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ABSTRACT
Our goal is to estimate the true number of classes in a population,
called the species richness. We consider the case where multiple
frequency count tables have been collected from a homogeneous
population and investigate a penalized maximum likelihood estima-
tor under a negative binomial model. Because high probabilities of
unobserved classes increase the variance of species richness esti-
mates, our method penalizes the probability of a class being unob-
served. Tuning the penalization parameter is challenging because
the true species richness is never known, and so we propose and
validate four novel methods for tuning the penalization parameter.
We illustrate and contrast the performance of the proposedmethods
by estimating the strain-level microbial diversity of Lake Champlain
over three consecutive years, and global human host-associated
species-level microbial richness.
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1. Introduction

The species problem concerns estimatingC, the number of classes that are present in a pop-
ulation. n individuals from the population can be sampled to findwhich classes they belong
to, but only c classes are observed (c ≤ C). The problem is named for its origins in biological
ecosystems, where C is species richness, or the total number of species. However, methods
developed for the species problem can be applied to applications far removed from biology.
For example, Efron andThisted [9] estimated the number of words Shakespeare truly knew
bymodeling the frequencies of words in his publishedwork, and Fegatelli and Tardella [10]
estimated the number of cars covered by an insurer based on accident data where c cars
had at least one accident.

In ecology, species richness is a quantitative measurement of ecosystem diversity. We
focus on the specific application of estimating microbial diversity, that is, the number of
strains of bacteria present in a population (e.g. a lake microenvironment or in an individ-
ual’s oral cavity). Microbial diversity is often linked with ecosystem health, such as in the
vaginal microbiome (where high diversity is associated with infection [20]) and in the gut
microbiome (where high diversity is associated with healthy metabolism [17,18]). Micro-
bial abundance data typically contain many species observed infrequently (rare species)
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and some which are observed a large number of times (abundant species). In data with
both many rare and many abundant species, richness estimation methods often have high
variance [28,30], motivating our regularized approach to estimation.

In this paper, we consider the penalized maximum likelihood approach of Wang and
Lindsay [28] and investigate the open problem of selecting the penalization parameter.
Because the true species richness C is never observed for any sample, common approaches
to tuning parameter selection (e.g. cross-validation) cannot be employed. We propose
using biological replicates to aid tuning. We find that replicate data is advantageous for
tuning the required penalization parameter and provide a comparison of the performance
of four proposed methods for tuning parameter selection.

This paper is organized as follows:We review species richness estimation in Section 2. In
Section 3, we describe our extension to biological replicates, and in Section 4 we establish
the utility of penalization via simulations. In Section 5, we propose several novel meth-
ods for tuning the penalization parameter, and in Section 6 we evaluate our proposals. In
Section 7, we apply our methods to estimate microbial diversity in Lake Champlain, and
Section 8 closes with a discussion of our results and suggested directions for future work.
Software implementing the methods is available in the R package rre (regularized richness
estimation), available at github.com/statdivlab/rre, and code to reproduce the simulation
results is available at github.com/statdivlab/rre_sims.

2. Literature review

2.1. Poisson-mixturemodels

The classical model for estimating species abundance is a Poisson-mixture model. Under
this model, the number of times we observe species i is Xi ∼ Poisson(�), where � is a
random variable distributed according to some mixing distribution. Many mixing distri-
butions have been proposed, including by [4,19,21] (see [5] for a comprehensive review).
While our proposal may be easily generalized to other mixing distributions, in this paper,
we consider the Gamma distribution for �, first considered by Greenwood and Yule
[12] and Fisher et al. [11]. Note that we only observe Xi|Xi > 0, and therefore we are
interested in estimating the parameters of a Poisson-mixture model using zero-truncated
Poisson-mixed data.

Let fk = #{i : Xi = k} be the number of classes observed k times, called the frequency
counts. Then the set {fk}k≥1 is a frequency count table, a common way to represent species
abundance data. Because C = f0 + f1 + f2 + · · · = f0 + c, the species problem can be
framed as predicting f0 given f1, f2, . . . to obtain a species richness estimate Ĉ = f̂0 + c.

Let � ∼ Gamma(α, δ) with distribution function f (λ) = δα�(α)−1λα−1e−δλ, and
write η = (α, δ). There exist both frequentist [6,11] and Bayesian [2,9] approaches to
parameter estimation under this model. We will focus on frequentist maximum likelihood
(penalized and unpenalized) in this paper.

2.2. Estimation and computation

The most straightforward maximum likelihood approach is to simultaneously maximize
C and η using the full likelihood, which is known as the direct approach. A complication

http://R
http://rre
http://github.com/statdivlab/rre
http://github.com/statdivlab/rre_sims
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is that we have continuous parameters η as well as one discrete parameter C, and so
derivative-based optimization methods are not appropriate. This issue has been studied
by Lindsay and Roeder [14], who provide a discrete analog to the score function for this
model. Two other approaches to likelihood maximization are the conditional and profile
approaches. The conditional approach [25] involves writing the likelihood as the product

L(C, η) = Lb(C, η)Lc(η), (1)

where

Lb(C, η) = C!
(C − c)! c!

[
1 − pη(0)

]c [pη(0)
]C−c , (2)

Lc(η) = c!∏
k≥1

fk!

