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The vast majority of empirical research in the behavioral sciences is based on the analy-
sis of between-person variation. In contrast, much of applied psychology is concerned with
the analysis of variation within individuals. Furthermore, the mechanisms specified by psy-
chological theories generally operate within, rather than across, individuals. This disconnect
between research practice, applied demands, and psychological theories constitutes a major
threat to the conceptual integrity of the field. Following groundbreaking earlier work, we pro-
pose a conceptual framework that distinguishes within-person (WP) and between-person (BP)
sources of variation in psychological constructs. By simultaneously considering both sources
of variation, it is shown how to identify possible reasons for nonequivalence of BP and WP
structures as well as establishing areas of convergence. For this purpose, we first introduce
the concept of conditional equivalence as a way to study partial structural equivalence of BP
and WP structures in the presence of unconditional nonequivalence. Second, we demonstrate
the construction of likelihood planes to explore the causes of structural nonequivalence. Third,
we examine 4 common causes for unconditional nonequivalence—autoregression, subgroup
differences, linear trends, and cyclic trends—and demonstrate how to account for them. Fourth,
we provide an empirical example on BP and WP differences in attentiveness.

If there is one thing that all scientific disciplines have in
common, it is the goal to discover and analyze relation-
ships. However, the most fundamental questions regarding
the definition of a relationship, regarding the attributes or en-
tities that are related, or regarding the observations based on
which a relationship is established, may already lead to con-
siderable disagreement among researchers. More than half
a century ago, Raymond B. Cattell proposed the covaria-
tion chart (Cattell, 1946) and later its extension, the Basic
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Data Relation Matrix (Cattell, 1966), in an attempt to sys-
tematically set out the totality of relations in psychological
research. The covariation chart is a three-dimensional “data
cube” with persons, variables, and time points (occasions)
as Cartesian axes. This results in a total of six possible rela-
tional matrices: the relation between variables across people
(e.g., R-technique factor analysis), the relation between vari-
ables across occasions (e.g., P-technique factor analysis), the
relation between people across occasions (e.g., S-technique
factor analysis), as well as the transposes of the three (e.g.,
Q-, O-, and T-technique; see Cattell, 1966, p. 70). It is cer-
tainly not an overstatement to claim that 90% of empiri-
cal research in psychology is based on the first of these six
possible relational matrices. In contrast, there are only few
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studies focusing on the relations between variables across
occasions. The amount of research based on the other four
approaches1 seems negligible, leaving us with two (un-
equally) common paradigms in present-day psychological
research: the analysis of interindividual variation (i.e., study-
ing the relations between variables across people) and the
analysis of intraindividual variation (i.e., studying the rela-
tions between variables across occasions).

Without doubt, studying the relations between variables
across people is important for psychological research. For
example, it may be important to know whether someone
who scores high on a numerical ability test—compared with
other people—is also likely to do better in college. Likewise,
it seems important to find out whether this association, if
it exists, is limited to numerical ability or whether similar
associations can be observed for numerical, verbal, and fig-
ural ability because all of these abilities are expressions of
a single “mental energy” factor (Spearman, 1904). If such
a mental energy factor exists, however, we would expect to
find it not only when studying the relations between variables
across people but also when studying the relations between
variables across occasions within a given person. That is, if
we observed a single individual across many days, we would
expect him or her to score high on numerical, verbal, and fig-
ural ability tests on days with high “mental energy” and low
on all three tests on days with low “mental energy” (Cattell,
1966, p. 71).

Unfortunately, such a 1:1 relationship between the anal-
ysis of interindividual variation and intraindividual varia-
tion has often been implicitly assumed in psychological re-
search but hardly ever explicitly tested (cf. Borsboom &
Dolan, 2006, 2007; Borsboom, Kievit, Cervone, & Hood,
2009; Molenaar & Campbell, 2009; see also Blalock, 1967;
Kuh, 1959). As pointed out by Molenaar (2004), this is
highly problematic because “the classical ergodic theorems
for psychology and psychometrics invalidate [the] conjec-
tured generalizability” from between-person (BP) to within-
person (WP) variation (p. 201). Hence, “only under very strict
conditions—which are hardly obtained in real psychological
processes—can a generalization be made from a structure
of interindividual variation to the analogous structure of in-
traindividual variation” (p. 201). Given that most of applied
psychology is concerned with individuals (e.g., patients in
clinical psychology), this lack of generalizability constitutes
a major problem for the field.

AN ILLUSTRATIVE EXAMPLE

Before taking a closer look at the conditions under which BP
and WP structures may or may not be equivalent, we start

1Let alone the thousands of possible combinations (and associated re-
search designs) that result from the comprehensive 10-dimensional coordi-
nates of the basic data relation matrix.

with a simplified example in order to develop an intuitive
understanding of what it may mean to compare BP analyses
(based on interindividual variation) with WP analyses (based
on intraindividual variation). For this purpose, let us assume
we measured anxiety by three different variables: (self-) re-
ported nervousness, (observed) trembling, and sweating as-
sessed via the galvanic skin response (GSR). The model,
along with some hypothetical parameter estimates, is shown
in Figure 1.

Based on considerations similar to the “mental energy”
factor, we could expect that the BP structure resulting from
interindividual variability across i = 1,. . ., N individuals at
one occasion (to the left of Figure 1) is equivalent to the
WP structure, resulting from intraindividual variability of a
single individual across t = 1,. . ., T occasions (e.g., days; to
the right of Figure 1). That is, people with a high level of
anxiety—compared with other people—should also exhibit
high levels of reported nervousness, trembling, and sweating.
Likewise, an individual should show high levels of reported
nervousness, trembling, and sweating in situations with high
anxiety and low levels on all three indicators in situations
with low anxiety. As shown in Figure 1A, the two structures
should be identical in this case.

However, there are many reasons why this equivalence
may not hold. For example, for a patient with Parkinson’s
disease trembling would not be indicative of anxiety, so that
the WP structure of this person would be different from the
BP structure (i.e., nonequivalence due to a person; Figure
1B). Another reason could be that during hot summer days,
sweating may not be a good indicator of anxiety. In this case,
the two structures may be identical if the between variability
was assessed in the same season of the year as the within
variability, or they may differ if that is not the case (i.e.,
nonequivalence due to occasion; Figure 1C). Finally, there
may be group differences. For example, men may exhibit
greater variability in anxiety (both between and within) than
women. When ignoring this factor, equivalence does not hold
because the average interindividual variability (e.g., 1.0) is
neither equivalent to the WP variability of a woman (e.g.,
0.5) nor of a man (e.g., 1.5; i.e., nonequivalence due to group
differences; Figure 1D). It is easy to come up with many
more examples why the WP and BP structure should differ,
and we can only concur with Molenaar (2004) in his claim
that it will be close to impossible to find empirical data
that support the notion of equivalence between inter- and
intraindividual variability for all possible combinations of
persons and occasions.

In this article, we take a reconciliatory stance that bridges
the gap dividing BP and WP structures. Instead of asking
whether BP and WP structures are equivalent, we ask, What
are the specific reasons that prevent them from being equiv-
alent? The idea is that if we are able to identify and control
for sources of nonequivalence, we may also be able to es-
tablish (conditional) equivalence. In terms of our example,
if we account for the fact that the sample included a patient
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FIGURE 1 Schematic illustration of a between-person factor model for i = 1,. . ., N persons at a single occasion (left side) and a within-person factor model
of a single person at t = 1,. . ., T occasions (right side). A: All parameters of the two models are equivalent. B: Nonequivalence due to a single person. For
example, the “trembling” of a patient with Parkinson’s disease may not be indicative of anxiety. C: Possible nonequivalence due to time of assessment. For
example, on hot summer days, sweating may not be indicative of anxiety. The two structures may only be equivalent if the occasion at which the BP structure
was assessed is representative for the time period during which the WP structure was assessed. D: When ignoring a grouping factor (here: gender differences in
variance), it is possible that not a single WP structure (variance either 0.5 or 1.5) is equivalent to the average BP structure (variance 1.0). BP = between-person;
WP = within-person; GSR = galvanic skin response.
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with Parkinson’s disease, consisted of men and women, and
that measurements were taken during hot and cold days, the
BP and WP structures are actually equivalent. Put more gen-
erally, the central theme of this work is to conceive of BP
and WP analyses not as two independent, or even competing,
research paradigms but rather to identify their commonalities
in conjunction with their differences.

ON THE EQUIVALENCE OF
BETWEEN-PERSON AND WITHIN-PERSON

STRUCTURES

Before taking a closer look at the conditions and conse-
quences for BP and WP structural equivalence, it is important
to clarify what exactly is meant by “equivalence.” In line with
previous research (e.g., Molenaar, 2004) we thereby limit
ourselves to the situation of multivariate normality, which
allows us to focus on the first- and second-order moments
of a distribution. That is, we assume a p-dimensional vector
Y of multivariate normally distributed variables with mean
vector μ and p × p covariance matrix �. Under the null hy-
pothesis of complete structural equivalence, any observation
yit of individual i = 1,. . ., N at time point (occasion) t =
1,. . ., T can be considered a random draw out of this distri-
bution. For reasons of simplicity, we also limit ourselves to
discrete measurement occasions with equidistant time inter-
vals. Finally, we assume that T occasions and N individuals
are drawn from a finite population of Tpop occasions and Npop

individuals (with large T and N).

