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Matúš Benko and Helmut Gfrerer

Institute of Computational Mathematics, Johannes Kepler University Linz, Linz, Austria

ABSTRACT
In this paper, we consider a sufficiently broad class of non-linear
mathematical programs with disjunctive constraints, which, e.g. include
mathematical programs with complemetarity/vanishing constraints. We
present an extension of the concept of Q-stationarity which can be easily
combined with the well-known notion of M-stationarity to obtain the
stronger property of so-called QM-stationarity. We show how the property
of QM-stationarity (and thus also of M-stationarity) can be efficiently verified
for the considered problem class by computing Q-stationary solutions of
a certain quadratic program. We consider further the situation that the
point which is to be tested for QM-stationarity, is not known exactly, but is
approximated by some convergent sequence, as it is usually the case when
applying some numerical method.
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1. Introduction

In this paper, we consider the followingmathematical program with disjunctive constraints (MPDC)

min
x∈Rn

f (x)

subject to Fi(x) ∈ Di :=
Ki⋃
j=1

Dj
i , i = 1, . . . ,mD, (1)

where the mappings f : R
n → R and Fi : R

n → R
li , i = 1, . . . ,mD are assumed to be continuously

differentiable and Dj
i ⊂ R

li , j = 1, . . . ,Ki, i = 1, . . . ,mD are convex polyhedral sets.
Denotingm := ∑mD

i=1 li,

F := (F1, . . . , FmD) : R
n → R

m, D :=
mD∏
i=1

Di (2)

we can rewrite the MPDC (1) in the form

min
x∈Rn

f (x) subject to F(x) ∈ D. (3)

It is easy to see that D can also be written as the union of
∏mD

i=1 Ki convex polyhedral sets by
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2 M. BENKO AND H. GFRERER

D =
⋃
ν∈J

D(ν) with J :=
mD∏
i=1

{1, . . . ,Ki}, D(ν) :=
mD∏
i=1

Dνi
i . (4)

As an example for MPDC consider a mathematical program with complementarity constraints
(MPCC) given by

min
x∈Rn

f (x)

subject to gi(x) ≤ 0, i = 1, . . .mI ,
hi(x) = 0, i = 1, . . .mE ,
Gi(x) ≥ 0, Hi(x) ≥ 0,Gi(x)Hi(x) = 0, i = 1, . . .mC (5)

with f : R
n → R, gi : R

n → R, i = 1, . . . ,mI , hi : R
n → R, i = 1, . . . ,mE , Gi,Hi : R

n → R,
i = 1, . . . ,mC . This problem fits into our setting (1) withmD = mC + 1,

F1 = (g1, . . . , gmI , h1 . . . , hmE )
T , D1

1 = R
mI− × {0}mE , l1 = mI + mE , K1 = 1

Fi+1 = ( − Gi,−Hi)
T , D1

i+1 = {0} × R−, D2
i+1 = R− × {0}, li+1 = Ki+1 = 2, i = 1, . . . ,mC .

MPCC is known to be a difficult optimization problem, because, due to the complementarity
constraints Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0, many of the standard constraint qualifications
of nonlinear programming are violated at any feasible point. Hence, it is likely that the usual
Karush–Kuhn–Tucker conditions fail to hold at a local minimizer and various first-order optimality
conditions such as Abadie (A-), Bouligand (B-), Clarke (C-), Mordukhovich (M-) and Strong (S-)
stationarity conditions have been studied in the literature [1–9].

Another prominent example is themathematical program with vanishing constraints (MPVC)

min
x∈Rn

f (x)

subject to gi(x) ≤ 0, i = 1, . . .mI ,
hi(x) = 0, i = 1, . . .mE ,
Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, . . .mV (6)

with f : R
n → R, gi : R

n → R, i = 1, . . . ,mI , hi : R
n → R, i = 1, . . . ,mE , Gi,Hi : R

n → R,
i = 1, . . . ,mV . Again, the problemMPVC can be written in the form (1) withmD = mV + 1, F1, D1

1
as in the case of MPCC and

Fi+1 = ( − Hi,Gi)
T , D1

i+1 = {0} × R, D2
i+1 = R

2−, li+1 = Ki+1 = 2, i = 1, . . . ,mV .

Similar as in the case of MPCC, many of the standard constraint qualifications of non-linear
programming can be violated at a local solution of (6) and a lot of stationarity concepts have been
introduced. For a comprehensive overview for MPVC we refer to [10] and the references therein.

However, whenwe do not formulateMPCCorMPVC as a non-linear program but as a disjunctive
programMPDC, then first-order optimality conditions can be formulatedwhich are valid underweak
constraint qualifications.We know that a local minimizer is always B-stationary, which geometrically
means that no feasible descent direction exists, or, in a dual formulation, that the negative gradient
of the objective belongs to the regular normal cone of the feasible region, cf. [11, Theorem 6.12].
The difficult task is now to estimate this regular normal cone. For this regular normal cone always a
lower inclusion is available, which yields so-called S-stationarity conditions. For an upper estimate,
one can use the limiting normal cone which results in the so-called M-stationarity conditions. The
notions of S-stationarity and M-stationarity have been introduced in [12] for general programs (3).



OPTIMIZATION 3

S-stationarity always implies B-stationarity, but it requires some strong qualification condition on
the constraints which is too restrictive. On the other hand, M-stationarity requires only some weak
constraint qualification but it does not preclude the existence of feasible descent directions. Further,
it is not known in general how to efficiently verify theM-stationarity conditions, since the description
of the limiting normal cone involves some combinatorial structure which is not known to be resolved
without enumeration techniques. These difficulties in verifyingM-stationarity have also some impact
for numerical solution procedures. E.g. for many algorithms for MPCC it cannot be guaranteed that
a limit point is M-stationary, cf. [13].

In the recent paper [14], we derived another upper estimate for the regular normal cone yielding
so-called Q-stationarity conditions. Q-stationarity has the advantage over S-stationarity that it does
not require such unnecessarily strong constraint qualification conditions. Q-stationarity can be
easily combined with M-stationarity to obtain so-called QM-stationarity which is stronger than M-
stationarity. This is one of the advantages ofQM-stationarity: there are several stationarity notions, in
particular in the MPCC literature, like M-, C-, A- and weak stationarity, which are valid under weak
constraint qualification conditions. M-stationarity is known to be the strongest stationarity concept
and we even improve M-stationarity by QM-stationarity.

For the disjunctive formulations of the problems MPCC and MPVC the Q- and QM-stationarity
conditions have been worked out in detail in [14]. In this paper, we extend this approach to the
general problem MPDC. We show that under a qualification condition which ensures S-stationarity
of local minimizers, Q-stationarity and S-stationarity are equivalent. Further, we prove that under
some weak constraint qualification every local minimizer of MPDC is a QM-stationary solution and
we provide an efficient algorithm for verifying QM-stationarity of some feasible point. More exactly,
this algorithm either proves the existence of some feasible descent direction, i.e. the point is not
B-stationary, or it computes multipliers fulfilling the QM-stationarity condition. To this end, we
consider quadratic programs with disjunctive constraints (QPDC), i.e. the objective function f in
MPDC is a convex quadratic function and the mappings Fi, i = 1, . . . ,mD are linear. We propose a
basic algorithm for QPDC, which either returns a Q-stationary point or proves that the problem is
unbounded. Further, we show that M-stationarity for MPDC is related with Q-stationarity of some
QPDC and the combination of the two parts yields the algorithm for verifying QM-stationarity. This
algorithm does not rely on enumeration techniques and this is another big advantage of the concepts
of Q- and QM-stationarity.

Our approach is well suited to the MPDC (1) when all the numbers Ki, i = 1, . . . ,mD are small
or of moderate size. Our disjunctive structure is not induced by integral variables like, e.g. in [15]. It
is also not related to the approach of considering the convex hull of a family of convex sets like in
[16,17].

The outline of the paper is as follows. In Section 2, we recall some basic definitions from variational
analysis and discuss various stationarity concepts. In Section 3, we introduce the concepts of Q- and
QM-stationarity for general optimization problems. These concepts are worked out inmore detail for
MPDC in Section 4. In Section 5, we consider quadratic programs with disjunctive linear constraints.
We present a basic algorithm for solving such problems, which either return a Q-stationary solution
or prove that the problem is not bounded below. In the next section, we demonstrate how this
basic algorithm can be applied to a certain quadratic program with disjunctive linear constraints in
order to verify M-stationarity or QM-staionarity of a point or to compute a descent direction. In
the last Section 7, we present some results for numerical methods for solving MPDC which prevent
convergence to non M-stationary and non-QM-stationary points.

Our notation is fairly standard. In Euclidean space R
n we denote by ‖ · ‖ and 〈·, ·〉 the Euclidean

norm and scalar product, respectively, whereas we denote by ‖u‖∞ := max{|ui| | i = 1, . . . , n}
the maximum norm. The closed ball around some point x with radius r is denoted by B(x, r).
Given some cone Q ⊂ R

n, we denote by Q◦ := {q∗ ∈ R
n | 〈q∗, q〉 ≤ 0∀q ∈ Q} its polar cone. By

d(x,A) := inf {‖x−−y‖ | y ∈ A}we refer to the usual distance of some point x to a set A. We denote
by 0+C the recession cone of a convex set C.
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2. Preliminaries

For the reader’s convenience, we start with several notions from variational analysis. Given a set
� ⊂ R

n and a point z̄ ∈ �, the cone

T�(z̄) = {w | ∃wk → w, tk ↓ 0 with z̄ + tkwk ∈ �}

is called the (Bouligand/Severi) tangent/contingent cone to � at z̄. The (Fréchet) regular normal cone
to � at z̄ ∈ � can be equivalently defined either by

N̂�(z̄) :=
{
v∗ ∈ R

d | lim sup
z �→z̄

〈v∗, z − z̄〉
‖z − z̄‖ ≤ 0

}
,

where z �→z̄ means that z → z̄ with z ∈ �, or as the dual/polar to the contingent cone, i.e. by

N̂�(z̄) := T�(z̄)◦.

