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Abstract 

 

There is no doubt that sufficient energy supply is indispensable for the fulfillment of our 

fossil fuel crises in a stainable fashion. There have been many attempts in deriving 

biodiesel fuel from different bioenergy crops including corn, canola, soybean, palm, sugar 

cane and vegetable oil. However, there are some significant challenges, including depleting 

feedstock supplies, land use change impacts and food use competition, which lead to high 

prices and inability to completely displace fossil fuel [1-2]. In recent years, use of microalgae 

as an alternative biodiesel feedstock has gained renewed interest as these fuels are 

becoming increasingly economically viable, renewable, and carbon-neutral energy 

sources.  One reason for this renewed interest derives from its promising growth giving it 

the ability to meet global transport fuel demand constraints with fewer energy supplies 

without compromising the global food supply. 

 

In this study, Chlorella protothecoides microalgae were cultivated under different 

conditions to produce high-yield biomass with high lipid content which would be converted 

into biodiesel fuel in tandem with the mitigation of high carbon dioxide concentration. The 

effects of CO2 using atmospheric and 15% CO2 concentration and light intensity of 35 and 

140 µmol m-2s-1 on the microalgae growth and lipid induction were studied. The approach 

used was to culture microalgal Chlorella protothecoides with inoculation of 1×105 cells/ml 

in a 250-ml Erlenmeyer flask, irradiated with cool white fluorescent light at ambient 

temperature. Using these conditions we were able to determine the most suitable operating 
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conditions for cultivating the green microalgae to produce high biomass and lipids. Nile 

red dye was used as a hydrophobic fluorescent probe to detect the induced intracellular 

lipids. Also, gas chromatograph mass spectroscopy was used to determine the CO2 

concentrations in each culture flask using the closed continuous loop system.  The goal was 

to study how the 15% CO2 concentration was being used up by the microalgae during 

cultivation. The results show that the condition of high light intensity of 140 µmol m-2s-1 

with 15% CO2 concentration obtain high cell concentration of 7 x 105 cells mL-1 after 

culturing Chlorella protothecoides for 9 to 10 day in both open and closed systems 

respectively. Higher lipid content was estimated as indicated by fluorescence intensity with 

1.3 to 2.5 times CO2 reduction emitted by power plants. The particle size of Chlorella 

protothecoides increased as well due to induction of lipid accumulation by the cells when 

culture under these condition (140 µmol m-2s-1 with 15% CO2 concentration).  
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Chapter 1 Introduction 
 

1.1 Research Objective 

To investigate a new alternative of growing microalgae, Chlorella protothecoides, under 

different conditions to obtain high density biomass accumulated with high lipid contents 

for biodiesel production while reducing high concentration of carbon dioxide gas. The 

effect of CO2 and light intensity on the microalgae growth and lipid induction were studied. 

 

1.2 Research Aim 

 Determine the most optimum combination (CO2 concentration plus light intensity) 

for culturing Chlorella protothecoides with high cell density 

 To evaluate the most suitable growing conditions which will optimize the induction 

process of accumulating lipid yield contents of Chlorella protothecoides for 

biodiesel production 

 To sequester CO2 with the concentration commonly detected in the flue gas of 

power plants. 

 

1.3 Biodiesel from Microalgae 

Due to increasing combustion of fossil carbon footprint, higher fuel prices and depleting 

feedstock supplies to produce energy in a more stainable fashion, it is understood that 

biofuel from first and second generation feedstock has the inability to fulfill of our fossil 

fuel crises, ensure sustainable production and minimum lifecycle GHG emission reduction 

[1-2, 55]. There are several alternatives which are under consideration to replace current 
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global transport fuel without compromising global food supply, ecological stability and 

with minimum environmental impact. One of these alternatives includes third generation 

biofuel such as microalgae. In recent years, the use of microalgae for production of biofuel 

such as biodiesel has held huge interest due to their renewable and sustainable features [1-

4, 6]. Like many plants, microalgae use sunlight, water and carbon sources to produce oil-

like substances which can be converted to biodiesel through photosynthesis [1, 3].  This 

process involves the reduction of CO2 by utilizing light and water through photoautotrophs 

