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ABSTRACT ARTICLE HISTORY
Missing data are a prevalent and widespread data analytic issue Received 4 January 2015
and previous studies have performed simulations to compare the Accepted 22 February 2016
performance of missing data methods in various contexts and for KEYWORDS

various mod_els;.howev.er, one sgch context. that ha_s Yet to receive Small sample; missing data;
much attention in the literature is the handling of missing data with multiple imputation; full
small samples, particularly when the missingness is arbitrary. Prior information maximum
studies have either compared methods for small samples with mono- likelihood; incomplete data;
tone missingness commonly found in longitudinal studies or have finite sample; Monte Carlo
investigated the performance of a single method to handle arbitrary simulation

missingness with small samples but studies have yet to compare the

relative performance of commonly implemented missing data meth-

ods for small samples with arbitrary missingness. This study conducts

a simulation study to compare and assess the small sample perfor-

mance of maximum likelihood, listwise deletion, joint multiple impu-

tation, and fully conditional specification multiple imputation for a

single-level regression model with a continuous outcome. Results

showed that, provided assumptions are met, joint multiple imputa-

tion unanimously performed best of the methods examined in the

conditions under study.

Introduction

Missing data are a pervasive analytic problem across research disciplines and can
complicate even the simplest analyses because improper treatment of missing values may
potentially bias model estimates and interpretations while conclusions drawn from the
model may be faulty as a result [10,26,29,32]. Since the 1970s, a rapidly growing body
of literature has addressed the inherent difficulty in both classifying how and why data
are missing and how to appropriately handle missing values so that estimates are both
trustworthy and representative of population dynamics [10,30].

Although many methodological studies have investigated the properties of the various
missing data methods under a variety of conditions [1,2,20,21,23,33,35], very little research
has been conducted specifically on the performance of these methods with small samples
sizes, which are a common analytic challenge in behavioral sciences as human subjects are
expensive and difficult to acquire. Barnes et al. [6] carried out a comprehensive simulation
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study on the performance of multiple imputation (MI) methods for monotone missingness
with small samples in clinical trials. Monotone missingness does not require iterative pro-
cesses and this pattern of missing values is not nearly as common as in behavioral sciences
as it is in clinical trials in a biomedical setting. Graham and Schafer [16] also conducted
an illustrative simulation study as part of a book chapter that showed that a particular
method (joint multiple imputation (JMI)) provided reasonably unbiased estimates of stan-
dard errors and point estimates with linear regression with as few as 50 observations. Their
study did not include methods other than JMI, however, and is also slightly dated as many
advances in both methodology and software have been developed since its publication (e.g.
Proc MI and Proc MIANALYZE in SAS, more widespread implementation of alternative
types of MI, Barnard & Rubin degrees of freedom with MI and small samples [5], ease of
implementing maximum likelihood (ML) in programs like Mplus and SAS Proc CALIS).

This paper will first briefly overview the classification of missing data and common
methods to handle missing values, slanted slightly towards small sample contexts. Then,
missing data in the context of small samples will be discussed and the limited existing
literature will be reviewed. Lastly, a comparative simulation targeting the small sample
performance of listwise deletion (LD), fully conditional specification, ML, and JMI will
be provided and its implications considered.

An overview of common missing data terminology and methods
Missing data patterns and missing data mechanisms

A primary concern with missing data is the arrangement of missing and observed values
in the data, commonly referred to as the missing data pattern [10,32]. Although there are
many different classifications, three general patterns are commonly discussed. The first
is a univariate pattern where all individuals have observed data for all variables except a
single variable in which all missing values are contained. The second type is monotone
missingness which is commonly seen in longitudinal data. With a monotone pattern (also
referred to as dropout), when an individual is missing data at one time-point, values for
all subsequent time-points are also missing for that individual. The third general pattern
of missingness and the pattern of interest in this study is arbitrary missingness which is
sometimes informally referred to as a ‘Swiss cheese’ pattern. With arbitrary missingness,
there is no set structure for which variables or participants have missing values. We will
focus on the third missing data pattern in this paper.

Based on Rubin’s [26] commonly used classification system, the mechanism responsi-
ble for missing data is often described as missing completely at random (MCAR), missing
at random (MAR), or missing not at random (MNAR). With an MCAR mechanism,
the probability that a value is missing is not related to any other variables, regardless of
whether the variables are included or not included in the data or model (e.g. data are
missing from a coding error). With a MAR mechanism, missing values are related to
other variables in the data but not to variables not included in the dataset or to the vari-
able itself that is missing values (e.g. missing values for income are related to age but not
to the value of income itself). With an MNAR mechanism, the probability that a vari-
able is missing values is related either to variables that are not included in the data or to
the hypothetical values on the variable of interest were it not missing (e.g. low-income
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respondents not reporting their income because it is low). Notationally, for R a binary
indicator of whether data are missing, Y ops data that are observed, Ys data that are unob-
served, and complete data Ycom = (Yops, Ymis), an MCAR mechanism can be written
as P(R|Ycom) = P(R), an MAR mechanism as P (R|Ycom) = P(R|Yogs), and an MNAR
mechanism as P(R|YCOM) = P(R|YOBs, YMIS)a [10,26,29].

