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ABSTRACT
For the solution of operator equations, Stevenson introduced a
definition of frames, where a Hilbert space and its dual are not
identified. This means that the Riesz isomorphism is not used as
an identification, which, for example, does not make sense for
the Sobolev spaces H1

0ðXÞ and H�1ðXÞ. In this article, we are
going to revisit the concept of Stevenson frames and introduce
it for Banach spaces. This is equivalent to ‘2-Banach frames. It is
known that, if such a system exists, by defining a new inner
product and using the Riesz isomorphism, the Banach space is
isomorphic to a Hilbert space. In this article, we deal with the
contrasting setting, where H and H0 are not identified, and
equivalent norms are distinguished, and show that in this set-
ting the investigation of ‘2-Banach frames make sense.
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1. Introduction

The standard definition of frames found first in the paper by Duffin and
Schaefer [1] is the following:

kf kH�khf ;wkiHk‘2 for all f 2 H: (1)

Here, x�y means that there are constants 0<A � B<1 such that
A � x � y � B � x.
This concept led to a lot of theoretical work, see e.g., [2–6], but has been

used also extensively in signal processing [7], quantum mechanics [8],
acoustics [9], and various other fields.
Frames can be used also to represent operators. For the numerical solu-

tion of operator equations, the (Petrov-) Galerkin scheme [10] is used,
where operators are represented by hOwk;/lik;l2K , called the stiffness or sys-
tem matrix. The collection W ¼ ðwkÞk2K consists of the ansatz functions,
the collection U ¼ ð/kÞk2K are the test functions. If W and U live in the
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same space, this is called Galerkin scheme, otherwise it is called
Petrov–Galerkin scheme.
In finite and boundary element approaches, not only bases were used

[11, 12], but also frames have been applied, e.g., in [13–17]. Recently, such
operator representations got also a more theoretical treatment [18–20].
In numerical applications, it is often advantageous to have self-adjoint

matrices, e.g., for Krylov subspace methods, which necessitates to use the
same sequence for the discretization at both sides, i.e., investigating
hOwk;wlik;l2K . Note that this matrix is self-adjoint if O is, and semi-positive
if O is. Positivity is in general not preserved, only if a system without
redundancy is used, i.e., a Riesz sequence. Partial differential operators are
typically operators of the form O : H ! H0, while boundary integral opera-
tors might also be smoothing operators which map in accordance with
O : H0 ! H. One possible solution is to work with Gelfand triples i.e.,
H � H0 � H0. This is explicitly done for the concept of Gelfand
frames [21].
Another possibility is the following, introduced by Stevenson in [17] and

used, e.g., in [15]: A collection W ¼ ðwkÞk2K � H is called a (Stevenson)
frame for H, if

kf kH0�khf ;wkiH0;Hk‘2 for all f 2 H0: (2)

Note the difference to the definition (1) by Duffin and Schaefer, which is
significant only if the Riesz isomorphism is not employed. Here, the
Gelfand triple is only implicitly used and, if the fully general setting is
used, the density of the spaces is not required.
Clearly, the definitions (1) and (2) are equivalent by the Riesz isomorph-

ism. On the other hand, if the isomorphism H ffi H0 is not considered, but
another one is utilized, for example, considering the triple H � H0 � H0,
then the Riesz isomorphism is usually used as an identification on the pivot
space H0 ffi H0

0, and therefore H and H0 cannot be considered to be equal.
In this article, we consider the original definition by Stevenson and re-

investigate in full detail all the derivation to ensure that the Riesz identifi-
cation does not ‘creep in’ again.
On a more theoretical level, let us consider Banach frames [22–24].

Thus, we consider a Banach space X, a sequence space Xd, and a sequence
W � X0. This is a Xd-frame if

kf kX�khf ;wkiX;X0kXd
for all f 2 X:

It is called a Banach frame if a reconstruction operator exists, i.e., there
exists R : Xd ! X with Rðwkðf ÞÞ ¼ f for all f 2 X.
In this setting, ‘2-frames were not considered to be interesting as they

are isomorphic to Hilbert frames, see e.g., [25, Proposition 3.10]: Let W be
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a ‘2-frame for X. Then, X can be equipped with an inner product
hf ; giX ¼ hCWf ;CWgi‘2 , becoming a Hilbert space, and W is a (Hilbert)
frame for X. The proof uses the Riesz isomorphism H ffi H0 in the last line.
But if a context is considered, where this isomorphism cannot be applied,
like for example a Gelfand triple setting, suddenly the concept of ‘2-frames
might become nontrivial again, and the concept of Stevenson frames is dif-
ferent to a (standard Hilbert space) frame. In this article, we investigate
this approach.
The rest of this article is structured as follows. In Section 2, we motivate

Gelfand triples H0 � H0 � H by a simple example arising from the vari-
ational formulation of second-order elliptic partial differential equations.
Section 3 then provides the main ingredients we need, especially it introduces
the different notions of frames for solving operator equations. By an illustra-
tive example, we show that Stevenson frames seem to offer the most flexible
concept for the discretization of operator equations. Finally, in Section 4, we
generalize Stevenson frames to Banach spaces and discuss the consequences.

