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ABSTRACT
There is a growing interest to get a fully MR based radiotherapy. The
most important development needed is to obtain improvedbone tis-
sue estimation. The existing model-based methods perform poorly
on bone tissues. This paper was aimed at obtaining improved bone
tissue estimation. Skew-Gaussian mixture model and Gaussian mix-
ture model were proposed to investigate CT image estimation from
MR images by partitioning the data into two major tissue types. The
performance of the proposedmodels was evaluated using the leave-
one-out cross-validation method on real data. In comparison with
the existing model-based approaches, the model-based partition-
ing approach outperformed in bone tissue estimation, especially in
dense bone tissue estimation.
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1. Introduction

Magnetic resonance (MR) imaging and computed tomography (CT) are the most widely
used diagnostic imaging technologies in medicine. They are used to obtain more detailed
cross-sectional images of the human body. CT uses ionizing radiation to record a pattern
of radiodensities to obtain cross-sectional images. The ionizing radiations are attenuated
as they pass through the tissues of patients. The amount of attenuations depends on the
tissue types. The differences in attenuation between adjacent tissues create contrast on CT
images. Tissues with higher (or lower) attenuation appear brighter (or darker) on grayscale
CT images. As a result, air, soft, and bone tissues appear as darkest, darker, and white on
grayscale CT images. Therefore, the CT image is excellent for identifying and assessing the
structures of bone tissues. On the other hand, exposing a patient to ionizing radiation in
CT imaging may have a risk for radiation-related cancer.

MR imaging is remarkably different from CT. It does not depend on ionizing radia-
tions.MR imaging relies on the absorption and emission of radiowaves from tissue protons
exposed to a strong magnetic field. Thus, MR imaging is safer than CT imaging. The rela-
tiveMR signal intensity differences between adjacent anatomic structures determine tissue
contrast onMR images. In comparison with CT images, MR images showmuch better soft
tissue contrast and noticeably improves the delineation of tumors. However, MR images
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are poor in depicting bone tissues. The reason is that bone, air, and rapidly flowing blood
appear black on grayscale MR images.

A new innovation MR-only based radiotherapy enhances tissue contouring and pre-
cision in soft tissue therapy setup. It also improves biological information at treatment
planning and avoids registration errors, which are errors due to the transformation of dif-
ferent images of the same scene into one coordinate system, between CT and MR images.
Moreover, MR-only based radiotherapy is a cost-effective approach as it reduces redun-
dant imaging. However, co-registered CT and MR image complement each other due to
better bone tissue imaging of CT [8,10,20]. MR images are not directly applicable for atten-
uation correction. Attenuation refers to the loss of signals due to absorption or scattering
out of the signals in the body. CT images are vital for attenuation correction in positron
emission tomography (PET) imaging. This is due to the direct relation between CT image
intensities and PET attenuation coefficients. However, the CT scanner is not available in
recently combined PET/MR imaging scanner. Therefore, MR-only based radiotherapy and
the combined PET/MR imaging scanner can be successful if one can obtain a reliable CT
image estimation. As a result, we need to develop a reliable CT image estimation method
fromMR images.

Huynh et al. [14] used a learning-based method to estimate CT image from the MR
image. A patch of CT image is estimated directly from a given MR image patch using the
structured random forest. The robustness of the estimation has been evaluated using a new
ensemble model. Nie et al. [30] proposed a 3D deep learning-based method for patch-
wise estimation of CT images from MR images. The neural network generates structured
output and it preserves the neighborhood information in the estimated CT image. Arabi
et al. [1] suggested a two-step atlas-based algorithm to estimate CT image fromMR image
sequences. The estimation is mainly concerned with pinpointing of bone tissues.

Johansson et al. [16] used a Gaussian mixture model (GMM) to obtain CT substi-
tute fromMR images without taking spatial dependence between neighboring voxels into
account. Johansson et al. [17] investigated the uncertainty associated to the voxel-wise
estimation of CT images. By considering spatial dependence between neighboring voxels,
Kuljus et al. [22] extended the work of Johansson et al. [16] by using hiddenMarkovmodel
(HMM)andMarkov randomfield (MRF)model. Kuljus et al. [22] compared the estimation
quality of GMM, HMM, and MRF. In terms of mean absolute error, HMM outperformed
the other models and it was computationally robust than MRF. However, it had a weaker
estimation quality on dense bone tissues. Even though MRF had superior performance on
bone tissue estimation, it was computationally expensive.

The main aim of this article is to further investigate the voxel-wise estimation of CT
images fromMR images by partitioning the data into non-bone and bone tissues. Accord-
ing to Johansson et al. [17] andKuljus et al. [22], the estimation ofCT imagewas poor on air
and bone tissues. It is this result that motivated the partitioning of the data into non-bone
and bone tissues in order to further explore the estimation of CT images. Even though there
is no clear-cut CT image intensity boundary between these tissue types, Waterstram-Rich
and Gilmore [33] and Washington and Leaver [34] provide informative threshold delim-
iting these tissues. Waterstram-Rich and Gilmore [33] used 150 Hounsfield units (HU) as
a lower limit for bone tissues. On the other hand, Washington and Leaver [34] utilized
200HU as an approximate delimiting value of the tissues.
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The partitioning of the data may introduce skewness. Consequently, there is a need
to relax the normality assumption used in [16,17,22]. Azzalini [4] proposed a univariate
skew-normal model that relaxed the normality assumption by incorporating a skewness
parameter in the distributional assumption. Azzalini and Dalla Valle [5] extended the
univariate skew-normal to a multivariate skew-normal. A multivariate skew-normal is a
tractable extension of a multivariate normal distribution with an extra parameter to reg-
ulate skewness. Lin et al. [27] introduced a univariate skew-normal mixture model in
order to deal with population heterogeneity and skewness. Lin [25] extended the univari-
ate skew-normal mixture model to a multivariate skew-normal mixture model which is an
alternative to the most widely used multivariate Gaussian mixture model.