For convenience, we put N̂�(z̄) := ∅ for z̄ /∈ �. Further, the (Mordukhovich) limiting/basic normal
cone to � at z̄ ∈ � is given by

N�(z̄) := {
w∗ ∈ R

d | ∃ zk → z̄, w∗
k → w∗ with w∗

k ∈ N̂�(zk) for all k
}
.

If� is convex, then both the regular and the limiting normal cones coincide with the normal cone in
the sense of convex analysis. Therefore, we will use in this case the notation N�.

Consider now the general mathematical program

min
x∈Rn

f (x) subject to F(x) ∈ D (7)

where f : R
n → R, F : R

n → R
m are continuously differentiable and D ⊂ R

m is a closed set. Let

� := {x ∈ R
n | F(x) ∈ D} (8)

denote the feasible region of the program (7). Then a necessary condition for a point x̄ ∈ � being
locally optimal is

〈∇f (x̄), u〉 ≥ 0 ∀u ∈ T�(x̄), (9)

which is the same as
−∇f (x̄) ∈ N̂�(x̄), (10)

cf. [11, Theorem 6.12]. The main task of applying this first-order optimality condition now is the
computation of the regular normal cone N̂�(x̄) which is very difficult for nonconvex D.

We always have the inclusion

∇F(x̄)TN̂D(F(x̄)) ⊂ N̂�(x̄), (11)

but equality will hold in (11) for nonconvex sets D only under comparatively strong conditions, e.g.
when∇F(x̄) is surjective, see [11, Exercise 6.7]. The following weaker sufficient condition for equality
in (11) uses the notion of metric subregularity.
Definition 1: A multifunction � : R

n ⇒ R
m is called metrically subregular at a point (x̄, ȳ) of its

graph gph� with modulus κ > 0, if there is a neighborhood U of x̄ such that

d(x,�−1(ȳ)) ≤ κd(ȳ,�(x)) ∀x ∈ U .
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Theorem 1 [18, Theorem 4]: Let � be given by (8) and x̄ ∈ �. If the multifunction x ⇒ F(x) − D is
metrically subregular at (x̄, 0) and if there exists a subspace L ⊂ Rm such that

TD(F(x̄)) + L ⊂ TD(F(x̄)) (12)

and

∇F(x̄)Rn + L = R
m, (13)

then

N̂�(x̄) = ∇F(x̄)TN̂D(F(x̄)).

In order to state an upper estimate for the regular normal cone N̂�(x̄) we need some constraint
qualification.

Definition 2 [12, Definition 6]: Let � be given by (8) and let x̄ ∈ �.

(1) We say that the generalized Abadie constraint qualification (GACQ) holds at x̄ if

T�(x̄) = T lin
� (x̄), (14)

where T lin
� (x̄) := {u ∈ R

n | ∇F(x̄)u ∈ TD(F(x̄))} denotes the linearized cone.
(2) We say that the generalized Guignard constraint qualification (GGCQ) holds at x̄ if

(T�(x̄))◦ = (T lin
� (x̄))◦. (15)

Obviously GGCQ is weaker than GACQ, but GACQ is easier to verify by using some advanced
tools of variational analysis. E.g. if the mapping x ⇒ F(x) − D is metrically subregular at (x̄, 0) then
GACQ is fulfilled at x̄, cf. [19, Proposition 1]. Tools for verifying metric subregularity of constraint
systems can be found e.g. in [20].

Proposition 1 [14, Proposition 3]: Let� be given by (8), let x̄ ∈ � and assume that GGCQ is fulfilled,
while the mapping u ⇒ ∇F(x̄)u − TD(F(x̄)) is metrically subregular at (0, 0). Then

N̂�(x̄) ⊂ ∇F(x̄)TNTD(F(x̄))(0) ⊂ ∇F(x̄)TND(F(x̄)). (16)

Note that we always have NTD(F(x̄))(0) ⊂ ND(F(x̄)), see [11, Proposition 6.27]. However, if D is
the union of finitely many convex polyhedral sets, then equality

NTD(F(x̄))(0) = ND(F(x̄)) (17)

holds. This is due to the fact that by the assumption on D there is some neighborhood V of 0 such
that (D − F(x̄)) ∩ V = TD(F(x̄)) ∩ V .

Let us mention that metric subregularity of the constraint mapping x ⇒ F(x) − D at (x̄, 0)
does not only imply GACQ and consequently GGCQ, but also metric subregularity of the mapping
u ⇒ ∇F(x̄)u − TD(F(x̄)) at (0, 0) with the same modulus, see [21, Proposition 2.1].

The concept of metric subregularity has the drawback that, in general, it is not stable under small
perturbations. It is well known that the stronger property of metric regularity is robust.
Definition 3: A multifunction � : R

n ⇒ R
m is called metrically regular near a point (x̄, ȳ) of its

graph gph� with modulus κ > 0, if there are neighborhoods U of x̄ and V of ȳ such that

d(x,�−1(y)) ≤ κd(y,�(x)) ∀(x, y) ∈ U × V .
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The infimum of the moduli κ for which the property of metric regularity holds is denoted by

reg �(x̄, ȳ).

In the following proposition, we gather some well-known properties of metric regularity:
Proposition 2: Let x̄ ∈ F−1(D) where F : R

n → R
m is continuously differentiable and D is the

union of finitely many convex polyhedral sets and consider the multifunctions x ⇒ �(x) := F(x) −D
and u ⇒ D�(x̄)(u) := ∇F(x̄)u − TD(F(x̄)). Then

reg �(x̄, ȳ) = reg D�(x̄)(0, 0) = max
{ 1
‖∇F(x̄)Tλ‖ | λ ∈ ND(F(x̄)) = NTD(F(x̄))(0), ‖λ‖ = 1

}
.

Moreover for every κ > reg �(x̄, ȳ) there is a neighborhoodW of x̄ such that for all x ∈ W themapping
u ⇒ ∇F(x)u − TD(F(x̄)) is metrically regular near (0, 0) with modulus κ ,

‖λ‖ ≤ κ‖∇F(x)Tλ‖ ∀λ ∈ ND(F(x̄)) = NTD(F(x̄))(0) (18)

and
d(u,∇F(x)−1TD(F(x̄))) ≤ κd(∇F(x)u,TD(F(x̄))) ∀u ∈ R

n.

Proof: The statement follows from [11, Exercise 9.44] together with the facts that by our assumption
on D condition (17) holds and that TD(F(x̄)) is a cone.

We now recall some well known stationarity concepts based on the considerations above.
Definition 4: Let x̄ be feasible for the program (7).

(i) We say that x̄ is B-stationary, if (9) or, equivalently, (10) hold.
(ii) We say that x̄ is S-stationary, if

−∇f (x̄) ∈ ∇F(x̄)TN̂D(F(x̄)).

(iii) We say that x̄ is M-stationary, if

−∇f (x̄) ∈ ∇F(x̄)TND(F(x̄)).

Every local minimizer of (7) is B-stationary and this stationarity concept is considered to be
the most preferable one. S- and M-stationarity have been introduced in [12] as a generalization of
these notions for MPCC. Using the inclusion (5) it immediately follows, that S-stationarity implies
B-stationarity. However the reverse implication only holds true under some additional condition on
the constraints, e.g. under the assumptions of Theorem 1. Note that there always hold the inclusions

∇F(x̄)TN̂D(F(x̄)) ⊂ (
T lin

� (x̄)
)◦ ⊂ (

T�(x̄)
)◦ = N̂�(x̄).

In order that a B-stationary point is also S-stationarity, both inclusionsmust be fulfilled with equality,
i.e. besides the GGCQ

(
T lin

� (x̄)
)◦ = (

T�(x̄)
)◦ which allows to replace the tangent cone by the lin-

earized tangent cone, we need another constraint qualification condition ensuring ∇F(x̄)TN̂D(F(x̄))
= (

T lin
� (x̄)

)◦ like the conditions (12) and (13). It is well known that this additional condition is much
more restrictive than the usual constraint qualifications allowing the linearization of the problem
like metric (sub)regularity of the constraint mapping F( · ) −D. Thus in the general case one cannot
expect that a local minimizer is also S-stationary. This is the reason why other stationarity concepts
like M-stationarity have also to be considered.

A B-stationary point is M-stationary under the very weak assumptions of Proposition 1. However,
the inclusion N̂�(x̄) ⊂ ∇F(x̄)TND(F(x̄)) can be strict, implying that a M-stationary point x̄ needs
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not to be B-stationary. Hence, M-stationarity does eventually not preclude the existence of feasible
descent directions, i.e. directions u ∈ T�(x̄) with 〈∇f (x̄), u〉 < 0.

3. OnQ- andQM-stationarity

In this section, we consider an extension of the concept of Q-stationarity as introduced in the recent
paper [14]. Q-stationarity is based on the following simple observation.

Consider the general program (7), assume that GGCQ holds at the point x̄ ∈ � and assume that
we are given K convex cones Qi ⊂ TD(F(x̄)), i = 1, . . . ,K . Then for each i = 1, . . . ,K we obviously
have T lin

� (x̄) = ∇F(x̄)−1TD(F(x̄)) ⊃ ∇F(x̄)−1Qi implying

N̂�(x̄) = (T lin
� (x̄))◦ ⊂ (F(x̄)−1Qi)

◦.