(unusually plants and algae) which help to produce energy storage in the form of reduced 

carbon components, mostly lipid oil and carbohydrates which are extracted for biodiesel 

production [3,4].  Biodiesels derived from microalgae have several advantages as compared 

to current first generation feedstock crops like corn, canola, soybeans, palm, sugar cane, 

maize, wheat and vegetable oil [1, 7]. Some of these advantages include: the potential to 

meet global fossil fuel crises using limited land and water resources, no need to 

compromise global food supply, easy harvesting technique, faster growth rate, higher 

photosynthetic efficiency, reduction of nitrous oxide and CO2 gas emissions which are 

major contributors to serious global warming resulting in higher temperatures of the 

surface air [7-9]. With new energy independence policy and legislation, such as sustainable 

biofuel targets in the U.S Energy Policy Act (EPA 2005), Energy Independence and 

Security Act (EISA 2007), and the European Union (EU 2020), use of microalgae is 

expected to ensure a safe, reliable living environment by reducing atmospheric CO2 and 

increasing energy security [7-8]. Microalgae are considered to be suitable alternative 

feedstock for biofuel production such as biodiesel. 
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Microalgae are a diverse group of photosynthetic unicellular microorganisms which grow 

at a much faster growth rate than plants in most conditional weather condition [2, 9]. They 

can be cultured in seawater which contained a high amount of CO2 
[2]. The algae can utilize 

CO2 fixation by consuming it and releasing oxygen which can be used in the development 

of life support systems as oxygen producer or food substitute [1, 7-9]. There are different 

types of microalgae which can be used in the process of making biodiesel production (see 

some listed in Table 1). Depending on the type of microalgae species, the algae can produce 

different lipids, hydrocarbons and other complex oil content which is suitable for the 

production of biodiesel. However, the known total lipid content of microalgae varies from 

1-77% and can yield 10-30 times higher the amount of biodiesel production than any other 

biofuel from the first generation feedstock crops [8, 11]. It was estimated that about 58,700 

and 136,900 L/ha of oil annually can be obtained from using microalgae species alone for 

biodiesel production, occupying 1.1 to 2.5% of the total land area of the U.S while 

replacing 50% of current fossil fuel as shown in Table 2 [1, 4,10]. 

 

Algae lipid contents can be increased under stressful conditions usually caused by light, 

CO2, and a shortage of nutrients like nitrogen or phosphate and then converted to biofuel 

through a transesterification reaction [1, 5-7]. The lipid content present in microalgae consists 

of neutral lipid, polar lipid, hydrocarbons, as well as percentages of triglycerides and ester 

which are comprised of free fatty acids and glycerol [11, 55]. In the transesterification 

reaction, the triglycerides are reacted with methanol to produce methyl esters of free fatty 

acids that are biodiesel and glycerol in the presence of a catalyst, usually sodium hydroxide, 

potassium hydroxide or sodium methylate. The catalyst act in converting the methanol to 
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form strong nucleophiles which react well with the triglycerides to form three new methyl 

esters as a fuel and glycerol as a byproduct as shown in Figure 1 [11- 14]. 

 

In this study, microalgae, Chlorella protothecoides was chosen due to its faster growth, 

easier cultivation and ability to produce lipid content up to 58% of dry weight biomass [1, 

4, 8]. Chlorella protothecoides is a unicellular green alga of genus Chlorella which contains 

chlorophyll that can be used for energy and making processed foods more visually 

appealing [3]. In the cultivation process of the chlorophyll, the microalgae Chlorella 

protothecoides require carbon dioxide, water, sunlight and nutrients to reproduce. 

Chlorella protothecoides has a spherical size about 2 to 10 µm in diameter without flagella 

as shown in Figure 2. It can be grown in either photoautotrophically or heterotrophically 

under different culture conditions resulting in higher biomass or lipid content [14]. 
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Figure 1. Transesterification reaction process diagram (adapted from [11]). 
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Table 1. Lipid oil contents of some microalgae [1, 4, 8]. 
 

Microalgae Type Lipid Oil Content (% dry weight) 
Ankistrodesmus sp. 24-31 

Botryococcus braunii 25-75 

Chaetoceros muelleri 33.6 

Chaetoceros calciltrans 15-40 

Chlorella emersonii 25-63 

Chlorella protothecoides 15-58 

Chlorella sorokiniana 19-22 

Chlorella vulgaris. 5-58 

Chlorella sp. 10-48 

Crypthecodinium cohnii 20-51 

Cylindrotheca sp. 16-37 

Dunaliella primolecta 23 

Isochrysis sp. 25-33 

Monallanthus salina >20 

Nannochloris sp. 20-35 

Nannochloropsis sp. 31-68 

Neochloris oleoabundans 35-54 

Nitzchia sp. 45-47 

Phaeodactylum tricornutum 20-30 

Schizochytrium sp. 50-77 
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Table 2. Comparison of biodiesel feedstock sources for meeting 50% of U.S transport 
fuel needs [8, 10]. 