∏
k≥1

[
pη(k)

1 − pη(0)

]fk
. (3)

We see that the likelihood is the product of a binomial probability mass function c ∼
Binomial (C, 1 − pη(0)), and a multinomial probability mass function (f1, f2, . . .)|c ∼
Multinomial (c, (pη(1), pη(2), . . .)/1 − pη(0)). This decomposition is convenient because
Lc is a function of η alone. Sanathanan [25]’s conditional approach to optimization involves
first maximizing Lc(η) to obtain a conditional abundance estimate η̂c, then maximizing
Lb(C, η̂c) over C. The conditional estimate of C is then

Ĉc =
⌊

c
1 − pη̂c(0)

⌋
, (4)

where �a� is the largest integer less than or equal to a. In the profile likelihood approach the
expression in Equation (4) is substituted into the full likelihood, which gives us a function
of η alone (seeWang and Lindsay [28]). The conditional and profile approaches have been
shown to be asymptotically equivalent to the direct approach.

2.3. Challenges with Poisson-mixturemodels

A perennial issue in the species problem, especially for microbial datasets, is the instability
of species richness estimators [24,30]. A proposal which encourages stability of estimates
under Poisson-mixture models is due to Wang and Lindsay [28]. Their proposal is to add
a penalty term to the log-likelihood that penalizes the probability of observing a species
zero times. They consider the penalized log-likelihood

�λ(C, η) = �(C, η) − λ log pη(0), (5)

where �(C, η) = log L(C, η) is the log-likelihood and λ > 0 is a penalization parameter.
Let Ĉλ = argmaxC �λ(C, η). Then, for λ ≥ λ′, Ĉλ ≤ Ĉλ′ [28, Theorem 1]. In particular, for
λ > 0, the penalizedmaximum likelihood solution Ĉλ is less than or equal to Ĉ0, themaxi-
mum likelihood estimate. Furthermore, for a large enough λ, Ĉλ = c; that is, the penalized
maximum likelihood estimate shrinks to the observed richness c.

We note that log pη(0) < 0, and so the addition of the ‘penalty’ term in fact increases the
objective function (5) over the (unpenalized) likelihood �(C, η). While technically smaller



1056 A. PAYNTER AND A. D. WILLIS

pη(0) adds a larger reward to the objective function (for a fixed λ), we refer to the term
−λ log pη(0) as a penalty to be consistent with the terminology of Wang and Lindsay [28].
Wang and Lindsay [28] also consider two other penalty functions, which we do not discuss
here except to note that our tuning parameter selection methods would equally apply to
these other penalty functions.

Wang and Lindsay [28] show that a trade-off exists: greater values of λ correspond to a
more stable estimator, but at the potential cost of negative bias. The choice of penalization
parameter implies a preference for lower variance or lower bias, adding subjectivity to the
estimation procedure. Wang and Lindsay [28] note that a limitation of their proposal is
that ‘one must select a penalty function and a tuning parameter, and it is nigh impossi-
ble to make convincing statements about why one choice should be uniformly superior to
another’. Furthermore, we expect different data sets to require different λ values for opti-
mal mean squared error. The goal of this paper is to propose and investigate data-adaptive
methods to select λ.

3. Extension to biological replicates

We focus on the gamma-Poisson model and penalized log-likelihood of the form (5), and
consider the case where we observe r independent frequency count tables from the pop-
ulation under study. We will assume that these r frequency count tables are biological
replicates drawn independently from the same population, i.e. they have a common struc-
ture specified by the parameters C and η. A set of r frequency count tables from the same
population will be called a sample, and a single frequency count table will be referred to as
a replicate. Let the number of species observed k times in replicate j be fkj, j ∈ {1, . . . , r}.
Let cj be the observed richness in replicate j.

In Section 5, we will require an objective function defined in terms of a subset of indices
of the frequency count tables, so we define it that way now. Let J ⊆ {1, . . . , r}. J indicates
the data being used in the evaluation of the objective function, with J = {1, . . . r}meaning
we use all replicates. Let �(C, η; {fkj}k≥1) be the unpenalized log-likelihood for replicate
j. Using the fact that the draws are independent, our objective function for a fixed λ ≥
0 is the sum of the log-likelihoods for each individual replicate. We define the penalized
log-likelihood for multiple samples as

Oλ(C, η; J) :=
∑
j∈J

�
(
C, η; {fkj}k≥1

) − λ log pη(0) (6)

=
∑
j∈J

[
logC! − log(C − c)! + (C − c) log pη(0)

−
∑
k≥1

log fkj! +
∑
k≥1

fkj log pη(k)

⎤
⎦ − λ log pη(0). (7)

By fixing λ = 0 we obtain the unpenalized log-likelihood for the set J. We define Ĉλ to be
the penalized maximum likelihood estimate of C based on tuning parameter λ, that is,(

Ĉλ, η̂λ

) = argmaxC, ηOλ (C, η; {1, . . ., r}) , (8)

where η̂λ is a nuisance parameter.
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To maximize the likelihood, we will use the direct approach, rather than the profile and
conditional approaches reviewed in Section 2. While it may be faster to use the profile or
conditional approach, the results are not always the same in finite samples. Since our objec-
tive is to evaluate approaches to tuning, we place a priority on the accuracy of optimization
over speed of optimization.

To implement a direct optimization approach, we search over candidate C values in
a grid. A gradient-based search over η values is used at each C in the grid to find the
maximum penalized likelihood (C, η).

4. Evaluating penalized species richness estimates

Before evaluating potential tuning parameter selection methods, we first establish that
penalization can improve richness estimation. While Wang and Lindsay [28] established
that penalization can improve estimates when r = 1, this needs to be investigated when
r>1.

