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ABSTRACT

We investigate a forward-backward splitting algorithm of
penalty type with inertial effects for finding the zeros of the
sum of a maximally monotone operator and a cocoercive one
and the convex normal cone to the set of zeroes of an another
cocoercive operator. Weak ergodic convergence is obtained
for the iterates, provided that a condition expressed via the
Fitzpatrick function of the operator describing the underlying
set of the normal cone is verified. Under strong monotonicity
assumptions, strong convergence for the sequence of gener-
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AMS SUBJECT

ated iterates is proved. As a particular instance we consider
a convex bilevel minimization problem including the sum of
a non-smooth and a smooth function in the upper level and
another smooth function in the lower level. We show that in
this context weak non-ergodic and strong convergence can
be also achieved under inf-compactness assumptions for the
involved functions.

CLASSIFICATIONS
47H05; 65K05; 90C25

1. Introduction and preliminaries
1.1. Motivation and problems formulation

During the last couple years one can observe in the optimization community
an increasing interest in numerical schemes for solving variational inequalities
expressed as monotone inclusion problems of the form

0 € Ax + Ny (%), (1)

where H is a real Hilbert space, A: H = H is a maximally monotone operator,
M := arg min h is the set of global minima of the proper, convex and lower semi-
continuous function h: R — R := R U {400} and Ny;: H = H is the normal
cone of the set M. The article [1] was starting point for a series of papers [2-12]
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addressing this topic or related ones. All these papers share the common fea-
ture that the proposed iterative schemes use penalization strategies, namely, they
evaluate the penalized h by its gradient, in case the function is smooth (see, for
instance, [3]), and by its proximal operator, in case it is non-smooth (see, for
instance, [4]).

Weak ergodic convergence has been obtained in [3,4] under the hypothesis:

For all p € RanNjy, anﬁn |:h* (ﬂﬁ) — oM (ﬁﬁ)] < 400, (2)

n>1

with (A,),>1, the sequence of step sizes, (8,),>1, the sequence of penalty param-
eters, h*: H — R, the Fenchel conjugate function of h, and RanNj the range
of the normal cone operator Ny;: H =2 H. Let us mention that (2) is the
discretized counterpart of a condition introduced in [1] for continuous-time
non-autonomous differential inclusions.

One motivation for studying numerical algorithms for monotone inclusions
of type (1) comes from the fact that, when A = 0f is the convex subdifferential
of a proper, convex and lower semicontinuous function f: H — R, they furnish
iterative methods for solving bilevel optimization problems of the form

min {f @ : x € argminh}. (3)
Among the applications where bilevel programming problems play an impor-
tant role we mention the modelling of Stackelberg games, the determination of
Wardrop equilibria for network flows, convex feasibility problems [13], domain
decomposition methods for PDEs [14], image processing problems [6], and
optimal control problems [4].

Later on, in [7], the following monotone inclusion problem, which turned out
to be more suitable for applications, has been addressed in the same spirit of
penalty algorithms

0 € Ax+ Dx + Ny (%), (4)

where A: 'H = H is a maximally monotone operator, D: H — H is cocoercive
operator and the constraint set M is the set of zeros of another cocoercive opera-
tor B: H — H. The provided algorithm of forward-backward type evaluates the
operator A by a backward step and the two single-valued operators by forward
steps. For the convergence analysis, (2) has been replaced by a condition formu-
lated in terms of the Fitzpatrick function associated with the operator B, which
we will also use in this paper. In [5], several particular situations for which this
new condition is fulfilled have been provided.

The aim of this work is to endow the forward-backward penalty scheme for
solving (4) from [7] with inertial effects, which means that the new iterate is
defined in terms of the previous two iterates. Inertial algorithms have their roots
in the time discretization of second-order differential systems [15]. They can
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accelerate the convergence of iterates when minimizing a differentiable function
[16] and the convergence of the objective function values when minimizing the
sum of a convex non-smooth and a convex smooth function [17,18]. Moreover,
as emphasized in [19], see also [20], algorithms with inertial effects may detect
optimal solutions of minimization problems which cannot be found by their non-
inertial variants. In the last years, a huge interest in inertial algorithms can be
noticed (see, for instance, [8,9,15,17,20-32]).

We prove weak ergodic convergence of the sequence generated by the inertial
forward-backward penalty algorithm to a solution of the monotone inclusion
problem (4), under reasonable assumptions for the sequences of step sizes,
penalty and inertial parameters. When the operator A is assumed to be strongly
monotone, we also prove strong convergence of the generated iterates to the
unique solution of (4).

In Section 3, we address the minimization of the sum of a convex non-
smooth and a convex smooth function with respect to the set of minimizes of
another convex and smooth function. Besides the convergence results obtained
from the general case, we achieve weak non-ergodic and strong convergence
statements under inf-compactness assumptions for the involved functions. The
weak non-ergodic theorem is an useful alternative to the one in [9], where a
similar statement has been obtained for the inertial forward-backward penalty
algorithm with constant inertial parameter under assumptions which are quite
complicated and hard to verify (see also [11,12]).

1.2. Notations and preliminaries

In this subsection we introduce some notions and basic results which we will use
throughout this paper (see [33-35]). Let H be a real Hilbert space with inner
product (-, -) and associated norm ||| = /(-,-).

Forafunction W: H — R := R U {00}, we denote DomW¥ = {x € H: ¥(x)
< 400} its effective domain and say that W is proper, it DomW # () and W (x) >
—oo for all x € H. The conjugate function of W is W*: H — R, W*(u) =
sup, e {(x, u) — W(x)}. The convex subdifferential of W at the point x € H is the
set W (x) ={peH: (y —x,p) <W(y) — ¥(x) Vy € H}, whenever ¥ (x) € R.
We take by convention dW (x) = ¢, if U(x) € {£o0}.

Let M be a non-empty subset of H. The indicator function of M, which is
denoted by 8p1: H — IR, takes the value 0 on M and +oco otherwise. The con-
vex subdifferential of the indicator function is the normal cone of M, that is
Nyx) ={peH: (y —x,p) < 0Vy € H},if x € M, and Ny(x) = ¥ otherwise.
Notice that for x € M we have p € Ny (x) if and only if oy (x) = (x, p), where
oym = 8y is the support function of M.

