇�(x(t)), ẋ(t)〉 + δβ(t)〈∇�(x(t)), ẋ(t)〉 + δβ̇(t)�(x(t))
+ 〈ẍ(t)+ λ∇2�(x(t))(ẋ(t))+λβ(t)∇2�(x(t))(ẋ(t))+λβ̇(t)∇�(x(t)), ẋ(t)
+ λ∇�(x(t))+ λβ(t)∇�(x(t))〉

= δ〈∇�(x(t)), ẋ(t)〉 + δβ(t)〈∇�(x(t)), ẋ(t)〉 + δβ̇(t)�(x(t))
+ 〈−γ ẋ(t)− ∇�(x(t))− β(t)∇�(x(t)), ẋ(t)+ λ∇�(x(t))+ λβ(t)∇�(x(t))〉

= δ〈∇�(x(t)), ẋ(t)〉 + δβ(t)〈∇�(x(t)), ẋ(t)〉 + δβ̇(t)�(x(t))− γ ‖ẋ(t)‖2
− (1 + γ λ)〈∇�(x(t)), ẋ(t)〉 − (1 + γ λ)β(t)〈∇�(x(t)), ẋ(t)〉 − λ‖∇�(x(t))‖2
− λβ2(t)‖∇�(x(t))‖2 − 2λβ(t)〈∇�(x(t)),∇�(x(t))〉

= (δ − γ λ− 1)〈∇�(x(t)), ẋ(t)〉 + β(t)(δ − γ λ− 1)〈∇�(x(t)), ẋ(t)〉 + δβ̇(t)�(x(t))
− γ ‖ẋ(t)‖2 − λ‖∇�(x(t))‖2 − λβ2(t)‖∇�(x(t))‖2 − 2λβ(t)〈∇�(x(t)),∇�(x(t))〉.

Finally, we obtain for almost every t ∈ [0,+∞)

Ėδ(t) = (δ − γ λ− 1)〈∇�(x(t)), ẋ(t)〉 + β(t)(δ − γ λ− 1)〈∇�(x(t)), ẋ(t)〉 + δβ̇(t)�(x(t))
− γ ‖ẋ(t)‖2 − λ‖∇�(x(t))+ β(t)∇�(x(t))‖2. (14)

Further, for z ∈ S and

ε := θ min
{
2γ
3
,
2
λ

}
(15)

we consider the functional

E(t) = 1
ε
E1+γ λ(t)+ γ

2
‖x(t)− z‖2 + 〈ẋ(t)+ λ∇�(x(t))+ λβ(t)∇�(x(t)), x(t)− z〉 ∀t > 0. (16)
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By using (14) we easily derive for almost every t ∈ [0,+∞)

Ė(t) = 1 + γ λ

ε
β̇(t)�(x(t))− γ

ε
‖ẋ(t)‖2 − λ

ε
‖∇�(x(t))+ β(t)∇�(x(t))‖2

+ γ 〈ẋ(t), x(t)− z〉 + 〈−γ ẋ(t)− ∇�(x(t))− β(t)∇�(x(t)), x(t)− z〉
+ 〈ẋ(t)+ λ∇�(x(t))+ λβ(t)∇�(x(t)), ẋ(t)〉

= 1 + γ λ

ε
β̇(t)�(x(t))− 〈∇�(x(t))+ β(t)∇�(x(t)), x(t)− z〉

−
(γ
ε

− 1
)

‖ẋ(t)‖2 + λ〈∇�(x(t))+ β(t)∇�(x(t)), ẋ(t)〉

− λ

ε
‖∇�(x(t))+ β(t)∇�(x(t))‖2

≤ 1 + γ λ

ε
β̇(t)�(x(t))− 〈∇�(x(t))+ β(t)∇�(x(t)), x(t)− z〉

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1 − ελ

2

)
‖∇�(x(t))+ β(t)∇�(x(t))‖2. (17)

The following lemma will play an essential role in the asymptotic analysis of the trajectories.
Lemma 4: Assume that (H�), (H�), (Hβ) and (H) hold and let x : [0,+∞) → H be the trajectory
generated by the dynamical system (11). Then for every z ∈ S the following statements are true:

(i)
∫ +∞
0 β(t)�(x(t))dt < +∞;

(ii) ∃ limt→+∞
∫ t
0 〈∇�(z), x(s)− z〉ds ∈ R;

(iii) ∃ limt→+∞
∫ t
0

(
�(x(s))−�(z)+

(
1 − k(1+γ λ)

ε

)
β(s)�(x(s))

)
ds ∈ R;

(iv) ẋ, ∇�(x)+ β∇�(x) ∈ L2([0,+∞); H).
Proof: Take an arbitrary z ∈ S. Relying on the convexity of the functions � and � , the fact that
z ∈ argmin� (hence�(z) = 0) and the non-negativity of β and� we obtain for every t ∈ [0,+∞)

−〈∇�(x(t))+ β(t)∇�(x(t)), x(t)− z〉 ≤ �(z)−�(x(t))− β(t)�(x(t)). (18)

From here and (17) we derive

Ė(t) ≤ 1 + γ λ

ε
β̇(t)�(x(t))+�(z)−�(x(t))− β(t)�(x(t))

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1 − ελ

2

)
‖∇�(x(t))+ β(t)∇�(x(t))‖2 (19)

for almost every t ∈ [0,+∞).
By using the growth condition on β we get

Ė(t) ≤
(
k
1 + γ λ

ε
− 1

)
β(t)�(x(t))+�(z)−�(x(t))

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1 − ελ

2

)
‖∇�(x(t))+ β(t)∇�(x(t))‖2

= −β̃(t)�(x(t))+�(z)−�(x(t))

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1 − ελ

2

)
‖∇�(x(t))+ β(t)∇�(x(t))‖2, (20)
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where
β̃(t) :=

(
1 − k

1 + γ λ

ε

)
β(t) > 0, (21)

due to (Hβ) and (15).
Furthermore,

�(z)−�(x(t)) ≤ 〈−∇�(z), x(t)− z〉, (22)

thus

Ė(t) ≤ −β̃(t)�(x(t))− 〈∇�(z), x(t)− z〉
−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1 − ελ

2

)
‖∇�(x(t))+ β(t)∇�(x(t))‖2 (23)

for almost every t ∈ [0,+∞). Since z is an optimal solution of (5), the first-order optimality condition
delivers

0 ∈ ∂(�+ δargmin�)(z) = ∇�(z)+ Nargmin�(z), (24)

hence
−∇�(z) ∈ Nargmin�(z) ⊆ ranNargmin�. (25)

From here and by using the Young-Fenchel inequality we obtain for every t ∈ [0,+∞)

− β̃(t)�(x(t))− 〈∇�(z), x(t)− z〉
= β̃(t)

(
−�(x(t))−

〈∇�(z)
β̃(t)

, x(t)− z
〉)

= β̃(t)
(

−�(x(t))+
〈−∇�(z)

β̃(t)
, x(t)

〉
− σargmin�

(−∇�(z)
β̃(t)

))

≤ β̃(t)
(
�∗

(−∇�(z)
β̃(t)

)
− σargmin�

(−∇�(z)
β̃(t)

))
. (26)

Thus, from (23) and (26), we obtain for almost every t ∈ [0,+∞)

Ė(t) ≤ β̃(t)
(
�∗

(−∇�(z)
β̃(t)

)
− σargmin�

(−∇�(z)
β̃(t)

))

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1 − ελ

2

)
‖∇�(x(t))+ β(t)∇�(x(t))‖2 (27)

≤ β̃(t)
(
�∗

(−∇�(z)
β̃(t)

)
− σargmin�

(−∇�(z)
β̃(t)

))
, (28)

where the last inequality follows from (15) and the fact that θ ∈ (0, 1).
By integrating the last inequality from 0 to T (T > 0) and by taking into account (H), (16), (13)

and the fact that� and� are bounded from below, it yields that there existsM > 0 such that