Structural Equivalence: A Working Definition

The BP mean vector and covariance matrix at any occasion
t are defined as2

μt = N−1
pop

Npop∑
i=1

yit

�t = N−1
pop

Npop∑
i=1

(
yit − μt

) (
yit − μt

)T

(1)

Likewise, the WP mean vector and covariance matrix for
any individual i are defined as

μi = T −1
pop

Tpop∑
t=1

yit

�i = T −1
pop

Tpop∑
t=1

(
yit − μi

) (
yit − μi

)T
.

(2)

Obviously, if all observations yit are drawn independently
from the same underlying distribution (the same generating
model), the BP (at any fixed t) and WP (for any individ-
ual i) structures are asymptotically equivalent. In the case of

2T indicates the transpose of a vector or matrix.

multivariate normality, we can thus define structural equiva-
lence as the equivalence of the BP and WP mean vector and
covariance matrix:

μi = μt (3)

�i = �t (4)

If this applies to all possible combinations of i and t, we
speak of unconditional equivalence.

The statement “applies to all possible combinations of i
and t” implies that individuals are independent and that the
same generating model applies to all individuals. In addition,
all individual processes are stationary (i.e., strongly station-
ary in case of Gaussian processes as discussed in this article)
and contain no systematic (cyclic) trends. This corresponds
to the two conditions of ergodicity set forth by Molenaar (i.e.,
homogeneity and stationarity; 2004; pp. 206–207), who used
the term ergodicity to describe a “process in which the struc-
tures of IEV [interindividual variation] and IAV [intraindi-
vidual variation] are (asymptotically) equivalent” (Molenaar,
2004, p. 206).

Factors Affecting Structural Equivalence

Based on the definitions in the previous section and in
line with Molenaar (2004; Molenaar & Campbell, 2009;
Molenaar, Huizenga, & Nesselroade, 2003), there are two
conditions for unconditional equivalence of BP and WP
structures: (a) Homogeneity of individuals, meaning that the
same generating model underlies all persons (i). This implies
that all i are interchangeable. For example, individuals must
not be grouped or nested in any meaningful way. (b) Station-
arity, meaning for Gaussian processes that no mean, vari-
ance, or covariance changes over time are permitted and that
all t are interchangeable. Taken separately, both conditions
are necessary, but only in combination are they sufficient for
unconditional structural equivalence. If both conditions are
met, this entails that all i are interchangeable with all t.

Conversely, the two requirements for unconditional equiv-
alence imply that BP-WP-equivalence is affected by (a) per-
sons and (b) time. As illustrated in the introductory exam-
ple, structural equivalence may be violated due to persons
if the generating model differs across people, for example,
because individuals are grouped in a meaningful way (e.g.,
men vs. women; healthy vs. patient with Parkinson’s dis-
ease). Likewise, structural equivalence may be violated due
to time if there are mean trends or cyclic trends (e.g., sweating
increases during hot summer days).

Given that almost all psychological constructs exhibit
some systematic change over time and given that (groups
of) individuals tend to differ from each other in meaningful
ways, the requirements for unconditional structural equiva-
lence as outlined earlier are almost never met. It is important
to note that this does not imply that the BP and WP structures
are completely independent of each other and that nothing
can be learned from one about the other. Indeed, it may be
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useful to posit that these structures consist of multiple sources
of variation, some of which are equivalent. In order to learn
something from one about the other, it is therefore crucial to
control for factors that are known to affect only one of the
two structures. Hence, we introduce the notion of conditional
equivalence as a way to study partial structural equivalence
in the presence of unconditional nonequivalence.

Conditional Equivalence

Let θ denote a vector of all parameters to be estimated in
any given statistical model. In case of a saturated model,
θ corresponds simply to the mean vector and covariance
matrix: θ = {μ,�}. Thus, structural equivalence is given if

θ i = θ t (5)

for all possible combinations of i and t.
In case of a saturated model, the definition in Equation

5 is identical to the definition provided earlier (Equations 3
and 4). However, Equation 5 is more general and may refer
to any model that is over- or just-identified (saturated). This
opens up the possibility to control for factors that are known
to affect only one of the two structures (e.g., to control for
trends in the WP structure or to control for group differences
in the BP structure). We therefore propose to define structural
equivalence as conditional equivalence of model parameters:

(θ ic|θ iu) = (θ tc|θ tu) (6)

The subscript c denotes parameters that are common to both
models (BP and WP), whereas the subscript u denotes param-
eters that are unique in each of the two models. Conditional
equivalence is met if θ ic = θ tc after controlling for θ iu, re-
spectively θ tu.

For any identified model and any combination of i
and t, maximum likelihood (ML) parameter estimates of
θ ic, θ iu, θ tc, θ tu can be obtained by maximizing the natural
logarithm of the likelihood (LL):

LL (θ ic, θ iu, θ tc, θ tu) = LLi (θ ic, θ iu) + LLt (θ tc, θ tu)
(7)

with LLi (θ ic, θ iu) defined as

LLi

(
θ ic, θ iu

) ·

=−1

2

[
T · p · log (2π ) +log |ϒ i | + (yi−νi)T ϒ−1

i (yi−νi)

]

(8)

and LLt (θ tc, θ tu) defined as

LLt

(
θ tc, θ tu

)

= −1

2

[
N · p · log

(
2π

) +

N · log |ϒ t | +
N∑

i=1

(
yt,i − ν t

)T
ϒ−1

t

(
yt,i − ν t

) ]
(9)

There are several things worth mentioning: first, Equa-
tion 9 corresponds to the standard ML function (e.g., Bollen,
1989), with ϒ t denoting the p × p model-implied covariance
matrix and ν t denoting the p-variate model-implied mean
vector.3 For a sample of i = 1,. . ., N independent individu-
als, the total log-likelihood is simply the sum of the individ-
ual log-likelihoods. By adding the subscript t, we emphasize
that this refers to the BP structure at time point t, which in
the context of this article is always cross-sectional. Second,
Equation 8 gives the log-likelihood of a single individual
across T time points, resulting in a (p · T ) × (p · T ) model-
implied covariance matrix ϒ i and (p · T )-dimensional mean
vector νi . = (νi,1,1 · · · νi,p,1 · · · νi,1,T · · · νi,p,T )

T
. Note that

yi in Equation 8 represents a (p · T )-dimensional vector yi .
= (yi,1,1 · · · yi,p,1 · · · yi,1,T · · · yi,p,T )

T
for a single individual

i, whereas yt,i is a p-dimensional vector of observed values
for individual i at a single time point t. As demonstrated by
Voelkle, Oud, von Oertzen, and Lindenberger (2012), this
allows not only to obtain true ML parameter estimates of
individual time series by means of structural equation mod-
eling (e.g., dynamic factor models; Hamaker, Dolan, & Mole-
naar, 2003; Molenaar, 1985; Nesselroade, McArdle, Aggen,
& Meyers, 2002) but also to integrate the analysis of WP and
BP structures as shown in Equation 7. The equivalence of
the two structures can now be explicitly tested by subtract-
ing 2 times the log-likelihood of the model under the null
hypothesis of structural equivalence [(θ ic|θ iu) = (θ tc|θ tu)]
from 2 times the log-likelihood of the model under the al-
ternative hypothesis [(θ ic|θ iu) �= (θ tc|θ tu)], that is, a stan-
dard likelihood ratio test (Bollen, 1989; Voelkle et al., 2012).
Third, even though θ iu and θ tu refer, by definition, to param-
eters that are unique to either the within or between structure,
it does not mean that they are independent of the parameters
of the other group. For example, a linear WP trend (ρ) is by
definition unique to the within structure θ iu = {ρ} because
it is defined over occasions. Nevertheless, if the WP trend
applies to all individuals, it also affects the parameters of
the between structure: if everyone shows an intraindividual
increase of ρ units from occasion to occasion, then the BP
mean αbetween at occasion t will also be ρ units higher than
at t – 1. The crucial point, however, is that this relationship
is known and can be expressed algebraically. In our exam-
ple the BP mean (θ tc = {αbetween}) at occasion t = 1,. . ., T
would be αbetween (t) = αbetween + ρ(t – 1). Thus, when the
goal is to compare θ tc = {αbetween} to θ ic = {αwithin} after
controlling for a WP trend θ iu = {ρ}, it is important not to
compare αbetween directly with αwithin but to compare αwithin

with αbetween + ρ(t – 1) at any given time point t. Of course

3To keep the notation as simple as possible, we ignore the fact that, due to
missings, the number of manifest variables (and as a consequence the size
of the model-implied covariance matrix and mean vector) may differ across
individuals (Arbuckle, 1996; Enders, 2001, 2010). Likewise, we ignore that
the number of time points may differ across individuals (i.e., Ti). Both,
however, are only ignored in notation but not in the actual estimation.
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other constraints are necessary for other factors we may want
to control for (i.e., θ iu; θ tu).