 
 

Crop Type 
 

Oil Yield 
(L/ha) 

 
Total Land Area 
Based on the US 

(Mha) 

 
Percent of US 
Existing Crop 

Corn 172 1540 846 

Soybean 446 594 326 

Canola 1190 223 122 

Jatropha 1892 140 77 

Coconut 2689 99 54 

Palm 5950 45 24 

Microalgaea 136,900 2 1.1 

Microalgaeb 58,700 1.5 2.5 

a. 70% of oil by weight in biomass 

b. 30% of oil by weight in biomass 

 

 

 

Figure 2. Image of Chlorella Protothecoides under light microscopy. 
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1.4 Carbon Dioxide Sequestration 

Carbon dioxide sequestration refers to the removal or reduction of CO2 from the 

atmosphere which is generated from fossil fuels being burned by industries related to 

natural gas processing, iron and steel manufacturing, electricity generation, cement and 

combustion of municipal solid waste [15, 19, 27]. Typically this is done by photosynthetic 

organisms such as green plants, algae or bacteria to capture most of the CO2 emitted by 

power plants, usually 15%-20% v/v [15, 28, 30]. Flue gases generated from industrial power 

plants consist of nitrogen (N2), carbon dioxide (CO2), oxygen (O2), water vapor, minor 

amounts of carbon monoxide (CO), sulfur oxides (SOx) and nitrogen oxides (NOx) [25-26]. 

Among all these flue gases the most global environmental concern is the enormously 

increased amount of CO2 concentration in the atmosphere. CO2 is considered one of the 

major contributors to “global warming” or “greenhouse effect” which causes extreme 

weather changes, increase in global temperature, arise in sea level, acidification of the 

ocean, loss of ecosystems, melting of glaciers and health hazardous to humans [16-18, 26-27]. 

 

It was estimated by EPA that in 2011 in the United States, CO2 accounted for 84% of all 

U.S greenhouse gas emission, about 6, 0702 million metric tons of CO2, a 10% increase 

from 1990-2011 and 31% increase of all level of CO2 in the atmosphere from since 1750 

to 2010 as shown in Figure 3. The waste CO2 generated in the U.S is shown in Table 3. 

There has been a lot of efforts to reduce greenhouse gases, helping to make industry 

processes more sustainable and environmental friendly. Some of these methods include the 

capture and subsequent sequestration of CO2 in deep oceans, aquifers, or depleted oil and 

gas wells, utilization of CO2 in industrial application, and utilization of other alternative 
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fuels (such as natural gas and hydrogen) or renewable energy sources (such as wind and 

solar) that result in the reduction of CO2 emissions generated [28]. All of these have 

disadvantage associated with them. Some include higher production cost, inability to 

consume all or most of the CO2 generated into the atmosphere, space requirement per unit 

of energy produced, expense to switch from current system to newest technology, safety 

issues and waste disposal. Among all these methods, researchers around the world have 

looked at other alternatives which are more efficient in reducing CO2 emission from most 

industry processes and in the atmosphere. Although they found out that biological fixation 

of CO2 using microalgae via photosynthesis is more promising in solving the global 

warming problem [25, 28-29]. With the biological approach, CO2 is captured by algae and 

converted into carbon molecules via photosynthetic processes which use light to reduce 

carbon from CO2 to complex carbon molecules. These molecules usually act as stored 

energy such as fuels or fuel precursors. 

 

 

Table 3.  U.S carbon dioxide emissions by source [18]. 

Factory Increasing rate from 1990-2011 

(%) 

Commercial and Residential 11 

Agriculture 8 

Industry 20 

Transportation 33 

Electricity 28 
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Figure 3. Increasing level of CO2 in the atmosphere since 1750 [27]. 