γ

2
‖x(T)− z‖2 + 〈ẋ(T)+ λ∇�(x(T))+ λβ(T)∇�(x(T)), x(T)− z〉

+ 1
2ε

‖ẋ(T)+ λ∇�(x(T))+ λβ(T)∇�(x(T))‖2 ≤ M ∀T ≥ 0. (29)

Combining this with (18) and the fact that� and� are bounded from below, one can easily see that
there existsM ′ > 0 such that

d
dT

(
1
2
‖x(T)− z‖2

)
+ γ

(
1
2
‖x(T)− z‖2

)
≤ M ′ ∀T ≥ 0.
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A direct application of the Gronwall Lemma implies that

x is bounded. (30)

Further, this yields via (29) that

ẋ + λ∇�(x)+ λβ∇�(x) is bounded. (31)

From (30), (31), (16) and(13) we conclude that

E is bounded from below. (32)

Moreover, from (20), (26) and (22), we obtain for almost every t ∈ [0,+∞)

Ė(t)+ β̃(t)
(

−�∗
(−∇�(z)

β̃(t)

)
+ σargmin�

(−∇�(z)
β̃(t)

))
≤ Ė(t)+ β̃(t)�(x(t))+ 〈∇�(z), x(t)− z〉
≤ Ė(t)+�(x(t))−�(z)+ β̃(t)�(x(t))
≤ 0. (33)

(i) Consider the function F : [0,+∞) → R defined by

F(t) =
∫ t

0

(−β̃(s)�(x(s))− 〈∇�(z), x(s)− z〉) ds ∀t ≥ 0.

Making again use of (see (33))

−β̃(s)�(x(s))− 〈∇�(z), x(s)− z〉 ≥ Ė(s) ∀s ∈ [0,+∞)

and (32), we easily derive that F is bounded from below. Moreover, from (26) it follows that
for almost every t ∈ [0,+∞)

Ḟ(t) ≤ β̃(t)
(
�∗

(−∇�(z)
β̃(t)

)
− σargmin�

(−∇�(z)
β̃(t)

))
.

Notice that according to (H), the function on the right-hand side of this inequality is L1-
integrable on [0,+∞), hence a direct application of Lemma 1 yields that limt→+∞ F(t) exists
and is a real number. Thus

∃ lim
t→+∞

∫ t

0

(
β̃(s)�(s)+ 〈∇�(z), x(s)− z〉) ds ∈ R. (34)

Since� ≥ 0, we obtain for every t ∈ [0,+∞)

β̃(t)�(x(t))+ 〈∇�(z), x(t)− z〉 ≥ β̃(t)
2
�(x(t))+ 〈∇�(z), x(t)− z〉

and from here, similarly to (26),

− β̃(t)
2
�(x(t))−〈∇�(z), x(t)− z〉 ≤ β̃(t)

2

(
�∗

(−2∇�(z)
β̃(t)

)
− σargmin�

(−2∇�(z)
β̃(t)

))
.
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Thus, for almost every t ∈ [0,+∞) it holds

Ė(t)+ β̃(t)
2

(
−�∗

(−2∇�(z)
β̃(t)

)
+ σargmin�

(−2∇�(z)
β̃(t)

))

≤ Ė(t)+ β̃(t)
2
�(x(t))+ 〈∇�(z), x(t)− z〉

≤ Ė(t)+ β̃(t)�(x(t))+ 〈∇�(z), x(t)− z〉
≤ 0.

Following the same technique as in the proof of (34), it yields that

∃ lim
t→+∞

∫ t

0

(
β̃(s)
2
�(s)+ 〈∇�(z), x(s)− z〉

)
ds ∈ R. (35)

Finally, from (34), (35) and (21) we obtain (i).
(ii) Follows from (i), (34) and (21).
(iii) Follows from (33) and (26), by following the same arguments as for proving statement (34).
(iv) Follows by integrating (27), by taking into account (H), (32), (15) and the fact that θ ∈ (0, 1).

Remark 5: The assumption limt→+∞ β(t) = +∞ has not bee used in the above proof. However,
it will play an important role in the arguments used below.