2. Motivation: Solving operator equations

Let O : H ! H0 and define the bilinear form a : H�H ! R by
aðu; vÞ ¼ hOu; vi. Assume that a satisfies the following properties:

1. Let a be bounded, i.e., there is a constant CS, such that

a u; vð Þ � CS � kukHkvkH:
This is equivalent to O being bounded.

2. Let a be elliptic, i.e., there exists a constant CE such that

a u; uð Þ 	 CE � kuk2H:
Both conditions are equivalent to O being bounded, boundedly invertible,
and positive, see e.g., [26, 27].
The general goal is to find the solution u 2 H such that

a u; vð Þ ¼ ‘ vð Þ for all v 2 H: (3)

This is the weak formulation of the operator equation Ou ¼ b, setting
‘ðvÞ ¼ hb; viH0;H for u 2 H and b 2 H0.
In numerical approximation schemes, to get an approximate solution,

finite dimensional subspaces V � H are considered and the solution uV 2
V such that

a uV ; vð Þ ¼ ‘ vð Þ for all v 2 V

is calculated. The error between the continuous solution u 2 H and the
approximate solution uV 2 V is orthogonal to the space V, which is known
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as the Galerkin orthogonality: aðu�uV ; vÞ ¼ 0 for all v 2 V. Note that, in
difference to, e.g., a Gelfand triple approach, the norms on V and H are
the same in the setting above. Instead, the Gelfand triple setting would be
H � H0 � H0 with k � kH0

� ck � kH.
We shall illustrate the setting also by a practical example from the theory

of partial differential equations. To that end, assume that X is a bounded
domain in R

d and let H0 :¼ L2ðXÞ be the space of all square-integrable
functions v : X ! R. As space H � H0 we consider the Sobolov space
H1

0ðXÞ which consists of all functions in L2ðXÞ whose first-order week
derivatives are also square-integrable and which are zero at the boundary
oX. Thus, the variational formulation of the Poisson equation

�Du ¼ f in X; u ¼ 0 on oX

reads

seek u 2 H1
0 Xð Þ such that a u; vð Þ ¼ ‘ vð Þ for all v 2 H1

0 Xð Þ; (4)

compare [26] for example. The bilinear form

a : H1
0 Xð Þ � H1

0 Xð Þ ! R; a u; vð Þ ¼
ð
X
rurvdx

is continuous and elliptic due to Friedrichs’ inequality, cf. [26], and the lin-
ear form

‘ : H1
0 Xð Þ ! R; ‘ vð Þ ¼

ð
X
fvdx

is continuous provided that f 2 H�1ðXÞ ¼ ðH1
0ðXÞÞ0. Hereby, the inner

product in the pivot space L2ðXÞ is continuously extended onto the duality
pairing H�1ðXÞ �H1

0ðXÞ. Hence, the underlying Gelfant triple is H1
0ðXÞ �

L2ðXÞ � H�1ðXÞ.

3. Main definitions and notations

3.1. Dual pairs

Let X, Y be vector spaces and a(x, y) a bilinear functional on X�Y. Then
(X, Y) is called a dual pair [28], if

1. 8x 2 Xn 0f g9y 2 Y s:t: a x; yð Þ 6¼ 0;
2. 8y 2 Yn 0f g9x 2 X s:t: a x; yð Þ 6¼ 0:

In short, the notation aðx; yÞ ¼ hx; yia ¼ hx; yi is used. A classical example
is a Banach space X and its dual space X0. But looking at other dual pairs
allows to have an explicit form for the dual elements [29].
Note that often an isomorphism is considered as an identity. For

example, by using the Riesz mapping H ffi H0, the dual space H0 is often
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identified with H. If two or more isomorphisms are involved, this identifi-
cation, of course, can only be considered for one of those isomorphisms.
For example, if we consider two Hilbert spaces H1 � H2, the Riesz iso-
morphism can be considered only for one of them to be an identification,
see also Section 3.3.2.

3.2. Gelfand triples

Let X be a Banach space and H a Hilbert space. Then, the triple ðX;H;X0Þ
is called a Banach Gelfand triple [30], if X � H � X0, where X is dense in
H, and H is w?-dense in X0. The prototype of such a triple is ð‘1; ‘2; ‘1Þ in
case of sequence spaces.
Note that, even if we consider the spaces all being Hilbert spaces – such

a sequence is also called rigged Hilbert spaces [31] – the Riesz isomorph-
ism, in general, is not just the composition of the inclusion with its adjoint.
This depends on the chosen concrete dual pairing.
As another example, consider the triple H1

0ðXÞ � L2ðXÞ � H�1ðXÞ,
which has been presented in the practical example for the Poisson equation
in Section 2.