For an arbitrary set-value operator A: H — H we denote by GrA ={(x,v) €
H x H: v e Ax} its graph, by DomA = {x € H: Ax # (} its domain, by
RanA = {v € H: Ix € H with v € Ax} its rangeand by A™1: 'H = H its inverse
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operator, defined by (v, x) € GrA™! if and only if (x, v) € GrA. We use also the
notation ZerA = {x € H: 0 € Ax} for the set of zeros of the operator A. We say
that A is monotone, if (x — y,v — w) > 0forall (x,v), (y, w) € GrA. A monotone
operator A is said to be maximally monotone, if there exists no proper monotone
extension of the graph of A on H x H. Let us mention that if A is maximally
monotone, then ZerA is a convex and closed set [33, Proposition 23.39]. We refer
to [33, Section 23.4] for conditions ensuring that ZerA is non-empty. If A is max-
imally monotone, then one has the following characterization for the set of its
Zeros

z € Zer Aif and only if (u —z,y) > 0 forall (u,y) € Gr A. (5)

The operator A is said to be y - strongly monotone with y > 0,if (x — y,v — w) >
llx — y||? for all (x,v), (y,w) € GrA. If A is maximally monotone and strongly
monotone, then ZerA is a singleton, thus non-empty [33, Corollary 23.27].

The resolvent of A,Ja: H = H, is defined by Js := (Id + A)~1, where
Id: H — 'H denotes the identity operator on H. If A is maximally monotone,
then J4: H — 'H is single-value and maximally monotone [33, Proposition 23.7,
Corollary 23.10]. For an arbitrary y > 0, we have the following identity [33,
Proposition 23.18]

Jya+ vl -1410y ' 1d=1d.
We denote I'(H) the family of proper, convex and lower semicontinuous
extended real-valued functions defined on H. When ¥ € I'(H) and y > 0, we
denote by prox,,y, (x) the proximal point with parameter y of function W at point
x € H, which is the unique optimal solution of the optimization problem

1 2

inf { W — |y — .

inf { 0)+5, Iy = }
Notice that J, 5y = (Id + yow) !l = Prox,,y thus Prox,,y : H — 'H is a single-
valued operator fulfilling the so-called Moreau’s decomposition formula:

Prox,,y + ¥ Prox, -1y« o y~1d = Id.

The function W: H — R is said to be y —strongly convex with y > 0, if ¥ —
gll -||? is a convex function. This property implies that dW is y —strongly mono-
tone.

The Fitzpatrick function [36] associated to a monotone operator A is defined
as

pa: HxH—R, ¢@a(xu):= sup {(x,v) —|—()/,u)—(y,v)}
(y,v)eGrA

and it is a convex and lower semicontinuous function. For insights in the out-
standing role played by the Fitzpatrick function in relating the convex analy-
sis with the theory of monotone operators we refer to [33,34,37-39] and the
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references therein. If A is maximally monotone, then ¢4 is proper and it fulfills
A (xu) > (xu) V(xu) € HxH,

with equality if and only if (x,u) € GrA. Notice that if W € I'(H), then dW is
a maximally monotone operator and it holds (9 W)~ = 3W*, Furthermore, the
following inequality is true (see [37]):

Qay (6 u) <V (x) +¥* (1) VY(x,v) € HxH. (6)

We present as follows some statements that will be essential when carrying out the
convergence analysis. Let (x,),>0 be a sequence in H and (1,),>1 be a sequence
of positive real numbers. The sequence of weighted averages (z,,),>1 is defined for
everyn > 1 as

1 n n
Zy = - Zkkxk, where t,, := Z)‘k' (7)
" k=1 k=1

Lemma 1.1 (Opial-Passty): Let Z be a non-empty subset of H and assume that the
limit limy,—, 4o ||xn, — ul| exists for every element u € Z. If every sequential weak
cluster point of (x,)n>0, respectively (z,)n>1, lies in Z, then the sequence (x,)n>0,
respectively (z,)n>1, converges weakly to an element in Z as n — +00.

Two following result can be found in [5,7].

Lemma 1.2: Let (0,)n>0, (§n)n>1 and (8,)n>1 be sequences in Ry with (8,)n>1 €
L. If there exists ng > 1 such that

9n+1 — 0y <0y 0y —0u—1) — Sl’l +68, VYn=mng
and a such that
0<o,<a<1 Vn=>1,

then the following statements are true:

(D) D p=110n — On—1]4 < +o00, where [s]4 := max{s, 0};
(ii) the limit lim,_, o 0, exists.
(iii) the sequence (&,)n>1 belongs to oL

The following result follows from Lemma 1.2, applied in case o, := 0 and
0n := pn — p for all n > 1, where p is a lower bound for (0,),>1.
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Lemma 1.3: Let (pn)n>1 be a sequence in R, which is bounded from below, and
(EDn>1, (8n)n>1 be sequences in R with (8,)n>1 € £1. If there exists ng > 1 such
that

Pnt1 < pn —&n+ 68, VYn > ny,

then the following statements are true:

(i) the sequence (py)n>1 is convergent.
(ii) the sequence (€,),>1 belongs to €.

The following result, which will be useful in this work, shows that statement
(ii) in Lemma 1.3 can be obtained also when (p;),>1 is not bounded from below,
but it has a particular form.

Lemma 1.4: Let (p,)n>1 be a sequence in R and (§,)n>1, (8,)n>1 be sequences in
Ry with (8,)u>1 € £' and

Pn=0n —anbyp_1+xn Vn=>1,
where (0n)n>0, (Xn)n>1 are sequences in R and there exists a such that
0<o,<a<1 Vn>1.
If there exists ng > 1 such that
Pnt1 — Pn < —&n +3n  Yn = no, (8)

then the sequence (§,),>1 belongs to oL

Proof: We fix an integer N > ng, sum up the inequalities in (8) for n = ng, ng +
1,...,N and obtain

N N
pN+1_pn0§_Z§n+Zén525n<+oo- )

n=ng n=ng n>1
Hence the sequence {p,},>1 is bounded from above. Let p > 0 be an upper

bound of this sequence. For all n > 1 it holds

On — b1 <0y — oybp_1+ Xn = pn < P,

from which we deduce that
— Pn = =0y + b1 < aby_1. (10)

By induction we obtain for all n > ny + 1

n—ngp -
O S a1 +p < S0, 5 Y @F T a0, + (1)
—
k=1
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Then inequality (9) combined with (10) and (11) leads to

N N
an fpno_pN+1+ Zfsnfpno +059N+Z(Sn

n=ngo n=np n>1
< Puy + aN_"‘)H@nO + op + Z(Sn < 4o0. (12)
o l—«a
n>1
We let N converge to +00 and obtain that > n=16n < 00 [ |

2. The general monotone inclusion problem

In this section we address the following monotone inclusion problem.