Kahrari et al. [19] developed a multivariate skew-normal-Cauchy distribution and
represented it as a shape mixture of the multivariate skew-normal distribution. Kahrari
et al. [18] modified the multivariate skew-normal-Cauchy distribution and the modified
version becomes a shape mixture of a special case of the fundamental skew-normal distri-
bution developed by Arellano-Valle and Genton [3] with a univariate half-normal mixing
distribution. The class of scale mixtures of skew-normal-Cauchy distributions has been
represented as a shape mixture of the class of scale mixtures of skew-normal distribu-
tions with a univariate half-normal mixing distribution [18]. Jamalizadeh and Lin [15]
presented the scale-shape mixtures of skew-normal distributions for modeling asymmet-
ric data. Arellano-Valle et al. [2] established a flexible class of multivariate distributions
obtained by both scale and shape mixtures of multivariate skew-normal distributions.
Based on the skew-t-normal distribution [13], Tamandi et al. [32] introduced the shape
mixtures of the skew-t-normal distributions that contain one additional shape parameter
to regulate skewness and kurtosis. The shape mixtures of the skew-t-normal distributions
are a flexible extension of the skew-t-normal distribution. Lin et al. [26] developed a mul-
tivariate extension of the skew-t-normal distribution that is obtained as a scale mixture
of the multivariate skew-normal distribution introduced by Azzalini and Dalla Valle [5].
Based on the multivariate skew-t-normal distribution, Lin et al. [26] introduced a robust
probabilistic mixture model which is composed of a weighted sum of a finite number of
different multivariate skew-t-normal densities. The flexible mixture model based on the
multivariate skew-t-normal distribution includes mixtures of normal, t and skew-normal
distributions as special cases. Cabral et al. [9] proposed mixture models which consist of
members of skew-normal independent distributions (the skew-normal, the skew-t, the
skew-slash and the skew-contaminated normal) and the mixture models are developed
using the multivariate skew-normal distribution in [5].

The most common approach to estimate the parameters of these skew-mixture mod-
els is the EM algorithm [11]. However, its M-step for the recent skew-mixture models
is computationally intractable. Alternatively, we use an EM-type algorithm to estimate
these skew-mixture models. That is, we make further assumptions at the M-step of the
EM algorithm. For instance, expectation conditional maximization (ECM) algorithm [29],
which replaces the M-step of EM with several computationally simple conditional max-
imization steps, can be enough to estimate the parameters of some mixture models. In
mixtures ofmultivariate skew-t-normal distributions and shapemixtures of skew-t-normal
distributions, expectation conditional maximization either (ECME) algorithm [28] was
exploited to estimate its parameters by replacing some conditional maximization-steps
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of ECM with the conditional maximization likelihood step that maximizes the corre-
spondingly constrained actual-likelihood function. Cabral et al. [9] developed an EM-type
algorithm that removed some obstacles (for instance, Monte Carlo integration) during the
parameter estimation process in mixture models of skew-normal independent distribu-
tions. In this article, we used a mixture model based on the multivariate skew-normal
distribution in [5] and developed EM-algorithm for its parameter estimation. That is, fur-
ther assumption is not required at the M-step of EM algorithm to estimate the parameters
of the skew-Gaussian mixture model.

In this work, we use skew-Gaussian mixture model (SGMM) and Gaussian mixture
model (GMM) to further explore the estimation of CT images by partitioning the data
into two major tissue types: non-bone and bone tissues. Non-bone tissues consist of sub-
classes such as whitematter, blood, water, fat, graymatter, air, etc. while bone tissues consist
of subclasses such as cranium, mandible, frontal bone, nasal bone, orbital bones, cortical
bone, cancellous bone, etc. These facts motivated us to apply mixture models on these
tissue types. SGMM involves a weighted sum of the joint skew-normal distributions of a
CT image intensity and its corresponding intensities of MR images. The number of skew-
normal distributions in the mixture depends on the number of underlying tissue types
or clusters. Latent variables that represent the underlying tissue types are utilized during
the parameter estimation process of the model through incomplete data assumption in
EM-algorithm framework [11]. Voxel-wise point estimator of CT image was obtained as
a weighted sum of the conditional expected value of a CT image intensity given its corre-
sponding intensities of MR images and the underlying tissue type. The probability that an
underlying tissue type is determined based on the intensities of MR images was used as a
weight of the conditional expected value.

In summary, this study is concerned with comparing the CT image estimation perfor-
mance of the partitioning approach with HMM, MRF, and GMM on bone tissues. The
models HMM, MRF, and GMM are trained on the full data (data that are not partitioned
into non-bone and bone tissues). We are also interested to compare the predictive quality
of the partitioning approaches, SGMM and GMM∗ (GMM applied to each partition), on
bone tissues.

This article is organized as follows. The second section describes data acquisition and
demonstrates statistical methods. The third section presents the results obtained and the
final section discusses the implication of the results.

2. Statistical methodology

In this section, we describe the data, formulate SGMM, and develop the parameter estima-
tionmethod.We also demonstrate theCT image estimationmethod andpresent evaluation
method of the estimation. For the remaining models (GMM, HMM andMRF), we refer to
Kuljus et al. [22] and the references therein.