Seaman et al. [31] further differentiate between two types of MAR. The definition first
proposed by Rubin [26] concerns realized MAR which Seaman et al. [31] describe as the
probability that a value is missing is not related to any other missing information for missing
data patterns that happened to be realized (but not for all possible missing data patterns).
Seaman et al. [31] also defines a broader type of MAR which subsumes realized MAR-
everywhere MAAR. Seaman et al. [31] describe everywhere MAR as the probability that a
value is missing is not related to any other missing information for all realized and unre-
alized missing data patterns. To elucidate the distinction, Seaman et al. [31] provide an
example where data are collected for a single variable X and all observations are com-
plete. Missingness here would be realized MAR but not everywhere MAR. For the realized
missingness patterns, missing values (which do not exist) are not related to unobserved
information. However, for any possible patterns of missing values, the missing values would
depend on unobserved information because the data only consist of a single variable. Next,
we will briefly overview the different methods (and associated terminology) used in this
paper to accommodate missing data.

Listwise deletion

LD (a.k.a. complete case analysis) is straightforward and the most commonly used method
to accommodate missing values in behavioral sciences [25]. In LD, any incomplete case is
excluded from the analysis. For example, if a case is missing a single value on a single
variable, the entire case will be removed from the analysis. When the data are MCAR, LD
will produce unbiased estimates because MCAR data are essentially a random subsample
of complete data from the overall sample (estimates will also be unbiased in select scenarios
where data are not MCAR, see [7,22]). However, a major drawback of LD, especially with
the small samples of interest in this paper, is that the sample size is often heavily reduced.
For instance, Enders [10] gives the example that with 10 variables and only 2% missingness
on each variable, about 18% of the sample will be deleted. With large samples, this may not
be an issue. For instance, with a sample size of 5000, losing 40% of observations is not
desirable, but it will have a minimal effect on one’s power to detect true non-null effects.
On the other hand, with a sample size of 50, losing 40% of the observations will be far more
drastic.

Maximum likelihood

ML (a.k.a. full information ML) accommodates missing data by allowing the log-likelihood
to be built by summing information from each individual in the data [3,9]. To accomplish
this, the covariance matrix and mean vector have dimensions specific to each individual.
For instance, in a simple three-variable problem, the dimension of the covariance matrix
in the log-likelihood would be 3 x 3 and the mean vector 3 x 1 for individuals with all
complete data. However, if person i has missing data on one of the variables, the dimensions
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would change to accommodate only observed data such that the covariance matrix would
instead be 2 x 2 and the mean vector 2 x 1. In essence, ML does not delete cases but rather
makes full use of all the observed information that an individual can contribute; however,
it works around missing values rather than imputing or predicting values for the missing
observations. ML has been shown to be unbiased provided that data are MAR [2,9,11,12].

Multiple imputation

MI refers to a broad class of methods which share some commonalities. We will first dis-
cuss these common features prior to delving into the specifics of the different types of MI.
Generally, MI rectangularizes the data by directly imputing values for the missing obser-
vations. This occurs in three general phases: the Imputation Phase, the Analysis Phase,
and the Pooling Phase [10,29]. The goal of the Imputation Phase is to predict plausible
values for the missing values from other observed values (various types of MI differ with
respect to how these values are imputed). Inherent in the name, many different datasets
are created, each with possibly different imputed values, leaving a researcher with several
different versions of the data. The final goal is to obtain a single set of parameter estimates
as if the original data were complete, so, as an intermediate step, in the Analysis Phase, the
statistical model of interest is applied individually to each of the separate imputed datasets
and the parameter estimates are then saved. For instance, if a regression model is of inter-
est and five imputations were performed, then the regression model is applied five times,
yielding five sets of regression coefficients. The saved estimates are then passed to the Pool-
ing phase where the m different estimates for each parameter are combined into a single
estimate using Rubin’s formulas [27] to appropriately calculate the within-imputation and
between-imputation variance.

Joint multiple imputation

JMI (a.k.a. joint model multiple imputation or multivariate normal imputation) imputes
for the missing values from other observed values in the data through a joint (multivariate
normal) posterior predictive distribution. With JMI for arbitrarily missing values, values
are imputed using two iterative steps: an Imputation Step (I-Step) and a Posterior Step (P-
Step). Estimates are unbiased under the assumption of MAR and multivariate normality
although Schafer [29] has suggested that inferences from JMI are still reasonable when
multivariate normality is not strictly upheld.