Problem 2.1: Let H be a real Hilbert space, A: H = 'H a maximally monotone
operator, D: 'H — 'H an n—cocoercive with n > 0,B: 'H — H a jt—cocoercive
with i > 0 and assume that M := Zer B # (). The monotone inclusion problem to
solve reads

0 € Ax+ Dx + Ny (x).

The following forward-backward penalty algorithm with inertial effects for
solving Problem 2.1 will be in the focus of our investigations in this paper.

Algorithm 2.2: Let (y),>1, (An)n>1 and (B,),>1 be sequences of positive real
numbers such that

(Cl) {)\n}nzl € ez \El;
(Cz) {an}n>1is non-decreasing;
(C3) 0<a, <ua < +ooforalln > 1.

Let x9,x; € H. For all n > 1 we set
Xn4+1 = ])»nA (xn — AnDxy — ApBuBxy + oty (X0 — Xn—1)) .

When D=0 and B = Vh, where h: H — R is a convex and differentiable
function with 1 ~!-Lipschitz continuous gradient with u > 0 fulfilling min & =
0, then Problem 2.1 recovers the monotone inclusion problem addressed in (3,
Section 3] and Algorithm 2.2 can be seen as an inertial version of the iter-
ative scheme considered in this paper. When B=0, we have that Ny, = {0}
and Algorithm 2.2 is nothing else than the inertial version of the classical
forward-backward algorithm (see for instance [33,40]).
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Hypotheses 2.3: The convergence analysis will be carried out in the following
hypotheses (see also [7]):

(H‘;‘tz) A + Njsis maximally monotone and Zer(A + D + Nyy) # 0;

(Hfzitz) for everyp € RanNM, anl knﬂn[supueM (PB(bl, ,Bﬂ) - UM(ﬂﬂ)] < +00.

Since A and Nj are maximally monotone operators, the sum A + N is max-
imally monotone, provided some specific regularity conditions are fulfilled (see
[33-35,38]). Furthermore, since D is also maximally monotone [33, Example
20.28] and DomD = H, if A 4+ N)s is maximally monotone, then A + D + Ny
is also maximally monotone.

Let us also notice that for p € RanN)y there exists 4 € M such that p € Ny (1),
hence, for every g > 0 it holds

supgn () ~ou (£) = (@ 5) o (§) =0

For situations where (Hg‘tz) is satisfied we refer the reader to [5,8,9,11].
Before formulating the main theorem of this section we will prove some useful
technical results.

Lemma 2.4: Let (x,),>0 be the sequence generated by Algorithm 2.2 and (u, y)
be an element in Gr(A 4+ D + Ny) such that y=v+Du+p with v € Au and
p € Ny (u). Further, let €1, 2,3 > 0 be such that 1 — &3 > 0. Then the following
inequality holds for all n > 1

2 2
Xn41 — ull” — llxp — ull

2 2 2
<o llxy —ull” —ay llxp—1 — ull” — (1 — 481 — €2) |Xn41 — Xl

2
o 2
+ (an + = ) %0 — Xn—1lI* + (—kiﬂﬁ — 21 (1 —e3) xnﬂn) 1B, 12
4eq &)

4.5 2, 4 2
+ g—zkn — 2niy ) IDx,, — Dul|” + g)\.n [|[Du+ v||

et (1 25 ) —ou (G ) om0

Proof: Letn > 1be fixed. According to definition of the resolvent of the operator
A we have

Xn — Xn+1 — An (Dxp + BuBxy) + ay (xn — Xp—1) € AnAxpt1 (14)
and, since A,v € 1,Au, the monotonicity of A guarantees

(Xnt1 — U X — Xpp1 — An (Dxy + BuBxy +v) + oy (x4 — x4—1)) = 0 (15)
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or, equivalently,

2{u— Xn+1>Xn — xn+1> < 2Ay (u— Xn+1> BnBx, + Dxy, + v)

— 2005 (U — X1, Xpn — Xn—1) - (16)
For the term in the left-hand side of (16) we have

2 2 2
2(u — Xng15%n — Xng1) = %1 — ull” + l1xpp1 — xall” — I —ull=. (17)

Since
2 _ 2 2 2
=20ty (U — Xp, Xn — Xn—1) = —0p |u—xp1I" + an lu—2xu 1" + an |xn—xn—1|
and
2 o, 2
n
2 <xn+1 — Xy Oy (X — xn—l)) < 45 ”xn—i-l — xpll” + E lxn — X117,
1

by adding the two inequalities, we obtain the following estimation for the second
term in the right-hand side of (16)

— 20, (U — Xy 15 X0 — Xn—1)

2 2 2
< apllxn —ull” — oy |xp—1 — ull” + 41 |xn1 — xall

“% 2
+ |an+ llxn — xp—111”. (18)
481

We turn now our attention to the first term in the right-hand side of (16), which
can be written as

20y (4 — Xpt1, BuBxn + Dxy + v)
= 2hy (u — Xu, BuBxn + Dxy + V) + 24,8y (Xn — Xnt1, Bxn)
+ 2Au (xn — Xu+1, Dxp +v) . (19)

We have

& 2
2B (n = ng1, Bn) < = lnsr = X l? 4 g—kﬁﬂﬁ IBxa > (20)
2

and

A

& 2
2hn (Xn — Xnt1, Dxy + v) — I%pg1 — xn||2 + S_)Li | Dx,, + U||2
2

-2

IA

&2 4
Zxns1 — xall* + —A2 | Dx, — Dul?
2 82

4
+ s—xi | Du + v]%. 1)
2



1864 R.1.BOT AND D.-K. NGUYEN
On the other hand, we have

2An (U — Xy, BuBxy + Dx;, + v)
= 2AnPn (U — x4, Bxy) + 21y, (u — x5, Dx;; — Du) 4+ 2A,, (U — x, Du + v) .
(22)