2.1. Data acquisition

CT and MR images were obtained from the head of five patients. Four MR images were
acquired from each patient using two dual echo ultrashort echo-time sequences with flip
angles of 10 degrees and 30 degrees. The ultrashort echo-time sequences sampled a first
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Figure 1. Binary mask (a), CT image (b) and MR images (c)–(f ).

echo (free induction decay) and a second echo (gradient echo) from the same excita-
tion with an echo time of 0.07 and 3.76ms. MR image of a patient was reconstructed to
192 × 192 × 192 matrix. An entry in the matrix represents a signal intensity correspond-
ing to a three-dimensional tissue (voxel) with size 1.33 × 1.33 × 1.33mm3. One CT image
of a patient was acquired using gradient echo Lightspeed with 2.5mm slice thickness. The
acquiredCT imagewas reconstructedwith an in-plane resolution of 0.78 × 0.78mm2.One
binary mask (an image with voxel value 1 (or 0) representing the region of interest (or
the surrounding air)) was also developed to demarcate the head of a patient from its sur-
rounding air. The main use of the binary mask is to exclude the surrounding air from the
acquired CT and MR images. For each patient, the binary mask, the CT image, and the
four MR images were co-registered and resampled to the same resolution (voxel-to-voxel
correspondence and set to the same voxel dimension) using linear interpolation. For fur-
ther technical details, we refer to Johansson et al. [16]. Voxel values of the CT image, the
binary mask, and the four MR images were organized into six columns to obtain data for a
patient. The organized data of each patient were column stacked and the surrounding air
removed to obtain data for model fitting. Figure 1 shows a slice data for a given patient.

2.2. Data partitioning

This subsection describes data partitioning during model training. It also demonstrates
how MR images of new patients are utilized during CT image prediction.

2.2.1. Data partition: model training
CT image intensity threshold was utilized to partition the data into two major tissue types.
Using 150HUCT image intensity as a limit, 50HU (is selected to take the delimiting value
provided by Washington and Leaver [34]) overlap was allowed during the parameter esti-
mation process. The overlap of the major tissue types was motivated in order to minimize
the effect of fuzzy boundary of the tissue types. Accordingly, CT image intensities in (−
1024HU, 200HU) and ( 100HU, 3071HU]were assumed to represent non-bone and bone
tissues. The minimum number of voxels for non-bone and bone tissues are 6,214,160 and
1,292,068.
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2.2.2. MR images partition: CT image estimation
We are interested to predict CT images from MR images of new patients. Since we only
have MR images of the new patients, there is a need to partition the MR images of the
new patients into non-bone and bone tissues. There is poor bone tissue information on
MR images and following that we estimate CT images for the new patients using a model
trained on the full data, which is the data not partitioned into non-bone and bone tissues.
The CT image intensity threshold and the estimated CT images are used to obtain MR
data corresponding to the twomajor tissue types (non-bone and bone tissues). The trained
models on the major tissue types are utilized to obtain the desired CT images of the new
patients.

2.3. Statistical model: mixture ofmultivariate skew-normalmodel

Let Yi1 and Yi2 = (Yi2,Yi3, . . . ,Yid)
′ represent voxel i of CT image and its correspond-

ing MR images. In our real data, d = 5. A d-dimensional random vector Yi = (Yi1,Y′
i2)

′
is assumed to follow a multivariate skew-normal distribution SN (yi|η,�,λ) with a d-
dimensional location parameter vector η, a d × d-dimensional positive definite dispersion
matrix �, and a d-dimensional skewness parameter vector λ. Its density can be given by

f
(
yi|η,�,λ

) = 2N
(
yi|η,�

)
�
(
λ′�−1/2 (yi − η

))
, (1)

where�−1/2�−1/2 = �−1,�(·) is a univariate standard normal distribution function, i =
1, 2, 3, . . . , n, and n is the number of voxels. According to Lachos et al. [24], the stochastic
representation of Yi may be given by

Yi = η +�1/2δUi +�1/2 (1 − δδ′
)1/2 Vi, (2)

where

Ui ∼ HN (ui|0, 1, (0,∞)) , Vi ∼ N (vi|0, 1) , and δ = λ√
1 + λ′λ

. (3)

In Equation (2), Vi and Ui are assumed to be independent. The notations 0,
1, and HN (ui|0, 1, (0,∞)) in Equation (3) represent d-dimensional zero vector,
d × d-dimensional identity matrix, and half-normal distribution, respectively. Using
Equation (2), a hierarchical model can be given by

Yi|Ui = ui ∼ N
(
yi|η + uiξ ,�

)
,

Ui ∼ HN (ui|0, 1, (0,∞)) , (4)

where

δ = λ√
1 + λ′λ

, ξ = �1/2δ, and � = �1/2 (1 − δδ′
)
�1/2 = � − ξξ ′.

Let Zi be a categorical random variable representing the underlying tissue types at voxel i.
Define an indicator variable:

Zik = 1(Zi=s) =
{
1 if k = s,
0 otherwise,
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where k = 1, 2, . . . ,K. The definition implies that P(Zik = 1) = P(Zi = k). Let P(Zi =
k)= πk, which represents the weight that the ith observation belongs to a tissue class k.
To incorporate tissue heterogeneity into the statistical modeling, Yi|Zik = 1 is assumed
to follow a multivariate skew-normal distribution SN (yi|ηk,�k,λk). This means that Yi
follows a mixture of multivariate skew-normal distributions. Its density may be given by

f
(
yi|�

) =
K∑

k=1

πkSN
(
yi|ηk,�k,λk

)
,

where

πk ≥ 0,
K∑

k=1

πk = 1, ψk = {
πk, ηk, �k, λk

}
, � = {

ψ1,ψ2, . . . ,ψK
}
,

k = 1, 2, . . . ,K.