We use square root mean square error (RMSE) as the primary criterion for evaluating
the performance of estimators. Let nsim be the number of simulations completed for one
choice of (C, η, r), and Ĉλ〈s〉 be the solution of Equation (8) obtained in simulation number
s. We define

RMSE
(
Ĉλ

) =
√√√√ 1

nsim

nsim∑
s=1

(
Ĉλ〈s〉 − C

)2. (9)

In this simulation, if there exists some λ > 0 for which RMSE(Ĉλ) is less than RMSE(Ĉ0),
we conclude that penalization is effective.

We simulated using C = 1000, and r ∈ {6, 10, 14}. We found that η = (α, δ) =
(10−1, 10−1) provided a good fit to the data ofWalsh et al. [27], and η = (10−2, 10−5) pro-
vided a good fit to the data of Tromas et al. [26] (see Section 7). For completeness, we also
investigated nearby η values: η = (10−1, 10−3) and η = (10−1, 10−5). In Table 1, we pro-
vide summary measures for frequency count tables generated under each choice of η. This
characterizes the η values by the proportion of unobserved, rare or abundant species we
would expect to see. We return to a discussion of the different data structures in Section 6.
For each combination of η and r, we performed 100 simulations. We investigated the grid
λ ∈ {0, 5, . . . , 120}, and found that this grid was sufficiently expansive to ensure that the
RMSE-minimizing λ was not on the boundary of the grid (see Figures 1 and 2).

The results of the simulation are shown in Table 2. For every parameter choice a reduc-
tion in RMSE(Ĉλ) was found for some λ > 0. Depending on simulation parameters the

Table 1. The expected proportion of unobserved (k = 0), singleton (k = 1), rare (k = 1, 2, 3), and
abundant (k ≥ 10) species for 4 choices of η.

η (10−1, 10−1) (10−1, 10−3) (10−1, 10−5) (10−2, 10−5) (10−2, 10−3)

Proportion unobserved (pη(0)) 0.787 0.501 0.316 0.891 0.933
Proportion singletons (pη(1)) 0.072 0.050 0.032 0.009 0.009
Proportion rare (

∑3
k=1 pη(k)) 0.130 0.097 0.061 0.016 0.017

Proportion abundant (
∑∞

k=10 pη(k)) 0.028 0.340 0.583 0.083 0.040
Expected max abundance (E[kmax]) 4.1 × 101 4.0 × 103 3.9 × 105 2.0 × 105 1.9 × 103

We also give the expected frequency count of the most abundant species when C = 1000.
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Figure 1. Estimates of C and their root-MSE over λ when η = (10−1, 10−1) and C = 1000. Results are
based on 100 simulations per λ.

Figure 2. Estimates of C and their root-MSE over λ when η = (10−2, 10−5) and C = 1000. Results are
based on 100 simulations per λ.

reduction varied from 22% to 70% compared to RMSE(Ĉ0) for the best λ. These results
show that for a variety of (η, r) choices, penalization improves species richness estimation.
We also see that the optimal λ value varies considerably over (η, r), ranging from 10 to 70.
This suggests that there is not a universally appropriate λ choice. Therefore, tuning λ to
the sample appears desirable. We note that the optimal choice of λ is not consistent either
for fixed r and variable η, nor for fixed η and variable r.

To illustrate the bias-variance trade-off in this problem, we show the effect on
Ĉλ of increasing λ in Figure 1 (when η = (10−1, 10−1)) and in Figure 2 (when η =
(10−2, 10−5)). When η = (10−2, 10−5), for small values of λ we observe lower variance
in the estimates while incurring some positive bias, and the RMSE improves. However, as
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Table 2. The penalized maximum likelihood estimate of C has lower RMSE
for all investigated choices of η and r under a zero-truncated Gamma-mixed
Poisson model for species abundances based on 100 simulations for each
choice of η and r.

η = (α, δ) r RMSE (̂C0) λopt RMSE (̂Cλopt )

(10−1, 10−1) 6 796.90 10 326.50
(10−1, 10−1) 10 527.53 15 286.27
(10−1, 10−1) 14 337.31 10 235.51
(10−2, 10−5) 6 735.95 15 516.37
(10−2, 10−5) 10 700.21 20 456.04
(10−2, 10−5) 14 666.55 20 470.35
(10−1, 10−3) 6 200.09 20 156.29
(10−1, 10−3) 10 213.22 55 142.64
(10−1, 10−3) 14 243.42 55 148.26
(10−1, 10−5) 6 401.17 55 147.13
(10−1, 10−5) 10 283.91 25 137.04
(10−1, 10−5) 14 415.19 70 126.72

λopt is the value ofλwhich produced the lowest RMSE. Ĉ0 is the estimate of Cwhenλ = 0,
and Ĉλopt is the estimate of C when λ = λopt.

λ continues to increase, the bias term becomes large and negative and the RMSE increases.
Similarly, when η = (10−1, 10−1), we observe that the bias becomes large and negative
and the RMSE increases. However, even for small values of λ, the estimate is not positively
biased, and the larger RMSE is attributable to higher variance.

5. Methods for tuning λ

We have established that penalization can improve richness estimates, but different abun-
dance structures (η) require different values of λ to minimize RMSE.We therefore develop
methods to tune λ based on a sample. We propose several novel methods in this section.
Each is evaluated in Section 6.