If we further assume that (F(x̄)−1Qi)
◦ = ∇F(x̄)TQ◦

i and by taking into account, that by [14, Lemma
1] we have

(∇F(x̄)TS1) ∩ (∇F(x̄)TS2) = ∇F(x̄)T
(
S1 ∩ ( ker∇F(x̄)T + S2)

)
for arbitrary sets S1, S2 ⊂ R

m, we obtain

N̂�(x̄) ⊂
K⋂
i=1

∇F(x̄)TQ◦
i = ∇F(x̄)T

(
Q◦
1 ∩ ( ker∇F(x̄)T + Q◦

2)
) ∩

K⋂
i=3

∇F(x̄)TQ◦
i

= ∇F(x̄)T
(
Q◦
1 ∩ ( ker∇F(x̄)T + Q◦

2) ∩ ( ker∇F(x̄)T + Q◦
3)
) ∩

K⋂
i=4

∇F(x̄)TQ◦
i = . . .

= ∇F(x̄)T
(
Q◦
1 ∩

K⋂
i=2

( ker∇F(x̄)T + Q◦
i )

)
.

Here, we use the convention that for sets S1, . . . , SK ⊂ R
m we set

⋂K
i=l Si = R

m for l > K . It is an easy
consequenceof (11), that equality holds in this inclusion, provided∇F(x̄)T

(
Q◦
1∩
⋂K

i=2 ( ker∇F(x̄)T+
Q◦
i )
) ⊂ ∇F(x̄)TN̂D(F(x̄). Hence, we have shown the following theorem.

Theorem 2: Assume that GGCQ holds at x̄ ∈ � and assume that Q1, . . . ,QK are convex cones
contained in TD(F(x̄)). If

(∇F(x̄)−1Qi)
◦ = ∇F(x̄)TQ◦

i , i = 1, . . . ,K , (19)

then

N̂�(x̄) ⊂ ∇F(x̄)T
(
Q◦
1 ∩

K⋂
i=2

( ker∇F(x̄)T + Q◦
i )

)
=

K⋂
i=1

∇F(x̄)TQ◦
i . (20)

Further, if

∇F(x̄)T
(
Q◦
1 ∩

K⋂
i=2

( ker∇F(x̄)T + Q◦
i )

)
⊂ ∇F(x̄)TN̂D(F(x̄)), (21)

then equality holds in (20) and N̂�(x̄) = ∇F(x̄)TN̂D(F(x̄)).
Remark 1: Condition (19) is e.g. fulfilled, if for each i = 1, . . . ,K either there is a direction ui with
∇F(x̄)ui ∈ riQi or Qi is a convex polyhedral set, cf. [14, Proposition 1].

The proper choice of Q1, . . . ,QK is crucial in order that (20) provides a good estimate for the
regular normal cone. It is obvious that we want to choose the cones Qi, i = 1, . . . ,K as large as
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possible in order that the inclusion (20) is tight. Further, it is reasonable that a good choice of
Q1, . . . ,QK fulfills

K⋂
i=1

Q◦
i = N̂D(F(x̄)) (22)

because then equation (21) holds whenever ∇F(x̄) has full rank. We now show that (21) holds not
only under this full rank condition but also under some weaker assumption.
Theorem 3: Assume that GGCQ holds at x̄ ∈ � and assume that we are given convex cones
Q1, . . . ,QK ⊂ TD(F(x̄)) fulfilling (19), (22) and

ker∇F(x̄)T ∩ (Q◦
1 − Q◦

i ) = {0}, i = 2, . . . ,K . (23)

Then

N̂�(x̄) = ∇F(x̄)TN̂D(F(x̄)) = ∇F(x̄)T
(
Q◦
1 ∩

K⋂
i=2

( ker∇F(x̄)T + Q◦
i )

)
.

In particular, (23) holds if there is a subspace

L ⊂
K⋂
i=1

(
Qi ∩ ( − Qi)

)
(24)

such that (13) holds.

Proof: The statement follows from Theorem 2 if we can show that (21) holds. Consider x∗ ∈
∇F(x̄)T

(
Q◦
1 ∩ ⋂K

i=2 ( ker∇F(x̄)T + Q◦
i )
)
. Then there are elements λi ∈ Q◦

i , i = 1, . . . ,K and
μi ∈ ker∇F(x̄)T such that λ1 = μi + λi, i = 2, . . . ,K and x∗ = ∇F(x̄)Tλ1. We conclude
μi = λ1 − λi ∈ Q◦

1 − Q◦
i , implying μi ∈ ker∇F(x̄)T ∩ (Q◦

1 − Q◦
i ) = {0} and thus

λ1 = λ2 = . . . = λK ∈
K⋂
i=1

Q◦
i = N̂D(F(x̄)).

Hence, x∗ ∈ ∇F(x̄)TN̂D(F(x̄)) and (21) is verified. In order to show the last assertion note that from
(24), we conclude L ⊂ Qi and consequently Q◦

i ⊂ L◦ = L⊥. Thus Q◦
1 − Q◦

i ⊂ L⊥ − L⊥ = L⊥,
i = 2, . . . ,K . Since

ker∇F(x̄)T ∩ L⊥ = (
( ker∇F(x̄)T )⊥ + L

)⊥ = (∇F(x̄)Rn + L)⊥ = {0},

it follows that (23) holds.

Corollary 1: Assume that GGCQ holds at x̄ ∈ � and assume that we are given convex cones
Q1, . . . ,QK ⊂ TD(F(x̄)) fulfilling (19) and (22). Further assume that there is some subspace L fulfilling
(12) and (13). Then, the sets

Q̃i := Qi + L, i = 1, . . . ,K

are convex cones contained in TD(F(x̄)),

(∇F(x̄)−1Q̃i)
◦ = ∇F(x̄)TQ̃◦

i , i = 1, . . . ,K (25)

and

N̂�(x̄) = ∇F(x̄)TN̂D(F(x̄)) = ∇F(x̄)T
(
Q̃◦
1 ∩

K⋂
i=2

( ker∇F(x̄)T + Q̃◦
i )

)
.
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Proof: Firstly observe that Q̃i = Qi + L ⊂ TD(F(x̄)) + L ⊂ TD(F(x̄)) by (12). Next, consider
z ∈ ri Q̃i. By (13) there exists u ∈ R

n and l ∈ L such that∇F(x̄)u+ l = z. Because of−l ∈ L ⊂ Q̃i we
have z − 2l ∈ Q̃i and thus ∇F(x̄)u = z − l = 1

2z + 1
2 (z − 2l) ∈ ri Q̃i by [22, Theorem 6.1] implying

(25) by taking into account Remark 1. Further, from Qi ⊂ Q̃i ⊂ TD(F(x̄)) it follows that

N̂D(F(x̄)) = (TD(F(x̄)))◦ ⊂
K⋂
i=1

Q̃◦
i ⊂

K⋂
i=1

Q◦
i = N̂D(F(x̄)).

Finally, note that L ⊂ Q̃i ∩ ( − Q̃i), i = 1, . . . ,K and the assertion follows from Theorem 3.

The following definition is motivated by Theorem 2.
Definition 5: Let x̄ be feasible for the program (7) and let Q1, . . . ,QK be convex cones contained
in TD(F(x̄)) fulfilling (19).

(i) We say that x̄ is Q-stationary with respect to Q1, . . . ,QK , if

−∇f (x̄) ∈ ∇F(x̄)T
(
Q◦
1 ∩

K⋂
i=2

( ker∇F(x̄)T + Q◦
i )

)
.

(ii) We say that x̄ is QM-stationary with respect to Q1, . . . ,QK , if

−∇f (x̄) ∈ ∇F(x̄)T
(
ND(F(x̄)) ∩ Q◦

1 ∩
K⋂
i=2

( ker∇F(x̄)T + Q◦
i )

)
.

Note that this definition is an extension of the definition ofQ- andQM-stationarity in [14], where
only the case K = 2 was considered.

The following corollary is an immediate consequence of the definitions and Theorem 2.
Corollary 2: Assume that GGCQ is fulfilled at the point x̄ feasible for (7). Further assume that we are
given convex cones Q1, . . . ,QK ⊂ TD(F(x̄)) fulfilling (19). If x̄ is B-stationary, then x̄ is Q-stationary
with respect to Q1, . . . ,QK. Conversely, if x̄ is Q-stationary with respect to Q1, . . . ,QK and (21) is
fulfilled, then x̄ is S-stationary and consequently B-stationary.

We know that under the assumptions of Proposition 1 every B-stationary point x̄ for the problem
(7) is both M-stationary and Q-stationary with respect to every collection of cones Q1, . . . ,QK ⊂
TD(F(x̄)) fulfilling (19), i.e.

−∇f (x̄) ∈ ∇F(x̄)TND(F(x̄)) ∩ ∇F(x̄)T
(
Q◦
1 ∩

K⋂
i=2

( ker∇F(x̄)T + Q◦
i )

)

= ∇F(x̄)T
((

ker∇F(x̄)T + ND(F(x̄))
) ∩ Q◦

1 ∩
K⋂
i=2

( ker∇F(x̄)T + Q◦
i )

)
.