Fully conditional specification multiple imputation

Fully conditional specification (FCS) multiple imputation (a.k.a. multiple imputation with
chained equations [MICE], sequential regressions) imputes data on a variable-by-variable
basis with a separate imputation model for each variable rather than using a joint multi-
variate normal posterior predictive distribution for all variables [34,35]. Imputations for
continuous variables that will be of interest in this study can be conducted with either a
regression method [27] or a predictive mean matching method [17,32] although a main
advantage of FCS is realized with categorical or non-normal outcomes [4,34]. With the
regression method (FCS-R), imputed values are taken from a model whose coefficients
are simulated from a posterior predictive distribution. With predictive means matching
(FCS-P), a regression model is also used but for the purpose of identifying potential
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donor cases. For more detail on FCS and how it compares to JMI, readers are referred
to [4,21,34,35].

The missing data problem with small samples

The leading methods for handling missing data in behavioral sciences (i.e. LD, FCS, MI,
ML) each have non-trivial shortcomings with small samples that could affect the desirable
properties attributed to these methods with larger samples. With LD, discarding informa-
tion is a major concern with small samples because the amount of information from the
onset is limited, making each observations all the more crucial to preserve. With sample
sizes below 100 as are common in many behavioral science disciplines, losing 10% or more
of the data (as is commonplace with LD with even minimal amounts of missingness) can
have drastic effects on statistical power and vastly increase Type-II error rates. Put into
more technical statistical language, even though LD can yield unbiased estimates in some
instances, the efficiency of the estimates of LD will be quite poor with small samples.

Small sample concerns also exist with ML. Even though ML is often stated to be unbiased
so long as the missing values are MAR, this property of ML is more accurately expressed
by estimates being asymptotically unbiased when data are MAR meaning that finite sample
sizes may be a cause for concern. This property is widely recognized in the small sample lit-
erature for other methods such as multilevel models - ML is rarely implemented because of
the known downward bias of the estimates with as many as 50 or 100 clusters [24] and has,
for all intents and purposes, been obviated by the related restricted ML estimator when
outcomes are continuous. For missing data applications, although the finite sample bias
of ML is a well-documented concern and despite the popularity of ML to handle miss-
ing data, no known methodological studies have investigated the performance of ML for
missing values under small sample conditions to report where estimates begin to exhibit
bias and whether the extent of the bias is detrimental to model interpretation. Savalei [28]
did study the small sample performance of model fit criteria in structural equation models
with missing data using ML, however.

Although Graham and Schafer [16] showed that JMI may be reasonably unbiased with
smaller samples, the underlying concern with small samples lies in the accuracy of the
imputation model. That is, both JMI and FCS-R rely on the observed values to impute
missing values. As with standard regression analyses with small samples, the accuracy of
predictions may be questionable and the final model estimates may potentially be biased
as a result. As an additional consideration, JMI for arbitrary missingness relies on Markov
Chain Monte Carlo (MCMC). With smaller samples, prior distributions have a much larger
impact on the posterior distribution than with larger samples. Therefore, software defaults
that intend for the prior distribution to be non-informative may influence the posterior
to a greater degree than anticipated. Furthermore, the MCMC chain may have trouble
converging to a stationary distribution with diminished sample sizes which would result
in higher non-convergence rates. A suggested method to abet convergence is to use a
ridge prior which essentially has the effect of adding uncorrelated observations to the data
[10,18]. However, with small samples, adding even a small amount of individuals to help
convergence may have a non-trivial impact of the resulting model estimates.

Small samples may be particularly problematic when using FCS-P approach as well.
Predictive means matching imputes an observed value directly from a different individual
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in the data that has similar covariate values as the case whose value is missing. With small
samples, there may be little overlap in the covariate values among individuals, however,
meaning that the donor observations may not be very similar to the observation containing
the missing value. Alternatively, one observation may be repeatedly used as a donor on
several occasions if few other observations have satisfactory covariate overlap, meaning
that many observations will have identical values which may artificially restrict the variance
in the data [35].

Simulation study
Data generation model

A comparison of the performance of LD, FCS, ML, and JMI for arbitrary missing data will
be evaluated with a simulation study. Given the lack of prior research in this area, the data
generation model is fairly simple to ensure that any potential differences are attributable to
differential performance of the methods and not to nuances associated with increasingly
complex data generation models. The data generation model is formulated by

Yi = Bo + B1X1i + BaXoi + B3Xzi + €is (1)

where Y; is a continuous outcome variable (for the ith observation), X; are values of con-
tinuous predictor variables, B are regression coeflicients, and €; is an independent and
identically distributed residual. Predictors variables were generated from standard normal
distributions and coefficients were generated such that population effect sizes (in terms
of %) were as follows: ng, = 0.025 (a small effect), ng, = 0.100 (a medium effect), and
ng, = 0 (a null effect). The variance of the residual, €;, was equal to 16, meaning that the
unstandardized population coefficients were 0.72, 1.40, and 0.00 for 81, B2, and B3, respec-
tively. To make the data somewhat less artificial, predictor variables were generated such
that each was correlated 0.15 with all others.