Since 0 < ¢3 < 1 and Bu=0, the cocoercivity of B gives us

200 (14 = X, Bxn) < =24 (1= £3) A | Bull” + 2634 (1 — X, Bxn) .
(23)
Similarly, the cocoercivity of D gives us

2Ay (U — x, Dx;; — Du) < —2nA, ||Dxy, — Du||2. (24)

Combining (23)-(24) with (22) and by using the definition Fitzpatrick function
and the fact that oar(p/e384) = (u, p/€3Bn), we obtain
2An (U — Xy, BuBxy + Dx;, + v)
< =20 (1 = &3) AnBn | Bxall® + 263400 (4 — X, BXn) — 212y | Dy — Dul®
+ 21y (U — x4, Du + v)
= =211 (1 = £3) AP I1Bxnl|* + 263000 (4 — X, Bxy) — 20y | Dxp — Dui||?
+2An(u—xn,y—p>
= =21t (1 — €3) AnPn ”an||2 — 210y | Dxy — D””z + 2, (u - xna}’)

+ 2831 ((u’ Bxy) + <xn; L> — (x> Bxy) — <u, P >>
€3P8n €3PBn

< =210 (1 — €3) hnBn IIBxull* — 2002n | Dy — Dull> + 24 (1t — x4, y)

easatsgon (125 ) = (35| >

The inequalities (20), (21) and (25) lead to

20 (4 — Xpt1, BuBxy + Dxyy + v)
25282 9y (1 — 2y (A
= e )‘nﬂn 2 (1 — €3) AnBu ) I Bxyll” + e )“n 2nAy ) [IDxy
2 2

4
—Dull* + &2 [|Xns1 — xall> + 8—xi |Du + v])?
2

+ 2e3A,8n [sup¢3(u, P )—UM( P )i|+2)\n(u—xn,y). (26)

ueM 83,811 83,311

Finally, by combining (17), (18) and (26), we obtain (13). [ |
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From now on we will assume that for 0 < o < % the constants €1, &2,63 > 0
and the sequences (1,,),>1 and (B,),>1 are chosen such that

2
o
(Cy) 1—63>0, &g <1—4e;—a—— and supr,B, < pex (1l —e3).
481 n>1
€1 o 2
As a consequence, there exists 0 <s < 1 — ——— |1+ — ] , which
1— 381 — & 281
means that for all » > 1 it holds
2 2
o o
Opt1 + ntl —(1—4e1—¢e3) <a+——(1—4e; —¢&3) < —s. (27)
4eq 4e

On the other hand, there exists 0 < £ < u(1 — &2) — (1/¢3) sup,,~¢ AnBn , which
means that for all » > 1 it holds

1
—tnPn — (1 —&2) < —t. (28)
&3

Remark 2.5: (i) Since0 < « < 1, onecan alwaysfind 1, &2 > Osuchthate; <

3
1 —4e; —a — (a?/4g;) . One possible choice is ] = % and0 <& <1 —
3. From the second inequality in (Cy) it follows that 1 — 3g; — &2 > &1 +

o + (a?/4g1) > 0.

(ii) As
€1 o 2
l—-—— |1+ —
1—3e1— ¢ 2e1

1 o?
=—— (1 —-4e1—3—a——] >0,
1— 381 — &) 481
5
it is always possible to choose s such that 0 <s<1— #
—J&1 — €
o 2 o . . Olz
(1 4+ —)=.Since in thiscases < 1 — 4¢; — &, — o — —, one has (27).
2e1 4eq

The following proposition brings us closer to the convergence result.

Proposition 2.6: Let 0 < o < %, €1,€2,&3 > 0 and the sequences (Ap)y>1 and
(Bn)n>1 satisfy condition (C4). Let (xn)n=0 be the sequence generated by
Algorithm 2.2 and assume that the Hypotheses 2.3 are verified. Then the following

statements are true:

(i) the sequence (||Xp+1 — Xnll)n=0 belongs to 0> and the sequence (\,By
| Bxp||?) =1 belongs to £;

(ii) if, moreover, liminf, , oo AnBn > 0, then lim,_, { o ||Bx,|| = 0 and thus
every cluster point of the sequence (xn)n=>0 lies in M.
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(iii) for every u € Zer(A + D + Npp), the limit lim,,_, 4 o || X, — u|| exists.

Proof: Since lim,_, ;oo Ay, = 0, there exists a integer n; > 1 such that A, <
(2/&2)n for all n > ny. According to Lemma 2.4, for every (u,y) € Gr(A + D +
Nyr) such that y=v+Du+p, with v € Au and p € Nj(u), and all n > ng the
following inequality holds

2 2
lxni1 — ull” — llxn — ull

2 2 2
< apllxn —ull® — oy lxp—1 — ull” — (1 — 4e1 — €2) lxng1 — xall

0‘2 2 2 2
+lan+— ) lIxn — xp—1ll” + | —2AnBn — 21 (1 — &3) ) AnBu l|Bxull
4e &2
4
+ — A% |Du + v||* + 2e3hnBn [SUP B (u, P ) — oM ( P )]
2 ueM £3Bn €3PBn
+ 200 (1 — X2 y). (29)

We consider u € Zer(A + D + Nyr), which means that we can take y =0 in (29).
For all n > 1 we denote

2
o
On = |lxn — “”2 s Pni=0p —oaply_1 + <an + ﬁ) llxn — xn—1”2 (30)
1

and

4
8§y = —Afl |Du + v||2 + 2e3A, 8y |:sup ©B (u, p ) — oM ( P )i| . (31)
&2 ueM €3Bn €38n

Using that («,),>1 is non-decreasing, for all n > ny it yields

2
Oyl
Pntl — Pn = (an—H + atl (1 —4g; — 82)) lxn+1 — xn”2

4eq
2 2
+ 8_)\11/371 - zlbl/ (1 - 82) )‘nﬁn ||an“ + 871
3
< —s %1 — %ull® = 262080 1 Bxall* + 81, (32)

where s,t > 0 are chosen according to (27) and (28), respectively.
Thanks to (Hi') and (C;) it holds

4
Z(Sn = 5 |Du + v||2 Zxﬁ + 2283An,3n |:sup ©B (u, Sspﬂ )
n

n>1 n>1 n>1 ueM

p
—oMm (53,311>i| < +o0. (33)
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Hence, according to Lemma 1.4, we obtain

D lxngs = xall* < +o00and Y hnfy [1Bxall® < +o00, (34)

n>0 n>1

which proves (i). If, in addition, lim inf,,_, 5o 1,8, > 0, then lim,_, 4 || Bx, || =
0, which means every cluster point of the sequence (x;)>0 lies in Zer B = M.