5.1. Method 0: no penalization

We compare all proposed methods to the unpenalized MLE using J = {1, . . . r}:(
Ĉ[0], η̂[0]

) = argmaxC, ηO0 (C, η; {1, . . ., r}) . (10)

This method is fast and simple, making it an ideal baseline for comparison.
For all of the remainingmethods (1)–(4), we generate estimates Ĉλ overλ ∈ λgrid, where

λgrid is user-specified (e.g., λgrid = {0, 5, 10, . . . 120} in Section 4).

5.2. Method 1:minimum subset variance

Since large variance in C is a major concern in species richness estimation, ideally an esti-
mator will have low variance. If this is the case, there should be low variance in estimates
from equally sized subsets of J. ForMethod 1, we exploit the fact that we have replicate data
by repeatedly partitioning the replicates into two subsets and calculating two estimates.
We then select the λ, which yields the lowest between-subset variance. This partitioning is
repeated p times to average out the arbitrary choice of subsets.
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Let T1(l) be the first subset of the lth partition and T2(l) be the second subset of the
lth partition, for l ∈ {1, . . . , p}. That is, Ti(l) ⊆ {1, . . . , r}, T1(l) ∩ T2(l) = ∅ and T1(l) ∪
T2(l) = {1, . . . , r}. For each λ ∈ λgrid, l ∈ {1, . . . , p}, let(

ĈT1(l)
λ , η̂T1(l)λ

)
= argmaxC, ηOλ (C, η;T1(l)) , (11)

(
ĈT2(l)

λ , η̂T2(l)λ

)
= argmaxC, ηOλ (C, η;T2(l)) . (12)

We now have a Ĉ corresponding to each λ ∈ λgrid in each subset of each partition. Our goal
in Method 1 is to use these estimates to select the λ value which gave us the lowest average
variance over all partitions, denoted by λ̃[1]. The overall estimate for Method 1, Ĉ[1], is a
simple average of the estimates produced under λ̃[1]:

λ̃[1] = argminλ

1
p

p∑
l=1

Var
[
ĈT1(l)

λ , ĈT2(l)
λ

]
, (13)

Ĉ[1] = 1
p

p∑
l=1

⎡
⎣ ĈT1(l)

λ̃[1]
+ ĈT2(l)

λ̃[1]

2

⎤
⎦ . (14)

In our simulations, we chose an equal split of the indices for each partition: |T1(l)| =
|T2(l)|. The subsets of each partition are selected at random, and we sample with replace-
ment. We partition a total 10 times (p = 10). For example, if r = 4, then T1(1) = {1, 4}
and T2(1) = {2, 3} would be valid subsets. This approach to partitioning is also used in
Methods 2 and 4.

5.3. Method 2: cross-validated likelihood

InMethod 2, we propose to repeatedly partition the data into subsets and evaluate the esti-
mates based on the ‘training’ subset using the likelihood based on the ‘evaluation’ subset.
We partition the data into two subsets p times, calling them T(l) for the training subset of
the lth partition, and E(l) for the evaluation subset of the lth partition. For each λ ∈ λgrid,
l ∈ {1, . . . , p}, let (

ĈT(l)
λ , η̂T(l)

λ

)
= argmaxC, ηOλ (C, η;T(l)) , (15)

that is, (ĈT(l)
λ , η̂T(l)

λ ) is the penalized maximum likelihood estimate evaluated on the train-
ing subset. The λ value which maximizes the unpenalized likelihood calculated using
the evaluation subset is selected, and the average species richness estimate at λ̃[2] is the
estimated richness fromMethod 2:

λ̃[2] = argmaxλ

p∑
l=1

O0

(
ĈT(l)

λ , η̂T(l)
λ ; E(l)

)
, (16)

Ĉ[2] = 1
p

p∑
l=1

ĈT(l)
λ̃[2]

. (17)
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5.4. Method 3: goodness of fit

Method 3 uses goodness of fit of the fitted frequency counts to select an optimal tun-
ing parameter. Given that c ∼ Binomial (C, 1 − pη(0)) and (f1, f2, . . .)|c ∼ Multinomial
(c, (pη(1), pη(2), . . .)/1 − pη(0)), we have that

E
[
fk

] = E
[
E

[
fk|c

]] = E

[
c

pη(k)
1 − pη(0)

]
= C

(
1 − pη(0)

) pη(k)
1 − pη(0)

= Cpη(k). (18)

Therefore, given estimates Ĉ and η̂, we consider a plug-in estimate for the expected
frequency counts: f̂k = Ĉpη̂(k). The usual χ2 goodness of fit statistic is then

∞∑
k=1

(
fk − f̂k

)2
f̂k

=
kmax∑
k=1

(
fk − Ĉpη̂(k)

)2
Ĉpη̂(k)

+ Ĉ
∞∑

k=kmax+1

pη̂(k), (19)

where kmax is the largest k such that fk > 0. Equation (19) is useful in software implemen-
tation as we can make use of precomputed tail probabilities

∑∞
kmax+1 pη̂(k).

In Method 3, we make use of this goodness of fit metric by first generating estimates
using all replicates. For each λ ∈ λgrid, let(

Ĉλ, η̂λ

) = argmaxC, ηOλ (C, η; {1, . . ., r}) . (20)

λ̃[3] is the λ value with the best-fitting estimates of C and η:

λ̃[3] = argminλ

r∑
j=1

∞∑
k=1

(
fkj − Ĉλpη̂λ(k)

)2
Ĉλpη̂λ(k)

(21)

and Ĉ[3] is the estimated value of C at this choice of λ:

Ĉ[3] = Ĉλ̃[3]
. (22)

An advantage of Method 3 that is not shared by Methods 1, 2 and 4 is that it can be used
when r = 1, that is, when no repeated measurements are available.