3.3. Frames

A sequence W ¼ ðwkÞk2K in a separable Hilbert space H is a frame for H,
if there exist positive constants AW and BW (called lower and upper frame
bound, respectively) that satisfy

AWkf k2 �
X
k2K

jhf ;wkij2 � BWkf k2 for all f 2 H: (5)

An upper (resp. lower) semi-frame is a complete system that only satis-
fies the upper (resp. lower) frame inequality, see [32, 33]. A frame where
the two bounds can be chosen to be equal, i.e., AW ¼ BW, is called tight.
We will denote the corresponding sequences in H by W ¼ ðwkÞk2K and
U ¼ ð/kÞk2K in the following, where we consider general discrete index sets
K � R

d. A sequence that is a frame for its closed linear span is called a
frame sequence.
By CW : H ! ‘2 we denote the analysis operator defined by ðCWf Þk ¼

hf ;wki. The adjoint of CW is the synthesis operator DWðckÞ ¼
P

k ckwk. The
frame operator SW ¼ DWCW can be written as SWf ¼

P
khf ;wkiwk. It is

positive and invertible. Note that those ‘frame-related’ operators can be
defined as possibly unbounded operators for any sequence in the Hilbert
space [34].
By using the canonical dual frame ðewkÞ, i.e., ewk ¼ S�1

W wk for all k, we get
a reconstruction formula:

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 69



f ¼
X
k

hf ;wkiewk ¼
X
k

hf ; ewkiwk for all f 2 H:

The Gramian matrix GW is defined by ðGWÞk;l ¼ hwl;wki, also called the
mass matrix. This matrix defines an operator on ‘2 by matrix multiplica-
tion, corresponding to GW ¼ CWDW. Similarly, we can define the cross-
Gramian matrix ðGW;UÞk;l ¼ h/l;wki between two different frames U and
W. Clearly,

GW;Uc ¼
X
l

GW;Uð Þk;lcl ¼
DX

l

cl/l;wk

E
¼ CWDUc:

If, for the sequence W, there exist constants AW;BW>0 such that the
inequalities

AWkck22 �
����X

k2K
ckwk

����2
H
� BWkck22

are fulfilled, W is called a Riesz sequence. If W is complete, it is called a
Riesz basis.

3.3.1. Banach frames
The concept of frames can be extended to Banach spaces [22–24]:
Let X be a Banach space and Xd be a Banach space of scalar sequences.

A sequence ðwkÞ in the dual X0 is called an Xd-frame for the Banach space
X, if there exist constants AW;BW>0 such that

AWkf kX � kwk fð ÞkXd
� BWkf kX for all f 2 X:

An Xd-frame is called a Banach frame with respect to a sequence space
Xd, if there exists a bounded reconstruction operator R : Xd ! X, such that
Rðwkðf ÞÞ ¼ f for all f 2 X. In our setting, we use p-frames, that is Xd ¼ ‘p

for 1 � p � 1, especially, we use Xd ¼ ‘2.
A family ðgkÞk2K � X is called a q-Riesz sequence ð1 � q � 1Þ for X, if

there exist constants AW;BW>0 such that

AW

X
k2K

jdkjq
� �1

q �
����X

k2K
dkgk

����
X

� BW

X
k2K

jdkjq
� �1

q (6)

for all finite scalar sequence ðdkÞ. The family is called a q-Riesz basis if it
fulfills (6) and spanfgk : k 2 Kg ¼ X.
Any q-Riesz basis for X0 is a p-frame for X, where 1

p þ 1
q ¼ 1, com-

pare [23].
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3.3.2. Gelfand frames
A frame for H is called a Gelfand frame [21] for the Gelfand triple
ðX;H;X0Þ if there exists a Gelfand triple of sequence spaces ðXd; ‘

2;X0
dÞ,

such that the synthesis operator DW : Xd ! X and the analysis operator
CeW : X ! Xd are bounded. As a result, see [21, 35], this means that W is a
Banach frame for Xd and eW a Banach frame for X0

d.
In many approaches, see e.g. [21], it is assumed for the implementation

that there exists an isomorphism DB : Xd ! ‘2. Should Xd be nonreflexive,
then it is also assumed that D?

B is an isomorphism. If DB is a diagonal
operator, i.e., DB ¼ diagðwkÞ and D�1

B ¼ diagð 1
wk
Þ, then W ¼ ð 1

wk
wkÞ is a

Hilbert frame for X and ðwk
ewkÞ is a Hilbert frame for X0. This is shown

for real weights in [36]. It is easy to see also for complex weights when
using a weighted frame viewpoint [37, 38]. These cases cover the weighted
spaces ‘2w.
The above setting can be generalized as follows: We define, similar to

[25], the sesquilinear form hf ; gioX :¼ hDBCeW f ;DBCeWgi‘2 . It is obviously

bounded and elliptic, and, in particular, kf kXo :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffihf ; f iXo

p
is equivalent to

kf kX. Therefore, ðX; kf kXoÞ is a Hilbert space which is isomorphic to
ðX; kf kXÞ. Now let nl :¼ DWD�1

B dl, where dl is the standard basis in ‘2. This

is a Hilbert space frame for X. Similarly, gl :¼ DeWðD?
BÞ�1dl is a Hilbert

space frame for X0. As a consequence X and X0 are Hilbert spaces, but X 6¼
X0 and the inner products and the corresponding norms are changed, albeit
equivalent to the original ones.