Comparing this relation with the definition of QM-stationarity we see that QM-stationarity with re-
spect toQ1, . . . ,QK is stronger than the simultaneous fulfilment ofM-stationarity andQ-stationarity
with respect to Q1, . . . ,QK . We refer to [14, Example 2] for an example which shows that QM-
stationarity is strictly stronger than M-stationarity. This is one of the advantages of QM-stationarity:

However, to ensure QM-stationarity of a B-stationary point x̄, some additional assumption has to
be fulfilled.
Lemma 1: Let x̄ be B-stationary for the program (7) and assume that the assumptions of Proposition 1
are fulfilled at x̄. Further assume that for every λ ∈ NTD(F(x̄))(0) there exists a convex cone Qλ ⊂
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TD(F(x̄)) containing λ and satisfying (∇F(x̄)−1Qλ)
◦ = ∇F(x̄)TQ◦

λ. Then there exists a convex cone
Q1 ⊂ TD(F(x̄)) fulfilling (∇F(x̄)−1Q1)

◦ = ∇F(x̄)TQ◦
1 such that for every collection Q2, . . . ,QK ⊂

TD(F(x̄)) fulfilling (19) the point x̄ is QM-stationary with respect to Q1, . . . ,QK.

Proof: From the definition of B-stationarity and (16) we deduce the existence of λ ∈ NTD(F(x̄))(0)
fulfilling −∇f (x̄) = ∇F(x̄)Tλ. By taking Q1 = Qλ we obviously have λ ∈ NTD(F(x̄))(0) ∩ Q◦

1 ⊂
ND(F(x̄)) ∩ Q◦

1 implying −∇f (x̄) ∈ ∇F(x̄)T (ND(F(x̄)) ∩ Q◦
1). Now consider cones Q2, . . . ,QK ⊂

TD(F(x̄)) fulfilling (19). Similar to the derivation of Theorem 2 we obtain

−∇f (x̄) ∈ ∇F(x̄)T (ND(F(x̄)) ∩ Q◦
1) ∩

K⋂
i=2

∇F(x̄)TQ◦
i

= ∇F(x̄)T
(
ND(F(x̄)) ∩ Q◦

1 ∩
K⋂
i=2

( ker∇F(x̄)T + Q◦
i )

)

and the lemma is proved.

Lemma 2: Let x̄ be feasible for (7) and assume that TD(F(x̄)) is the union of finitely many closed
convex cones C1, . . . ,Cp. Then for every λ ∈ NTD(F(x̄))(0) there is some ī ∈ {1, . . . , p} satisfying λ ∈ C◦̄

i .

Proof: Consider λ ∈ NTD(F(x̄))(0). By the definition of the limiting normal cone there are sequences
tk
TD(F(x̄))−→ 0 and λk → λ with

λk ∈ N̂TD(F(x̄))(tk) =
⎛⎝ ⋃

i:tk∈Ci

TCi (tk)

⎞⎠◦
=

⋂
i:tk∈Ci

(TCi (tk))
◦ =

⋂
i:tk∈Ci

NCi (tk).

By passing to a subsequence if necessary we can assume that there is an index ī such that tk ∈ Cī for
all k and we obtain λk ∈ NCī

(tk) = {c∗ ∈ C◦̄
i | 〈c∗, tk〉 = 0} ⊂ C◦̄

i . Since the polar cone C
◦̄
i is closed,

we deduce λ ∈ C◦̄
i .

If TD(F(x̄)) is the union of finitely many convex polyhedral cones C1, . . . ,Cp, then the map-
ping u ⇒ ∇F(x̄)u − TD(F(x̄)) is a polyhedral multifunction and thus metrically subregular at
(0, 0) by Robinson’s result [23]. Further we know that for any convex polyhedral cone Q we have
(∇F(x̄)−1Q)◦ = ∇F(x̄)TQ◦. Hence, we obtain the following corollary.
Corollary 3: Assume that x̄ is B-stationary for the program (7), that GGCQ is fulfilled at x̄ and that
TD(F(x̄)) is the union of finitely many convex polyhedral cones. Then there is a convex polyhedral
cone Q1 ⊂ TD(F(x̄)) such that for every collection Q2, . . . ,QK of convex polyhedral cones contained in
TD(F(x̄)) the point x̄ is QM-stationary with respect to Q1, . . . ,QK.

Let us notice that in contrast to S-,M- andmany other types of stationarity the properties ofQ- and
QM-stationarity cannot be characterized by some single multiplier. In fact, Q- and QM-stationarity
with respect to Q1, . . . ,QK implies the existence of K multipliers λ1, . . . , λK satisfying

λi ∈ Q◦
i , ∇f (x̄) + ∇F(x̄)Tλi = 0, i = 1, . . . ,K .

In case of QM-stationarity the multiplier λ1 also fulfills the M-stationarity conditions.
Further, let us note that QM-stationarity, although it is stronger that M-stationarity, does not

imply B-stationarity in general. Thus, in general QM-stationarity is not a sufficient condition for a
local minimizer as well.
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4. Application toMPDC

It is clear thatQ-stationarity is not a very strongoptimality condition for every choice ofQ1, . . . ,QK ⊂
TD(F(x̄)). As mentioned above the fulfillment of (22) is desirable. For the general problem (7), it
can be impossible to choose the cones Q1, . . . ,QK such that (22) holds. If TD(F(x̄)) is the union of
finitely many convex cones C1, . . . ,Cp then we obviously have

N̂D(F(x̄)) =
p⋂

i=1

C◦
i .

However, to consider Q-stationarity with respect to C1, . . . ,Cp is in general not a feasible approach
because p is often very large. We will now work out that the concepts of Q- and QM-stationarity are
tailored for the MPDC (1). In what follows let D and F be given by (2).

Given a point y = (y1, . . . , ymD ) ∈ D, we denote by

Ai(y) := {j ∈ {1, . . . ,Ki} | yi ∈ Dj
i}, i = 1, . . . ,mD

the indices of sets Dj
i which contain yi. Further we choose for each i = 1, . . . ,mD some index set

Ji(y) ⊂ Ai(y) such that

TDi (yi) =
⋃

j∈Ji(y)

TDj
i
(yi). (26)

Obviously the choice Ji(y) = Ai(y) is feasible but for practical reasons it is better to choose Ji(y)
smaller if possible. E.g. if TDj2

i
(yi) ⊂ TDj1

i
(yi) holds for some indices j1, j2 ∈ Ai(y), then we will not

include j2 in Ji(y). Such a situation can occur e.g. in case of MPVC when ( − Hi(x̄),Gi(x̄)) = (0, a)
with a < 0.

Now consider

ν ∈ J (y) :=
mD∏
i=1

Ji(y).

Since for every i = 1, . . . ,mD the setDi is the union of finitely many convex polyhedral sets, for every
tangent direction t ∈ TDi (yi) we have yi + αt ∈ Di for all α > 0 sufficiently small. Hence, we can
apply [24, Proposition 1] to obtain

TD(ν)(y) =
mD∏
i=1

TDνi
i
(yi), ν ∈ J (y)

with D(ν) given by (4), and

TD(y) =
mD∏
i=1

TDi (yi) =
mD∏
i=1

( ⋃
j∈Ji(y)

TDj
i
(yi)

)
=

⋃
ν∈J (y)

TD(ν)(y). (27)

We will apply this setting in particular to points y = F(x̄) with x̄ feasible for MPDC.
Lemma 3: Let x̄ be feasible for the MPDC (1) and assume that we are given K elements ν1, . . . , νK ∈
J (F(x̄)) such that

{ν1i , . . . , νKi } = Ji(F(x̄)), i = 1, . . . ,mD. (28)
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Then for each l = 1, . . . ,K the cone Ql := TD(ν l)(F(x̄)) is a convex polyhedral cone contained in
TD(F(x̄)),

(∇F(x̄)−1Ql
)◦ = ∇F(x̄)TQ◦

l , and

K⋂
l=1

Q◦
l = N̂D(F(x̄)).

Proof: Obviously, for every l = 1, . . . ,K the cone Ql is convex and polyhedral because it is the
product of convex polyhedral cones. This implies

(∇F(x̄)−1Ql
)◦ = ∇F(x̄)TQ◦

l and Ql ⊂ TD(F(x̄))
follows from (27). By taking into account (27) the last assertion follows from

N̂D(F(x̄)) =
(
TD(F(x̄))

)◦ =
mD∏
i=1

( ⋃
j∈Ji(F(x̄))

TDj
i
(Fi(x̄))

)◦ =
mD∏
i=1

( K⋃
l=1

T
D

νli
i

(Fi(x̄))
)◦

=
mD∏
i=1

( K⋂
l=1

(
T
D

νli
i

(Fi(x̄))
)◦) =

K⋂
l=1

( mD∏
i=1

(
T
D

νli
i

(Fi(x̄))
)◦) =

K⋂
l=1

( mD∏
i=1

T
D

νli
i

(Fi(x̄))
)◦

=
K⋂
l=1

Q◦
l .

Definition 6: Let x̄ be feasible for theMPDC (1) and let index setsJi(F(x̄)) ⊂ Ai(x̄), i = 1, . . . ,mD
fulfilling (26) be given. Further we denote by Q(x̄) the collection of all elements (ν1, . . . , νK ) with
ν l ∈ J (F(x̄)) = ∏mD

i=1 Ji(F(x̄)), l = 1, . . . ,K such that (28) holds.

(1) We say that x̄ is Q-stationary (QM-stationary) for (1) with respect to (ν1, . . . , νK ) ∈ Q(x̄),
if x̄ is Q-stationary (QM-stationary) with respect to Q1, . . . ,QK in the sense of Definition 5
with Ql := TD(ν l)(F(x̄)), l = 1, . . . ,K .

(2) We say that x̄ isQ-stationary (QM-stationary) for (1) if x̄ isQ-stationary (QM-stationary) for
(1) with respect to some (ν1, . . . , νK ) ∈ Q(x̄).