Another complication—but also an opportunity—arises
from the fact that across individuals, the parameters that are
unique to the WP structure (θ iu) may be correlated with
parameters that are unique to the BP structure (θ tu). For ex-
ample, this may be a correlation between the position of an
individual relative to other individuals at a given point in time
and the WP change over time (e.g., a fanspread effect; Camp-
bell & Erlebacher, 1970; Kenny, 1974). Obviously, it takes a
full data cube (multiple individuals at multiple occasions) to
estimate such a correlation, so it is of little use if only a single
WP structure and a single BP structure are available. If the
relationship is known, however, it can be used to predict WP
parameters from BP parameters and vice versa. We return to
this issue later where we also discuss an alternative approach
to the use of nonlinear constraints among WP and BP pa-
rameters, which is less explicit but simpler to implement in
practice.

State Space Modeling

The approach of comparing a WP structure with a BP struc-
ture by means of a likelihood ratio test, as described earlier,
has originally been proposed within a structural equation
modeling (SEM) framework. Although this approach offers
great flexibility in terms of model specification, with an in-
creasing number of time points and variables it comes at
the price of a large model-implied covariance matrix and
greatly increased computation time (Voelkle et al., 2012).4

For a large number of model comparisons, this poses great
computational difficulties. In this article, we therefore use
the Kalman filter (Kalman, 1960), a different estimation ap-
proach within the state space modeling framework. In con-
trast to the simultaneous estimation approach in SEM, the
Kalman filter operates recursively on the time series, mak-
ing it a practically more suitable approach, especially when
the number of occasions is large. Here, we only briefly re-
view the basics of state space modeling; for a more detailed
discussion, see Commandeur and Koopman (2007), Durbin
and Koopman (2001), and Harvey (2001). For a concise in-
troduction and a comparison with SEM, we refer the reader
to Chow, Ho, Hamaker, and Dolan (2010; see also Oud &
Singer, 2008; Oud, van den Bercken, & Essers, 1990; Zhang,
Hamaker, & Nesselroade, 2008). Most importantly Chow
et al. (2010, Appendix; Otter, 1986) demonstrated that for
T = 1 as in Equation 9, all elements in SEM and the state
space framework are identical, resulting in identical (ML)

4For example, the estimation of a joint BP (N = 99; T = 1) and WP
structure (N = 1; T = 80) by means of the Kalman filter (mkfm6) took about
1.3 s on a standard 2.4 GHz processor personal computer (not including the
time for data generation or plotting). In contrast, the estimation by means
of SEM (a model as described by Voelkle et al., 2012) took about 16.6 s,
which is more than 12 times as long. For 100 × 80 = 8,000 comparisons
this amounts to a difference in computation time of more than a day.

estimates. Likewise, for N = 1 as in Equation 8 many—but
not all—SEMs can be reparameterized as state space mod-
els. Whenever such a reformulation is possible, the result-
ing parameter estimates by means of the Kalman filter are
ML estimates—given that the usual assumptions hold true
(cf. Shumway & Stoffer, 2004). Thus, our decision to use a
state space modeling framework instead of an SEM frame-
work was primarily motivated by pragmatic reasons (com-
putation time). Our arguments, however, are more general
and not bound to either of the two frameworks. For this
reason, we focus primarily on the commonalities between
state space modeling and SEM, as the differences between
the two frameworks are largely irrelevant for the models
discussed in this article.

Similar to the measurement model and structural model
in SEM (Bollen, 1989), one distinguishes between an ob-
servation equation and a transition equation in state space
modeling. Using conventional SEM notation, the observation
equation is given in Equation 10:

yit = τ it + �itηit + εit (10)

yit = τ i + �iηit + εit (10a)

yit = τ t + �tηit + εit (10b)

Matrix yit denotes a p-dimensional vector of manifest
variables with observations of individual i at time point t.
The manifest variables are regressed on (caused by) q latent
variables ηit with factor loading matrix �it ∈ R

p×q , intercept
vector τ it ∈ R

p, and p-dimensional measurement error vec-
tor εit . Note that Equation 10 defines a generic model where
all parameters are allowed to differ across individuals i and
time points t. If fitted to a single individual i, parameters τ i

and �i are assumed to be time invariant (WP Equation 10a),
whereas parameters τ t and �t are assumed to be invariant
across individuals when estimating a BP structure at a single
time point t (Equation 10b). As discussed earlier, if uncon-
ditional BP-WP equivalence of the factor loading structure
holds, then �t = �i = � for all i and t.

The transition equation is defined as

ηit = αit + Biηi(t−1) + ζ it (11)

ηit = αi + Biηi(t−1) + ζ it (11a)

ηit = αt + ζ it (11b)

with Bi ∈ R
q×q denoting the transition matrix that relates

ηi(t−1) at t – 1 to ηit at time point t, αit ∈ R
q denoting the

intercept vector of the transition equation, and ζ it the q-
dimensional vector of dynamic errors. Equation 11 defines
the generic transition equation, Equation 11a the WP tran-
sition equation, and Equation 11b the BP equation. Note
that transition matrix Bi is only present at the WP level,
whereas no transition from one individual to the next is
assumed at a given time point t. Throughout, we assume
that WP parameter estimates are time invariant and that dy-
namic errors as well as measurement errors are uncorrelated
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and normally distributed with ζ it ∼ N (0,� i), respectively
εit ∼ N (0,i) at the WP level, and ζ it ∼ N (0,� t ), respec-
tively εit ∼ N (0,t ) at the BP level.

In contrast to SEM, parameter estimation is not carried out
by minimizing the difference between the full T · p × T · p

model-implied covariance matrix, respectively mean vector,
and the observed covariance matrix, respectively mean vec-
tor, but rather by minimizing the so-called one-step-ahead
prediction error (Commandeur & Koopman, 2007). In prin-
ciple, this is done in two steps: in a first step, a person’s
state at time point t is predicted based on the information
of the previous time point (ηi(t |t−1) = α + Bηi(t−1|t−1)). The
same applies to the associated covariance matrix (Pt |t−1 =
BPt−1|t−1BT + �). Given ηi(t |t−1), it is easy to compute the
predicted observations yi(t |t−1) at time point t (based on in-
formation at time point t – 1) as shown in Equation 11.
Now it is also possible to compare yi(t |t−1) with the actually
observed yit resulting in the one-step-ahead prediction er-
ror ei(t |t−1) = yit − yi(t |t−1). In a second step, the predictions
(i.e., ηi(t |t−1) and Pt |t−1) are updated in light of the new obser-
vations at time point t, resulting in ηi(t |t) and Pt |t . Thereby the
so-called Kalman gain function weights the relative impor-
tance of the newly obtained information (i.e., the certainty of
the measurement) against the certainty of the prediction. The
process is then repeated for all time points. Before it can be
started, however, the initial state value ηi(0|0) and covariance
matrix P0|0 need to be specified. If no prior information is
available, we may simply fix it to any noninformative val-
ues. For more detailed information, we refer the reader to the
aforementioned literature (e.g., Commandeur & Koopman,
2007; Durbin & Koopman, 2001).

THE LIKELIHOOD PLANE

Having provided a working definition of BP and WP struc-
tural equivalence, and having sketched out the statistical ap-
proach that allows us to test this equivalence, we can now
turn to the question of how this may be done in practice.
Obviously, the problem is that for T time points and N indi-
viduals, T · N combinations of a BP and WP structure ex-
ist, and for every single BP-WP combination the structures
(models) may or may not be equivalent. Previous studies
have approached this problem by selecting some individuals
and comparing their WP structure with the BP structure at a
selected occasion, for example, the BP structure at the first
occasion or the average BP structure across all occasions
(Molenaar & Campbell, 2009; see also Hamaker, Dolan, &
Molenaar, 2005; Lebo & Nesselroade, 1978, who focus pri-
marily on a comparison among individuals; for an alterna-
tive approach to accommodate for sample heterogeneity in
recovering effective connectivity maps, see Gates & Mole-
naar, 2012). Based on the strict definition that equivalence
is only met if the BP and WP structures are equivalent for
all possible combinations of i and t, this approach is rea-

sonable because a single instance in which the two are not
equivalent suffices to reject the assumption of (unconditional)
structural equivalence. What goes undetected, however, is the
proportion of equivalent BP-WP-structures given all possible
combinations. Arguably, it makes a big difference whether
the between structure reveals absolutely nothing about any
given individual, whether there is some minor relationship
between the two (e.g., 10% of the WP and BP structures are
identical), or whether the two are the same in a large number
(e.g., 90%) of BP-WP combinations. We propose to address
this issue through the construction of likelihood planes.

A One-Factor Model

To illustrate our arguments we use data that were generated
by a one-factor model with three indicators, similar to our
introductory example in Figure 1. Later on, the model is
modified in a stepwise fashion to examine the reasons and
consequences of structural nonequivalence. For now, let the
true model parameters according to Equations 10 and 11 be
τT = (

0 0 0
)
, �T = (

1.0 0.8 0.8
)
, α = (0), B = (0), with

εit ∼ N (0, diag (0.2)) and ζ it ∼ N (0, 1.0). We refer to this
specification as the baseline condition. Data for N = 100
independent individuals and T = 80 time points were gen-
erated according to this model. Note that, because B = (0),
there is no temporal order, thus not only are all i interchange-
able but also all t. Likewise, because data for each person
and time-point combination were generated according to the
same model, all i are interchangeable with all t. In the baseline
condition, the BP and WP structures are therefore equivalent.