3.4. Stevenson frames

We consider the duality ðH;H0Þ without using the Riesz isomorphism. In
particular, we use the duality with respect to a second Hilbert space H0.

Definition 3.1 ([17]). A sequence W ¼ ðwkÞk2K � H is called a (Stevenson)
frame for H if there exists constants 0<AW � BW<1 such that

AW � kf k2H0 � khf ;wkiH0;Hk‘2 � BW � kf k2H0 for all f 2 H0: (7)

Different to the Gelfand frames setting, we do not assume density.
Typically, we consider Sobolev spaces and the L2-inner product, which

we can consider as co-orbit spaces with the sequence spaces ‘2w varying w.
Here, invertible operators between different spaces exist, see Section 3.3.2,
and density is also given. In this article, we treat the most general setting.
In [17], the author states ‘We adapted the definition of a frame given in

[39, Section 3] by identifying H with its dual H0 via the Riesz mapping’.
Then, the following results are stated, also in [15], without proofs: The ana-
lysis operator CW : H0 ! ‘2, CWðf Þ ¼ ðhf ;wkiÞk2K is bounded by (7), as is
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its adjoint C?
W : ‘2 ! H. It can be easily shown that C?

W ¼ DW is the syn-
thesis operator with DWc ¼

P
k2K ckwk. Especially, one has

‘2 ¼ ran CWð Þ�ker DWð Þ:
Define the frame operator SW ¼ DWCW. It is a mapping SW : H0 ! H, which

is boundedly invertible. We can show that the sequence eW ¼ ðS�1
W wkÞk2K is a

(Stevenson) H-frame with bounds 1
BW

and 1
AW
. Here, CeW ¼ CWS�1

W and

DeW ¼ S�1
W DW. Furthermore, it holds SeW ¼ S�1

W and, therefore, SeW : H ! H0.

We have the reconstructions

f ¼ DWCeWh ¼
X
k2K

D
f ; ewk

E
H;H0wk; (8)

and

h ¼ DeWCWh ¼
X
k2K

hh;wkiH0;Hewk; (9)

for all f 2 H and h 2 H0.
The cross-Gramian matrix G

W;eW ¼ DWCeW is the orthogonal projection
on ranðCWÞ and coincides with GeW;W

. Therefore, ranðCWÞ ¼ ranðCeWÞ.
In this article, we are revisiting those statements, make them slightly more gen-

eral, in order to make sure that not using the Riesz isomorphism is possible.

3.5. An illustrative example

Let X � R
n be a sufficiently smooth, bounded domain. We consider a mul-

tiscale analysis, i.e., a dense, nested sequence of finite dimensional subspaces

V0 � V1 � . . . � Vj � . . . � L2 Xð Þ;
consisting of piecewise polynomial ansatz functions Vj ¼ spanfuj;k :
k 2 Djg, such that dimVj
2jn and

L2 Xð Þ ¼ [
j2N0

Vj ; V0 ¼ \
j2N0

Vj:

One might think here of a multigrid decomposition of standard Lagrangian
finite element spaces or of a sequence of spline spaces originating from
dyadic subdivision.
Trial spaces Vj which are used for the Galerkin method satisfy typically a

direct or Jackson estimate. This means that

kv�PjvkL2 Xð Þ � CJ2
�jqkvkHq Xð Þ; v 2 Hq Xð Þ; (10)

holds for all 0 � q � d uniformly in j. Here, Pj : L2ðXÞ ! Vj is the
L2ðXÞ-orthogonal projection onto the trial space Vj and HqðXÞ �
L2ðXÞ; q 	 0 denotes the Sobolev space of order q. The upper bound d> 0
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refers in general to the maximum order of the polynomials which can be
represented in Vj, while the factor 2�j refers to the mesh size of Vj, i.e., the
diameter of the finite elements, compare [26] for example.
Besides the Jackson type estimate (10), there also holds the inverse or

Bernstein estimate

kPjvkHq Xð Þ � CB2
jqkPjvkL2 Xð Þ; v 2 Hq Xð Þ; (11)

for all 0 � q<c, where the upper bound

c :¼ sup t 2 R : Vj � Ht Xð Þ� �
>0

refers to the regularity of the functions in the trial spaces Vj. There holds
c ¼ d�1=2 for trial functions based on cardinal B-splines, since they are
globally Cd�1-smooth, and c ¼ 3=2 for standard Lagrangian finite element
shape functions, since they are only globally continuous.
A crucial requirement is the uniform frame stability of the systems under

consideration, i.e., the existence of constants AU;BU>0 such that

AUkPjf k2L2 Xð Þ �
X
k2Dj

jhf ;uj;kij2 � BUkPjf k2L2 Xð Þ for all f 2 L2 Xð Þ (12)