5.5. Method 4: cross-validated goodness of fit

In Method 4, we return to the partitioning scheme of Method 2, but rather than using the
likelihood in the evaluation step, we hypothesize that the goodness of fit metric may be a
better choice. We partition the data p times, indexing the partitions by l. For each partition
we have a training set T(l) and a evaluation set E(l). For all λ ∈ λgrid and l ∈ {1, . . . , p}, we
generate estimates exactly as in Method 2:(

ĈT(l)
λ , η̂T(l)

λ

)
= argmaxC, ηOλ (C, η;T(l)) . (23)

To select λ we evaluate the goodness of fit metric using only the evaluation subset data,
j ∈ E(l). The λ which produces the best fitting estimates on the evaluation subset is λ̃[4]:

λ̃[4] = argminλ

p∑
l=1

∑
j∈E(l)

∞∑
k=1

(
fkj − ĈT(l)

λ p
η̂
T(l)
λ

(k)
)2

ĈT(l)
λ p

η̂
T(l)
λ

(k)
(24)
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and Ĉ[4] is the mean estimate of C at λ̃[4], averaged all partitions l:

Ĉ[4] = 1
p

p∑
l=1

ĈT(l)
λ̃[4]

. (25)

Similar to Method 2, this method generates training set-based estimates ĈT(l)
λ , however,

it evaluates these estimates using goodness of fit rather than likelihood maximization.
Compared to Method 3, this method uses each replicate to either generate an estimate
or evaluate the fit, while in Method 3 all replicates are used in both steps.

6. Comparison of methods for selecting λ

We have proposed four tuning methods motivated by properties which would be desirable
in an estimator of C. In this section, we compare the performance of each estimator. We
simulate zero-truncated gamma-mixed Poisson data using the same parameters used in
Section 4. Based on the results of Section 4, we know that estimation can be improved
through penalization, at least for the choices of η that we propose to simulate from.
The purpose of this section is to determine if any method can reliably select a λ that
reduces RMSE compared to unpenalized maximum likelihood estimation. In each sim-
ulation below, we select the largest value in λgrid by doubling the optimal value of λ found
in Table 2.

6.1. Initial comparison ofmethods’ performance

In this simulation, we let C = 1000, and simulate 100 times over all combinations of η ∈
{(10−1, 10−1), (10−2, 10−5)}, r ∈ {6, 10, 14}. Recall these η are the values chosen based on
our motivating examples. We know that the optimal λ choice for these r and η are between
10 and 20, so we chose λgrid = {0, 5, 10, . . . 60} for this simulation. Methods 0–4 are all
evaluated over the same random draws for each parameter choice using the R package
simulator [3].

In Table 3, we show the RMSE over all simulations for each method and each combina-
tion of η and r. Over all parameter choices, Method 3 performs at least as well as Method
0, with an RMSE which was between 0 and 23% lower. Method 3 is the only method which
performs at least as well as Method 0 for all parameter choices.

We note some differences between the performance of the methods for different η.
When η = (10−2, 10−5), Method 2 also outperforms Method 0 for r ∈ {6, 10, 14}, while
Method 2 does not outperform Method 0 for any r when η = (10−1, 10−1). Method
4 outperforms Method 0 for r ∈ {6, 14} when η = (10−2, 10−5), but never when η =
(10−1, 10−1). We conjecture that the differing performance across η is due to the differ-
ing rare species structures implied by the different η’s. For example, η = (10−2, 10−5) has
more abundant species and larger expected maximum abundance E(kmax), but relatively
few rare species (Table 1).

In Figure 3, we display the C estimates for each method. Recall that as we increase λ,
Ĉλ monotonically decreases. Therefore, we can discuss whether a method is on average
over-penalizing (selecting λ̃ which is larger than optimal) or under-penalizing (selecting
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Table 3. RMSE(̂C) for Methods 0–4 based on a zero-truncated gamma-mixed Poisson data generating
process.

η = (10−1, 10−1) η = (10−2, 10−5)

r = 6 r = 10 r = 14 r = 6 r = 10 r = 14

Method 0: MLE (no penalization) 709 326 339 787 775 716
Method 1: Minimum subset variance 689 630 578 763 821 796
Method 2: Cross-validated likelihood 797 521 492 602 658 617
Method 3: Goodness of fit 707 326 339 781 663 554
Method 4: Cross-validated g.o.f. 812 571 533 738 787 679

C = 1000 is constant for all simulations. Under each η, r combination, 100 simulations were run. Methods with RMSE better
than Method 0 have a grey highlighting, and the best method for each η, r combination is bolded.

Figure 3. Simulation results for all proposed methods when η = (10−1, 10−1), and when η =
(10−2, 10−5).

λ̃ which is smaller than optimal): if Ĉ > C, then the method has under-penalized while if
Ĉ < C the method has over-penalized.

We see from Figure 3 that Method 1 over-penalizes for all parameter choices, as all of
the estimates are far below the truth.We can understand this result given Figure 1: for very
high values of λ the estimates are equal to maxj cj, and so have low variance. However, the
observed richness is severely negatively biased forC. Given its large and consistent negative
bias and high RMSE, we do not discuss Method 1 further.