 

 

1.5 CO2 Effect on Microalgae 

The growth of microalgae requires CO2 as one of the main nutrients to carry out 

photosynthesis. As reported from previous research studies, CO2 can tune the pH of culture 

medium and act as the carbon source for microalgal growth [16, 31].  Typically microalgae 

biomass consists of 40% to 50% carbon by dry weight, meaning that to grow 1.0 kg of 

algae biomass, it required 1.5-2.0 kg of CO2 
[32]. In the cultivation of microalgae, it is 

important to know the right amount of CO2 concentration that is suitable for the different 

types of microalgae. Different species have various CO2 tolerances. High CO2 

concentration may result in growth inhibition while lower concentration could limit 

microalgae cell growth [16, 32-33]. Atmospheric CO2 of 0.0387% v/v is too low for microalgae 

growth, therefore requiring to supplement with carbon sources [15, 28, 30]. The carbon sources 
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include CO2, H2CO3, HCO3
-, and CO3

2-, but for the cultivation of microalgae only CO2 and 

HCO3- are used. Although high CO2 concentrations can cause a narcotic effect, some 

species can tolerate CO2 concentrations greater than 15% (shown in Table 4). 

 

Table 4. CO2 tolerance of various algae species (adapted from [16, 34]) 

Microalgae Species Maximum tolerable CO2 
Concentration 

(%) 

Reference # 

Cyanidium caldarium 100 35 

Scenedesmus sp. 80 36 

Chlorococcum littorale 60 37 

Synechococcus 
elongatus 

60 38 

Euglena gracilis 45 39 

Chlorella sp. 40 40 

Eudorina spp. 20 41 

Dunaliella tertiolecta 15 42 

Nannochloris sp. 15 43 

Chlamydomonas sp. 15 44 

Tetraselmis sp. 14 45 

 
  
In algae photosynthesis, CO2, water and minerals are converted into oxygen and energy 

rich organic compounds by utilizing captured light energy [21-22, 28]. The process utilizes 

photons to produce oxygen, carbohydrates and other compounds into chemical energy such 

as fuel. The general equation that describes photosynthesis is shown in Equation 1. 

      6 CO2 + 12 H2O + light source+ green plant  (CH2O)6 + 6 O2 + 6 H2O            (1) 
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This process of photosynthesis involves a light-independent reaction, where carbon dioxide 

and other compounds are converted into carbohydrates [23-24]. In this process, adenosine 

triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate oxidase (NADPH) 

produced from the light-dependent reaction are utilized, reacting with CO2 and hydrogen 

ions to form three-carbon sugar via the Calvin Cycle, newly ADP and NADP are formed. 

The produced sugar during the light-independent reaction produces a carbon structure 

which can be used in the production of amino acid and lipids. The overall equation for the 

light-independent reactions in green plants like microalgae is given in Equation 2. 

 

3CO2 + 9ATP + 6NADPH + 6H+   C3H6O3 –phosphate + 9ADP + 8Pi + 6 NADP + 3H2O                                                                                                                                

(2) 

 

 

1.6 Light Effect on Algae 

Apart from carbon sources, light intensity is necessary for microalgae growth. Light is the 

limiting factor for both the microalgae growth and lipid composition. It affects directly the 

growing and photosynthesis of the microalgae. Many microalgae species perform well in 

different light intensities in order to produce ATP and NADPH. This occur in the present 

of light via the photosynthesis where photons of light energy are absorbed by chlorophyll 

molecules and converted into ATP, NADPH and oxygen is released [24]. During the 

reaction, light energy is used to remove water from the algae via transpiration as shown in 

Figure 4. In this process of transpiration, the energy source activates the chloroplast in the 

algae which causes enzyme to diffuse from the water. Then the water is reacted in the  
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presence of light energy to release oxygen, hydrogen and electrons as shown in Equation 

3. After the oxidation of water is accomplished, the produced hydrogen is bonded to form 

NADPH and produces oxygen as a waste product through a reduction reaction as shown in 

Equation 4. Finally, in both equations (Equation 2-3), the free electrons form chemical 

bonds by the reduction of nicotinamide adenine dinucleotide phosphate (NADPH) to 

NADPH oxidase and adenosine diphosphate (ADP) to adenosine triphosphate (ATP) 

during the light reaction. The overall equation or the light dependent reaction is shown in 

Equation 5. Figure 5 show the chemically reactions stages of the photosynthesis process in 

algae cultivation. 

 

 
Figure 4. Photosynthesis process that converts photon into chemical energy, splitting water 
to liberate O2 via oxidation reaction and fixing CO2 into sugar. 
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Figure 5. Two chemical reaction stages of photosynthesis (adapted from [23]). 