Constructing and Interpreting Likelihood Planes

In the baseline condition all parameters (θ ) are common to
both models (BP and WP). There are no parameters that refer
to only one of the two structures (i.e., no θ iu or θ tu). Thus,
the question of structural equivalence reduces to comparing
the null hypothesis θ i = θ t against the alternative hypothesis
θ i �= θ t . In line with common conventions, let us fix the
first factor loading to 1.0. We further constrain the intercepts
of the manifest variables to zero, resulting in a total of 7
free parameters under the null hypothesis H0: θ = θ i = θ t

= {var(ε1); var(ε2); var(ε3); λ2; λ3; α; var (ζ )}. Note that
in this basis form (i.e., without additional constraints), the
covariance structure is saturated. Although this simple model
constitutes a special case in this regard, this does not affect the
generality of our arguments. Under the alternative hypothesis
(H1) all parameters are allowed to differ, resulting in a total
of 14 free parameters.

For each person and occasion combination, we may now
formulate two models in terms of Equations 10 and 11. In
one model the parameters of the BP and WP structure are
constrained to equality, in the other they are allowed to differ.
In a next step, ML parameter estimates and the log-likelihood
of the data given the model are obtained. Finally, because the
two models are nested, the log-likelihoods can be compared
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by means of a log-likelihood ratio test as described earlier.
For N = 100 individuals and T = 80 time points this results in
2T · N = 16,000 models to be estimated and 8,000 associated
likelihood ratio tests. Using R Version 2.15.0 (R Core Team,
2012) for data generation and mkfm6 (Dolan, 2010) for the
state space analyses, the computation of the entire likelihood
plane took about 300 min on a standard 2.4 GHz processor
personal computer (Dolan, 2010).

The likelihood ratios may now be plotted for each person
and time-point combination, resulting in a three-dimensional
likelihood plane as shown in Figure 2. For each likelihood
ratio test the color indicates whether it is significant (red) or
not (green) at an alpha level of 1%. Thus, given that the null
hypothesis of structural equivalence is correct, we should
see many “green valleys” and few “red mountaintops.” As a
matter of fact, in this example (baseline condition), 99.61%
of all likelihood ratio tests were nonsignificant, which is close
to the expected 99% of nonsignificant tests (given an alpha
level of 1%).

The likelihood plane is a powerful tool to visually inspect
the reasons for structural nonequivalence: As discussed ear-
lier, nonequivalence may be due to persons, occasions, or
combinations thereof. For example, if a single occasion were
“unusual” (e.g., a public holiday), this would be indicated by
a red “mountain range” at this occasion across all individu-
als. Likewise, if a person “sticks out” (i.e., his or her within
structure is different from other WP and BP structures), this
should be reflected in a red “mountain range” of this person
across all occasions. Finally, structural equivalence may be
violated for specific person × occasion interactions, which
would show up as single mountaintops. Having identified
“odd” occasions, “odd” persons, or “odd” occasion-person
combinations, we can proceed with a closer investigation of
the specific reasons for nonequivalence. This is of primary
concern in the remainder of this article.

There are two more things worth noting with respect to
the construction and interpretation of likelihood planes: first,
because any individual i is also part of the between structure
at time point t, there is a small overlap of p data points in the
BP and WP data (in this example p = 3). This is comparable
to the problem of an item-test correlation in psychometrics,
where the item is also part of the whole test and thus biases the
“item-total” correlation. Just as in psychometrics, the scores
of person i at occasion t should hence be removed from the
between structure before comparing the two. This is done
for all analyses in this article. Second, although the data (yit )
for each person and occasion combination (each “cell”) were
independently generated in the baseline condition (according
to the true model), the results of the T · N likelihood ratio
tests in Figure 2 are not independent of each other. This is
because we do not compare single cells. Instead, each person-
occasion combination in Figure 2 represents the comparison
of an entire time series (person) with an entire sample of
individuals at a given occasion t. Thus, as mentioned earlier, if
the WP structure of a single person is somehow “deviant” this

is likely to be the case for all occasions under consideration,
resulting not in a single “mountaintop” but rather in an entire
“mountain range.” This is nicely illustrated by person ID60
in Figure 2. This dependency, however, does not affect the
alpha level under the null hypothesis because the number of
expected Type I errors increases in the same fashion as the
number of occasions, respectively persons, increases.

EXAMINING FOUR COMMON REASONS FOR
STRUCTURAL NONEQUIVALENCE

A likelihood plane in line with the baseline condition of
complete structural equivalence as illustrated in Figure 2 is
unlikely to be found in most real-world situations. Rather, ba-
sic mechanisms common to psychological phenomena will
result in systematic changes over time or group differences
(see Figure 1 for examples), thereby producing a pattern of
(possibly complete) nonequivalence. In the following, we
explore four such factors. We thereby first “destroy” uncon-
ditional structural equivalence and then discuss the model
changes necessary in order to (re)establish conditional struc-
tural equivalence, that is, to recover the hidden equivalence
between two structures. To facilitate visual inspection, we use
2-D likelihood planes in the following, which correspond to
the top view of the more detailed 3-D planes introduced ear-
lier. We provide the 3-D likelihood planes as supplementary
material online. In contrast to the printed version, these im-
ages are interactive, that is, they may be rotated and inspected
from different angles.

Autoregression

Maybe the most unrealistic assumption of the baseline model
is the assumption that there is no temporal order among
observations within individuals over time (i.e., the assump-
tion that all t are interchangeable). Notably, the original P-
technique factor analysis proposed by Cattell, Cattell, and
Rhymer (1947) is based on this assumption. P-factor analy-
sis has been repeatedly criticized for this reason, and a class
of models generally referred to as dynamic factor models—a
special variant of state space models—has been proposed
as a better alternative (Browne & Nesselroade, 2005; Mole-
naar, 1985; Molenaar & Nesselroade, 2009). In contrast to
P-technique, dynamic factor analysis explicitly accounts for
the lagged structure of the data. We presume that this is of
equal importance when investigating structural equivalence.

To illustrate this point, we first generated data in line
with the baseline model but added a first-order autoregres-
sive effect to the WP structure by setting B = β = 0.8 and
var(ζ ) = ψ = 1 – 0.82 = 0.36. An overview of all simula-
tion conditions is given in Table 1. Second, for each person
and time-point combination, we fitted two models to the data
without accounting for the newly added autoregressive effect.
In the first model all BP-WP-parameters were constrained to
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FIGURE 2 Three-dimensional likelihood plane. For each person i = 1,. . ., N (x-axis) and occasion t = 1,. . ., T (z-axis) combination, a likelihood ratio test is
conducted by subtracting 2LLH0 of the model under the null hypothesis of BP-WP equivalence from 2LLH1 of the model under the alternative hypothesis of no
equivalence. The resulting likelihood ratios [2LLH1 – 2LLH0] are given on the y-axis. For each likelihood ratio test the color indicates whether it is significant
(red) or not (green) at an alpha level of 1%. LR = likelihood ratio; LL = natural logarithm of the likelihood; BP = between-person; WP = within-person
(color figure available online).

equality (H0: θ i = θ t ); in the second model all parameters
were freely estimated (H1: θ i �= θ t ). As before, the two mod-
els were compared by means of a likelihood ratio test. The
resulting likelihood planes are given on the left side of Figure
3A. In a third step, we accounted for the autoregressive effect
by explicitly including β as a parameter to be estimated in the
within structure but not in the between structure. Again two
models were estimated, one in which all BP-WP-parameters
were constrained to equality and one in which all parame-
ters were allowed to differ. That is, we tested for conditional

structural equivalence by testing H1: (θ ic|θ iu) �= θ tc against
H0: (θ ic|θ iu) = θ tc for all i and t, resulting in a total of 2 × 2
× 80 × 100 = 32,000 state space models to be estimated.

As pointed out earlier, even though the autoregressive
parameter is by definition a WP parameter (θ iu = {β}), it
also affects BP parameters. More specifically, because β >

0 the dynamic error variance ψwithin = var(ηwithin) is re-
duced. Thus, there is no point in comparing ψwithin directly
with the BP variance φbetween = var(ηbetween). Instead, ψwithin

must be compared with φbetween
(
1 − β2

)
. This relationship,

TABLE 1
Simulation Conditions

Population Values in Condition

Autoregression
Group

differences Mean trend Cyclic trend

Parameter Baseline BP WP BP WP BP WP BP WP

β • — 0.8 • • • • • •
Var(ηg1) • • • 1.0 — • • • •
Var(ηg2) • • • 4.0 — • • • •
Linear slope • • • • • — 0.05 • •
ω • • • • • • • — 2π /30
DfDiff 7 6a 7 7 7

Note. • = parameter neither simulated nor estimated; —= parameter not available in this group but simulated in the corresponding between/within group;
BP = between-person; WP = within-person; DfDiff = degrees of freedom of the likelihood ratio test that compares the between structure with the within
structure.

aSee text and Footnote 5 for details.
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FIGURE 3 Four common reasons for structural nonequivalence illustrated by eight two-dimensional likelihood planes. Significant likelihood ratio values
are red, nonsignificant values green (alpha 1%). Left: Test for unconditional equivalence. Right: Test for conditional equivalence. A: Autoregression, B: Group
difference, C: Linear trend, D: Cyclic trend (color figure available online).
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TABLE 2
Average Parameter Estimates Across 8,000 Person Time-Point Combinations Under the Assumption (H0) of Conditional