In order to prove (iii), we consider again the inequality (29) for an arbitrary
element u € Zer(A 4+ D + Ny) and y=0. With the notations in (30) and (31),
we get for all n > ny

0‘% 2
Ont1 — On < 0oy 0y — Op—1) + | an + E lxn — xn—11" + 4. (35)
1

According to (33) and (34) we have

2 2
o o
)3 ( ¥ 4—) o — 112+ 38 < ( n 4—) 3 e — a2
. n>1 n>1
+ Y 8y < +o0, (36)

n>1

therefore, by Lemma 1.2, the limit lim,_, 1 o0 6, = lim,_ o0 ||x,, — ul|? exists,
which means that the limit lim,,_, { o ||x, — u]| exists, too. [ |

Remark 2.7: The condition (C3) that we imposed in combination with 0 < « <
% on the sequence of inertial parameters («,),>1 is the one proposed in [15,
Proposition 2.4] when addressing the convergence of the inertial proximal point
algorithm. However, the statements in the proposition above and in the following
convergence theorem remain valid if one alternatively assumes that there exists

o' suchthat0 < o, <o’ < 1foralln > 1and
2
o
Z (0{" + _n) [l — xn—1||2 < +o00.
481
n>1

This can be realized if one chooses for a fixed p > 1

o, < min {o/,Zel (—1 + \/1 +nP|x, — xn_lll_z)} Vn > 1.

Indeed, in this situation we have that (Ot%/481) +a, — (1/nP||x, — x,_1]1*) < 0
for all n > 1, which gives

2
o, 5 1
o —_— Xn — Xp— < — < Q.
E ( n+ 481 ” n n 1|| = E b +
n>1 n>1

Now we are ready to prove the main theorem of this section, which addresses
the convergence of the sequence generated by Algorithm 2.2.
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Theorem 2.8: Let 0 < o <

%, €1,€2,63 > 0 and the sequences (An)y>1 and

(Buw)n=1 satisfy condition (Cy). Let (xp)u>0 be the sequence generated by
Algorithm 2.2, (zn) n>1 be the sequence defined in (7) and assume that the Hypothe-
ses 2.3 are verified. Then the following statements are true:

(i)
(ii)

the sequence (z,)n>1 converges weakly to an element in Zer(A + D 4+ Nyy) as
n — +0o0.

if A is y -strongly monotone with y > 0, then (x,) >0 converges strongly to the
unique element in Zer(A + D + Njr) as n — +00.

Proof: (i) According to Proposition 2.6 (iii), the limit lim,_, o ||x; — ul|

exists for every u € Zer(A + D + Njy). Let z be a sequential weak cluster
point of (z,,) n>1. We will show thatz € Zer(A + D + Ny), by using the char-
acterization (5) of the maximal monotonicity, and the conclusion will follow
by Lemma 1.1. To this end we consider an arbitrary (u,y) € Gr(A + D +
Nyr) such that y =v+Du+p, where v € Au and p € Np(u). From (29), with
the notations (30) and (31), we have for all n > ny

Pnt+1 = Pn
< =s|lxp41 — xn”2 — 2tAnPn ”an||2 +68n+ 220, <u - xna)’>
<8, +2Ay (u - xn;)’) . (37)

Recall that from (33) that anl 8y < +00. Since (x,),>0 is bounded, the
sequence (pn)n>1 is also bounded.We fix an arbitrary integer N > ny and
sum up the inequalities in (37) forn = ng + 1,n9 + 2,. .. ,N. This yields

1o 1o
PN4+1 — Pnp+1 = Z O +2 <_ Z)"n“ + Z )Mnxn’y>
n=1 n=1

n>1

N
+2 <rNu — Z Anxn,y> .

n=1

After dividing this last inequality by 275 = 2 Z§:1 An, We obtain
1 1
% (PR41 — Pro+1) < %T +2(u— zg,y), (38)

where T:=3" 18, +2(—> 2 At + D30 AnXn,y) € R. By passing
in (38) to the limit and by using that limy_, o Ty = limg_, o Zgzl An =
+00, we get

lim inf(u — ZNJ’) > 0.

N—oo
As z is a sequential weak cluster point of (z,),>1, the above inequality gives
us (u — z,y) > 0, which finally means that z € Zer(A + D 4 Ny).
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(ii) Let u € H be the unique element in Zer(A 4+ D + Nys). Since A is
y —strongly monotone with y > 0, the formula in (15) reads for all n > 1

(Xnt1 — U Xy — Xng1 — An (DX + BrBxy + V) + oy (X5 — X4—-1))

2
> Yan 1xng1 — ull
or, equivalently,

29 M %1 — ull® + 2 (U — X1, X — Xn1)

< 2An {4 — Xpt1, BuBxu + Dxy + v) — 20 (U — Xut1, Xn — Xn—1) -
By using again (17), (18) and (26) we obtain for all n > 1

2 2 2
2y An %1 — ull® + llxpg1 — ull™ — [lxn — ull

2 2 2
< apllxp —ull” — oy llxn—1 —ull” — (1 — 4e1 — &2) llxng1 — xall
2

o 2
+ (an + —”) 20 — Xn—1]I>+ (—kﬁﬂﬁ —2u (1—e3) xnﬂn) || Bx, ||
481 &
4 2 2 4 2 2
+ 8—An — 2nAy ) |IDxy;, — Dul|” + 8—)»” |[Du + v||
2 2

Py p _
ot s (125 ) =ow (5 )| e

By using the notations in (30) and (31), this yields for all n > 1

29 hn %01 — tll® + 6ng1 — Oy < @y (B — O—1)
2

oy 2
+ ((xn + _) lxn — xn—111" + 8p.
481

By taking into account (36), from Lemma 1.2 we get

2y an llx, — u||2 < +o00.

n>1

According to (Cy) we have ) ., A, = +o00, which implies that the
limit lim,_, o ||X, — u|| must be equal to zero. This provides the desired
conclusion. [

3. Applications to convex bilevel programming

We will employ the results obtained in the previous section, in the con-
text of monotone inclusions, to the solving of convex bilevel programming
problems.
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Problem 3.1: Let H be a real Hilbert space, f: H — R a proper, convex and
lower semicontinuous function and g, h: 'H — R differentiable functions with Lg-
Lipschitz continuous and, respectively, Ly-Lipschitz continuous gradients. Suppose
thatarg min h # () and min h = 0. The bilevel programming problem to solve reads

min f(x) +g(x).

xeargminh

The assumption min 4 = 0 is not restrictive as, otherwise, one can replace h
with & — min h.