For the asymptotic analysis of the trajectories generated by the dynamical system (11), the
continuous version of the Opial Lemma that we state as follows will be crucial.
Lemma 6: Let S∞ be a nonempty subset of the real Hilbert space H and x : [0,+∞) → H a given
function. Assume that

(i) limt→+∞ ‖x(t)− z‖ exists for every z ∈ S∞;
(ii) every weak limit point of x belongs to S∞.

Then there exists x∞ ∈ S∞ such that x(t) converges weakly to x∞ as t → +∞.
We state now the main theorem of the paper.

Theorem 7: Assume that (H�), (H�), (Hβ) and (H) hold and let x : [0,+∞) → H be the trajectory
generated by the dynamical system (11). Then the following statements are true:

(i) �(x(t)) converges to the optimal objective value of (5) as t → +∞;
(ii) limt→+∞ β(t)�(x(t)) = limt→+∞�(x(t)) = 0;
(iii)

∫ +∞
0 β(t)�(x(t))dt < +∞;

(iv) ẋ, ∇�(x)+ β∇�(x) ∈ L2([0,+∞); H);
(v) limt→+∞

(
ẋ(t)+ ∇�(x(t))+ β(t)∇�(x(t))) = 0;

(vi) there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t → +∞.

Proof: Fix an arbitrary z ∈ S and consider the energy functional defined in (13) for

δ1 = (1 +√
λγ )2 = 1 + λγ + 2

√
λγ .

A simple computation (see (14)) shows that

Ėδ1(t) = (1 +√
λγ )2β̇(t)�(x(t))−

∥∥∥√γ ẋ(t)− √
λ(∇�(x(t))+ β(t)∇�(x(t))

∥∥∥2
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Taking into account the growth condition on β , Lemma 4(i) and the fact that Eδ1 is bounded from
below, we obtain from Lemma 1 that

∃ lim
t→+∞Eδ1(t) ∈ R. (36)

Similarly, consider
δ2 = (1 −√

λγ )2 = 1 + λγ − 2
√
λγ .

We have

Ėδ2(t) = (1 −√
λγ )2β̇(t)�(x(t))−

∥∥∥√γ ẋ(t)+ √
λ(∇�(x(t))+ β(t)∇�(x(t))

∥∥∥2
and

∃ lim
t→+∞Eδ2(t) ∈ R. (37)

From (36) and (37) we get
∃ lim
t→+∞

(
Eδ1(t)− Eδ2(t)

) ∈ R.

This implies by the definition of the energy functional that

∃ lim
t→+∞

(
�(x(t))+ β(t)�(x(t))

) ∈ R. (38)

From here we deduce
lim

t→+∞�(x(t)) = 0. (39)

Indeed, since� is bounded from below and, by taking into account the inequality

�(x(t)) ≤ �(z)+ 〈∇�(x(t)), x(t)− z〉,

the fact that x is bounded and limt→+∞ β(t) = +∞, we have

lim
t→+∞

�(x(t))
β(t)

= 0.

The statement (39) follows now from the last relation and (38).
In the following we appeal to [9, Lemma 3.4] for the inequality

lim inf
t→+∞ �(x(t)) ≥ �(z). (40)

Indeed, this was obtained in [9, Lemma 3.4] for a first-order dynamical system. However, the
statement remains true for (11) too, since a careful look at the proof of Lemma 3.4 in [9] reveals that
themain arguments used to obtain this conclusion are the statements in Lemma 4(ii), the fact that the
trajectory x is bounded, the weak lower semicontinuity of � , Equation (39), the inequality (22) and
relation (25).

From (40) and (38) we have limt→+∞
(
�(x(t))+ β(t)�(x(t))

) ≥ �(z). We claim that

lim
t→+∞

(
�(x(t))+ β(t)�(x(t))

) = �(z). (41)

Let us assume that limt→+∞
(
�(x(t))+ β(t)�(x(t))

)
> �(z). Then there exist η > 0 and t0 ≥ 0

such that for every t ≥ t0 we have

�(x(t))+ β(t)�(x(t)) > �(z)+ η. (42)
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Hence, for every t ≥ t0

η < �(x(t))−�(z)+
(
1 − k(1 + γ λ)

ε

)
β(t)�(x(t))+ k(1 + γ λ)

ε
β(t)�(x(t)). (43)

Integrating the last inequality and taking into account Lemma 4(i) and (iii) we obtain a contradiction.
In conclusion, (41) holds.