Two missing data conditions were included, (everywhere) MAR and MNAR. For the
MAR condition, missing data were induced for Y;, X;, and X3; such that missingness was
attributable solely to other observed variables in the model. Y; was generated to be missing
for individual i if the value of X,; was among the lowest 10%, 20%, 30%, or 50% of the dis-
tribution in the sample (depending on the condition for the percentage of missing values,
which is discussed in the next section), X;; was generated to be missing for individual i if
the value of X,; was among the highest 10%, 20%, 30%, or 50% of the distribution in the
sample, and X3; was generated to be missing for individual i if the value of (X;; + X»;) was
among the highest 10%, 20%, 30%, or 50% of the distribution.!

For the MNAR condition, an additional variable (X4;) was generated but not included
in the model. Missing values were then induced for Y;, X;;, and X3; as a function of either
the excluded X4; variable or the true values of the particular variable. Specifically, Y; was
generated to be missing for individual i if the value ofXy; was among the lowest 10%, 20%,
30%, or 50% of the distribution in the sample. X;; was generated to be missing for individual
i if the value of X;; was generated to be among the highest 10%, 20%, 30%, or 50% of the
distribution in the sample, and X3; was generated to be missing for individual i if the value
of (Xa; + X4;) was among the highest 10%, 20%, 30%, or 50% of the distribution. MNAR
missingness was generated in this way to represent different types of MNAR mechanisms
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(e.g. ‘external’ MNAR where missingness is related to a variable not included in the model
and ‘internal’ MNAR where missingness is related to the hypothetical value of missing
variable itself). For the MNAR condition, the analyses were conducted assuming MAR
was upheld in order to investigate the sensitivity of the methods to the violation of the
MAR assumption with small samples.

Simulation conditions and outcome measures

Four conditions for sample size were included (20, 50, 100, and 250), the percentage of
missing data for each variable had four conditions (10%, 20%, 30%, and 50%), and missing
data were accommodated with four methods (LD, FCS, ML, and JMI). For FCS, because
the variables with missing values were continuous, two separate methods for imputation
were considered — predictive means matching (FCS-P) and regression (FCS-R). For each
MI condition (FCS-R, FCS-P, and JMI), three conditions for the number of imputations
were utilized (5, 25, and 100), and the imputation model included all variables in the data
but without any interactions or higher order terms. As recommended by Enders [10],
Barnard-Rubin degrees of freedom [5] were used when performing inferential tests for
all MI conditions (using the EDF option in Proc MIANALYZE). A separate JMI condi-
tion using a prior ridged (R-JMI)? by 10% of (N — 1)® was also included to investigate
how convergence and performance was affected by the ridge prior. LD and all MI condi-
tions estimated coeflicients with ordinary least squares (OLS). One thousand replications
were conducted within each cell of the simulation design and all data were generated
and analyzed in SAS 9.3 using Proc IML, Proc CALIS, Proc MI, Proc MIANALYZE, and
Proc Reg.

The operating Type-I error rate will be assessed by the proportion of times the null
hypothesis is rejected for the null effect of B3. Statistical power and relative bias of regres-
sion coefficients for 81 and S, will also be compared across methods. Results will be
compared to those obtained using the complete data as estimated with OLS prior to
inducing any missing values.

Results
Type-I error rate

MAR condition
Table 1 shows the operating Type-I error rates across methods, percent missingness, and
sample size for the MAR condition. Differences across the number of imputations were
small for N-JMI, R-JMI, FCS-R, and FCS-P so results in Table 1 are aggregated across
the number of imputation conditions. Following Bradley [8], rejection rates outside the
interval [0.025, 0.075] were deemed to be beyond a nominal sampling error rate of 0.05 .
N-JMI performed very near the nominal 0.05 rate at all sample sizes when the percent-
age of missing data was 30% or less. When half the data were missing, the operating Type-I
error rates were highly inflated, even at the largest sample sizes included in the simulation.
R-JMI had acceptable rejection rates across sample size conditions with 10% missingness,

but, as the percentage of missing data increased, Type-I error rates began to slowly become
deflated.
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Table 1. Operating Type-I error rate by method for MAR condition.

Operating Type-I error rate

% Missing Sample size Complete FCS-R FCS-P LD ML N-JMI R-JIMI
10 20 0.052 0.059 0.064 0.053 0.150 0.052 0.054
50 0.051 0.052 0.055 0.050 0.081 0.069 0.042

100 0.053 0.061 0.063 0.039 0.055 0.042 0.049

250 0.054 0.071 0.049 0.052 0.056 0.056 0.048

20 20 0.052 0.075 0.028 0.055 0.320 0.049 0.037
50 0.051 0.073 0.036 0.055 0.088 0.056 0.042

100 0.053 0.073 0.042 0.045 0.066 0.054 0.048

250 0.054 0.069 0.039 0.044 0.048 0.040 0.047

30 20 0.052 0.127 0.009 0.428 0.759 0.068 0.024
50 0.051 0.134 0.032 0.058 0.184 0.043 0.034

100 0.053 0.127 0.036 0.048 0.081 0.056 0.040

250 0.054 0.119 0.040 0.053 0.056 0.053 0.038

50 20 0.052 0.516 0.000 NA 0.985 0.313 0.003
50 0.051 0.482 0.005 NA 0.874 0.208 0.014

100 0.053 0.475 0.015 NA 0.675 0.126 0.013

250 0.054 0.404 0.020 NA 0.375 0.086 0.036

Note: The MI conditions are collapsed over the number of imputations because differences were rather small.
Bold values indicate values that exceeded reasonable values for the nominal 0.05 rate based on criteria in Bradley [8].