Definition 6 is an extension of the definition of Q- and QM-stationarity made for MPCC and
MPVC in [14]. Note that the number K appearing in the definition of Q(x̄) is not fixed. Denoting
Kmin(x̄) the minimal number K such that (ν1, . . . , νK ) ∈ Q(x̄), we obviously have

Kmin(x̄) = max
i=1,...,mD

|Ji(F(x̄))| ≤ max
i=1,...,mD

Ki. (29)

We see from (27) that the tangent cone TD(F(x̄)) is the union of the |J (F(x̄))| = ∏mD
i=1 |Ji(F(x̄))|

convex polyhedral cones TD(ν)(y). Hence, the minimal number Kmin(x̄) is much smaller than the
number of components of the tangent cone, exceptwhen all or nearly all setsJi(F(x̄))have cardinality
1. E.g. when Ki ≤ 2 holds for all i = 1, . . . ,mD as it is the case of the MPCC (5), then we have
Kmin(x̄) ≤ 2 whereas the number of convex cones building the tangent cone TD(F(x̄)) grows
exponentially with the number of biactive constraints, i.e. complementarity constraints satisfying
Gi(x̄) = Hi(x̄) = 0. The concepts of Q- and QM-stationarity for MPDC take advantage of the fact
that although the tangent cone is the union of a huge number of cones, its polar cone can be written
as the intersection of a small number of polars. Further, it is clear that for every ν1 ∈ J (F(x̄)) and
every K ≥ Kmin(x̄) we can find ν2, . . . , νK ∈ J (F(x̄)) such that (ν1, . . . , νK ) ∈ Q(x̄).

We allow K to be greater than Kmin(x̄) for numerical reasons primarily. Recall that for testing
Q-stationarity with respect to (ν1, . . . , νK ), we have to check for all l = 1, . . . ,K whether −∇f (x̄) ∈
∇F(x̄)TQ◦

l , or equivalently, that u = 0 is a solution of the linear optimization program
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min〈∇f (x̄), u〉 subject to ∇F(x̄)u ∈ Ql

with Ql = TD(ν l)(F(x̄)). Theoretically the treatment of degenerated linear constraints is not a big
problem but the numerical practice tells us the contrary. In [25] we have implemented an algorithm
for solving MPVC based on Q-stationarity and the degeneracy of the linear constraints was the
reason when the algorithm crashed. The possibility of choosing K > Kmin(x̄) gives us more flexibility
to avoid linear programs with degenerated constraints.

The following theorem follows from Corollaries 2, 3, Theorem 3 and the considerations above.
Theorem 4: Let x̄ be feasible for the MPDC (1) and assume that GGCQ is fulfilled at x̄.

(i) If x̄ is B-stationary then x̄ is Q-stationary with respect to every element (ν1, . . . , νK ) ∈ Q(x̄)
and there exists some ν̄1 ∈ J (F(x̄)) such that x̄ is QM-stationary with respect to every
(ν̄1, ν2, . . . , νK ) ∈ Q(x̄).

(ii) Conversely, if x̄ is Q-stationary with respect to some (ν1, . . . , νK ) ∈ Q(x̄) and

∇F(x̄)T
(
Q◦
1 ∩

K⋂
l=2

( ker∇F(x̄)T + Q◦
l )
)

⊂ ∇F(x̄)TN̂D(F(x̄)), (30)

where Ql := TD(ν l)F(x̄), l = 1, . . . ,K, then x̄ is S-stationary and consequently B-stationary. In
particular, (30) is fulfilled if

ker∇F(x̄)T ∩
(
Q◦
1 − Q◦

l

)
= {0}, l = 2, . . . ,K . (31)

5. On quadratic programs with disjunctive constraints

In this section, we consider the special case of quadratic programs with disjunctive constraints
(QPDC)

min
x∈Rn

q(x) := 1
2
xTBx + dTx (32)

subject to Aix ∈ Di :=
Ki⋃
j=1

Dj
i , i = 1, . . . ,mD,

where B is a positive semidefinite n × n matrix, d ∈ R
n, Ai, i = 1, . . . ,mD are li × n matrices and

Dj
i ⊂ R

li , i = 1, . . . ,mD, j = 1, . . . ,Kj are convex polyhedral sets, i.e. QPDC is a special case of
MPDC with f (x) = q(x) and Fi(x) = Aix, i = 1, . . . ,mD. In what follows, we denote by A them× n
matrix

A =
⎛⎜⎝ A1

...

AmD

⎞⎟⎠ ,

wherem := ∑mD
i=1 li.

We start our analysis with the following preparatory lemma.
Lemma 4: Assume that the convex quadratic program

min
x∈Rn

1
2
xTBx + dTx subject to Ax ∈ C (33)
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is feasible, where B is some symmetric positive semidefinite n× n matrix, d ∈ R
n, A is a m× n matrix

and C ⊂ R
m is a convex polyhedral set. Then either there exists a direction w satisfying

Bw = 0, Aw ∈ 0+C, dTw < 0, (34)

or the program (33) has a global solution x̄.

Proof: Assume that for every w with Bw = 0, Aw ∈ 0+C we have dTw ≥ 0, i.e. 0 is a global solution
of the program

min dTw subject to w ∈ S :=
{
w |

(
B
A

)
w ∈ {0}n × 0+C

}
.

Since C is a convex polyhedral set, its recession cone 0+C is a convex polyhedral cone and so is
{0}n × 0+C as well. Hence,

N̂S(0) = S◦ = (BT
...AT )({0}n × 0+C)◦ = BTR

n + AT (0+C)◦

and from the first-order optimality condition −d ∈ N̂S(0) we derive the existence of multipliers
μB ∈ R

n and μC ∈ (0+C)◦ such that

−d = BTμB + ATμC .

The convex polyhedral set C is the sum of the convex hull � of its extreme points and its recession
cone. Hence, for every x feasible for (33) there is some c1 ∈ � and some c2 ∈ 0+C such that
Ax = c1 + c2 and, by taking into account μT

Cc2 ≤ 0, we obtain

1
2
xTBx + dTx = 1

2
xTBx − μT

BBx − μT
CAx

= 1
2
(x − μB)

TB(x − μB) − 1
2
μT
BBμB − μT

Cc1 − μT
Cc2 (35)

≥ −1
2
μT
BBμB − μT

Cc1.

The set � is compact and we conclude that the objective of (33) is bounded below on the feasible
domain A−1C by − 1

2μ
T
BBμB − maxc1∈� μT

Cc1. Thus

α := inf
{
1
2
xTBx + dTx |Ax ∈ C

}
is finite and there remains to show that the infimum is attained. Consider some sequence xk ∈ A−1C
with limk→∞ 1

2x
T
k Bxk + dTxk = α. We conclude from (35) that (xk − μB)

TB(xk − μB) is bounded
which in turn implies that the sequence B1/2xk is bounded. Hence, the sequence xTk Bxk = ‖B1/2xk‖2
is bounded as well and we can conclude also the boundedness of dTxk. By passing to a subsequence
we can assume that the sequence (B1/2xk, dTxk) converges to some (z,β) and it follows that α =
1
2‖z‖2 + β . Since C is a convex polyhedral set, it follows by applying [22, Theorem 19.3] twice, that
the sets A−1C and {(B1/2u, dTu) | u ∈ A−1C} are convex and polyhedral. Since convex polyhedral
sets are closed, it follows that (z,β) ∈ {(B1/2u, dTu) | u ∈ A−1C}. Thus there is some x̄ ∈ A−1C with
(z,β) = (B1/2x̄, dT x̄) and 1

2 x̄
TBx̄ + dT x̄ = α follows. This shows that x̄ is a global minimizer for

(33).
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In what follows, we assume that we have at hand an algorithm for solving (33), which either
computes a global solution x̄ or a descent direction w fulfilling (34). Such an algorithm is, e.g. the
active set method as described in [26], where we have to rewrite the constraints equivalently in the
form 〈ATai, x〉 ≤ bi, i = 1, . . . , p using the representation of C as the intersection of finitely many
half-spaces, C = {c | 〈ai, c〉 ≤ bi, i = 1, . . . , p}.

Consider now the following algorithm.

Algorithm 1 (Basic algorithm for QPDC):
Input: starting point x1 feasible for the QPDC (32).

(1) Set the iteration counter k := 1.
(2) Select (νk,1, . . . , νk,K ) ∈ Q(xk) and consider for l = 1, . . . ,K the quadratic programs

(QPk,l) min q(x) subject to Ax ∈ D(νk,l).

If one of these programs is unbounded below, stop the algorithm and return the current
iterate xk together with ν̄ := νk,l and the descent direction w fulfilling (34). Otherwise let xk,l ,
l = 1, . . . ,K denote the global solutions of (QPk,l).

(3) If q(xk) = q(xk,l), l = 1, . . . ,K , stop the algorithm and return xk together with ν̄ := νk,1.
(4) Choose l ∈ {1, . . . ,K} with q(xk,l) < q(xk), set xk+1 = xk,l , increase the iteration counter

k := k + 1 and go to step (2)

Algorithm 1 can be considered as a kind of active index set strategy. The set (νk,1, . . . , νk,K ) ∈
Q(xk) chosen in step (2) acts as a working set and is a subset of the active pieces of the disjunctive
constraints. The number K will also depend on xk and for practical reasons it is desirable to keep K
small to have small numerical effort in each iteration. Recall that we can always choose K equal to
the number Kmin(xk) given by (29) which is bounded by maxi=1,...,mD Ki. The working set is used
for testing for unboundedness of the problem and Q-stationarity, respectively, by investigating the
quadratic subproblems (QPk,l). If one of these subproblem’s problem appears unbounded, we stop
the algorithm because of unboundedness of the whole program. If xk is a solution for every quadratic
subproblem, we stop the algorithm because xk is Q-stationary. On the other hand, if xk is not a
solution of one of these subproblems, then we take the point xk+1 as the solution of this subproblem,
yielding a smaller objective function value. Then, we repeat the whole procedure by generating a new
working set and testing for termination.