The unknown parameters in� are estimated from the independent observations yi.

2.4. Parameter estimationmethod

The log-likelihood function of the data y = (y1, y2, . . . , yn)′ can be given by

log f
(
y|�) =

n∑
i=1

log

{ K∑
k=1

πkSN
(
yi|ηk,�k,λk

)}
.

In general, there is no explicit analytical solution for argmax� log f (y|�). However, iter-
ative maximizing procedure under the idea of incomplete data via EM-algorithm can be
used to obtain an optimal estimate of the parameters. Let Zi be a K-dimensional column
vector of Zik. Its realization is aK-dimensional vector consisting 1 at only one location and
0 at the remaining locations. The latent random vector Zi follows a multinomial distribu-
tion with one trial and P(Zik = 1) = πk. Using the indicator variable Zik, the hierarchical
model (4) can be extended to

Yi|Ui = ui,Zik = 1 ∼ N
(
yi|ηk + uiξ k,�k

)
,

Ui|Zik = 1 ∼ HN (ui|0, 1, (0,∞)) ,

where

δk = λk√
1 + λ′

kλk

, ξ k = �
1/2
k δk, and �k = �k − ξ kξ

′
k.

The observed data y is assumed to be incomplete data. It is augmented with the latent
matrix z = (z1, z2, . . . , zn)′ and the latent vector u = (u1, u2, . . . , un)′ to form a complete
dataset (y,u, z) in EM-algorithm framework. Assuming that (Yi,Ui,Zi) is independent of
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(Yj,Uj,Zj) for every i �= j, the complete-data log-likelihood is given by

log f
(
y,u, z|
) =

n∑
i=1

K∑
k=1

zik
{
−1
2
(
yi − ηk − ξ kui

)′
�−1

k
(
yi − ηk − ξ kui

)}

+
n∑

i=1

K∑
k=1

zik
{
logπk − 1

2
log |�k| + const

}
, (5)

where

θk = {
πk, ηk, ξ k,�k

}
, 
 = {θ1, θ2, . . . , θK} , k = 1, 2, . . . ,K,

and const is a constant function of parameters.
The E-step of EM-algorithm involves computing the expected value of the complete-

data log-likelihood given Y and the current estimate 
old of 
. It may be given by the
Q-function:

Q
(

,
old

)
= E

[
log f (Y,U,Z|
) |Y,
old

]
. (6)

Using Equation (5), the expected value in Equation (6) involves computing

E
[
Zik|Y,
old

]
, E

[
ZikUi|Y,
old

]
, and E

[
ZikU2

i |Y,
old
]
.

The expected value E[Zik|Y,
old] can be given by

E
[
Zik|Y,
old

]
= πold

k SN
(
yi|ηoldk ,�old

k ,λoldk
)

∑K
j=1 π

old
j SN

(
yi|ηoldj ,�old

j ,λoldj

)
= γ old

ik ,

where γik is the responsibility that the component k of the mixture takes for explaining the
observation yi. Let ϑik = E[ZikUi|Y,
old], and ψik = E[ZikU2

i |Y,
old]. Then ϑik can be
simplified as follows:

ϑik = E
[
ZikE

[
Ui|Y,Zik,
old

]
|Y,
old

]
= E

[
Ui|Y,Zik = 1,
old

]
E
[
Zik|Y,
old

]
= γ old

ik E
[
Ui|Y,Zik = 1,
old

]
. (7)

Using similar procedure, ψik may be given by

ψik = γ old
ik E

[
U2
i |Y,Zik = 1,
old

]
. (8)
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If Equations (1) and (4) are satisfied, then using inverse matrix adjustment formula in
[31] and matrix determinant lemma in [12],

Ui|Yi = yi ∼ T N
(
ui|
ξ ′�−1 (yi − η

)
1 + ξ ′�−1ξ

,
1

1 + ξ ′�−1ξ
, (0,∞)

)
,

whereT N (u|μ, σ 2, (0,∞)) is a truncated normal with location parameterμ, scale param-
eter σ and support (0,∞). Based on the truncated normal probability distribution,

E
[
Ui|Yi = yi,Ui > 0

] = 1
β

[
α + φ (α)

� (α)

]
, (9)

var
[
Ui|Yi = yi,Ui > 0

] = 1
β2

[
1 − α

φ (α)

� (α)
−
(
φ (α)

� (α)

)2
]
,

E
[
U2
i |Yi = yi,Ui > 0

] = 1
β2

[
1 + α

φ (α)

� (α)
+ α2

]
, (10)

where

α = ξ ′�−1 (yi − η
)

√
1 + ξ ′�−1ξ

, β =
√
1 + ξ ′�−1ξ ,

and φ(·) is a univariate standard normal density. The expected values

E
[
Ui|Y,Zik = 1,
old

]
and E

[
U2
i |Y,Zik = 1,
old

]

in Equations (7) and (8) are obtained from Equations (9) and (10) by replacing η, ξ , and�
with their corresponding estimates ηoldk , ξ oldk , and �old

k . The M-step of the EM-algorithm
is given by


new = argmax



Q
(

,
old

)
,

and it is available in closed form. Using EM-algorithm, the estimates of the parameter

can be updated as shown in Algorithm 1.
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Algorithm 1 EM-algorithm for SGMM.