holds uniformly for all j. This stability is satisfied for example by
Lagrangian finite element basis functions defined on a multigrid hierarchy
resulting from uniform refinement of a given coarse grid, see [26] for
example. It is also satisfied by B-splines defined on a dyadic subdivision of
the domain under consideration.
Having a multiscale analysis at hand, it can be used for telescoping a

given function to account for the fact that Sobolev norms act different on
different length scales. Namely, the interplay of (10) and (11) gives rise to
the norm equivalence

kf k2eH�q
Xð Þ


X
j2N0

2�2jqk Pj � Pj�1ð Þf k2L2 Xð Þ (13)

for all 0 � q<c, where P�1 :¼ 0 and eH�qðXÞ :¼ ðHqðXÞÞ0 denotes the dual
to HqðXÞ, see [40] for a proof.
In accordance with [15], using (12), we can estimateX

j2N0

X
k2Dj

2�2jqjhf ;uj;kij2�
X
j2N0

2�2jqjjPjf k2L2 Xð Þ

¼
X
j2N0

2�2jq
Xj

‘¼0

k P‘�P‘�1ð Þf k2L2 Xð Þ

¼
X
‘2N0

k P‘�P‘�1ð Þf k2L2 Xð Þ
X1
j¼‘

2�2jq:
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The latter sum converges provided that q> 0 and we arrive atX
j2N0

X
k2Dj

2�2jqjhf ;uj;kij2�
X
‘2N0

2�2‘qk P‘�P‘�1ð Þf k2L2 Xð Þ:

In view of the norm equivalence (13), we have thus proven that there
exist constants AU;BU>0 such that

AUkf k2eH�q
Xð Þ �

X
j2N0

X
k2Dj

2�2jqjhf ;uj;kij2 � BUkf k2eH�q
Xð Þ (14)

for all 0<q<c. Therefore, in accordance with Definition 3.1, the collection

U ¼ 2�jquj;k : k 2 Dj; j 2 N0

n o
(15)

defines a Stevenson frame for H ¼ HqðXÞ, where H0 ¼ eH�qðXÞ with dual-
ity related to H0 ¼ L2ðXÞ. Notice that this frame underlies the construction
of the so-called BPX preconditioner, see e.g., [40–42]. Especially, by remov-
ing all basis functions which are associated with boundary nodes, one gets
a Stevenson frame for H ¼ H1

0ðXÞ, as required for the Galerkin discret-
ization of elliptic partial differential equations, compare Section 2.
We like to emphasize that the collection (15) does not define a Gelfand

frame, since (14) does not hold in H0 ¼ L2ðXÞ, i.e., for q¼ 0. Hence, the
concept of Stevenson frames seems to be more flexible than the concept of
Gelfand frames.

3.6. Operator representation in frame coordinates

For orthonormal sequences, it is well known that operators can be uniquely
described by a matrix representation [43]. The same can be constructed
with frames and their duals, see [18, 19].
Let W ¼ ðwkÞ be a frame in H1 with bounds AW;BW>0, and let U ¼

ð/kÞ be a frame in H2 with AU;BU>0.
1. Let O : H1 ! H2 be a bounded, linear operator. Thus, the infinite

matrix

M U;Wð Þ Oð Þ
� 	

m;n ¼ hOwn;/mi
defines a bounded operator from ‘2 to ‘2 with kMk‘2!‘2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BU � BW

p �
kOkH1!H2

. As an operator ‘2 ! ‘2, we have

M U;Wð Þ Oð Þ ¼ CU�O�DW:

2. On the other hand, let M be an infinite matrix defining a bounded oper-
ator from ‘2 to ‘2; ðMcÞi ¼

P
k Mi;kck. Then, the operator OðU;WÞ defined

by
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O U;Wð Þ Mð Þ
� 	

h ¼
X
k

X
j

Mk;jhh;wji
� �

/k for all h 2 H1

is a bounded operator from H1 to H2 with

kO U;Wð Þ Mð ÞkH1!H2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BU � BW
p kMk‘2!‘2

and

O U;Wð Þ Mð Þ ¼ DU�M�CW ¼
X
k

X
j

Mk;j � /k�iwj:

Please note that there is a classification of matrices that are bounded
operators from ‘2 to ‘2 [44].
If we start out with frames, more properties can be proved [18]: Let W ¼ ðwkÞ

be a frame inH1 with bounds AW;BW>0;U ¼ ð/kÞ inH2 with AU;BU>0.
1. It holds

O U;Wð Þ�M eU;eW� 	
 �
¼ idB H1;H2ð Þ ¼ O eU;eW� 	

�M U;Wð Þ

 �

:

Therefore, for all O 2 BðH1;H2Þ:
O ¼

X
k;j

hOewj;
e/ki/k�iwj:

2. MðU;WÞ is injective and OðU;WÞ is surjective.
3. If H1 ¼ H2, then OðW;eWÞðid‘2Þ ¼ idH1 .
4. Let N ¼ ðnkÞ be any frame in H3, and O : H3 ! H2 and P : H1 !