In the next theorem, we show that Algorithm 1 is finite. However, we do not know any nontrivial
bound on the number of iterations needed, as usual for active set strategies.
Theorem 5: Algorithm 1 terminates after a finite number of iterations either with some feasible point
and some descent direction w indicating that QPDC is unbounded below or with some Q-stationary
solution.

Proof: If Algorithm 1 terminates in step (2) the output is a feasible point together with some descent
direction showing thatQPDC is unbounded below. If the algorithmdoes not terminate in step (2), the
computed sequence of function values q(xk) is strictly decreasing. Moreover, denoting νk := νk−1,l

where l is the index chosen in step (4), we see that for each k ≥ 2 the point xk is global minimizer of
the problem

min q(x) subject to Ax ∈ D(νk).

This shows that all the vectors νk must be pairwise different and since there is only a finite number
of possible choices for νk, the algorithmmust stop in step (3). We will now show that the final iterate
xk is Q-stationary with respect to (νk,1, . . . , νk,K ). Since for each l = 1, . . . ,K the point xk is a global
minimizer of the subproblem (Qk,l), it also satisfies the first order optimality condition

〈∇q(xk), u〉 ≥ 0 for every u ∈ R
n satisfying Au ∈ TD(νk,l)(Ax

k)).
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This shows Q-stationarity of xk and the theorem is proved.

6. On verifyingQM-stationarity for MPDC

The following theorem is crucial for the verification of M-stationarity.
Theorem 6:

(i) Let x̄ be feasible for the general program (7). If there exists a B-stationary solution of the program

min
(u,v)∈Rn×Rm

〈∇f (x̄), u〉 + 1
2
‖v‖2 subject to ∇F(x̄)u + v ∈ TD(F(x̄)), (36)

then x̄ is M-stationary.
(ii) Let x̄ be B-stationary for the MPDC (1) and assume that GGCQ holds at x̄. Then the program

(36) has a global solution.

Proof:

(i) Let (ū, v̄)denote aB-stationary solution, i.e.−(∇f (x̄), v̄) ∈ N̂
(ū, v̄), where
 = (∇F(x̄)
... I)−1

TD(F(x̄)). Since the matrix (∇F(x̄)
... I) obviously has full rank, we have N̂
(ū, v̄) = (∇F(x̄)

...

I)TN̂TD(F(x̄))(∇F(x̄)ū + v̄) by [11, Exercise 6.7]. Thus there exists a multiplier λ ∈ N̂TD(F(x̄))
(∇F(x̄)ū+v̄) such that−∇f (x̄) = ∇F(x̄)Tλ and−v̄ = λ. Using [11, Proposition 6.27]wehave
N̂TD(F(x̄))(∇F(x̄)ū + v̄) ⊂ NTD(F(x̄))(∇F(x̄)ū + v̄) ⊂ NTD(F(x̄))(0) ⊂ ND(F(x̄)) establishing
M-stationarity of x̄.

(ii) Consider for arbitrarily fixed ν ∈ J (F(x̄)) the convex quadratic program

min
(u,v)∈Rn×Rm

〈∇f (x̄), u〉 + 1
2
‖v‖2 subject to ∇F(x̄)u + v ∈ TD(ν)(F(x̄)). (37)

Assuming that this quadratic program does not have a solution, by Lemma 4 we could find a
direction (wu,wv) satisfying(

0 0
0 I

)(
wu
wv

)
= 0, ∇F(x̄)wu + wv ∈ 0+TD(ν)(F(x̄)), 〈∇f (x̄),wu〉 + 〈0,wv〉 < 0.

This implieswv = 0,∇F(x̄)wu ∈ 0+TD(ν)(F(x̄)) = TD(ν)(F(x̄)) ⊂ TD(F(x̄)) and 〈∇f (x̄),wu〉
< 0 and thus, together with GGCQ, −∇f (x̄) �∈ (T lin

� (x̄))◦ = N̂D(F(x̄)) contradicting
our assumption that x̄ is B-stationary for (1). Hence, the quadratic program (37) must
possess some global solution (uν , vν). By choosing ν̄ ∈ J (F(x̄)) such that 〈∇f (x̄), uν̄〉 =
min{〈∇f (x̄), uν〉 | ν ∈ J (F(x̄))} it follows from (27) that (uν̄ , vν̄ ) is a global solution of (36).

We now want to apply Algorithm 1 to the problem (36). Note that the point (0, 0) is feasible for
(36) and therefore we can start Algorithm 1 with (u1, v1) = (0, 0).
Corollary 4: Let x̄ be feasible for the MPDC (1) and apply Algorithm 1 to the QPDC (36). If the
algorithm returns an iterate together with some descent direction indicating that (36) is unbounded
below and if GGCQ is fulfilled at x̄, then x̄ is not B-stationary. On the other hand, if the algorithm
returns a Q-stationary solution, then x̄ is M-stationary.

Proof: Observe that in case when Algorithm 1 returns aQ-stationary solution, by Theorem 4(ii) this

solution is B-stationary because the Jocobian of the constraints (∇F(x̄)
... I) obviously has full rank.

Now the statement follows from Theorem 6.
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We now want to analyse how the output of Algorithm 1 can be further utilized. Recalling that
TD(F(x̄)) has the disjunctive structure

TD(F(x̄)) =
mD∏
i=1

( ⋃
j∈Ji(F(x̄))

TDj
i
(Fi(x̄))

)
,

we define for y = (y1, . . . , ymD ) ∈ TD(F(x̄)) the index sets

ATD
i (y) := {j ∈ Ji(F(x̄)) | yi ∈ TDj

i
(Fi(x̄))}, i = 1, . . . ,mD.

Further we choose for each i = 1, . . . ,mD some index set J TD
i (y) ⊂ ATD

i (y) such that

TTDi (Fi(x̄))(yi) =
⋃

j∈J TD
i (y)

TT
Dji

(Fi(x̄))(yi) (38)

and set

J TD(y) :=
mD∏
i=1

J TD
i (y).

Note that we always have
J TD(y) ⊂ J (F(x̄)).

In order to verifyQ-stationarity for the problem (36) at some feasible point (u, v), we have to consider
the set QTD(u, v) consisting of all (ν1, . . . , νK ) with ν l ∈ J TD(∇F(x̄)u + v), l = 1, . . . ,K such that

{ν1i , . . . , νKi } = J TD
i (∇F(x̄)u + v), i = 1, . . . ,mD.

At the k-th iterate (uk, vk) we have to choose (νk,1, . . . , νk,K ) ∈ QTD(uk, vk) and then for each
l = 1, . . . ,K we must analyse the convex quadratic program

(QPk,l) min
u,v

〈∇f (x̄), u〉 + 1
2
‖v‖2 subject to ∇F(x̄)u + v ∈ TD(νk,l)(F(x̄)).

If for some l̄ ∈ {1, . . . ,K} this quadratic program is unbounded below then Algorithm 1 returns the
index ν̄ := νk,l̄ together with a descent direction (wu,wv) fulfilling, as argued in the proof of Theorem
6(ii),

wv = 0, ∇F(x̄)wu ∈ 0+TD(ν̄)(F(x̄)) = TD(ν̄)(F(x̄)), 〈∇f (x̄),wu〉 < 0.

Therefore, wu constitutes a feasible descent direction, provided GACQ holds at x̄, i.e. for every α > 0
sufficiently small the projection of x̄ + αwu on the feasible set F−1(D) yields a point with a smaller
objective function value than x̄. If GACQ also holds for the constraint F(x) ∈ D(ν̄) at x̄, then we can
also project the point x̄ + αwu on F−1(D(ν̄)) in order to reduce the objective function.

Now, assume that the final iterate (uk, vk) of Algorithm1 isQ-stationary for (36) and consequently
x̄ is M-stationary for the MPDC (1). Setting λ := −vk, the first order optimality conditions for the
quadratic programs (QPk,l) result in

−∇f (x̄) = ∇F(x̄)Tλ,

λ ∈
K⋂
l=1

NTD(νk,l )(F(x̄))(∇F(x̄)uk + vk) = N̂TD(F(x̄))(∇F(x̄)uk + vk) ⊂ ND(F(x̄)).
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Fromthiswe conclude−∇f (x̄) ∈ ∇F(x̄)T (Q◦
1∩ND(F(x̄))withQ1 := TD(ν̄)(F(x̄)) ⊂ TTD(ν̄)(F(x̄))(∇F(x̄)uk+

vk) where ν̄ = νk,1 is the index vector returned from Algorithm 1. Now choosing ν2, . . . , νK such
that (ν̄, ν2, . . . , νK ) ∈ Q(x̄) we can simply check by testing −∇f (x̄) ∈ ND(ν l)(F(x̄)), l = 2, . . . ,K ,
whether x̄ is QM stationary or x̄ is not B-stationary.

Further, we have the following corollary.
Corollary 5: Let x̄ be B-stationary for the MPDC (1) and assume that GGCQ is fulfilled at x̄. Let ν̄ be
the index vector returned by Algorithm 1 applied to (36). Then ν̄ ∈ J (F(x̄)) and for every ν2, . . . , νK
with (ν̄, ν2, . . . , νK ) ∈ Q(x̄) the point x̄ is QM-stationary with respect to (ν̄, ν2, . . . , νK ).