1: Initial values of the parameters (m = 0): π
(m)
k , �

(m)
k , η

(m)
k , and ξ

(m)
k ;

2: E-step:

γ
(m)
ik =

π
(m)
k SN

(
yi|η(m)k ,�(m)k ,λ(m)k

)
∑K

j=1 π
(m)
j SN

(
yi|η(m)j ,�(m)j ,λ(m)j

) ;

ϑ
(m)
ik = γ

(m)
ik

β
(m)
k

⎡
⎣α(m)ik +

φ
(
α
(m)
ik

)
�
(
α
(m)
ik

)
⎤
⎦ ;

ψ
(m)
ik = γ

(m)
ik[
β
(m)
k

]2
⎡
⎣1 + α

(m)
ik

φ
(
α
(m)
ik

)
�
(
α
(m)
ik

) +
[
α
(m)
ik

]2⎤⎦ ;

3: M-step:

π
(m+1)
k = 1

n

n∑
i=1

γ
(m)
ik ;

η
(m+1)
k =

[ n∑
i=1

γ
(m)
ik

]−1 n∑
i=1

[
γ
(m)
ik yi − ϑ

(m)
ik ξ

(m)
k

]
;

ξ
(m+1)
k =

[ n∑
i=1

ψ
(m)
ik

]−1 n∑
i=1

ϑ
(m)
ik

[
yi − η

(m+1)
k

]
;

�
(m+1)
k =

[ n∑
i=1

γ
(m)
ik

]−1 n∑
i=1

{
γ
(m)
ik

(
yi − η

(m+1)
k

) (
yi − η

(m+1)
k

)′

− ϑ
(m)
ik

[(
yi − η

(m+1)
k

)
ξ
(m+1)′
k + ξ

(m+1)
k

(
yi − η

(m+1)
k

)′]

+ψ(m)ik ξ
(m+1)
k ξ

(m+1)′
k

}
;

4: If stopping criterion is achieved, stop. If not, assignm + 1 tom and go to step 2;

Atmth iteration of the E-step, we need to compute the following expressions:

�
(m)
k = �

(m)
k + ξ

(m)
k ξ

(m)′
k ;

λ
(m)
k =

[
�
(m)
k

]−1/2
ξ
(m)
k√

1 − ξ
(m)′
k

[
�
(m)
k

]−1
ξ
(m)
k

;
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α
(m)
ik =

ξ
(m)′
k

[
�
(m)
k

]−1 (
yi − η

(m)
k

)
β
(m)
k

;

β
(m)
k =

√
1 + ξ

(m)′
k

[
�
(m)
k

]−1
ξ
(m)
k .

In general, EM-algorithm converges to a local optimum. As a result, different initial
values for the parameters are utilized during the estimation process to select the opti-
mal estimates. A clustering method K-means has been employed to initialize the location
parameters, the mixing coefficients, and the dispersion matrices. This clustering method
is used to partition the observations into clusters in which each observation belongs to the
cluster with the nearest mean. In this study, the clusters may represent tissue types or mix-
ture of tissue types such as white matter, blood, water, fat, gray matter, air, cortical bone,
cancellous bone, etc. We randomly initialize the remaining parameters of SGMM. Log-
likelihood value cannot be computed analytically for MRF [22] and therefore, we cannot
use it for selecting the optimal estimates. Following that we used mean squared error as
criterion for selecting optimal estimates in SGMM in order to utilize the same criterion for
the models used in this work. Two steps are employed during parameter estimation pro-
cess. For a given number of tissue types, we estimated the parameters of the models and
repeated this step to select the optimal parameter estimates using mean squared error. We
selected the number of classes or tissue types through cross-validation usingmean squared
error. The stopping criterion for the convergence of the parameter estimation process is

max
ik

∣∣∣γ (m+1)
ik − γ

(m)
ik

∣∣∣ ,
with an upper limit 5 × 10−5, wherem denotes the iteration number of EM-algorithm.

2.5. Estimation of CT images

Let a d-dimensional vectorsη, ν = �−1/2λ, and a d × d dispersionmatrix� be partitioned
as follows:

Yi =
[

Yi1
Yi2

]
, η =

[
η1
η2

]
, ν =

[
ν1
ν2

]
, and � =

[
11 �12
�21 �22

]
.

The dimension of Yi1, η1, ν1, and 11 is a 1 × 1. The random variable Yi1 represents the
ith voxel in CT image, and the random vector Yi2 denotes the corresponding voxel in MR
images. If we assume that Yi follows SGMM:

Yi ∼ SN
(
yi|η,�,λ

)
, (11)

then

Yi2 ∼ SN
(
yi2|η2,�22, τ

)
,

where

τ = �
1/2
22

(
�−1

22 �21ν1 + ν2√
1 + ν1

c
11ν1

)
withc

11 = 11 −�12�
−1
22 �21.
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According to Khounsiavash et al. [21], if Equation (11) holds, then the probability density
function of Yi1|Yi2 = yi2 can be given by

f
(
yi1|yi2

) = N
(
yi1|ηc1,c

11
) �

(
λ′�−1/2 (yi − η

))
�
(
τ ′�−1/2

22
(
yi2 − η2

)) , (12)

where

ηc1 = η1 +�12�
−1
22

(
yi2 − η2

)
and c

11 = 11 −�12�
−1
22 �21.