H3. Then, it holds

M U;Wð Þ O�Pð Þ ¼ M U;Nð Þ Oð Þ �M eN;W� 	
Pð Þ


 �
:

Note that, in the Hilbert space of Hilbert–Schmidt operators, the tensor
product W� U :¼ fwk � wlgðk;lÞ2K�K is a Bessel sequence/frame sequence/
Riesz sequence, if the starting sequences W and U are [45], with MðU;WÞ

being the analysis and OðU;WÞ being the synthesis operator. This relation is
even an equivalence [46].
For the invertibility, it can be shown [20, 47]: If and only if O is bijec-

tive, then M ¼ MðU;WÞðOÞ is bijective as operator from ranðCWÞ onto
ranðCUÞ. In this case, one has

M† ¼ M eW;eU� 	
O�1ð Þ ¼ GeW;eU�M U;Wð Þ O�1ð ÞGeW;eU ¼ M W;Uð Þ S�1

W O�1S�1
U

� 	
:

If we have an operator equation Ou ¼ b, we use

Ou ¼ b ()
X
k

hu; ewkiOwk ¼ b;
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which implies X
k

hu; ewkihOwk;wli ¼ hb;wli

for all l 2 K. Setting M ¼ MðW;WÞðOÞ, ~u ¼ CeWu and ~b ¼ CWb, we thus
have

Ou ¼ b () M~u ¼~b:

Note that, for numerical computations, see e.g. [17, 21], the system of
linear equations M~u ¼~b is solved. Then, u ¼ DW~u is the solution to
Ou ¼ b, avoiding the numerically expensive calculation of a dual frame
[48–50]. If the frame is redundant, then uk can be different to hu; ewki. If a
Tychonov regularization is used, we obtain uk ¼ hu; ewki by [51,
Prop. 5.1.4].

4. Stevenson frames revisited

As some of the references dealing with Stevenson frames used an unlucky
formulation, when stating if or if not the Riesz isomorphism is used, see
e.g. [17, 21], the authors decided to check everything again, and pay par-
ticular attention to the avoidance of the Riesz isomorphism, i.e., to not
use H ffi H0.
To not use the Riesz isomorphism in a treatment of Hilbert spaces is

mind-boggling, so we decided to use Banach spaces, to be sure to avoid all
pitfalls. (Note, however, that the Riesz isomorphism will be used on the
sequence space ‘2.) In particular, this is a generalization of the original def-
inition. The used spaces are necessarily isomorphic to Hilbert spaces, but
not Hilbert spaces per se.

4.1. Stevenson Banach frames

We start out with a generalized definition. (We will show that this is iso-
morphic, but not identical to the original definition.)

Definition 4.1. Let ðX;X0Þ be a dual pair of reflexive Banach spaces. Let
W ¼ ðwkÞk2K � X. It is called a Stevenson Banach frame for X, if there exist
bounds 0<AW � BW<1 such that

AWkf k2X0 � khf ;wkiX0;Xk‘2 � BWkf k2X0 for all f 2 X0:

The analysis operator

CW : X0 ! ‘2; CW fð Þ ¼ hf ;wkiX0;X
� 	

k2K
is bounded by

ffiffiffiffiffiffi
BW

p
by definition. (Note that we use here the notation
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which is more common for Banach spaces [24].) As a consequence of the
open mapping theorem, CW is one-to-one and has closed range.
For d ¼ ðdkÞ 2 ‘2ðKÞ with finitely many nonzero entries, i.e., d 2 c00,

consider

hCWf ; di‘2 ¼
X
k2K

hf ;wkiX0;Xdk ¼
D
f ;
X
k2K

dkwk

E
X0;X

:

By using a standard density argument and the reflexivity, it can easily be
shown that C?

W ¼ DW, where DW : ‘2 ! X is the synthesis operator with
DWc ¼

P
k2K ckwk. The bound of DW is also

ffiffiffiffiffiffi
BW

p
. The sum converges

unconditionally. Indeed, consider c 2 ‘2. Then, let K0 � K be a finite set,
such that X

k=2K0

jckj2<e0 :¼ effiffiffiffiffiffi
BW

p :

For another finite index set K1  K0, we thus find����X
k=2K

ckwk �
X
k=2K1

ckwk

����
H
¼ kDW c� c � vK1ð ÞkH<

ffiffiffiffiffiffi
BW

p
e0 ¼ e:

Hence, by e.g. [28, IV.5.1] and the fact that ‘2 is a Hilbert space, we
deduce

‘2 ¼ ran CWð Þ�ker DWð Þ: (16)

We define the frame operator SW ¼ DWCW, which is a mapping
SW : X0 ! X. In particular, the operator SW is self-adjoint. By definition of
SW, it follows that

hSWf ; giX;X0 � hCWf ;CWgi‘2 ;� BW � kf kX0 � kgkX0 : (17)