Both FCS methods, FCS-R in particular, showed evidence of problematic Type-I error
rates at larger percentages of missing data. With missingness of 30% or larger, FCS-R had
operating Type-I error rates around 12% but were well behaved with missingness of 20%
or less. FCS-P had Type-I error rates that tended towards being deflated as more data were
missing and rejection rates were far too small with 50% missingness even with a sample
size of 250.

With LD, rejection rates were very near the nominal rate across conditions with 10%
and 20% missingness and for samples of 50 or more with 30% missingness. However, in
the 50% missingness condition, no replications in any of the conditions could be estimated
because no cases had complete data, exhibiting the shortcoming of utilizing LD with small
samples and/or many missing values.

ML had acceptable operating Type-I error rates for samples of 50 or more with 10%
missingness, but had increasingly inflated operating Type-I as the percentage of missing
data increased. The rejection rates became wildly inflated with larger percentages of miss-
ing data and were seven times the nominal rate with 50% missingness with a sample size
of 250.

MNAR condition

The patterns were largely similar to the results reported in the MAR condition and the
values were slightly less well-behaved than in the MAR condition but quite close, so a table
of results will not be reported for brevity.

Power

MAR condition
Tables 2 and 3 show power across MAR simulation conditions for f; and B, which had
small and medium effect sizes, respectively. The 50% missingness condition is not shown
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Table 2. Power for small effect of 81 (d = 0.18) for MAR condition.
Power Small Effect (81)

% Missing Sample size Complete FCS-R FCS-P LD ML N-JMI R-JIMI
10 20 0.064 0.049 0.040 0.056 0.174 0.058 0.052
50 0.089 0.092 0.070 0.080 0.112 0.082 0.079

100 0.104 0.113 0.095 0.093 0.119 0.111 0.087

250 0.242 0.218 0.188 0.175 0.193 0.229 0.189

20 20 0.064 0.070 0.024 0.056 0.306 0.058 0.045
50 0.089 0.093 0.042 0.065 0.116 0.066 0.056

100 0.104 0.107 0.064 0.077 0.124 0.118 0.077

250 0.242 0.182 0.119 0.136 0.174 0.265 0.145

30 20 0.064 0.129 0.010 0.429 0.751 0.091 0.019
50 0.089 0.141 0.032 0.065 0.202 0.084 0.048

100 0.104 0.129 0.038 0.075 0.126 0.129 0.057

250 0.242 0.162 0.071 0.099 0.134 0.252 0.065

Note: The MI conditions are collapsed over the number of imputations because differences were rather small.
Bold values indicate values that the operating Type-I error rate was inflated.

Table 3. Power for medium effect of 8, (d = 0.50) for MAR condition.

Power Medium Effect (8;)

% Missing Sample size Complete FCS-R FCS-P LD ML N-JMI R-JIMI
10 20 0.145 0.078 0.068 0.065 0.301 0.145 0.070
50 0.325 0.203 0.168 0.168 0414 0.341 0.276

100 0.612 0.426 0.329 0.265 0.608 0.605 0.491

250 0.948 0.807 0.704 0.584 0.912 0.954 0.907

20 20 0.145 0.068 0.052 0.063 0.454 0.123 0.034
50 0.325 0.161 0.101 0.080 0.398 0.320 0.160

100 0.612 0.304 0.214 0.109 0.572 0.595 0.417

250 0.948 0.688 0.481 0.256 0.868 0.955 0.861

30 20 0.145 0.097 0.016 0.431 0.802 0.110 0.016
50 0.325 0.105 0.066 0.068 0.398 0.325 0.095

100 0.612 0.223 0.139 0.056 0.502 0.614 0.301

250 0.948 0.524 0.282 0.073 0.803 0.959 0.765

Note: The MI conditions are collapsed over the number of imputations because differences were rather small.
Bold values indicate values that the operating Type-I error rate was inflated.

in Tables 2 and 3 because the operating Type-I error rates were so highly inflated that
power is essentially uninterpretable across all methods. Conditions where the Type-I error
rates were inflated are noted in bold, indicating that the power for these conditions is not
trustworthy due to inflated rejection rates.

N-JMI performed exceptionally well and power rates mirrored the power obtained with
the complete data regardless of sample size for 30% missingness or less for § and ;. Both
FCS methods had poor power as the percent of missingness increased. Despite rejection
rates that were about 2.5 times the nominal rate with 30% missingness, FCS-R failed to
maintain power that was comparable to either the complete data or N-JMI. Power with
FCS-P was quite low and the performance was closer to LD than to more modern methods,
possibly due to the borderline deflated rejection rates shown in Table 1.