Hypotheses 3.2: The convergence analysis will be carry out in the following
hypotheses:

(Hll)mg) df + Nargminn is maximally monotone and S := arg minycargminh

fx) +g0)} # 6
(ngog) for every p € RanNargminh’ anl )‘nﬁn[h*(ﬂﬁ) - O—argminh(ﬂﬂ)]
< +00. " !

In the above hypotheses, we have that df + Vg + Nagminn = 9(f + g +
Sargmin k) and hence § = Zer(df + Vg + Nargminn) # 9. Since according to the
Theorem of Baillon-Haddad (see, e.g. [33, Corollary 18.16]), Vg and Vh are
Lg_l-cocoercive and, respectively, L;l - cocoercive, and arg min h = ZerVh, solv-
ing the bilevel programming problem in Problem 3.1 reduces to solving the
monotone inclusion

0e 8f(x) + Vg(x) + Nargminh(x)-
By using to this end Algorithm 2.2, we receive the following iterative scheme.

Algorithm 3.3: Let (y);>1, (An)n>1 and (B,)s>1 be sequences of positive real
numbers such that

(Cl) {)\n}nzl € £2 \Zl;
(C2) {an}n>1is non-decreasing;
(C3) thereexistsa with0 <o, <o < 1/3foralln > 1.

Let xg,x; € H.Forall n > 1 we set
Xn41 1= Prox, ¢ (Xn — AnVg (¥n) = AnBnVh (xn) + tn (Xn — Xn—1)) .
By using the inequality (6), one can easily notice, that (H) °) implies (H}'),

which means that the convergence statements for Algorithm 3.3 can be derived
as particular instances of the ones derived in the previous section.
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Alternatively, one can use to this end the following lemma and employ the
same ideas and techniques as in Section 2. Lemma 3.4 is similar to Lemma 2.4,
however, it will allow us to provide convergence statements also for the sequence
of function values (h(x,)),>0-

Lemma 3.4: Let (x,),>0 be the sequence generated by Algorithm 3.3 and (u, y)
be an element in Gr(df + Vg + Nargminn) such that y = v + Vg(u) + p with
v € df (u) and p € Nargmink(1). Further, let €1, €3, 63 > 0 besuch that1 — &3 > 0.
Then the following inequality holds for alln > 1

2 2
%n1 — ull® — llxn — ull

< oy %0 — ull* = oy X1 — ull® = (1 — ey — 2) xps1 — xull?
O‘ﬁ 2( 2.2, 2
+ oy + E llxn — xpn—1ll 8_)\”,3” =21 (1 —&3) AnPn IVh (x,)|l
1 2

4
+ (gxﬁ — 2%) | Vg Cen) — Vg ) |* 4+ 2onn [h () — b (x)]

4 2 2
+ 8—)»% HU + Vg (u) ”2 + &3AnBn |:h* ( P ) — Oargminh < P )]
2

€3Bn €3Bn

+ 21, <u —xn,y).

Proof: Letbe n > 1 fixed. The proof follows by combining the estimates used in
the proof of Lemma 2.4 with some inequalities which better exploit the convexity
of h. From (23) we have

2B (1t — s VI (x0)) < =214 (1 = £3) B [| VR () ||
+ 2&3AnBn (U — xu, Vh (X)) .
Since h is convex, the following relation also holds
270 Bn (u—x,, Vh (xn)) < 200 Bn [h (u) — h (xn)].
Summing up the two inequalities above gives
2hnBn (14— Xy VI (60)) < =10 (1 = £3) nB IV (3|2
+ &3A1Bn (u — x4, Vh (xn)) + AnPBn [h (u) — h (xn)].
Using the same techniques as in the derivation of (25), we get
2hp (u — Xn, U+ Vg (x) + B Vh (xn)>
< — (1 = £3) A [IVH (i) |2 = 2500 | Vg () — Vg )]
+ A h (W) = h (x)] + 22 (10 — X, y)

o N
+ 83)\11/871 |:h (Ll, 53,3n> Oargmin h <83,8n)j| .
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With these improved estimates, the conclusion follows as in the proof of
Lemma 2.4. u

By using now Lemma 3.4, one obtains, after slightly adapting the proof of
Proposition 2.6, the following result.

Proposition 3.5: Let 0 < o < %, €1,€2,&3 > 0 and the sequences (Ap)y>1 and
(Bn)n>1 satisfy condition (C4). Let (xn)n=0 be the sequence generated by
Algorithm 3.3 and assume that the Hypotheses 3.2 are verified. Then the following
statements are true:

(i) the sequence (||xy+1 — Xnl)u=0 belongs to £* and the sequences (A, B,||Vh
) 1P n=1 and (hnBuh(xn))n=1 belong to £';
(ii) if, moreover, liminf,_, { oo AnBn > 0, then limy,_, o || Vh(xy) || =limy— 4 oo
h(x,) = 0 and thus every cluster point of the sequence (x,)p>o lies in
arg min h.
(iii) for everyu € S, the limit limy,_, oo ||x, — ul| exists.

Finally, the above proposition leads to the following convergence result.

Theorem 3.6: Let 0 < a < % €1,€2,83 > 0 and the sequences (An)p>1 and
(Bn)n>1 satisfy condition (C4). Let (x,)n=0 be the sequence generated by
Algorithm 3.3, (z,) n>1 be the sequence defined in (7) and assume that the Hypothe-
ses 3.2 are verified. Then the following statements are true:

(i) the sequence (z,)n>1 converges weakly to an element in S as n — +00.
(ii) if fis y —strongly convex with y > 0, then (x,)n>0 converges strongly to the
unique element in S as n — +00.