Equivalence

Average Parameter Estimate

Autoregression Group differences Mean trend Cyclic trend

Parameter Baseline BP WP BP WP BP WP BP WP

λ2 0.804 0.804 0.799 0.797 0.803
λ3 0.801 0.810 0.796 0.802 0.805
Var(ε1) 0.196 0.190 0.201 0.181 0.090
Var(ε2) 0.205 0.199 0.208 0.187 0.089
Var(ε3) 0.196 0.213 0.202 0.188 0.095
φ ‖ ψ 0.996 0.959 0.356 2.443a 0.979 0.919
M(η) = α −0.010 −0.002 0.017 −0.005 −0.021
β • — 0.758 • • • • • •
Var(ηg1) • • • 0.986 — • • • •
Var(ηg2) • • • 3.901 — • • • •
Linear slope • • • • • — loess • •
ω • • • • • • • — loess

Note. • = parameter neither simulated nor estimated; —= parameter not available in this group but simulated and estimated—corrected for—in the
corresponding between/within group; BP = between-person; WP = within-person; loess = local regression smoothing.

aEstimated variance constrained to equality across groups. See text for details.

however, is known and can be implemented as a nonlin-
ear constraint during parameter estimation.5 The resulting
likelihood planes are shown on the right side of Figure 3A.
Average parameter estimates of the constrained condition
(under the H0) are presented in Table 2. For reasons of space,
parameter estimates of the other conditions are not given
but were of equal quality (i.e., similarly close to the true
parameters).

As apparent from Figure 3A (left side), the BP and WP
structures are no longer equivalent in the presence of a lagged
effect and the number of nonsignificant likelihood ratios
reduces to 85.23% in this example. Furthermore, because
nonequivalence is due to an autoregressive effect at the per-
son level, we see a pattern of vertical red lines (“mountain
ranges”) of individuals across occasions. The nonequivalence
is due to the reduced variance of the dynamic error term. Be-
cause β is 0.8 at the within level but is nonexistent (β = 0) at
the between level, the dynamic error variance differs between
the two models. It is important to note that the factorial struc-
tures remain identical apart from this parameter. Regardless
of this, according to the definition of unconditional equiva-
lence outlined earlier, we would need to conclude that the BP
and WP structures are nonequivalent. In contrast, when test-

5Unfortunately, apart from equality constraints, mkfm6 does not (yet) al-
low more complicated constraints between groups. Thus, it was not possible
to implement the true relationship ψwithin = φbetween

(
1 − β2

)
when testing

for conditional equivalence. Instead, even under the null hypothesis, ψ (WP)
and φ (BP) were freely estimated. This reduces the degrees of freedom of
the resulting likelihood ratio test to df Diff = 6 instead of 7 (to 8 instead of
9 in Table 3, respectively). Note, however, that this is solely a limitation of
the software used and results in a test that is somewhat less powerful than it
could be. For the purpose of this article this seems negligible.

ing for conditional equivalence—that is, when controlling for
the autoregressive effect (β) at the within level—the number
of significant likelihood ratio tests reduces to 0.76% (at an
alpha level of 1%) and results in a likelihood plane (right
side of Figure 3A) that is similar to the likelihood plane in
the baseline condition (Figure 2).

Group Differences

Another reason for nonequivalence of BP and WP structures
may be that individuals are grouped in a meaningful way.
For example, if a sample is comprised of men and women,
it may be that the two groups differ in the variance of the
construct in question. In that case, the BP variance of the
entire sample (men and women) may be quite different from
the WP variance of either a man or a woman (see Figure 1D
for an example).

To mimic this situation, we generated data in line with
the baseline model but for two different groups of 50 per-
sons each. In the first group (say men) the variance of the
latent factor was set to var(ηg1) = ψg1 = φg1 = 4; in the
second group (say women) it was set to var(ηg2) = ψg2 =
φg2 = 1. For each person and time-point combination we
first tested for unconditional equivalence of the between and
within structures (H0: θ i = θ t vs. H1: θ i �= θ t ) and then for
conditional equivalence after controlling for group member-
ship (H0: θ ic = (θ tc|θ tu) vs. H1: θ ic �= (θ tc|θ tu), with θ tu =
{φg1, φg2}).

Average parameter estimates of the constrained condition
(under the H0) are presented in Table 2, and the resulting like-
lihood planes are shown in Figure 3B. Before discussing the
results, however, a word on the practical implementation of
this test is in order. Other than in the previous example, each
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state space model is now comprised of three (sub)models:
two BP models and one WP model. This allows us to let the
variance of η (or any other parameter for that matter) differ
between men and women. When doing so it is important to
compare the WP model with the appropriate BP model (i.e.,
the WP variance of a man must be constrained to the BP
variance of the correct group [of men]) and to remove the
p overlapping data points of person i from the appropriate
group.

Apart from the slightly more complicated model setup,
the pattern of results when testing for conditional equivalence
after controlling for BP factors (i.e., nonequivalence due to
persons) is the same as when controlling for time-related fac-
tors (i.e., nonequivalence due to occasion). As apparent from
the left side of Figure 3B, the hypothesis of unconditional
structural equivalence is readily rejected. Only 62.66% of all
likelihood ratio tests were nonsignificant. This is particularly
true for the group of women (person 51 to 100 in Figure 3B)
because the average BP variance of the entire sample (2.44;
see Table 2) is closer to the WP variance of men than women
(i.e., an average BP variance of (4 + 1) / 2 = 2.5 is an in-
crease by factor 2.5 / 1 = 2.5 for women but only a decrease
by factor 4 / 2.5 = 1.6 for men). If the difference in vari-
ance between the two groups were larger, it could very well
be that all likelihood ratio tests would turn out significant.
In contrast, when testing for conditional equivalence—that
is, when controlling for the difference in variance at the be-
tween level—the number of significant likelihood ratio tests
reduces to 1.08% (alpha level: 1%) and results in a likelihood
plane (right side of Figure 3B) that is similar to the likelihood
plane in the baseline condition (Figure 2).

Mean Trends

Many psychological constructs change in a systematic man-
ner over time and this also affects the equivalence of the BP
and WP structures, as is demonstrated in this section. As long
as the model is identified, we can control for any parame-
ter θ tu and/or θ iu when testing for conditional BP and WP
structural equivalence. At present, however, there are certain
software limitations. For example, in the present version of
mkfm6 it is neither possible to impose more complicated
parameter constraints nor possible to estimate time-varying
parameters. Although this is possible with current SEM soft-
ware, for T ≥ 80 and with several thousand models to be
estimated, SEM is no viable alternative for reasons outlined
earlier. This is an active field of research and we are opti-
mistic that future software and/or estimation procedures will
overcome these limitations (e.g., see Molenaar, 1994; Mole-
naar, Sinclair, Rovine, Ram, & Corneal, 2009; Chow, Zu,
Shifren, & Zhang, 2011, for work on time-varying parame-
ters). For the time being and for the purpose of this article,
however, a work-around is needed. Instead of simultane-
ously estimating all parameters, we propose to detrend all
measures prior to testing for (conditional) equivalence. This

two-step procedure is not optimal but seems to work well in
practice. This is true for simple mean trends (as is shown in
this section) as well as more complicated oscillating trends
(next section). In addition, detrending (e.g., by means of local
linear regression smoothing) avoids the need of introducing
parameter constraints between the WP and BP structures,
which may turn out to be nonlinear and hard to implement in
practice.

To investigate the effects of trends on structural equiva-
lence, we generated data in line with the baseline model but
included a simple mean trend at the latent level by setting
αt = 0.05 (t − 1), with t = 1,. . ., T = 80. This results in a
mean increase in α by four units from the beginning to the
end of each individual time series. As in the previous condi-
tions, we then tested for unconditional equivalence of the BP
and WP structures, followed by a test of conditional equiv-
alence. For the latter, the mean trend was removed by local
regression (loess) smoothing with a span of .90 (Cleveland,
Grosse, & Shyu, 1993). Due to the linear trend over time,
the long smoothing span seems reasonable. As is shown in
the next example, more complicated changes over time may
require shorter smoothing spans.

Average parameter estimates of the constrained condition
(under the H0) are presented in Table 2 and the resulting
likelihood planes are shown in Figure 3C. As apparent from
the left side of Figure 3C, 90.23% of all likelihood ratio
tests were significant. Thus, we would conclude that the BP
and WP structure are not equivalent. What cannot be seen
from the 2-D plane is that due to the linear increase in α,
the resulting likelihood plane is no longer flat but has a con-
cave shape, with a little “green valley” in the middle (the
green band in Figure 3C). This is due to the fact that the
intraindividual mean (4 / 2 = 2) is compared with the sam-
ple mean at each occasion, which is only close to 2 in the
middle of the time series. In contrast, when testing for con-
ditional equivalence—that is, when controlling for the linear
trend through loess smoothing—the number of significant
likelihood ratio tests reduces to 0.93% (alpha level: 1%) and
results in a likelihood plane (right side of Figure 3C) that is
again similar to the likelihood plane in the baseline condition
(Figure 2).

Cyclic Trends

The latter example can be easily extended to more compli-
cated (e.g., cyclic) trends. For this purpose, we generated data
in the same way as before but let α oscillate with an angular
frequency of ω = 2π

30 , that is, a period length of 30 days [i.e.,
d2α(t)

dt2 = −ωα (t)], and an amplitude of 0.5. We first tested for
unconditional equivalence of the BP and WP structures, fol-
lowed by a test of conditional equivalence. For the latter, the
mean trend was removed by loess smoothing with a shorter
span of 0.5.