Unsurprisingly, power rates for LD were far lower than the complete data because obser-
vations are excluded and the sample size is drastically reduced. The reduction in power was
increasingly dramatic as the percentage of missingness decreased. Power for ML exceeded
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power obtained from the complete data in many cases data although this is almost certainly
an artifact of the inflated Type-I error rates observed in these conditions. When the Type-I
error rates were well-behaved, ML power tended to be less than both the complete data and
N-JMI but did exceed the power for both FCS methods. Power for R-JMI was noticeably
lower than for N-JMI and became increasingly worse as the percent missingness increased.

Readers may note that power does not necessarily increase monotonically with sample
size for all conditions in Tables 2 and 3 as would be expected. This is due to the poorly
behaved Type-I error rates that were observed in some conditions that tended to improve
as sample size increased. For example, with smaller samples, the rejection rates for ML were
exceedingly high so power appeared to be quite high but this is an artifact of the rejection
rates. As the rejection rates become more well-behaved, power decreased accordingly and
returned to the expected monotonic pattern.

MNAR condition

Tables 4 and 5 show power across MNAR simulation conditions for 8 and B, which had
small and medium effect sizes, respectively. Similar to Tables 2 and 3, the 50% missingness
condition is not shown because the operating Type-I error rates were so highly inflated that
power is essentially uninterpretable.

Similar to the MAR conditions, N-JMI yielded power that was quite close to the values
obtained by the complete data, even when 30% of the values were missing. As a general
trend, power tended to be worse when data were MNAR with one interesting exception.
Both FCS methods actually exhibited slightly higher power in the simulation with MNAR
compared to MAR. Although this seems paradoxical based on the underlying assumptions,
the unique circumstances of small sample problems are important to note. As will be dis-
cussed in the next section, based on the results presented shortly in Tables 6 and 7, the
regression coeflicient bias was quite large with FCS but the magnitude of the bias was actu-
ally less under MNAR compared to MAR. Because the population regression coefficients
were positive in sign, the less-biased coefficients under MNAR will have larger magnitudes,
on average, and will thus be more likely to be significant.

Table 4. Power for small effect of 81 (d = 0.18) for MNAR condition.

Power Small Effect (81)

% Missing Sample size Complete FCS-R FCS-P LD ML N-JMI R-JMI
10 20 0.064 0.054 0.044 0.045 0.139 0.060 0.047
50 0.089 0.075 0.067 0.064 0.095 0.082 0.066
100 0.104 0.085 0.058 0.084 0.094 0.117 0.084
250 0.242 0.182 0.162 0.177 0.183 0.265 0.139
20 20 0.064 0.079 0.036 0.057 0.244 0.056 0.052
50 0.089 0.079 0.058 0.057 0.120 0.079 0.052
100 0.104 0.086 0.068 0.062 0.106 0.131 0.069
250 0.242 0.116 0.095 0.114 0.128 0.250 0.113
30 20 0.064 0.157 0.021 0.291 0.534 0.090 0.035
50 0.089 0.128 0.050 0.059 0.164 0.072 0.043
100 0.104 0.124 0.059 0.056 0.120 0.109 0.052
250 0.242 0.138 0.072 0.073 0.115 0.235 0.075

Note: The Ml conditions are collapsed over the number of imputations because differences were rather small.
Bold values indicate values that the operating Type-I error rate was inflated.
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Table 5. Power for medium effect of 8, (d = 0.50) for MNAR condition.
Power Medium Effect (85)

% Missing Sample size Complete FCS-R FCS-P LD ML N-JMI R-JMI
10 20 0.145 0.121 0.117 0.098 0.225 0.136 0.089
50 0.325 0.294 0.191 0.191 0.353 0316 0.324
100 0.612 0.469 0.454 0.413 0.614 0.613 0.609
250 0.948 0.826 0.922 0.804 0.905 0.944 0.909
20 20 0.145 0.098 0.084 0.074 0.256 0.111 0.093
50 0.325 0.183 0.169 0.156 0.368 0.357 0.318
100 0.612 0.334 0.250 0.263 0.589 0.634 0.468
250 0.948 0.740 0.396 0.585 0.824 0.952 0.851
30 20 0.145 0.150 0.046 0.292 0.548 0.136 0.055
50 0.325 0.182 0.107 0.090 0.324 0.341 0.228
100 0.612 0.325 0.211 0.131 0.490 0.595 0.436
250 0.948 0.640 0.323 0.287 0.784 0.949 0.744

Note: The Ml conditions are collapsed over the number of imputations because differences were rather small.
Bold values indicate values that the operating Type-I error rate was inflated.

Table 6. Median relative bias for regression coefficient of 81 (d = 0.18).