7. Numerical aspects

In practice, the point x̄which should be checked forM-stationarity andQM-stationarity, respectively,
often is not known exactly. E.g. x̄ can be the limit point of a sequence generated by some numerical
method for solving MPDC. Hence, let us assume that we are given some point x̃ close to x̄ and we
want to state some rules when we can consider x̃ as approximately M-stationary or QM-stationary.
Let us assume that the convex polyhedral sets Dj

i have the representation

Dj
i = {y | 〈ai,jl , y〉 ≤ bi,jl , l = 1, . . . , pi,j}, i = 1, . . . ,mD, j = 1, . . . ,Ki,

where without loss of generality we assume ‖ai,jl ‖ = 1.
We use here the following approach.

Algorithm 2:
Input: A point x̃ and small positive parameters ε, σ , η.
(1)Calculate the index sets

Ãi(x̃, ε) := {j ∈ {1, . . . ,Ki} | d(Fi(x̃),D
j
i) ≤ ε}, i = 1, . . . ,mD

Ĩ j
i (x̃, ε) := {l ∈ {1, . . . , pi,j} | 〈ai,jl , Fi(x̃)〉 ≥ bi,jl − ε}, i = 1, . . . ,mD, j ∈ Ãi(x̃, ε)

and the convex polyhedral cones

Tj
i (x̃, ε) = {v | 〈ai,jl , v〉 ≤ 0, l ∈ Ĩ j

i (x̃, ε)}, i = 1, . . . ,mD, j ∈ Ãi(x̃, ε).

Assume that Ãi(x̃, ε) �= ∅, i = 1, . . . ,mD.
(2)Consider

QPDC(x̃, ε, σ) min
u,v

〈∇f (x̃), u〉 + σ

2
‖u‖2 + 1

2
‖v‖2

subject to ∇F(x̃)u + v ∈
mD∏
i=1

( ⋃
j∈Ãi(x̃,ε)

Tj
i (x̃, ε)

)
.

Let (ũ, ṽ) and ν̄ denote the output of Algorithm 1 applied to QPDC(x̃, ε, σ).
(3) If σ‖ũ‖ > η consider the nonlinear programming problem

min f (x) subject to F(x) ∈ D(ν̄)

in order to improve x̃.
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(4)Otherwise consider x̃ as approximately M-stationary and compute ν2, . . . , νK ∈ ∏mD
i=1 Ãi(x̃, ε)

such that

T ν̄i
i (x̃, ε) ∪

K⋃
l=2

Tν li
i (x̃, ε) =

⋃
j∈Ãi(x̃,ε)

Tj
i (x̃, ε), i = 1, . . . ,mD.

If

min
{
∇f (x̃)u | ∇F(x̃)u ∈ ∏mD

i=1 T
ν li
i (x̃, ε),

−1 ≤ ui ≤ 1, i = 1, . . . , n

}
≥ −η, l = 2, . . . ,K , (39)

accept x̃ as approximately QM-stationary. Otherwise consider the nonlinear programming
problem

min f (x) subject to F(x) ∈ D(ν l̄)

in order to improve x̃, where l̄ ∈ {2, . . . ,K} denotes some index violating (39).
In the first step of Algorithm 2, we want to estimate the tangent cone TD(F(x̄)). In fact, to calculate

TD(F(x̄))weneednot to know the pointF(x̄), we only need the index sets of constraints active at x̄ and
these index sets are approximated by ε-active constraints. Note that whenever Ãi(x̃, ε) = Ãi(x̄, 0) =
Ai(F(x̄)) and Ĩ j

i (x̃, ε) = Ĩ j
i (x̄, 0), i = 1, . . . ,mD, j ∈ Ai(F(x̄)) this approach yields the exact tangent

cones TDj
i
(F(x̄)) = Tj

i (x̃, ε) for all i = 1, . . . ,mD, j ∈ Ai(F(x̄)). To be consistent with the notation of
Section 4 we make the convention that in this case the index vector ν̄ computed in step (2) belongs
to J (x̄) and also, whenever we determine ν2, . . . νK is step (4), we have (ν̄, ν2, . . . , νK ) ∈ Q(x̄). The
regularization term σ

2 ‖u‖2 in QPDC(x̃, ε, σ) forces the objective to be strictly convex and therefore
Algorithm 1 will always terminate with a Q-stationary solution. Further note that the verification of
(39) requires the solution of K − 1 linear optimization problems.

The following theorem justifies Algorithm 2. In the sequel, we denote by M(x̄) (Msub(x̄)) the
set of all ν ∈ J (x̄) such that the mapping F( · ) − D(ν) is metrically regular near (x̄, 0) (metrically
subregular at (x̄, 0)).
Theorem 7: Let x̄ be feasible for the MPDC (1) and assume that ∇f and ∇F are Lipschitz near x̄.
Consider sequences xt → x̄, εt ↓ 0, σt ↓ 0 and ηt ↓ 0 with

lim
t→∞

‖xt − x̄‖
εt

= lim
t→∞

σt
ηt

+ ‖xt − x̄‖
ηt

= 0

and let (ũt , ṽt), ν̄t and eventually νt,2 . . . , νt,Kt and l̄t denote the output of Algorithm 2with input data
(xt , εt , σt , ηt).

(i) For all t sufficiently large and for all i ∈ {1, . . . ,mD} we have

Ãi(xt , εt) = Ai(F(x̄)), Ĩ j
i (xt , εt) = Ĩ j

i (x̄, 0), j ∈ Ai(F(x̄)). (40)

(ii) Assume that the mapping x ⇒ F(x) − D is metrically regular near (x̄, 0).
(a) If x̄ is B-stationary then for all t sufficiently large the point xt is accepted as approximately

M-stationary and approximately QM-stationary.
(b) If for infinitely many t the point xt is accepted as approximately M-stationary then x̄ is

M-stationary.
(c) If for infinitely many t the point xt is accepted as approximately QM-stationary and

{ν̄t , νt,2, . . . , νt,Kt } ⊂ M(x̄) then x̄ is QM-stationary.
(d) For every t sufficiently large such that the point xt is not accepted as approximately M-

stationary and ν̄t ∈ Msub(x̄) we havemin{f (x) | F(x) ∈ D(ν̄t)} < f (x̄).
(e) For every t sufficiently large such that the point xt is not accepted as approximately QM-

stationary and νt,l̄t ∈ Msub(x̄) we havemin{f (x) | F(x) ∈ D(νt,l̄t )} < f (x̄).
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Proof: (i) Let R > 0 be chosen such that f , F and their derivatives are Lipschitz on B(x̄,R) with
constant L. It is easy to see that we can choose ε > 0 such that for all i ∈ {1, . . . ,mD} we have
Ãi(x̄, ε) = Ãi(x̄, 0) = Ai(F(x̄)) and such that for every j ∈ Ai(F(x̄)) we have Ĩ j

i (x̄, ε) = Ĩ j
i (x̄, 0).

Consider t with ‖xt − x̄‖ < R, L‖xt − x̄‖ < εt < ε/2 and fix i ∈ {1, . . . ,mD}. For every j ∈ Ai(F(x̄))
we have

d(Fi(xt),D
j
i) ≤ ‖Fi(xt) − Fi(x̄)‖ ≤ L‖xt − x̄‖ < εt ,

whereas for j �∈ Ai(F(x̄)) we have

d(Fi(xt),D
j
i) ≥ d(Fi(x̄),D

j
i) − ‖Fi(xt) − Fi(x̄)‖ ≥ ε − L‖xt − x̄‖ > εt

showing Ãi(xt , εt) = Ai(F(x̄)). Now fix j ∈ Ai(F(x̄)) and let l ∈ Ĩ j
i (x̄, 0), i.e. 〈ai,jl , Fi(x̄)〉 = bi,jl . By

taking into account ‖ai,jl ‖ = 1 we obtain

〈ai,jl , Fi(xt)〉 ≥ bi,jl − ‖Fi(xt) − Fi(x̄)‖ > bi,jl − εt

implying l ∈ Ĩ j
i (xt , εt), whereas for l �∈ Ĩ j

i (x̄, 0) = Ĩ j
i (x̄, ε) we have

〈ai,jl , Fi(xt)〉 ≤ 〈ai,jl , Fi(x̄)〉 + ‖Fi(xt) − Fi(x̄)‖ < bi,jl − ε + εt < bi,jl − εt

showing l �∈ Ĩ j
i (xt , εt). Hence, Ĩ j

i (xt , εt) = Ĩ(x̄, 0). Because of our assumptions we have ‖xt − x̄‖ < R
and L‖xt − x̄‖ < εt < ε/2 for all t sufficiently large and this proves (40).

(ii) In view of Proposition 2, we can choose κ large enough such that the mappings F( · ) − D,
u ⇒ ∇F(x̄)u − TD(F(x̄)) and F( · ) − D(ν), u ⇒ ∇F(x̄)u − TD(ν)(F(x̄)), ν ∈ M(x̄) are metrically
regular near (x̄, 0)withmodulus κ . By eventually shrinkingRwe can assume that for every x ∈ B(x̄,R)

themappings u ⇒ ∇F(x)u−TD(F(x̄)), u ⇒ ∇F(x)u−TD(ν)(F(x̄)), ν ∈ M(x̄) aremetrically regular
near (0, 0) with modulus κ + 1.

Without loss of generality we can assume that xt ∈ B(x̄,R) and (40) holds for all t implying
that TDj

i
(F(x̄)) = Tj

i (x̃, εt) holds for all i = 1, . . . ,mD, j ∈ Ai(F(x̄)). In fact, then the problem
QPDC(xt , εt , σt) is the same as

min
u,v

〈∇f (xt), u〉 + σt

2
‖u‖2 + 1

2
‖v‖2 subject to ∇F(xt)u + v ∈ TD(F(x̄)).