Average parameter estimates of the constrained condition
(under the H0) are presented in Table 2 and the resulting



BETWEEN- AND WITHIN-PERSON STRUCTURAL EQUIVALENCE 205

likelihood planes are shown in Figure 3D. As apparent from
the left side of Figure 3D, 85.30% of all likelihood ratio
tests were nonsignificant. We can also see the oscillating
pattern, which is clearly reflected by the horizontal bands
in the likelihood plane. With a period length of 30 days,
and T = 80, we observe a little more than five such bands
(“mountain ranges”) across individuals (80 / 30 · 2 = 5.33).
In contrast, when testing for conditional equivalence—that
is, when controlling for the oscillating trend through loess
smoothing—the number of nonsignificant likelihood ratio
tests increased to 98.34%6 (alpha level: 1%) and results in a
likelihood plane (right side of Figure 3D) that is again similar
to the likelihood plane in the baseline condition (Figure 2).

AN EMPIRICAL EXAMPLE: BETWEEN-
AND WITHIN-PERSON DIFFERENCES

IN ATTENTIVENESS

Working with simulated data is a good way to illustrate an
idea, demonstrate how it can be implemented in practice,
and provide evidence that it works. However, the ultimate
question is whether there are psychological constructs that
exhibit (conditional) equivalence of BP and WP structures,
and if so, to what degree. In our opinion, this is primarily an
empirical question that depends on the construct, the sam-
ple of individuals, and the time period under consideration.
Theoretical considerations on causes of variation should be
informative on whether equivalence is more or less likely, yet
the only way to find out about the degree of equivalence is to
conduct (more) empirical studies that are capable of address-
ing this issue. Even though a full-fledged analysis is beyond
the scope of this article, in the remainder of the article we
apply the ideas outlined earlier to the data of one such study:
the COGITO study (Schmiedek, Lövden, & Lindenberger,
2010).

Procedure, Participants, and Measures

In the COGITO study, 101 younger adults (51 women; age:
20–31, M = 25.6, SD = 2.7)7 practiced different tests of per-

6As discussed in the text, the use of loess smoothing is suboptimal from
a theoretical point of view because the number of (non)significant LR tests,
as well as the parameter estimates, are affected by the degree of smoothing.
Also, although in this example the trend was induced at the latent level,
the smoothing took place at the level of the manifest variables. Even if H0

is true, there is no theoretical basis to expect 99% nonsignificant LR tests
after having accounted for an unknown trend by means of loess smoothing.
From a practical point of view, however, loess is easy to implement, easy to
interpret, and seems to work well as demonstrated in this example. As with
any smoothing procedure, however, it is critical to find the right trade-off
between fitting noise by oversmoothing or failing to account for systematic
trends. In the present example the reduction in error variance suggests that
the smoothing parameter (span = 0.50) may have been too low, whereas
visual inspection suggested an even lower span.

7In addition, 103 older adults (49.5% women; age: 65–80, M = 71.3,
SD = 4.1) participated in the COGITO study. They are not considered in
this article.
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FIGURE 4 Average attentiveness across 100 days for men and women.
Individual trajectories are depicted in grey (color figure available online).

ceptual speed, working memory, or episodic memory over
100 daily sessions of about 1 hr each. In addition to the
cognitive tests, various measures of affect, stress, and health
were assessed. For a detailed description of the procedure,
sample, and measurement instruments, we refer the reader
to Schmiedek et al. (2010). For the purpose of the present
article, we focus on one of the original content categories
of the Positive and Negative Affect Schedule (PANAS; Wat-
son, Clark, & Tellegen, 1988; Zevon & Tellegen, 1982) that
represents the factor attentiveness. It was assessed at the
beginning of each session via the items “attentive,” “inter-
ested,” and “alert” on an 8-point rating scale from 0 (does
not apply at all) to 7 (applies very well; cf. Brose, Linden-
berger, & Schmiedek, 2013). A graphical illustration of the
change and amount of fluctuations in individual and average
attentiveness for men and women is given in Figure 4.

Analysis

A one-factor model of attentiveness was specified
with the factor loading matrix �T = (

1.0 λ2 λ3
)
,

� = (φ), εT = (
ε1 ε2 ε3

)
, and intercepts α = (0),

τT = (
τ1 τ2 τ3

)
. Following the procedure outlined ear-

lier, we first tested the (unconditional) between- and
within-person structural equivalence of this model by
comparing H0: θ i = θ t against H1: θ i �= θ t with θ i =
{λ2,i , λ3,i , φi, var(ε1,i), var(ε2,i), var(ε3,i), τ1,i , τ2,i , τ3,i}
and θ t = {λ2,t , λ3,t , φt , ε1,t , ε2,t , ε3,t , τ1,t , τ2,t , τ3,t} for
each combination of i and t. That is, we conducted 10,100
likelihood ratio tests, each with nine degrees of freedom.
Note that the model is saturated under H1.

Second, for each individual we removed the within-person
mean prior to carrying out the same test of (conditional)
structural equivalence. Compared with loess smoothing this
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is a more conservative approach because it does not account
for trends but only for the WP mean. However, just like
loess smoothing at the within level, it affects not only the
WP structure but also the BP structure by removing stable
interindividual differences. In this sense the approach is one
way to account for unobserved heterogeneity as discussed
in the econometric and sociological literature (cf. Arellano,
2003; Halaby, 2004).

Third, in addition to demeaning we added a first-
order autoregressive parameter to the within-structure
model (θ iu = {β}) in order to account for possible lagged
effects, followed by a test of conditional structural
equivalence.

Fourth, the model of Step 3 was fitted separately for men
and women in order to account for possible gender differ-
ences that may affect structural equivalence. In each group
a test of conditional equivalence was carried out. As before,
we used R Version 2.15.0 (R Core Team, 2012) and mkfm6
(Dolan, 2010) for all statistical analyses.

Results

Median parameter estimates across all person-by-occasion
combinations in each condition are presented in Table 3, and
the resulting likelihood planes are shown in Figure 5. With
a total of 2 × 5 × 101 × 100 = 101,000 state space models
fitted to empirical data, inadmissible solutions and/or param-
eters at the boundary of the admissible parameter space are
unavoidable. Although we excluded inadmissible solutions,8

we did not remove parameters at the boundary. However, be-
cause the few “outliers” may have a strong and undue effect
on the mean, we report the median of the parameter estimates
instead.

As apparent from the three-dimensional likelihood plane
in Figure 5, with two exceptions (out of 10,100), not a single
WP structure is unconditionally equivalent to a BP structure
at any occasion t. This is exactly what we would expect for
most psychological constructs and is further empirical evi-
dence that a simple generalization from a BP structure to a
WP structure and vice versa is not justified (Borsboom, Mel-
lenbergh, & van Heerden, 2003; Molenaar, 2004; Molenaar
& Campbell, 2009). Closer investigation of the likelihood
plane in Figure 5 reveals that there is a systematic structure
due to persons (“mountain ranges” parallel to the time axis)
but not one due to occasions. This is because individuals

8We took a conservative approach to identifying and removing invalid
solutions by excluding any model for which the optimizer (NPSOL) em-
ployed by mkfm6 returned an error message. This includes inform = 1 error
messages, which were comparatively frequent but are usually unproblem-
atic. For details, the reader is referred to Gill, Murray, Saunders, and Wright
(1998, p. 36). In particular, 1.01% of models were excluded in the baseline
condition (unconditional structural equivalence), 0.04% in Condition A (de-
meaning), 2.08% in Condition B (autoregression), 3.47% for men (C), and
0.67% for women (D). Invalid solutions are represented by blanks (“holes”)
in the two- and three-dimensional likelihood planes.

were not assessed on the same (calendar) days in the COG-
ITO study so that only the order of measurement occasions
was considered.

When testing for conditional structural equivalence af-
ter removing the WP mean, 31.04% of likelihood ratio tests
were nonsignificant (see Figure 6A). Nevertheless, the sys-
tematic pattern of vertical lines (“mountain ranges”) in the
likelihood plane shown in Figure 6A suggests the presence
of additional person effects, such as lagged effects. This
suspicion is confirmed by an increase of over 10% to a
total of 42.24% nonsignificant likelihood ratios when an
autoregressive process of order 1 was added to the WP model
(Figure 6B). Interestingly, as the pattern of equivalent and
nonequivalent structures becomes clearer, it also becomes
obvious that the first occasion seems to differ in a systematic
way from the other occasions (horizontal lines at the bottom
of each panel in Figure 6). Follow-up analyses revealed that
this nonequivalence is due to a heightened level of attentive-
ness indicated by most individuals during the first session of
the study, which quickly dissipated in the following sessions.

In a last step, we conducted separate analyses for men
and women (Figure 6C and D), resulting in another increase
of about 10% to a total of 53.46% nonsignificant likelihood
ratios for men (Figure 6C) and 54.29% nonsignificant likeli-
hood ratios for women (Figure 6D).