Relative bias of 1

% Missing Sample size FCS-R FCS-P LD ML N-JMI R-JMI
10 MAR 20 -35 —-50 -12 -9 6 -27
50 —-13 —15 -14 —-20 -7 -21

100 -9 -19 -17 -10 -8 -23

250 -9 —18 —-10 -12 -8 -17

MNAR 20 -13 —24 —26 2 —-13 -50

50 -17 —-13 —14 -5 -3 —59

100 -14 —22 —-12 -13 -9 —54

250 -14 -7 13 2 4 —58

20 MAR 20 —24 —52 7 -25 —22 —-13
50 -17 —28 -2 —22 -9 —26

100 -19 -37 —-14 -21 -9 -30

250 —-13 —30 -7 -8 —4 —28

MNAR 20 —26 —-27 -31 21 7 —63

50 —25 —-41 -15 -21 —6 -50

100 -17 —36 —-23 —-14 -3 —59

250 —-13 —24 -5 —-15 -3 —54

30 MAR 20 -23 —62 -23 172 -7 —49
50 —38 —63 —-23 —28 9 —38

100 —-20 —51 -21 -17 -3 -35

250 —-20 —49 -21 -16 —6 —48

MNAR 20 28 —-25 73 250 16 —64

50 —38 —52 27 29 -8 —63

100 -19 —53 —16 —16 -8 —59

250 —22 —-29 -14 -27 -3 —63

Note: Bold values indicate values that the bias exceeded 4-10% and was considered severe.

Relative bias of regression coefficients

Tables 6 and 7 show the median relative bias across simulation conditions for §; and
B2, respectively. Bolded values indicate severe bias according to criteria in Hoogland and
Boomsma [19] and Flora and Curran [14]. X5; was not generated to have any missing val-
ues so Table 7 shows the effect that variables with missing values exhibit on a complete
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Table 7. Relative bias for regression coefficient of 8, (d = 0.50).

Relative Bias of 8

% Missing Sample size FCS-R FCS-P LD ML N-IMI RIMI
10 MAR 20 -1 —27 6 —1 3 -7
50 -2 -20 9 3 1 -5

100 -1 -17 -3 1 1 -7

250 -1 —12 2 —1 -2 -7

MNAR 20 -5 -14 -5 -6 -9 —60

50 -2 -8 -3 1 -3 —54

100 -1 -7 -3 1 -3 —54

250 -1 —4 -2 1 1 —54

20 MAR 20 21 ~34 12 3 -1 -21
50 12 ~29 —4 9 -2 —14

100 4 -25 7 6 —4 -1

250 4 -17 8 1 -2 -10

MNAR 20 -8 ~26 -18 -9 -1 -53

50 1 -17 3 3 3 —50

100 2 ~16 -3 1 0 -53

250 3 -1 1 3 0 -52

30 MAR 20 2 —54 —21 24 -7 ~22
50 -5 48 -17 1 2 -21

100 2 ~36 -1 1 1 -15

250 2 ~29 -8 -3 -1 —14

MNAR 20 1 —26 —65 78 -1 —57

50 2 -13 22 3 3 -55

100 -1 -10 2 1 -1 -53

250 -2 -1 -3 2 -2 -52

Note: Bold values indicate values that the bias exceeded 4-10% and was considered severe.

variable. From Table 6, it can be seen that many different methods yield highly biased esti-
mates of regression coefficients when data are missing and the bias tends to increase as the
percent of missing data increases. FCS-P, ML, and R-JMI all have particularly poor perfor-
mance and were quite biased even for relatively small amounts of missing data and samples
as large as 250. N-JMI did not exhibit severe bias so long as the sample size was 50 or larger,
even under the MNAR condition.

As would be expected, the values in Table 7 were much less extreme than in Table 6
because X,; was complete. However, X»; with FCS-P seemed to be affected by other vari-
ables having missing values. The cautions of bias when using a ridged prior were realized as
well with noticeably severe bias in R-JMI that increased with MNAR and as the percentage
of missingness increased. FCS-R and N-JMI were minimally affected by missing values on
other variables and ML performed well when the sample size was at least 50.

Discussion and limitations

Based on the results of the simulation, N-JMI unambiguously performed best for the con-
ditions included in the study. Type-I errors were very nearly at the nominal rate, power was
essentially identical to what was obtained with the complete simulated data with up to 30%
missingness, and the magnitude of the bias in the regression coefficients was below 10% for
nearly all conditions, including the mild MNAR condition. With small sample sizes in gen-
eral, power is a ubiquitous concern and each observation is crucial to retain. Because ML
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capitalizes on all observed data but works around missing values and LD removes cases
with missing values, these methods handled missing data far less desirably with smaller
sample sizes or as the percentage of missing data increased. Because ML and LD do not
rectangularize the data, larger percentages of missing data, in essence, reduce the sample
size; MTI’s ability to rectangularize the data by filling in the holes allows the maximal amount
of information to be retained in the subsequent analyses.