Hence, SW is bounded with bound BW. Furthermore, we have

hSWf ; f iX;X0 ¼ hC?
WCWf ; f iX;X0 ¼ hCWf ;CWf i‘2 ¼ kCWf k2‘2 	 AW � kf k2X0;

(18)

which implies that SW is one-to-one and positive. By [28, IV.5.1], this also
means that S?W ¼ SW has dense range. SW also has a bounded inverse since

kSWf kX ¼ sup
kgkX0 ¼ 1
g 2 X0

hSWf ; giX;X0 	
�
SWf ;

f
kf kX0


X;X0

	 AW � kf kX0 :

Therefore, it has closed range [52, Theorem XI.2.1]. Consequently, SW is
onto and bijective with

AWkf kX0 � kSWf kX � BWkf kX0 :

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 77



Thus, S�1
W is also self-adjoint, and

1
BW

kgkX � kS�1
W gkX0 � 1

AW
kgkX: (19)

Theorem 4.1. The sequence eW ¼ ðewkÞk2K :¼ ðS�1
W wkÞk2K � X0 is a Stevenson

Banach frame for X0 with bounds 1
BW

and 1
AW
. The range of its analysis oper-

ator coincides with the one of the primal frame, i.e., ranðCWÞ ¼ ranðCeWÞ.
The related operators are CeW ¼ CWS�1

W ;DeW ¼ S�1
W DW and SeW ¼ S�1

W . For f 2
X and g 2 X0, we have the reconstructions

f ¼
X
k2K

hf ; ewkiX;X0wk and g ¼
X
k2K

hg;wkiX0;X
ewk:

Proof. It obviously holds S�1
W wk 2 X0. Moreover, we have on the one handX

k2K

���hf ; ewkiX;X0
���2 ¼ X

k2K

���hf ; S�1
W wkiX;X0

���2 ¼ X
k2K

jhS�1
W f ;wkiX0;X

���2
� BWkS�1

W f k2X0 �
BW

A2
W

kf k2X
and on the other handX

k2K

���hf ; ewkiX;X0
���2 	 AWkS�1

W f k2X0 	
AW

B2
W

kf k2X0:

Hence, eW is an X0-frame. By employing the invertibility of SW for g ¼ S�1
W f ,

we get

hf ; S�1
W wkiX;X0 ¼ hSWg; S�1

W wkiX;X0 ¼ hg; SWS�1
W wkiX0;X ¼ hg;wkiX0;X:

This implies ranðCWÞ ¼ ranðCeWÞ, where CeW ¼ CWS�1
W and DeW ¼ S�1

W DW.
Furthermore, SeW ¼ S�1

W : X ! X0, because it holds

SeW f ¼ X
k

hf ; S�1
W wkiX;X0S�1

W wk

¼ S�1
W

X
k

hS�1
W f ;wkiX;X0wk ¼ S�1

W SWS
�1
W f ¼ S�1

W f

for all f 2 X.
Finally, we have the reconstructions

f ¼ DWCWS
�1
W f ¼ DWCeW f ¼ X

k2K
hf ; ewkiX;X0wk

for all f 2 X and

g ¼ S�1
W DWCW ¼ DeWCWg ¼

X
k2K

hh;wkiX0;X
ewk

for all g 2 X0.
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As

hS�1
W x; xiX0;X � kS�1

W xkX0kxkX � 1
AW

kxk2X;

we have the sharper upper bound. On the other hand, since hS�1
W �; �i

defines a positive sesquilinear form, the Cauchy–Schwarz inequality implies���hS�1
W x; yiX0;X

���2 � hS�1
W x; xiX0;XhS�1

W y; yiX0;X:

Thus, with x ¼ SWu, there holds���hu; yiX0;X���2 � hu; SWuiX0;XhS�1
W y; yiX0;X

and consequently

kyk2X ¼ sup
kukX0 ¼ 1
u 2 X0

���hu; yiX0;X���2 � BWhS�1
W y; yiX0;X:

So, the sharper bounds 1
BW

and 1
AW

follow. w

The fact that ranðCWÞ ¼ ranðCeWÞ is very different to the Gelfand frame
setting, where the ranges ranðCWjX0 Þ 6¼ ranðCeW jXÞ even live in different
sequence spaces.

Theorem 4.2. The cross-Gramian matrix G
W;eW ¼ CWDeW is the orthogonal

projection on ranðCWÞ and coincides with GeW;W
.

Proof. We have that the cross-Gramian matrix of a frame and its dual is a
projection:

G
W;eW
 �2 ¼ CWDeWCWDeW ¼ CWDeW : ¼ G

W;eW :
Next, it holds

G?