Proposition 2.1: Using Equation (12), the expected value of Yi1|Yi2 = yi2 can be given by

E
[
Yi1|Yi2 = yi2

] = ηc1 + c
11ν1√

1 + ν1
c
11ν1

φ
(
τ ′�−1/2

22
(
yi2 − η2

))
�
(
τ ′�−1/2

22
(
yi2 − η2

)) . (13)

Proof: Let κ(yi2) = �(τ ′�−1/2
22 (yi2 − η2)) and B = ν′

2(yi2 − η2)− ν1η1. The expected
value of Yi1|Yi2 = yi2 can be given by

E
[
Yi1|Yi2 = yi2

] =
∫

R

yi1f
(
yi1 | yi2

)
dyi1

= 1
κ
(
yi2
) ∫

R

yi1N
(
yi1 | ηc1,c

11
)
�
(
λ′�−1/2 (yi − η

))
dyi1

= 1
κ
(
yi2
) ∫

R

∫ ∞

0
yi1N

(
yi1 | ηc1,c

11
)
N

(
x | ν1yi1 + B, 1

)
dx dyi1

= 1
κ
(
yi2
) ∫ ∞

0
N

(
x | B + ν1η

c
1, 1 + ν1

c
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)
E[Yi1|X = x] dx,

where

Yi1|X = x ∼ N
(
x | ηc1 +�ν1

(
x − B − ν1η

c
1
)
,�

)
with � =

(
1
c

11
+ ν21

)−1
.

The result in Equation (13) follows from well known properties of the truncated normal
distribution and inverse matrix adjustment formula. �

Using Equation (13), we can obtain the point estimator of Yi1 by

E [Yi1|Yi2] = E [E [Yi1|Yi2,Zi] |Yi2]

=
K∑

k=1

P (Zi = k|Yi2)E [Yi1|Yi2,Zi = k] .

In this framework, the latent variableZi represents the underlying tissue classes. Theweight
P(Zi = k|Yi2) can be computed using Bayes’ theorem. The expected value E[Yi1|Yi2,Zi =
k] is obtained from Equation (13) by indexing the parameters with k.
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2.6. Model validation

The main focus of this work is to investigate CT image predictive quality of SGMM and
GMM by partitioning the data into two major tissue types. It is also aimed at comparing
the estimation quality of the partitioning approach with GMM, HMM, and MRF on the
bone tissues.

We used leave-one-out cross-validation method to compare the predictive quality of
the models. That is, we keep one head to validate the models and use the remaining heads
for training the models. Using the threshold CT image intensity, CT image in a validation
dataset is partitioned into non-bone and bone tissues. Let Y(t)i and Ŷ(t)i be CT image and
its corresponding estimated CT image intensities in a given tissue region t. One can use the
square and the absolute loss functions to assess the estimation cost. They can be given by

(
Ŷ(t)i − Y(t)i

)2
and |Ŷ(t)i − Y(t)i |,

where t=1,2. Since the mean square error heavily weights the outliers, the mean absolute
error (MAE) can be employed as a main tool to evaluate the estimation performance of the
models. The MAE can be given by

MAEt = 1
nt

nt∑
i=1

|Ŷ(t)i − Y(t)i |,

where nt is the number of voxels in partition t.
The peak signal-to-noise ratio (PSNR) can also be used to quantify the overall quality of

the estimation. It takes square loss function into account through the mean squared error.
The PSNR may be given by

PSNR = 10 log10

⎛
⎜⎝ nM2

∑n
i=1

(
Ŷi − Yi

)2
⎞
⎟⎠ ,

where Yi and Ŷi represent CT image and the estimated CT image intensities at voxel i,
respectively, andM is the maximal intensity in CT image.We exploited patient-wise leave-
one-out cross-validation and mean absolute error to compare the estimation quality of
the models. One can also use peak signal-to-noise ratio to compare the estimation perfor-
mance of the models. The better model has lower MAE and higher PSNR. Since MAE and
PSNR are crude estimation quality measures, we utilized smoothed residual and absolute
residual plots to further evaluate the estimation quality of the models through the tissues
of the heads. A moving average over non-overlapping windows in CT image intensities
can be used as a main tool to investigate and identify the model that outperforms in bone
tissue estimation. Over the non-overlapping windows on Yi with a window size of 20HU,
the averages for Yi, Ŷi − Yi, and |Ŷi − Yi| over the windows can be computed to obtain the
smoothed residual and absolute residual plots.

In addition to the above model performance evaluation methods, we assessed the per-
formance of the models using Bland-Altman plot [6,7], which is a graphical method to
compare two measurements by plotting the differences between the two measurements
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Ŷi − Yi against their averages (Ŷi + Yi)/2. If one of the two measurements is a reference
measurement, then the differences can be plotted against the reference measurement [23]
and that coincides with the smoothed residual plot via cross-validation. The main advan-
tage of the Bland-Altman plot is that it reveals a relationship between the differences and
the magnitude of the measurements, to examine possible systematic bias, and outliers.

We can also complement the MAE based performance evaluation of the methods by
Wilcoxon signed-rank test, which is a non-parametric alternative to the paired Student’s
t-test. To compare SGMM to every one of the remaining methods, the paired method-
method differences inMAEs were examined by using the one-sidedWilcoxon signed rank
test, with the null hypothesis that SGMM is the same as one of the other methods with
respect to the MAE values and the research hypothesis that SGMM is better than the
method being compared.

3. Results

A CT image intensity 100HU was utilized as a delimiting value during CT image estima-
tion. The optimal parameter estimates were received forK=8 in GMMandK=5 for both
HMM and MRF. In the case of SGMM and GMM∗, we have received the optimal param-
eter estimates for K=6 for both major tissue types. Table 1 demonstrates a summary of
mean absolute errors for the bone tissues and p-values of the Wilcoxon signed-rank test.