Despite the fact that the fully conditional specification also retangularizes the data, FCS-
R and FCS-P also tended to perform rather poorly with smaller samples. FCS-R exhibited
a fair amount of power but with inflated Type-I error rates. FCS-P estimated coeflicients
with large amounts of bias, presumably because the number of appropriate potential donor
observations is reduced with small samples. With FCS-P, a common recommendation is to
select the five potential donor cases that most closely match on the relevant covariates of
the individual with a missing value. Then, one of the five donor cases is randomly selected
and its value used for imputation. With only 20 or 50 individuals, however, the closest five
individuals may not be very similar at all and the bias seen in the coefficient estimates
seemed to reflect this.

Though not reported previously, convergence with N-JMI was only problematic in the
20 individual conditions in this study with non-convergence rates between 10% and 15%,
depending on condition. R-JMI was useful in aiding model convergence in these condi-
tions and had perfect convergence. However, N-JMI otherwise vastly outperformed R-JMI
in scenarios in which N-JMI was able to converge. To optimize performance, R-JMI is
therefore only recommended with small samples when model convergence is problematic
and the percentage of missing values is rather low, otherwise estimates may be subjected
to substantial bias and can be improved upon with N-JML

Additionally, for the conditions in this study, augmenting the number of imputations
did not have a discernable effect of power, which has been similarly observed in small
to moderate sample size conditions (though not extending as small as included in the
present study) in studies focusing on the number of imputations to perform [15]. How-
ever, given the secondary focus of the number of imputations in this study and the more
extensive nature of previous studies on the topic, performing 20 or more imputations is
recommended for most straightforward models when the increase in computational time
is negligible because performing more imputations does not adversely affect estimation
provided that the computational time is reasonable.

In applied settings, the differential performance of the N-JMI and other methods for
missing data may not be as extensive as observed in the simulation study. Although MI
does have the advantage of retaining all cases which is highly desirable with small samples
and N-JMI performed best among competing MI methods, the process of imputing values
is not always straightforward and slight changes to the imputation model can affect results.
JMI assumes multivariate normality which was upheld in this study but may be tenuous
in applied research. Imputing for interactions and higher order terms and also properly
centering variables can also be somewhat challenging with MI methods, particularly when
attempting to specify the imputation model [10,13]. Failing to adequately account for the
complexity these situations introduce into the imputation model can attenuate estimates
so that estimates are biased towards 0, even if data are MCAR [10]. In methods that do
not impute data such as ML, there is no imputation model so these concerns are less rel-
evant (although users of ML may need to consider auxiliary variables to ensure that the
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mechanism leading to missing values is included in the model). Additionally, as partially
evidenced by the R-JMI results, prior distributions have a greater influence on MCMC
posterior distributions with smaller sample sizes.

Nonetheless, despite some additional modeling hurdles, for the conditions in this study
N-JMI gives researchers the greatest ability to maximize power and be confident that Type-
I error rates are performing at the nominal rate with small samples because it results in a
completed dataset. Granted, properly specifying the imputation model is no small task and
modeling small sample data almost always involves tradeoffs. The price paid for carefully
considering the imputation model could be rewarded with estimates that are essentially
identical to what would have been obtained had all the data been collected. Alternative
methods such as LD or ML may be more appealing due to their less-intensive manner for
handling missing values, but, with small samples in particular, one pays for convenience
with far less desirable performance.

As limitations of this study, first the imputation model included all appropriate vari-
ables. In applied data analytic scenarios, this may be quite difficult to accomplish in most
scenarios. Second, data were generated such that the multivariate normality assumption
inherent with many missing data methods was upheld which is assumed when using ML
and JMI. In applied settings with small samples, multivariate normality may be tenuous and
the ability to test the tenability of this assumption with small samples is often rather diffi-
cult [33]. Second, the data generation model was admittedly and purposefully rather tame.
The literature on the performance of methods to handle arbitrary missingness with small
samples is virtually non-existent, so the rather simple model allowed for a baseline empir-
ical comparison within a context where the methods have been well-studied and in which
few questions of their utility under ideal conditions exist. Even with a fairly simple model,
the results remain informative for researchers facing this analytic challenge with real data
[see 15 for an oft-cited paper employing an even simpler model] as the results were rather
clear-cut. Third, the single-level nature of the model may not be adequate for the common
scenarios in disciplines such as behavioral sciences where data are often clustered within
higher level units (e.g. suitable for multilevel modeling); future research could extend small
sample investigations to the multilevel setting where the options to handle missing data
are more diffuse and where performance and recommendations for best practice are less
well-defined in the methodological literature.

Notes

1. Missing values for X3; were induced prior to creating missing values for Xj;.

2. Hereafter, N-JMI refers to multiple imputation with a non-ridged prior, R-JMI refers to multiple
imputation with a ridged prior, and JMI refers to multiple imputation in a broad sense.

3. Honaker et al. [19] have recommended 10% as a reasonable upper bound for the ridge prior
proportion (p. 20).
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