The point (ũt , ṽt) isQ-stationary for this program and thus also S-stationary by Theorem 4(ii) and the

full rank property of the matrix (∇F(xt)
... I). Hence, there is a multiplier λt ∈ N̂TD(F(x̄))(∇F(xt)ũt +

ṽt) ⊂ NTD(F(x̄))(0) fulfilling ṽt + λt = 0, ∇f (xt) + σt ũt + ∇F(xt)Tλt = 0 and we conclude

‖ṽt‖ = ‖λt‖ ≤ (κ + 1)‖∇f (xt) + σt ũt‖ (41)

from (18).
By Q-stationarity of (ũt , ṽt) we know that (ũt , ṽt) is the unique solution of the strictly convex

quadratic program

min〈∇f (xt), u〉 + σt

2
‖u‖2 + 1

2
‖v‖2 subject to ∇F(xt)u + v ∈ TD(ν̄t )(F(x̄)). (42)

For every α ≥ 0, the point α(ũt , ṽt) is feasible for this quadratic program and thus α = 1 is solution
of

min
α≥0

α〈∇f (xt), ũt〉 + α2
(

σt

2
‖ũt‖2 + 1

2
‖ṽt‖2

)
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implying
−〈∇f (xt), ũt〉 = σt‖ũt‖2 + ‖ṽt‖2.

Hence,

σt‖ũt‖ ≤ −〈∇f (xt),
ũt

‖ũt‖〉 ≤ ‖∇f (xt)‖ (43)

and from (41) we obtain
‖ṽt‖ = ‖λt‖ ≤ 2(κ + 1)‖∇f (xt)‖. (44)

(a) Assume on the contrary that x̄ is B-stationary but for infinitely many t the point xt is not
accepted as approximately M-stationary and hence ‖ũt‖ ≥ ηt/σt . This implies

d(∇F(x̄)
ũt

‖ũt‖ ,TD(F(x̄))) ≤ d(∇F(xt)
ũt

‖ũt‖ ,TD(F(x̄))) + L‖xt − x̄‖ ≤ ‖ṽt‖
‖ũt‖ + L‖xt − x̄‖

≤ 2(κ + 1)‖f (xt)‖σt

ηt
+ L‖xt − x̄‖

andby themetric regularity ofu ⇒ ∇F(x̄)u−TD(F(x̄))near (0, 0)wecanfind ût ∈ ∇F(x̄)−1TD(F(x̄))
with

‖ût − ũt
‖ũt‖‖ ≤ κ

(
2(κ + 1)‖f (xt)‖σt

ηt
+ L‖xt − x̄‖

)
.

Our choice of the parameters σt , ηt together with (43) ensures that for t sufficiently large we have

〈∇f (x̄), ût〉 ≤ 〈∇f (x̄),
ũt

‖ũt‖〉 + ‖∇f (x̄)‖‖ût − ũt
‖ũt‖‖

≤ 〈∇f (xt),
ũt

‖ũt‖〉 + L‖xt − x̄‖ + ‖∇f (x̄)‖‖ût − ũt
‖ũt‖‖

≤ −σt‖ũt‖ + L‖xt − x̄‖ + ‖∇f (x̄)‖‖ût − ũt
‖ũt‖‖

≤ −ηt + L‖xt − x̄‖ + ‖∇f (x̄)‖κ
(
2(κ + 1)‖f (xt)‖σt

ηt
+ L‖xt − x̄‖

)
< 0

which contradicts B-stationarity of x̄. Hence, for all t sufficiently large the point xt must be accepted
as approximately M-stationary.

To prove the statement that xt is also accepted as approximatelyQM-stationary for all t sufficiently
large we can proceed in a similar way. Assume on the contrary that x̄ is B-stationary but for infinitely
many t the point xt is not accepted as approximately QM-stationary. For those t, let wt denote some
element fulfilling ∇F(xt)wt ∈ TD(νt,l̄t )

⊂ TD(F(x̄)), ‖wt‖∞ ≤ 1 and 〈∇f (xt),wt〉 ≤ −ηt . Then,
similar as before we can find ŵt ∈ ∇F(x̄)−1TD(F(x̄)) such that

‖ŵt − wt‖ ≤ κ‖∇F(x̄) − ∇F(xt)‖‖wt‖ ≤ κL
√
n‖xt − x̄‖

and for large t we obtain

〈∇f (x̄), ŵt〉 ≤ 〈∇f (xt),wt〉 + ‖∇f (x̄) − ∇f (xt)‖‖wt‖ + ‖∇f (x̄)‖‖ŵt − wt‖
≤ −ηt + L

√
n(1 + κ‖∇f (x̄)‖)‖xt − x̄‖ < 0

contradicting B-stationarity of x̄.
(b)Bypassing to a subsequencewe can assume that for all t thepoint xt is accepted as approximately

M-stationary and hence σt‖ut‖ ≤ ηt → 0. By (44) we have that the sequence λt ∈ NTD(F(x̄))(0) is
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uniformly bounded and by passing to a subsequence once more we can assume that it converges to
some λ̄ ∈ NTD(F(x̄))(0). By [11, Proposition 6.27] we have λ̄ ∈ ND(F(x̄)) and together with

0 = lim
t→∞

(∇f (xt) + ∇F(xt)Tλt
) = ∇f (x̄) + ∇F(x̄)T λ̄

M-stationarity of x̄ is established.
(c) Bypassing to a subsequencewe can assume that for all t the point xt is accepted as approximately

QM-stationary and {ν̄t , νt,2, . . . , νt,Kt } ⊂ M(x̄). Hence, for all t the point xt is also accepted as M-
stationary and by passing to a subsequence and arguing as in (b) we can assume that λt converges
to some λ̄ ∈ ND(F(x̄)) fulfilling ∇f (x̄) + ∇F(x̄)T λ̄ = 0. Since the set M(x̄) is finite, by passing to a
subsequence once more we can assume that there is a numberK and elements ν̄, ν2, . . . , νK such that
Kt = K , ν̄t = ν̄ and νt,l = ν l , l = 2, . . . ,K holds for all t. Since we assume that (40) holds we have
(ν̄, ν2, . . . , νK ) ∈ Q(x̄) and we will now show that x̄ isQM-stationary with respect to (ν̄, ν2, . . . , νK ).
Since (ũt , ṽt) also solves (42), it follows that λt = −vt ∈ NTD(ν̄)(F(x̄))(∇F(xt)ũt + ṽt) ⊂ ND(ν̄)(F(x̄))
and thus λ̄ ∈ ND(F(x̄)) ∩ ND(ν̄)(F(x̄)) implying −∇f (x̄) ∈ ∇F(x̄)T

(
ND(F(x̄)) ∩ (TD(ν̄)(F(x̄))

)◦).
There remains to show −∇f (x̄) ∈ (

TD(ν l)(F(x̄))
)◦ = ND(ν l)(F(x̄)), l = 2, . . . ,K . Assume on the

contrary that −∇f (x̄) �∈ (
TD(ν l̄)

(F(x̄))
)◦ for some index l̄ ∈ {2, . . . ,K}. Then there is some u ∈

∇F(x̄)−1TD(ν l̄)
(F(x̄)), ‖u‖∞ = 1

2 such that 〈∇f (x̄), u〉 =: −γ < 0 and since ν l̄ ∈ M(x̄), for each t
there is some ût ∈ ∇F(xt)−1TD(ν l̄)

(F(x̄)) with

‖u − ût‖ ≤ (κ + 1)‖∇F(x̄) − ∇F(xt)‖‖u‖ ≤
√
n
2

(κ + 1)L‖xt − x̄‖.

It follows that for all t sufficiently large we have ‖ût‖∞ ≤ 1 and

〈∇f (xt), ût〉 ≤ 〈∇f (x̄), u〉 + ‖∇f (xt) − ∇f (x̄)‖‖ût‖ + ‖∇f (x̄)‖‖u − ût‖
≤ −γ + L

√
n
(
1 + κ + 1

2

)
‖xt − x̄‖ < −ηt

contradicting our assumption that xt is accepted as approximately QM-stationary.
(d), (e)We assume that κ is chosen large enough such that themappings F(·)−D(ν), ν ∈ Msub(x̄)

are metrically subregular at (x̄, 0) with modulus κ . Then by [21, Proposition 2.1] the mappings
u ⇒ ∇F(x̄)u− TD(ν)(F(x̄)), ν ∈ Msub(x̄) are metrically subregular at (0, 0) with modulus κ as well.
Taking into account that (ũt , ṽt) solves (42), we can copy the arguments from part (a) with TD(F(x̄))
replaced by TD(ν̄t )(F(x̄)) to show the existence of ût ∈ ∇F(x̄)−1TD(ν̄t )(F(x̄)) with 〈∇f (x̄), ût〉 < 0
whenever xt is not accepted as approximately M-stationary and t is sufficiently large. In doing so,
we also have to recognize that metric regularity of u ⇒ ∇F(x̄)u − TD(ν̄t )(F(x̄)) can be replaced by
the weaker property of metric subregularity. Since ν̄t ∈ Msub(x̄), ût is a feasible descent direction
and for sufficiently small α > 0 the projection of x̄ + αût on F−1(D(ν̄t)) yields a point with a
smaller objective function value than x̄. This proves (d). In order to show (e), we can proceed in
a similar way. Using the same arguments as in part (a), we can prove the existence of a feasible
direction ŵt ∈ TD(νt,l̄t )

with 〈∇f (x̄), ŵt〉 < 0, whenever t is sufficiently large and xt is not accepted as
approximately QM-stationary. Together with νt,l̄t ∈ Msub(x̄) the assertion follows.
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