Method 2 has the opposite behavior: the estimates tend to be too high, especially when
η = (10−2, 10−5). This is similarly the case forMethod 0, though we see thatMethod 2 has
a slightly lower bias compared toMethod 0. Even for η = (10−1, 10−1), where the Method
0 bias is smaller, we see that Method 2 has poor performance (Table 3). Recall that in each
partition of Method 2, we use only half the data to generate the estimates ĈT(l)

λ . As a conse-
quenceMethod 2 has slightly higher variance when comparedwithMethod 0, as evidenced
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Table 4. RMSE for Methods 0 and 3 when counts are drawn from a gamma-mixed Poisson distribution
with parameter η.

Method C η r = 6 r = 10 r = 14 r = 30 r = 50

Method 0: MLE (no penalization) 500 (10−1, 10−3) 287 244 216 133 73
Method 3: Goodness of fit 500 (10−1, 10−3) 312 249 248 139 83
Method 0: MLE (no penalization) 1000 (10−1, 10−3) 418 266 277 158 127
Method 3: Goodness of fit 1000 (10−1, 10−3) 427 268 273 187 153
Method 0: MLE (no penalization) 2000 (10−1, 10−3) 463 419 372 367 346
Method 3: Goodness of fit 2000 (10−1, 10−3) 513 439 338 413 386
Method 0: MLE (no penalization) 500 (10−2, 10−3) 266 230 211 208 173
Method 3: Goodness of fit 500 (10−2, 10−3) 301 241 229 230 192
Method 0: MLE (no penalization) 1000 (10−2, 10−3) 485 430 429 365 372
Method 3: Goodness of fit 1000 (10−2, 10−3) 498 446 445 393 455
Method 0: MLE (no penalization) 2000 (10−2, 10−3) 908 775 781 719 787
Method 3: Goodness of fit 2000 (10−2, 10−3) 999 863 833 906 945
Method 0: MLE (no penalization) 500 (10−1, 10−5) 314 207 305 295 84
Method 3: Goodness of fit 500 (10−1, 10−5) 41 89 9 8 7
Method 0: MLE (no penalization) 1000 (10−1, 10−5) 701 438 500 375 227
Method 3: Goodness of fit 1000 (10−1, 10−5) 35 218 387 246 16
Method 0: MLE (no penalization) 2000 (10−1, 10−5) 1648 1143 766 743 998
Method 3: Goodness of fit 2000 (10−1, 10−5) 796 690 542 538 74

Results are based on 100 draws.

by the interquartile range in Figure 3 for η = (10−1, 10−1). In conclusion, Method 2 does
not appear to be effectively tuning λ, and sample splitting to generate estimates may be
leading to high variance.

Methods 3 and 4, which are both based on goodness of fit criteria, display different
patterns depending on the η and r values of the simulation.Method 4 outperformsMethod
0 when η = (10−2, 10−5) (Table 3), but under η = (10−1, 10−1) the RMSE for Method
4 is 15–75% greater than for Method 0. In comparison, Method 3 is at least as good as
Method 0with respect to RMSE for all parameter combinations tested. In addition,Method
3 is simpler and faster than Method 4. We conclude that Method 3 is the most promising
method based on this simulation.We propose to conduct a secondary simulation to further
investigate Method 3, testing whether it remains superior to Method 0 over a wider range
of η values.

6.2. Performance over wider range of parameter values

In this simulation, we will vary C ∈ {500, 1000, 2000}, r ∈ {6, 10, 14, 30, 50} and perform
100 simulations for three additional choices of η. We let η ∈ {(10−1, 10−3), (10−1, 10−5),
(10−2, 10−3)} and only consider Methods 0 and 3, based on the results of the previous
section. To account for the fact that a larger λ was optimal for these η values (see Table 2)
we use λgrid = {0, 10, 20, . . . 140}. In Table 4, we display the RMSE for both methods and
each combination of C, r and η.

We find that for η = (10−1, 10−3), Method 0 has a lower RMSE for 28 out of 30
combinations of C and r. However, on average over these 30 combinations, the RMSE
is only 8% lower. Similarly, when η = (10−2, 10−3), we also observe that Method 0 has
a lower RMSE for 30 out of 30 combinations of C and r, but the RMSE is only 11%
lower. We find that λ̃[3] in 59% of simulations when η = (10−2, 10−3), and λ̃[3] in 22%
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Figure 4. Simulation results for Methods 0 and 3 when η = (10−1, 10−3), η = (10−1, 10−5) and C ∈
{500, 1000, 2000}. The distribution of Ĉ is shown over 100 draws. The true value of C is indicated with a
solid horizontal line.

of simulations when η = (10−1, 10−3). We conclude that for these choices of η, max-
imum likelihood estimates outperform the goodness of fit-based penalization method,
but that the advantage of not penalizing is marginal and the chosen value of λ is often
zero.

When η = (10−1, 10−5), Method 3 significantly outperforms Method 0 in 30 out of 30
combinations of C and r. The RMSE is 914% lower for Method 3 on average over these
combinations. We also compare these results with those from Table 3, where we found
superior performance of Method 3 when η = (10−2, 10−5). Taken together, these results
suggest that Method 3 outperforms Method 0 for small values of δ, but that the methods
become comparable as δ increases.