As follows we will show that under inf-compactness assumptions one can
achieve weak non-ergodic convergence for the sequence (x,),>0. Weak non-
ergodic convergence has been obtained for Algorithm 3.3 in [9] when o, = «
for all n > 1 and for restrictive choices for both the sequence of step sizes and
penalty parameters.

We denote by (f + g)« = minycarg minh(f(x) + g(x)). For every element x in
'H, we denote by dist(x, S) = inf,es||x — u|| the distance from x to S. In particu-
lar, dist(x, S) = ||x — Prsx||, where Prsx denotes the projection of x onto S. The
projection operator Prs is firmly non-expansive [33, Proposition 4.8], this means

|Prs (x) — Prs (y)|* + |[[1d — Prs] (x) — [1d — Prs] (¥)|*
< [x =] voyen. (39)

1 1
Denoting d(x) = Edist(x, S)? = 3 |x — Prsx||? for all x € H, one has that x >
d(x) is differentiable and it holds Vd(x) = x — Prgx for all x € H.
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Lemma 3.7: Let (x,)n>0 be the sequence generated by Algorithm 3.3 and assume
that the Hypotheses 3.2 are verified. Then the following inequality holds for all
n>1

d (xny1) —d (xp) — ap (d (xn) — d (x4-1)) + An [(f +8) (nt1) — (f +g)*]

L Lh o
< <?g)un + Z)\,nﬂn + Tn) llxn1 — xn||2 + ap X0 — Xn—1 ”2 . (40)

Proof: Let n > 1 be fixed. Since d is convex, we have
d (xp41) — d (xp) < (X1 — Prs (Xn41) » Xn1 — Xn) - (41)
Then there exists v,41 € 9f (x441) such that (see (14))
Xn = Xn1 — An(Vg(xn) + BV h(xn)) + n(xn — Xn—1) = AnVns1
and, so,

(X1 — Prs (Xnt1) > Xnp1 — Xn)
= (xn-H — Prs (xn+1) » —AnVnt1 — An Vg (xn) — AnBnVh (xn) + an (xn_xn—l))

— AP (Xnt1 — Prs (xpg1) > VR (x0)) + ap (X011 — Prs (Xpg1) > %0 — Xp—1) -
(42)

Since vy41 € f (x441), we get

— ko (Xnt1 = Prs (Knt1) 5, Un1) < hn [f (Prs (ns1)) = f (ni)] . (43)

Using the convexity of g it follows
g (xn) — g (Prs (xnt1)) < (Vg (xn) , X0 — Prs (Xn41))- (44)
On the other hand, the Descent Lemma gives
g (ni1) < g (xn) + (Vg (Xn) » X1 — xu) + %g I%ns1 = xal>. (45)
By adding (44) and (45), it yields

— A (Xn41 — Prs (%ng1)» Vg (xn)) < A [g (Prs (Xn41)) — & (Kng) |

Loy
2

+ 41 — %l (46)

Using the (1/Lj,)— cocoercivity of Vh combined with the fact that Vh(Prs (x,41))
= 0 (as Prs(x,+1) belongs to S), it yields

1
— (xy — Prs (xu41) , VA (xn)) < I IVh ()%
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Therefore

— AP (xXnt1 — Prs (xut1)» Vh (x4))

< Anby (<xn — X1, VI () — Lih IVh (xn>||2)
< M s — . (47)
Further, we have
oy (Xny1 — Prs (xny1) — (xn — Prs (x)) , Xp — xp—1)
S5 1 = Prs] Geng) = [1d = Prs] Geo)ll2 4 5 s = -1

Un 2, %n 2
- lxn+1 — xull” + 5 llxn — xn—1",

A

and
oy (xp — Prs (xn) , xn — xp—1)
(047} 2 Qp 2
= apd (x,) + 7 Iy — xn—111" — 7 lxn—1 — Prs (xu) |l
o
< atnd (%) + = [0 = X1 1* — otnd (6a-1)
By adding two relations above, we obtain
(077} <xn+l — Prs (xuy1) %0 — Xn—1)
= Oy (xn+1 — Prs (xp41) — (% — Prs (x4)) , 0 — Xn—1)

+ oy (X — Prs (x4) , Xp — Xp—1)
o
=< 7’1 llxn+1 — anZ +ay llxn — xn—1”2 + oty (d(xp) —d(x4-1)). (48)

By combining (43), (46), (47) and (48) with (42) we obtain the desired conclusion.
[ |

Definition 3.8: A function W: H — Ris sad to be inf-compact if for every r > 0
and k € R the set

Lev, (W) :={x e H: |x]| <7 ¥ (x) <«}
is relatively compact in H.
An useful property of inf-compact functions follows.

Lemma 3.9: Let W: H — R be inf-compact and (x,)n>0 be a bounded sequence
in H such that (Y (x,))n>0 is bounded as well. If the sequence (x,)n>0 converges
weakly to an element in’x as n — 00, then it converges strongly to this element.
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Proof: Letber > 0and k € R such thatforalln > 1
lxull <7 and W (x,) <«k.

Hence, (x,)n>0 belongs to the set Levfz(\lf), which is relatively compact. Then
(xn)n>0 has at least one strongly convergent subsequence. Since every strongly
convergent subsequence (x,,)>0 of (x,)4=>0 has as limitx, the desired conclusion
follows. [ |

We can formulate now the weak non-ergodic convergence result.

Theorem 3.10: Let0 < o < %, €1, &2, €3 > 0, the sequences (Ap)p>1 and (Bn)n>1
satisfy the condition 0 < liminf, oo AnBy < SUP, =g AnBn < W, (Xp)n=0 be the
sequence generated by Algorithm3.3, and assume that the Hypotheses 3.2 are ver-
ified and that either f4+g or h is inf-compact. Then the following statements are

true:

(i) limy— 400 d(xy) = 0;
(ii) the sequence (x,)n>0 converges weakly to an element in S as n — —+00;
(iii) if his inf-compact, then the sequence (x,),>0 converges strongly to an element
inSasn— +oo.