Discussion of the Empirical Example

Controlling for some very basic factors like mean differences,
autoregression, and gender differences, the BP factorial struc-
ture of attentiveness turned out to be indistinguishable from
the WP structure in about 50% of all possible comparisons.
This finding leaves us with two possible interpretations: first,
given that we know the BP structure of attentiveness, we can
be confident that it will be identical to the WP structure for
a large portion of individuals, and vice versa. Second, given
that we know the BP structure of attentiveness, we can be
confident that it will not be identical to the WP structure for
a large portion of individuals, and vice versa. As a matter of
fact, this is the typical “the glass is half full versus the glass is
half empty” situation. For example, woman ID25 (marked by
the first black arrow in Figure 6D) shows a factorial structure
that is highly idiosyncratic. There is not a single occasion
on which her WP structure of attentiveness is identical to
the BP structure. This is also illustrated in Figure 7, which
shows the density distribution of likelihood ratios for woman
ID25. At an alpha level of 1%, not a single likelihood ra-
tio is below the critical value. The estimated factor structure
of ID25 is depicted at the top of Figure 7. Comparing the
parameter estimates with the average (BP-WP) parameter
estimates of women reported in Table 3, we find that the er-
ror variances of the first two indicators in particular are much
higher for woman ID25. In contrast, with few exceptions, the
factorial structure of woman ID48 (marked by the second
black arrow in Figure 6D) is indistinguishable from the BP
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TABLE 3
Median Parameter Estimates Across 10,100 Person Time-Point Combinations Under the Assumption (H0) of Conditional

Equivalencea

Average Parameter Estimate

Mean removed Autoregression Men (N = 49) Women (N = 51)

Parameter Baseline BP WP WP WP WP WP BP WP

λ2 0.799 0.918 0.938 0.938 0.944
λ3 0.943 0.842 0.932 0.833 0.957
Var(ε1) 0.273 0.377 0.342 0.342 0.374
Var(ε2) 0.835 0.652 0.603 0.530 0.631
Var(ε3) 0.972 0.585 0.532 0.540 0.512
τ1 3.828 −0.019 −0.006 −0.007 −0.005
τ2 3.875 −0.018 −0.004 −0.004 −0.005
τ3 3.668 −0.032 −0.006 −0.006 −0.006
β • • • — 0.397 — 0.398 — 0.367
φ ‖ ψ 1.734 0.520 0.505 0.307a) 0.466 0.225a) 0.608 0.321a

DfDiff 9 9 8b 8b 8b

Note. • = parameter not estimated; — = parameter not available in this group but estimated—corrected for—in the corresponding within group; BP =
between-person; WP = within-person.

aThe five conditions (five columns) are cumulative, beginning with a test of unconditional equivalence (baseline) followed by a test of conditional equivalence
controlling for mean differences; controlling for mean differences and autoregression; and finally controlling for mean differences, autoregression, and age
group differences by fitting two separate models for men and women. bSee text and Footnote 5 for details.

structure on almost all occasions and thereby close to the
density distribution under the null hypothesis of perfect struc-
tural equivalence (black curve in Figure 7). Even though this
is just a single empirical example—and the situation may be
quite different for other constructs—it is prototypical for our

general expectations: under realistic conditions, we cannot
expect the BP structure to be identical to the WP structure
for all possible combinations of persons and occasions. That
being said, for many psychological constructs, we would not
expect the BP and WP structure to be independent either.

FIGURE 5 Three-dimensional likelihood plane resulting from tests for unconditional equivalence of the BP and WP structures in attentiveness. Only 2 out
of (T = 100) × (N = 101) = 10,100 likelihood ratio tests are nonsignificant (green dots), demonstrating the clear difference of BP and WP structures (alpha
1%). BP = between-person; WP = within-person; LR = likelihood ratio (color figure available online).
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FIGURE 6 Two-dimensional likelihood planes resulting from tests for conditional equivalence of the BP and WP structures in attentiveness. Significant
likelihood ratio values are red, nonsignificant values green (alpha 1%). A: Controlling for mean differences. B: Controlling for mean differences and
autoregression. C: Controlling for mean differences and autoregression in men. D: Controlling for mean differences and autoregression in women. BP =
between-person; WP = within-person (color figure available online).

Rather, some very basic factors (such as group differences or
serial dependencies) may obscure the commonalities of BP
and WP structures, and it is up to the researcher to identify
and control for these factors.

OVERALL DISCUSSION AND CONCLUSIONS

In a world without constraints on time and money, the topic
of this article would be inconsequential. In such a world,

any individual could be assessed at any occasion, including
the past and the future. If one were interested in a particular
person, one would simply analyze his or her WP structure; if
one were interested in relationships between variables across
individuals, one would analyze the BP structure. Reality is
different. In our world, researchers are forced to trade the
number of individuals against the number of time points.
Either a few individuals are extensively assessed over time,
or many individuals are observed at one (or few) occasion.
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FIGURE 7 Chi-square distribution of two selected individuals (ID25 and ID48; both are women and marked by black arrows in Figure 6). The WP structure
of ID25 is similar to the BP structure at almost all 100 occasions (the observed chi-square distribution is similar to the expected chi-square distribution under
the H0 of structural equivalence). In contrast, the WP structure of ID48 deviates clearly from the BP structure at all occasions (the distribution is shifted to the
right). The individual factor structure of ID25 is illustrated in the top part of the figure. BP = between-person; WP = within-person (color figure available
online).

This raises the question whether a structure observed by
means of BP analysis generalizes to the WP structure and
vice versa. Usually, such equivalence—which we referred
to as unconditional equivalence—is violated for reasons that
are at the core of the phenomenon of interest (Blalock, 1967;
Borsboom et al., 2009; Kuh, 1959; Molenaar, 2004; Molenaar
& Campbell, 2009).

Unconditional nonequivalence, however, should not be
confused with independence. Unconditional nonequivalence
of WP and BP structures does not imply that these structures
are orthogonal and that nothing can be learned from one about
the other. As discussed earlier, lack of structural equivalence
is either due to persons (lack of homogeneity), due to time
(lack of stationarity), or due to combinations of both. The
factors that affect homogeneity or stationarity, however, may
often be known (e.g., lack of stationarity due to mean trends
caused by a learning process or lack of homogeneity due
to gender differences) and can be controlled for. If the BP
and WP structures are identical after controlling for factors

that are unique to either structure, we speak of conditional
equivalence.

In this article we argued that instead of blindly assuming
BP and WP structural equivalence (which will hardly ever
be met in practice), or focusing either on the analysis of the
BP or the WP structure in the presumed absence of a rela-
tionship between the two, it may be worthwhile to explore
their commonalities in conjunction with their differences. To
this end we have proposed the construction of two- and three-
dimensional likelihood planes as a tool for inspecting BP-WP
structural equivalence and deviations thereof. This provides
insights into (a) the amount of equivalence (red to green ratio)
and (b) possible reasons for nonequivalence (i.e., systematic
patterns due to persons, occasions, or combinations thereof).
Using simulated data, we examined four common reasons for
structural nonequivalence and demonstrated how to restore
conditional equivalence. All analyses were carried out within
a state space modeling framework using the Kalman filter.
Finally, an empirical example was provided based on a recent



210 VOELKLE, BROSE, SCHMIEDEK, LINDENBERGER

study in which 101 individuals were repeatedly assessed over
100 days. As expected, for almost all possible combinations
of persons and occasions, the BP and WP structures of atten-
tiveness differed significantly from each other when testing
for unconditional equivalence. However, after demeaning,
controlling for autoregression and for gender differences, the
number of conditionally nonequivalent BP and WP structures
reduced to less than 50%.

Traits Versus States

In most of the existing literature, the discussion on BP versus
WP analyses is inherently confounded with the discussion
on traits and states. We propose to disentangle this discus-
sion by defining a trait as the variance that is unique to the
BP structure (θ tu = {

σ 2
between trait

}
for all t). This implies

that the variance must be caused by differences between
people and not merely reflect differences between people.
This distinction is subtle but important. Variability (e.g.,
θ t = {

σ 2
between

}
) at any time point t is comprised of two

different sources of variance: trait variance and state vari-
ance (σ 2

between = σ 2
between trait + σ 2

between state).9 Both reflect
differences between people. The more traitlike a construct,
the larger the proportion of σ 2

between trait in σ 2
between. By com-

paring θ t = {
σ 2

between

}
with θ i = {

σ 2
within

}
in a test of un-

conditional structural equivalence, we are comparing two
sources of variance that—ceteris paribus—are by definition
increasingly caused by different factors, the more traitlike
the construct. Thus, it is not surprising that the most sta-
ble (traitlike) constructs in differential psychology (intelli-
gence, personality factors) are also the ones least likely to
exhibit unconditional structural equivalence. It is important
to note, however, that this is circular reasoning: If we define
a traitlike construct as a construct with a high proportion
of σ 2

between trait to σ 2
between state and if we define uncondi-

tional structural equivalence as the equivalence of σ 2
between

and σ 2
within, by definition a traitlike construct then results in

structural nonequivalence.
Instead, it seems more insightful to attempt to disentangle

θ tc = {
σ 2

between state

}
and θ tu = {

σ 2
between trait

}
by account-

ing for factors that are known to affect only the BP structure
but not the WP structure before testing for conditional equiv-
alence. The advantage of this approach is that (a) its outcome
is not determined by its definition and (b) it forces us to
identify the factors that cause differences between persons.
To this end, theory is of utmost importance because it deter-
mines whether a factor affects only the BP structure but not
the WP structure (e.g., gender could be one such factor, as
it generally does not change within persons). Unfortunately,
this approach is no panacea. Although it seems possible to
theoretically derive factors that affect the BP structure but
not the WP structure, it is less clear that this is possible when
it comes to explaining BP state versus trait variance (i.e.,

9For reasons of simplicity we ignore measurement error variance.