Since �(x(t)) ≤ �(x(t)) + β(t)�(x(t)) for every t ∈ [0,+∞), according to (41) it follows that
lim supt→+∞�(x(t)) ≤ �(z), which combined with (40) imply (i).

(ii) Follows from (39), (41) and the fact that limt→+∞�(x(t)) = �(z).
(iii)–(iv) The statements have been proved in Lemma 4.
(v) From (14), Lemma 4(i) and Lemma 1, we derive that

∃ lim
t→+∞E1+λγ (t) ∈ R. (44)

Combining this with (13) and (38), we obtain that

∃ lim
t→+∞ ‖ẋ(t)+ ∇�(x(t))+ β(t)∇�(x(t))‖ ∈ R.

The statement follows now from (iv).
(vi) This will be a consequence of the Opial Lemma.
Let us check the first statement in Lemma 6. From (28), (H), (32) and Lemma 1 we obtain

∃ lim
t→+∞E(t) ∈ R. (45)

Further, by using (16), (45), (44), (30) and (v) we conclude that

∃ lim
t→+∞ ‖x(t)− z‖ ∈ R. (46)

Since z ∈ S was arbitrary chosen, the first statement of the Opial Lemma is true.
We prove now that the second condition in Lemma 6 is fulfilled, too. Let (tn)n∈N be a sequence of

positive numbers such that limn→+∞ tn = +∞ and x(tn) converges weakly to x∞ as n → +∞. By
using the weak lower semicontinuity of� and (ii) we obtain

0 ≤ �(x∞) ≤ lim inf
n→+∞ �(x(tn)) = 0,

hence x∞ ∈ argmin� . Moreover, the weak lower semicontinuity of� and (i) yield

�(x∞) ≤ lim inf
n→+∞�(x(tn)) = �(z),

thus x∞ ∈ S. Therefore, both conditions of Lemma 6 are fulfilled and the conclusion follows.

Finally, we consider the situation when the objective function of (5) is strongly convex. In this
case, the trajectory generated by (11) converges strongly to the unique optimal solution of (5).
Theorem 8: Assume that (H�), (H�), (Hβ) and (H) hold and let x : [0,+∞) → H be the trajectory
generated by the dynamical system (11). If � is strongly convex, then x(t) converges strongly to the
unique optimal solution of (5) as t → +∞.

Proof: Let μ > 0 be such that � is μ-strongly convex. In this case the optimization problem (5) has
a unique optimal solution, which we denote by z.
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We replace (22) with the stronger inequality

μ

2
‖x(t)− z‖2 +�(z)−�(x(t)) ≤ 〈−∇�(z), x(t)− z〉 ∀t ∈ [0,+∞) (47)

and obtain (see the proof of Lemma 4 and (33)) for almost every t ∈ [0,+∞)

Ė(t)+ μ

2
‖x(t)− z‖2 + β̃(t)

(
−�∗

(−∇�(z)
β̃(t)

)
+ σargmin�

(−∇�(z)
β̃(t)

))
≤ Ė(t)+ μ

2
‖x(t)− z‖2 + +β̃(t)�(x(t))+ 〈∇�(z), x(t)− z〉

≤ Ė(t)+�(x(t))−�(z)+ β̃(t)�(x(t))
≤ 0. (48)

Taking into account (H) and that E is bounded from below (see (32)), by integration of the above
inequality we obtain that there exists a constant C > 0 such that

μ

2

∫ T

0
‖x(t)− z‖2dt ≤ C ∀T ≥ 0.

According to (46), limt→+∞ ‖x(t) − z‖ exists, thus ‖x(t) − z‖ converges to 0 as t → +∞ and the
proof is complete.
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