In Figure 4, we display boxplots of the C estimates over r when α = 10−1 for δ ∈
{10−3, 10−5} and C ∈ {500, 1000, 2000}. When η = (10−1, 10−5) we note that Ĉ[0] is very
large for a few simulations, especially for smaller values of r.We recall fromTable 1 that this
η choice has the highest proportion of abundant species. This is an example of a simula-
tion structure which will cause the instability problem in maximum likelihood estimation
discussed in Section 2. Method 3 outperforms Method 0 on this η by selecting lower esti-
mates. In contrast, while Table 4 indicates that Method 3 has larger RMSE than Method 0
when η = (10−1, 10−3), Figure 4 suggests that the estimates produced by the methods are
generally very similar.

As a result of these simulations, we conclude that no method (including Method 0)
is best for all simulation settings, but Method 3 has advantages in many settings. We
found that when η = (10−1, 10−3) and η = (10−2, 10−3), Method 0 slightly outperformed
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Table 5. RMSE for Methods 0 and 3 when counts are drawn according to a zero-inflated gamma-mixed
Poisson distribution with C = 1000.

Method η p r = 6 r = 10 r = 14 r = 30 r = 50

Method 0: MLE (no penalization) (10−1, 10−3) 0.1 246 315 146 237 142
Method 3: Goodness of fit (10−1, 10−3) 0.1 293 327 163 247 163
Method 0: MLE (no penalization) (10−1, 10−3) 0.2 288 203 209 194 227
Method 3: Goodness of fit (10−1, 10−3) 0.2 331 239 211 209 218
Method 0: MLE (no penalization) (10−1, 10−3) 0.3 393 375 342 290 298
Method 3: Goodness of fit (10−1, 10−3) 0.3 439 397 334 291 312
Method 0: MLE (no penalization) (10−1, 10−5) 0.1 292 466 224 171 299
Method 3: Goodness of fit (10−1, 10−5) 0.1 130 121 145 195 216
Method 0: MLE (no penalization) (10−1, 10−5) 0.2 566 320 250 286 222
Method 3: Goodness of fit (10−1, 10−5) 0.2 244 241 233 204 199
Method 0: MLE (no penalization) (10−1, 10−5) 0.3 446 422 344 297 299
Method 3: Goodness of fit (10−1, 10−5) 0.3 320 307 323 319 291

Results are based on 100 draws from the distribution Pr(Xi = x) = p�{x=0} + (1 − p) × Fη(x) where Fη(x) is a gamma-
mixed Poisson distribution with parameters η.

Method 3 (Table 4). However, when η = (10−1, 10−5) and η = (10−2, 10−5), Method
3 outperformed Method 0 (Tables 3 and 4). Both methods were about the same when
η = (10−1, 10−1) (Table 3). This is consistent with Method 3 having improved perfor-
mance compared to Method 0 when there are highly abundant species present in the data
(see Table 1), in which case Method 0 can be unstable (see Figure 4).

6.3. Performance undermodel misspecification

We now investigate the performance of Methods 0 and 3 when the model is misspecified.
Specifically, we simulate species frequencies under two additional (non-gamma–Poisson)
models and compare the performance of the methods.

We first investigate the effect of zero-inflation on species richness estimation by simu-
lating data from themixture distribution Pr(Xi = x) = p�{x=0} + (1 − p) × Fη(x), where
Fη(x) is the probabilitymass function of a gamma-mixed Poisson distributionwith param-
eters η. We investigated η = (10−1, 10−3) (where Method 0 outperformed Method 3) and
η = (10−1, 10−5) (where Method 3 outperformed Method 0) and fixed C = 1000. We
investigate p ∈ {0.1, 0.2, 0.3} and perform 100 simulations. We find that in 16 out of 18
combinations of p and r, Method 0 outperforms Method 3 when η = (10−1, 10−3), and
that Method 3 outperforms Method 0 in 16 out of 18 combinations of p and r when
η = (10−1, 10−5) (Table 5). Unsurprisingly, we find that increased zero-inflation adversely
affects both methods. We conclude that neither method is robust to model misspecifica-
tion via zero-inflation, and that the value of η is more important than the zero-inflation
parameter in determining the relative performance of the two methods.

We also investigate the effect of data draws from a different non-gamma-mixed
Poisson distribution on the estimation error of Methods 0 and 3. We simulate data
according to a shifted logarithmic distribution with probability mass function Pr(Xi =
x) = (−1/ln(1 − p))(px+1/x + 1), for x = 0, 1, 2, . . . and p ∈ (0, 1). We investigate C ∈
{1000, 2000}, r ∈ {6, 14, 30}, and p ∈ {0.99, 0.9937, 0.995}. Note that p = 0.9937 is the
maximum likelihood estimate of p for the data described in Section 7.2. For each com-
bination of C, r and p, we performed 50 simulations. We found that, without exception,
Ĉ[3] = Ĉ[0] for every single draw. That is, for each of 2 × 3 × 3 × 50 = 900 simulations
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from a logarithmic distribution, Methods 0 and 3 produced identical estimates. Corre-
spondingly, bothmethods have identical RMSE for allC, r and p.We found that themedian
λ̃[3] was zero for 14 out of 18 combinations ofC, r and p, and that λ̃[3] = 0 for 59%of the 900
simulations. Note that λ̃[3] was not always chosen to be zero, but even for a nonzero λ̃[3],
the same value ofCmaximized the regularized likelihood function.We therefore conclude
that regularization does not change the estimated species richness when the data generat-
ing process is misspecified and drawn according to a logarithmic distribution, and neither
method has an advantage over the other in this setting.