The rows of the table represent validation datasets. The table presents mean absolute
errors received for the models. In terms of MAE, it is apparent that for each head the parti-
tioning approach (SGMM and GMM∗) and MRF had better performance than HMM and
GMM.Moreover, the differences of the averageMAEs show that the partitioning approach
andMRF achieved better results thanHMMandGMM. For instance, SGMMoutperforms
HMM with the method-to-method difference of average MAEs −17.27 and the standard
deviation of the method-to-method differences of MAEs 8.23. The p-values of Wilcoxon
signed-rank test show that SGMM outperforms HMM and GMM significantly on bone
tissues.

The results in Table 2 show that the partitioning approach has noticeable outper-
formance on dense bone tissues (approximately with CT image intensities greater than
900HU according to Washington and Leaver [34]) as compared to the remaining models.
Even thoughMRF is computationally expensive, it had better performance thanHMMand
GMMon dense bone tissues. The p-values ofWilcoxon signed-rank test reveal that SGMM

Table 1. Mean absolute errors and p-values for bone tissues.

Model

Head SGMM GMM ∗ HMM MRF GMM

1 316.25 315.16 324.94 307.95 314.41
2 349.52 348.05 360.03 328.89 365.12
3 303.58 301.78 331.16 322.48 328.01
4 272.21 269.33 296.04 280.63 292.78
5 350.41 349.28 366.13 357.22 359.56
Average 318.39 316.72 335.66 319.43 331.98
p-Value – 0.985 0.030 0.500 0.053
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Table 2. Mean absolute errors and p-values for dense bone tissues.

Model

Head SGMM GMM ∗ HMM MRF GMM

1 365.68 361.27 418.99 401.43 407.85
2 406.09 403.65 458.23 394.89 492.96
3 331.85 328.44 407.01 404.80 386.72
4 236.89 232.15 290.42 295.46 290.77
5 436.42 433.84 509.20 488.10 505.49
Average 355.39 351.87 416.77 396.94 416.76
p-Value – 0.985 0.030 0.053 0.030

Table 3. Mean absolute errors and p-values for non-bone tissues.

Model

Head SGMM GMM ∗ HMM MRF GMM

1 111.96 112.67 97.75 106.15 114.10
2 116.56 117.53 99.69 103.60 116.12
3 124.65 125.46 94.93 117.31 122.00
4 116.61 117.19 101.54 112.52 111.76
5 122.08 122.42 98.87 126.51 118.19
Average 118.37 119.05 98.55 113.22 116.43
p-Value – 0.030 0.985 0.947 0.947

Table 4. Combined mean absolute errors and p-values.

Model

Head SGMM GMM ∗ HMM MRF GMM

1 144.15 144.58 133.56 137.95 145.67
2 151.44 152.04 138.68 137.34 153.40
3 161.00 161.28 142.92 158.99 163.85
4 146.71 146.62 139.17 145.05 146.78
5 160.53 160.62 143.89 165.36 158.85
Average 152.77 153.03 139.65 148.94 153.71
p-Value – 0.069 0.985 0.911 0.140

has significantly better performance than the remaining methods except for GMM∗ on
dense bone tissues.

Table 3 demonstrates the estimation quality of the models on non-bone tissues. The
best result was received for HMM. However, there is already a good contrast between soft
tissues and air on MR images. The remaining models had similar behavior on non-bone
tissues.

Table 4 presents the overall summary of CT image estimation quality. In comparison
to the other models, we received better result for HMM. The reason is that HMM outper-
formed the othermodels on non-bone tissues. However, this is not themain interest in this
work.

Table 5 demonstrates the prediction accuracy of the models in terms of PSNR. The
results show that the models had similar behavior. On the bone tissues, PSNR has shown
that the models have similar estimation performance.

On the basis of average, mean absolute error was utilized to compare CT image predic-
tion accuracy of themodels. Smoothed absolute residual plots were also employed to assess
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Table 5. Evaluation of the methods based on PSNR and p-values.

Model

Head SGMM GMM ∗ HMM MRF GMM

1 19.92 19.90 20.29 20.30 20.29
2 19.56 19.50 20.23 20.40 20.15
3 19.75 19.71 20.13 20.11 19.69
4 19.76 19.76 20.43 20.46 20.69
5 19.59 19.58 19.78 19.63 19.66
Average 19.72 19.69 20.17 20.18 20.09
p-Value – 0.978 0.030 0.030 0.053

Figure 2. Smoothed absolute residual plot for the five patients.

the estimation quality of the models. In comparison to MAE, smoothed absolute residual
plots are powerful to evaluate the estimation performance of the models through the tis-
sues of the heads. Figure 2 presents smoothed absolute residual plots for the models. The
absolute residuals were averaged over non-overlapping windows in CT image intensities
with window size 20HU.

It is clear from Figure 2 that none of the models outperformed throughout the tis-
sues of the head. However, SGMM and GMM∗ outperformed the other models on dense
bone tissues. Figure 3 shows smoothed residual plot. The deviations of observed CT image
intensities from the estimated CT image intensities were exploited to obtain average resid-
uals over non-overlapping windows in CT image intensities with window size 20HU. It
is evident from the plot that bone tissues were underestimated. However, the partitioning
approach has improved underestimation of bone tissues.