σ 2
between state vs. σ 2

between trait ). For example, the approach of
controlling for factors affecting the BP structure is reduced
to absurdity if we attempt to control for BP differences at
any occasion t by the individual genetic makeup. Given that
all people are genetically distinct, controlling for individual
differences in genes would “explain” the entire BP variance
(σ 2

between) at this occasion without allowing for a more de-
tailed distinction between σ 2

between state versus σ 2
between trait

and would thus render any further tests of (conditional and
unconditional) structural equivalence meaningless. This is
tantamount to saying that BP variance exists because people
differ, which is true but not a very illuminating perspective on
the issue at hand. In contrast, if prior theory allows the selec-
tion of (few) candidate genes that are known to produce stable
BP differences, this may help to control for these differences
prior to testing for conditional structural equivalence.

Note that the same considerations apply to a trait factor
that has been derived by some sort of weighted averaging over
time. Here the only difference is that the ratio of σ 2

between trait

to σ 2
between is close to 1 from the very beginning. In a test of

unconditional equivalence, σ 2
within and σ 2

between may or may
not be the same, with the chances that they are the same
not being high for reasons outlined earlier. The meaning of
such a comparison, however, remains unclear. This is readily
apparent if we accept the definition of a trait as the variance

that is unique to the BP structure. In this case, if
σ 2

betweentrait

σ 2
between

=
1 there is no variance left for a comparison to the within
structure so that a test of conditional equivalence is rendered
impossible.

Finally, if we conceive of a trait as something that is
stable within but varies between individuals, the analog at
the WP level is variation across time but constancy across
individuals. Following our definition of a trait, we propose
to conceive of such a “time-trait” as the variance that is
unique to the within structure (θ tu = {

σ 2
within trait

}
for all i).

All other considerations regarding the “person-trait” apply
equally to the “time-trait.”

Limitations, Future Directions, and Practical
Implications

At some level this article may have raised more questions,
for both methodologists and substantive researchers, than it
has answered. However, rather than offering some conclusive
answers, a major goal of our work was to outline a unified
framework for the study of BP and WP structures within
which these questions can be pursued in future research.

At the methodological level, an obvious limitation of
the approach to testing for (conditional) structural equiv-
alence is its implementation by using currently available
software. Ideally, all parameters that ought to be controlled
for (θ iu, θ tu) should also be part of the actual model and
should be estimated simultaneously with all other param-
eters (θ ic, θ tc). This, however, requires more complicated
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parameter constraints across groups (other than simple equal-
ity constraints), which is not possible in mkfm6 (Dolan,
2010), which was used in this article (see also Footnote 5).
Although SEMs offer more flexibility in this regard, they
are limited in the number of time points. Hence, we resorted
to some work-arounds in this article, most important the
two-step procedure of controlling for individual trends by
means of loess smoothing in the simulation study prior to the
actual test of conditional equivalence. Unfortunately, this in-
troduces additional problems like the choice of optimal span
parameters to avoid under- or oversmoothing. Thus, from
a theoretical perspective, this work-around is suboptimal.
However, it seems to work well in practice and appears to be
a good intermediate solution until more efficient software,
optimizers, or both have been developed.

Another technical detail that deserves closer attention in
future research is the choice of the initial covariance ma-
trix P0|0 and its effect on parameter estimates—for exam-
ple, compared with SEM—for short time series. In the spirit
of this article, we suggest that it may be promising to use
information from between-subject analyses to initialize the
estimation of a within-person process. We are currently ex-
ploring this option in greater detail.

Furthermore, in this article we only considered some basic
mechanisms that may lead to structural nonequivalence and
how to account for them. In particular, we did not discuss sit-
uations of multiple, possibly unknown, group memberships
and how recursive partitioning and/or finite mixture model-
ing may help to establish conditional equivalence under these
more complex conditions. The approach also offers the pos-
sibility to remove deviant individuals and/or occasions in an
iterative fashion in order to maximize (conditional) equiva-
lence in an exploratory (nontheory-driven) way. In contrast
to previous studies the removal would not be limited to only
individuals or only occasions but could be an arbitrary mix-
ture between the two, depending on the relative contribution
to the overall likelihood plane. We consider these important
and promising directions for future research.

At a more substantive level, it seems possible that—at least
theoretically—the causal factors underlying the BP struc-
ture are different from the causal factors underlying the WP
structure but that the BP and WP structures are nevertheless
equivalent. That is, nonequivalence of causes does not nec-
essarily imply nonequivalence of effects (i.e., the resulting
BP and WP structures). In that case, a test of conditional
equivalence may result in a higher amount of significantly
different WP-BP comparisons than a test of unconditional
equivalence.

Furthermore, in this article we did not consider longitudi-
nal BP structures, that is, BP structures at more than one time
point. We also did not consider models with time-varying pa-
rameters (e.g., time-varying factor loadings). Likewise, the
possible causes for structural nonequivalence studied in this
article are limited. For example, we did not discuss subject
specific structural models in which the number of factors may

differ from individual to individual. Although the likelihood
plane may help to identify individuals whose WP structure
differs markedly from the BP structure, there may be a mul-
titude of possible reasons for such differences, only few of
which were discussed in this work.

Although speculative at this early state of affairs, we ulti-
mately see three general ways in which this work may have
practical implications for methodologists and substantive re-
searchers: (a) new insights into psychological mechanisms
and improvements in measurement and construct validity,
(b) improvements in diagnostics and intervention, and (c)
methodological improvements. Regarding the first aspect (a),
at present little is known about the degree to which some
of the most well-established constructs in psychology gen-
eralize to the individual. By being able to explicitly test the
BP-WP equivalence of established constructs, we can test for
construct validity at different levels and improve the design
of person-oriented measurement instruments. The approach
may also offer new insights into psychological mechanisms
by studying why (groups of) individuals exhibit high or low
structural equivalence and how this depends on the time
period under consideration. For example, Brose, Voelkle,
Lövdén, Lindenberger, and Schmiedek (in press) demon-
strated that the degree of divergence between WP and BP
structure of affect could be reliably predicted by contextual
variables such as certain aspects of well-being. In addition
(b), the approach may have direct implications for diagnos-
tics and intervention. If the relationship between variables
at the BP level is known and we find the same at the WP
level, then we can use variations observed at the BP level
to predict variations at the WP level. For example, if we
find that 10 out of 100 patients show improvements in mo-
mentary physical health when taking a certain drug, it may
seem reasonable to prescribe this drug A to any individual
i. If, however, we have evidence that the BP relationship
(rdrug, improvements in physical health) does not hold, or is reversed,
for a given person (indicated by a red mountain range in the
likelihood plane), then the recommendation to use this drug
would be ill advised. Needless to say, in modern health care
provision it makes a tremendous difference whether WP-
BP equivalence holds for 99%, 50%, or 1% of individuals.
Finally (c), we hope this article spurs more research on the
development of better methods for the integration of WP time
series (T large, N small) analysis with BP statistics (N large,
T small).

Equivalence of Between- and Within-Person
Structures as an Empirical and Continuous
Phenomenon

The dream of integrating intra- and interindividual differ-
ences research is an old one that has existed for many years
and comes in different varieties (cf. Cronbach, 1957, 1975).
However, as recently suggested by Borsboom et al. (2009),
“A dreamed route of progress [. . .may be] really a dead
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end street” (p. 94), and the gap between the two research
paradigms “may very well be here to stay” (p. 92). Based
on our findings on unconditional nonequivalence of BP and
WP structures we are inclined to agree with this “gloomy
conclusion” (p. 94). However, in the present article we have
demonstrated that even though unconditional equivalence of
a BP and WP structure is unlikely for most psychological con-
structs, controlling for some simple factors that are known to
affect either the BP or WP structure may result in a consider-
able degree of conditional equivalence. This is not (yet) the
salutary integration of two different research paradigms, but
it is a bridge over the gap that separates the two. At present
the bridge is quite shaky, but it allows researchers on BP
differences to explore the territory of WP research and vice
versa.

Given that more than a century of psychological research
has focused almost exclusively on the analysis of BP struc-
tures, even a small degree of conditional equivalence would
be good news, as it would suggest that the findings of previ-
ous studies may offer some guidance in the development of
person-oriented research, interventions, and theory. Clearly,
the behavioral sciences need to develop a better understand-
ing of the differences and commonalities between the two
research paradigms and this article is one potential initial
step in this direction. Ultimately, however, it is up to future
research to study the degree of structural equivalence, which
may vary considerably from construct to construct. To this
end, complete independence and unconditional equivalence
of BP and WP structures may be viewed as two end points
on a continuum or as two continents separated by a large rift.
Whether crossing the rift pays off and eventually transforms
the shaky bridge into a solid highway or whether the dangers
and efforts of crossing the rift outweigh possible gains, so
that the bridge remains shaky and unused, is an empirical
question. The future will tell.
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