7. Data analysis

7.1. Estimatingmicrobial richness in Lake Champlain

To illustrate the performance of our methods on ecological data, we estimate strain-level
microbial diversity in Lake Champlain, a large eutrophic lake in Canada. We analyze data
from Tromas et al. [26], considering samples from the littoral zone in the summer season
of the same year as replicates. This gives us 8 replicates from 2009, 6 replicates from 2010
and 6 replicates from 2011. Given our results from 6, we focus on Methods 0 and 3.

Method 3 produces lower estimates ofC thanMethod 0, as expected. The 2009 and 2010
estimates were approximately 3.5 times lower for Method 3, while the 2011 estimate was
approximately 1.5 times lower for Method 3. We see that the estimates of δ are comparable
across the two methods, but that the estimates of α differ, and may be higher or lower
depending on the dataset (Table 6).

7.2. Estimating global human host-associatedmicrobial richness

We also applied our method to estimate the species-level diversity of human host-
associated microbes. Pasolli et al. [22] assembled c = 4930 species-level genome bins
(SGBs) using publicly available shotgun metagenomic data, but we expect that many
SGBs were not observed due to undersampling and challenges in genome assembly. The
frequency counts of each SGB are available at Pasolli et al. [22, Table S4].

In this dataset r = 1, and so it is not possible to sample split replicate frequency count
tables. Therefore, only Methods 0 and Method 3 can be applied. We found that Ĉ[0] =
420, 056with (α̂, δ̂) = (0.00234, 0.00641). In contrast, Ĉ[3] = 163, 587with λ̃[3] = 905 and
(α̂, δ̂) = (0.00605, 0.00635). We therefore find Method 3 to produce an estimate approxi-
mately 2.5 times lower than the estimate produced by Method 0. Similar to our analysis of
the [26] dataset, we find comparable δ̂’s across the two methods but different α̂’s.

Table 6. Diversity estimates from the Lake Champlain data analysis from2009 (r = 8), 2010 (r = 6) and
2011 (r = 6) using our proposed methods.

2009 2010 2011

Method Ĉ λ̃ α̂ δ̂ Ĉ λ̃ α̂ δ̂ Ĉ λ̃ α̂ δ̂

[0] Unpenalized MLE 73,404 — 0.00088 0.00180 47,631 — 0.00185 0.00253 57,686 — 0.00161 0.00140
[3] Goodness of fit 20,160 550 0.00323 0.00174 13,156 225 0.00685 0.00257 40,040 230 0.00231 0.00137
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8. Discussion

8.1. Conclusions

In this paper, we outlined an extension of the penalized maximum likelihood procedure of
Wang and Lindsay [28] for species richness estimation to data with biological replicates,
and proposed several methods for tuning the penalization parameter. We demonstrated
that penalization can reduce estimation error when analyzing replicate data. We found
that tuning the penalization parameter is challenging, but that a tuning method based on
goodness of fit (Method 3) has similar or better performance than the unpenalized MLE
in many of the settings we analyzed. On two datasets, we found that it reduces the mag-
nitude of species richness estimates. Since species richness estimates can be unstable, we
find the reduction in estimates appealing. While we cannot conclude that our proposed
goodness of fit tuning parameter selection method provides more reliable estimates than
unregularized estimation, the performance of the goodness of fit approach on simulated
data is encouraging.

Our investigation highlights the challenges of selecting tuning parameters in the absence
of ground truth, since we never observe C. However, even in the absence of information
with which to calibrate λ, we showed that with a parametric model for species abundance
data we can use goodness of fit in conjunction with maximum likelihood to select λ. We
conjecture that the goodness of fitmethod performs well because it employs a combination
of likelihood and goodness of fit metrics calculated on the full dataset to select the tuning
parameter, unlike methods that only rely on the likelihood (e.g. Method 2) or split the data
(e.g. Method 4).

8.2. Limitations and future work

The approach of Wang and Lindsay [28] is considerably more general than the
gamma–Poisson model. The gamma–Poisson model is common for modeling micro-
biome data [13,15], and for this reason, we focused on it in our investigation. How-
ever, our goodness of fit method is also amenable to other parametric models. We
leave the investigation of tuning parameter selection under different models to future
work.

Our results from Section 3 hint at a possible positive correlation between r and the
optimal choice of λ. We investigated whether the optimal choice of λ remained constant
for penalties of the form −h(r)λ log pη(0) (instead of −λ log pη(0); see Equation (7)). We
tested h(r) = r and h(r) = √

r, but found that the trend in optimal λ is not so simple. We
leave further investigation into how the optimalλ varies with r to futurework. Understand-
ing of h(r) would allow us to consider unequally sized evaluation and training partitions
for Methods 2 and 4.

For our investigations, we intentionally chose a likelihood optimization algorithm
which was stable and exhaustive. We also did not construct standard errors for our
estimates, and the long computation times precluded the consideration of a bootstrap-
ping approach. Refining the optimization algorithm would be a valuable extension, and
a faster optimization algorithm would facilitate a resample-based variance estimation
procedure.
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9. Code references

An R package implementing our methods is available at github.com/statdivlab/
rre. Code to reproduce our figures and simulations can be found atgithub.com/stat
divlab/rre_sims. We are also grateful to the R Core Team [23] and authors of the
packages tidyverse [29], magrittr [1], breakaway [31], foreach [16], Rcpp
[8] and data.table [7], which were used for constructing the figures and running the
analyses in this paper.
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