W;eW ¼ CWDeW
 �? ¼ CeWDW ¼ GeW;W
:

In addition, since

G
W;eW
 �

k;l
¼

Dewl;wk

E
X0;X

¼ hS�1
W wl;wkiX0;X ¼ hwl; S

�1
W wkiX;X0 ¼ GeW;W


 �
k;l
;

we conclude G
W;eW ¼ GeW;W

. Thus, G
W;eW is self-adjoint. w

Theorem 4.3. The collection W is a Stevenson Banach frame for X with
bounds AW and BW if and only if
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1
BW

kf kX � inf
d2‘2;DWd¼f

kdk‘2 �
1
AW

kf kX:

In particular, for any f 2 X with f ¼ P
k2K dkwk and d ¼ ðdkÞ 2 ‘2, we

have kdk‘2 	 kCeW f k‘2 .
Proof. Given

f ¼
X
k2K

dkwk 2 X;

we have the representation

f ¼
X
k2K

hf ; ewkiX;X0wk:

Hence,

dk � hf ; ewkiX;X0


 �
2 ker DWð Þ:

By (16) and Theorem 4.1, there follows kdk‘2 	 kCeW f k‘2 . w

Consequently, a Stevenson frame is a Riesz basis for X if and only if DW

is one-to-one.

4.2. Is X 0 a Hilbert space?

Set hu; viX0
H
:¼ hu; SWviX0;X. This is, trivially, a symmetric and positive bilin-

ear form by above and, therefore, an inner product on X0. Hence, X0 is a
pre-Hilbert space with this inner product. By (17) and (18), the corre-
sponding norm is equivalent to the original one as

ffiffiffiffiffiffiffi
AW

p kf kX0 �
kf kX0

H
� ffiffiffiffiffiffi

BW
p kf kX0 . Thus, ðX0; h�; �iÞ is a Hilbert space.

Note that, in particular for numerics, it is sometimes not enough to con-
sider equivalent norms. While well-posed problems stay well-posed for
equivalent norms, this becomes important for concrete implementations, as
things like condition numbers, constants in convergence rates, etc.
are considered.
From a frame theory perspective, switching to an equivalent norm can

destroy or create tightness, in particular, the switch from one norm to the
other changes the frame bound ratio BW

AW
. We refer the reader to, e.g.,

weighted and controlled frames [37], which are under very mild conditions
equivalent to classical Hilbert frames. Nonetheless, they have applications
for example in the implementation of wavelets on the sphere [53, 54], and
nowadays become important for the scaling of frames [55, 56]. As a trivial
example, look at W :¼ fe1; e1; e2; e2; e3; e3; . . .g, where E ¼ feigi2N is an
orthonormal basis for H. Then, W is a tight frame with AW ¼ 2. Looking
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at the reweighted version U :¼ f2e1; 2e1; e2=2; e2=2; 2e3; 2e3; . . .g, we loose
tightness, since this frame has bounds A¼ 1 and B¼ 4. Note that there
exists an invertible bounded operator that maps the single elements from
W into U, i.e., they are equivalent sequences [57].
Also note that, if it does not make sense to assume that X � X0, then W

cannot be a Hilbert space frame per se. This can only be true for the subse-
quence of X0 the Stevenson frame W0 :¼ ðw0

kÞ ¼ ðIwkÞ, where I is an iso-
morphism from X0 to X, for example, choosing I ¼ S�1

W . In this case, the
frame bounds are preserved, but the roles of primal and dual frames
interchange.
This especially means that, if the frame bound ratio is important, distin-

guishing ‘2-Banach frames from Hilbert frames is necessary, especially if
concrete examples for X and X0 are used, where an identification is not
possible, i.e., X 6¼ X0. As such, Definition 4.1 is, of course, equivalent to the
standard frame definition for Hilbert spaces, but the frame bound
ratio changes.
We like to remark that, by using the dual frame, one can also conclude

that X itself is a Hilbert space.

4.3. Matrix representation

Let us also revisit the statements about the matrix representation of opera-
tors [15, 17]. To this end, let W be Stevenson Banach frame for X.
Let us now consider an operator O : X ! X0 and define

M Wð Þ Oð Þ

 �

m;n
¼ hOwn;wmiX0;X:

Then, M Wð Þ Oð Þ ¼ CWODW, which implies

kM Wð Þ Oð Þk‘2!‘2 � BWkOkX!X0 :

(As in Section 3.6, we could consider different sequences, and the argu-
ments would still work, but following the argument in the Introduction
and for easy reading we will not.)
For an invertible operator O, we have

M eWð Þ
O�1ð ÞM Wð Þ Oð Þ ¼ CeWO�1DeWCWODW ¼ GeW;W

:

(For the analog result in the Hilbert frame case, see [20, 47].) Equivalently,

M Wð Þ Oð ÞM eWð Þ
O�1ð Þ ¼ GeW;W

:

Therefore, as GeW;W
is the orthogonal projection on ranðCWÞ the operator

MðWÞðOÞjranðCWÞ
is boundedly invertible, as
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kM Wð Þ Oð Þkran CWð Þ!ran CWð Þ 	 AWkO�1k�1
X0!X:

Furthermore,

ker M eWð Þ
Oð Þ


 �
¼ ker DWð Þ:

If O is symmetric, then MðWÞðOÞ is symmetric. If O is nonnegative, so is
MðWÞðOÞ. In particular, we have now have settled all statements in
[15, 17].
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