The Bland-Altman plots of the methods are shown in Figure 4. It shows the bias of
the methods in estimating the CT images. The bias is higher for higher CT image values.
However, the partitioning approach has improved the bias in bone tissue estimation as
compared to the remaining methods. The Bland-Altman plots also show higher variability
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Figure 3. Smoothed residual plot for the five patients.

Figure 4. Bland-Altman plot for the five patients.

on lower CT image values. In comparison to Figure 3, we observe that the higher variabil-
ity on lower CT image values in Figure 4 is due the estimated CT image values. Notice,
however, that this work is mainly concerned with improving bone tissue estimation.

The partitioning approach had better performance in tracing bone tissues. Bone tissues
appear as bright white on CT images, see Figure 5. The figure shows slices of CT image
and its corresponding predicted slices for a representative patient. The top right portion of
the images in the first row of the figure clearly shows that the partitioning approaches are
better in identifying bone tissues.
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Figure 5. The first column (a) presents the original CT image slices and the remaining columns (b)–(f )
show the corresponding predicted slices of CT image.

Figure 6. The first column (a) presents the original CT image slices and the remaining columns (b)–(f )
show the prediction errors for each model.

Wepresented the prediction errors in Figure 5, which corresponds to the predicted slices
in Figure 6. It can be seen that the images of the prediction errors corresponding to the bone
tissues appear darker for the partitioning approach: GMM∗ and SGMM.

4. Discussion

Statistical model for voxel-wise CT image estimation fromMR images have been presented
and evaluated using cross-validation on five datasets. Kuljus et al. [22] and Johansson
et al. [16] have used voxel-wise estimation approach to study CT image estimations.
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Existing works suggest that the estimation quality on the bone tissues is poor. This study
was aimed at probing the estimation of CT images by partitioning the data into two major
tissue types: non-bone and bone tissues. Specifically, the focus of the study was to obtain
improved bone tissue estimations.We proposed SGMM to relax the distributional assump-
tion utilized by Kuljus et al. [22] and Johansson et al. [16]. The model was motivated to
take the asymmetrical distribution that could arise from the partitioning of the data into
account. We also used GMM in addition to SGMM to examine the effect of the distribu-
tional nature of the partitioned data on the estimation process. The study was also aimed
at comparing CT image estimation performance of SGMM, HMM, GMM, and MRF on
the bone tissues. In MRF and HMM, spatial dependence between neighboring voxels has
been taken into account.

EM-algorithmwas developed for SGMMparameter estimation. EM-gradient algorithm
was used to estimate the parameters of MRF while EM-algorithm was utilized to estimate
the parameters of GMM and HMM. For MRF, the updates of the parameters at M-step
of EM-algorithm were difficult to obtain in an explicit form and thereby, a gradient based
optimization was utilized during parameter estimation process. Moreover, Gibbs sampling
was used at E-step of the algorithm. Thus, the estimation process was expensive in MRF.
Unlike the other models, log-likelihood function in MRF involves Gibbs field and it is not
computable. This means that log-likelihood based selection of optimal parameter estimate
is not feasible analytically. Consequently, mean squared error was employed in selecting
the optimal parameter estimates of the models.

Table 4 demonstrated that HMM outperformed the other models. This was essentially
due to its best estimation performance on non-bone tissues, see Table 3. According to
Karlsson et al. [20], the key task in CT image estimation from MR images is to obtain
an improved bone tissue estimation. Table 1 revealed that GMM∗ (GMM trained on each
major tissue type), SGMM, andMRFhad better prediction accuracy thanHMMandGMM
on the bone tissues. In addition, Table 2 shows that GMM∗ and SGMMhad noticeable out-
performance on dense bone tissues. Based on the mean absolute error, HMM and GMM
perform similarly on the bone tissues.

To provide statistical evidence for the CT image estimation performance of SGMM
in comparison with the remaining methods, the Wilcoxon signed-rank tests have been
carried out. The tests have shown that SGMM has better performance on bone tissues
than HMM and GMM. In addition, the Wilcoxon signed-rank tests provided an evidence
that SGMM has significant outperformance than MRF, HMM, and GMM on dense bone
tissues.

The skewness assumption allowed to recognize skewness in the partitions of the data.
The estimates of the skewness parameters demonstrated that the partitions have skewness
property and the nature of skewness was dependent on the subtissue types. The estimates
of the skewness parameters ranged from−1.54 to 3.03. In this particular application, how-
ever, the skewness assumption did not improve CT image estimation quality as compared
to the symmetric assumption in GMM∗, see Tables 1–5.

Figure 2 shows that the models performed better on soft tissues, that is tissues having
CT image intensity closer to 0HU. On the other hand, the models had weaker prediction
accuracy on the two extremes that is on air and bone tissues. This pattern of residual plots
has been observed in [16,22]. Moreover, the figure shows that none of the models out-
performed throughout the tissues of the head. Tables 1–4 demonstrate that the predictive
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accuracy of the models was dependent on the heads. That is the results were not uni-
form over the heads. This might have a problem in real applications and needs a further
investigation.

The bias of themethods in estimation of the CT images wasmanifested in the smoothed
residual and Bland-Altman plots in Figures 3 and 4. Though the bias is higher on bone
tissues, it was improved by our approach as compared to the remaining methods. This
was the main concern of this work. The Bland-Altman plots also demonstrated higher
variability of the estimation on lower CT image values.

5. Conclusions

In this study, we examined CT image estimation by partitioning the data into two major
tissue types. This partitioning approach is an efficient way to get a good quality CT
image substitute with improved estimation of bone tissues. Moreover, the SGMM and
the developed algorithm to estimate its parameters is general and can be applied to other
applications.
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