Proof: (i) Thanksto Lemma 3.7, for all n > 1 we have

d (xXng1) — d (%) + dn [(f +8) Gng1) — (f + )]

< oy (d(xp) —d(x4-1)) + Ens (49)
where
L Ly o
Cn = <?g)tn + Z)Ln,Bn + ?n) lxng1 — xn”2 +ap llxq — xn—1||2~

From Proposition 3.5 (i), combined with the fact that both sequences
(An)n=1and (B,)u>1 arebounded, it follows that ) °, _, ¢, < +00.In general,
since (x,),>0 is not necessarily included in arg min h, we have to treat two
different cases.Case 1: There exists an integer n; > 1 such that (f 4+ g)(x,,) >
(f + )« for all n > n;. In this case, we obtain from Lemma 1.2 that:

e the limit lim,,—, o d(x;) exists.

° annz Anl(f + 9 (xnt1) — (f + ©)+«] < +00. Moreover, since (Ay,)>1 ¢
¢!, we must have

lrig}rrcg(f +9) (xp) < (f—l-g)* (50)
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Consider a subsequence (xy; )k>0 of (x;,),>0 such that
8 5) = i+

and note that, thanks to (50), the sequence ((f + g)(xy,))k=0 is bounded.
From Proposition 3.5 (ii) —(iii) we get that also (x,; )k>0 and (h(xy))k=0
are bounded. Thus, since either f+g¢ or A is inf-compact, there exists a sub-
sequence (x;)1>0 Of (X, )k>0, which converges strongly to an element X as
I — +00. According to Proposition 3.5 (ii) —(iii), x belongs to arg min 4. On
the other hand,

l_l)ileloo(erg) (xn) = lim inf(f + g) (v) = (f +8) @) = (f + 2. (51

We deduce from (50)-(51) that (f + ¢)(X) = (f + £)«, or in other words,
that X € S. In conclusion, thanks to the continuity of d,

nkr}rlood (xp) = ll—lglo d (x,) =d @) =0.

Case 2: For all n > 1 there exists some n' > n such that (f + g)(x,)
< (f + )« We define the set

V={n'=1:f+g (xx) < f+8s}.

There exists an integer n, > 2 such thatforalln > ny theset{k < n: k e V}
is non-empty. Hence, for all n > n, the number

t, =max{k <n:keV}

is well-defined. By definition t, <n for all n > n3 and moreover the

sequence {t,}y>n, is non-decreasing and lim, o t, = 0o. Indeed, if

lim,_, oty =t € R, then for all n’ > ¢ it holds (f + g)(xy) > (f + )+

contradiction. Choose an integer N > n,.

e Ifty < N, then, foralln =ty,...,N — 1, since (f + ) (xn) = (f + x>
the inequality (49) gives

d (Xny1) — d(x,) <d (Xny1) — d(xp) + Ay [F (xn+1) — Fyl
< oy (d(xp) —d (xp-1)) + Cn. (52)

Summing (52) for n =ty,...,N —1 and using tht {&,},>1 is non-
decreasing, it yields

N—-1 N—1
den) —d (xy) < Y (nd () — @nr1d (Xu1)) + Y G
n=tyN n=ItN
<ad(n-D)+ Y (53)

n>tN
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e Ifty = N, then d(xn) = d(x;,) and we have
d(xn) —ad (1) < d (xiy) + Y Cn. (54)
n>tN

For all n > 1 we define a,, := d(x,) — ad(x,—1). In both cases it yields

an < d (xy) + ZKndetN > (55)

n=tyN n>itN

Passing in (55) to limit as N — 400 we obtain that

limsupa, <limsupd (xtn) . (56)

n——+00 n—+00

Letbe u € S. Forall n > 1 we have
1 2 1 2
d(xn) = EdISt (Xn» 8) = 5 o — ull”,

which shows that (d(x,)),>0 is bounded, as lim,_, 4 o ||x, — u|| exists. We
obtain

limsup a, = limsup [d (x,) — ad (x,—1)] > (1 — &) limsup d (x,,) > 0.

n— 00 n— 00 n— 00
(57)
Further, for all n > 1 we have (f + g)(xz,) < (f + g)«, which gives

limsup(f + g) (x:,) < (f + @)+ (58)

n——+00
This means that the sequence ((f + g)(xt,))n>0 is bounded from above.
Consider a subsequence (x, k>0 of (x¢,),>0 such that

lim d (xtk) = limsup d (xtn)

k—+o00 n——+00
From Proposition 3.5 (ii)-(iii) we get that also (x )x>0 and (h(xs))k=0 are
bounded. Thus, since either f4+g or h is inf-compact, there exists a sub-
sequence (xy);>o of (xy,)k=>0, which converges strongly to an element X as
I — +00. According to Proposition 3.5 (ii)-(iii), X belongs to arg min h.
Furthermore, it holds

liminf(f +g) (x1) = (f +9) ® = (f + .. (59)
We deduce from (58) and (59) that

(f +9« < (f+ 9 @ =< limsup(f + g) (x,)

n—-+00

< limsup(f +¢) (x,) < (f +

n—-+00
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which gives ¥ € S. Thanks to the continuity of d we get

lim sup d (th) = lim d (xtl) =dX) =0. (60)
—+00

n——+00

By combining (56), (57) and (60), it yields

0<(1—ow)limsupd (x,) <limsupa, <limsupd (xtn) =0,
n——+00 n——+00 n——+00

which implies lim sup,,_, | . d(x,) = 0 and thus

lim d(x,) =liminfd (x,) = limsupd (x,) = 0.
n——+00 n——+00 n—> 00

e Accordingto (i) we havelim,_, o, d(x,) = 0, thus every weak cluster point of
the sequence (x,),>0 belongs to S. From Lemma 1.1 it follows that (x,),>0
converges weakly to a pointin S as n — 4-00.

e Since liminf,_, o A,B, > 0, from Proposition 3.5(ii) we have that

HETOO VR (xn)|l = nlir—&l:looh (xn) = 0.
Since (x,),>0 is bounded, there exist 7 > 0 and x € R such thatforalln > 1
Ixqll <7 and h(x,) <k.

Thanks to (ii) the sequence (x,),>0 converges weakly to an element in S.
Therefore, according to Lemma 3.9, it converges strongly to this element
inS.

[ |
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