 

 

12 H2O + light source  6 O2 + 24 H+ + 24 e-                                                   (3) 

 

NADP + H2O  NADP + H+ + O                                                                               (4) 

 

      2 H2O + 2 NADP + 2 ADP + 2 Pi + light   O2 +2 NADPH + 2H+ +2 ADP         (5) 

 

 

 As reported from previous research, when increasing light intensity, the growth of 

microalgae growth is directly proportional to the increased light intensity. When the 

microalgae cells are exposed to a high light intensity for a long period it causes 
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photoinhibition. This is due to damage of the repair mechanism of photosystem II which 

leads to inactivation of the oxygen evolving system and electron carriers, although the light 

intensity required for most microalgae is relatively low compared to that of higher plants 

[25, 33, 47]. As reported by Ling et al. (2009), Chlorella vulgaris was cultured using different 

light intensities ranging from 0-185 µmol m-2s-1, showing that light intensity of 90 µmol 

m-2s-1 and anything above will cause photoinhibition.  Most microalgae have different 

chlorophyll types which are dependent on different absorption wavelength.  Typically, all 

chlorophylls have absorption wavelength of 450-475 nm and 630-675 nm. Also it is 

important to know the type of light to use for different algae species. Since algae contain a 

variety of pigments such as chlorophyll a, lutein, phycobiliproteins, red and blue 

phycoerythrin and zeaxanthin which react differently to different light sources. 

Scientifically, it has been suggested to used blue and red light for microalgae cultivation 

because it penetrates little on the algae suspension than green light [25].   
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Chapter 2 Materials and Methods 
 

2.1 Microalgae and Medium 

The unicellular alga Chlorella protothecoides was purchased from the Culture Collection 

of Algae at University of Texas (Austin, TX, USA). The culture medium used was Bristol’s 

medium which contained 0.25 g NaNO3, 0.025 g CaCl2.2H2O, 0.075g MgSO4.7H2O, 0.075 

g K2HPO4, 0.175 g KH2PO4, and 0.025 g NaCl. The pH of the medium was adjusted to 

6.83 after sterilization, using 0.1 M NaOH, then 1 g of proteose peptone was added to  the 

final solution and adjusted to one liter solution. The solution was autoclaved at 121oC for 

45 min and stored in a refrigerator. 

 

2.2 Cultivation 

Chlorella protothecoides was cultivated at a room temperature of 25oC with inoculation of 

1x105 cells per mL in a 250-mL Erlenmeyer flask, irradiated with fluorescence light bulbs 

and cultured at room temperature (25oC). All glassware used in the experiments were 

cleaned and autoclaved (2340 M Tuttnauer Brinkman Autoclave, Rochester, NY) at 121oC 

for 45 min before use. Then an initial starter culture solution was made using 200 mL of 

media, exposed to 2.4 W/m2 (800 lux) of fluorescent light and allowed to culture for 3 

weeks. Later, 106 mL of the starting solution was diluted with 494 mL Bristol medium 

with a total solution culture of 600 mL.  The culture was then divided into four flask of A, 

B, C and D. Each had 150 mL, carried out in 250-mL Erlenmeyer flasks with constant 

mixing using magnetic stirring bar and orbital shaker with the speed of 40 rpm, exposed to 

fluorescent light intensity, normal room air (containing 0.0387% CO2) and CO2 (15% CO2), 

in an open and closed system as shown in Figure 6-8 respectively. 
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A B C D

 

Figure 6. Description of equipment set-up for Chlorella protothecoides cultivation 
exposed to fluorescent light intensity and normal room air containing 0.037% CO2 in an 

open system. 
 

 

 
 

CO2 

Tank 

A B C D

 

Figure 7. Description of equipment set-up for Chlorella protothecoides cultivation 
exposed to fluorescent light intensity and 15% CO2 in an open system. 
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Figure 8. Description of equipment set-up for Chlorella protothecoides cultivation 
exposed to fluorescent light intensity using 15% carbon dioxide in a closed continuous 

loop system. 

 

 

2.3 Light Intensity Studied 

Each cultured sample was exposed to fluorescent light intensity of 35, 70, 140, and 210 

µmol m-2s-1 (detected by 3251 Traceable® Dual-Range Light Meter, Fisher Scientific) for 

flasks A, B, C and D using atmospheric and 15% CO2, respectively in an open system as 

described in Figures 6-7 above. The main goal was to study the light effect on the growth 

of Chlorella protothecoides. After studying the initial light effect, light intensity of 35 and 

140 µmol m-2s-1 were chosen for further investigation due to its higher kinetic growth and 

cultured lipid content. Further investigation was carried out using 15% CO2 in a closed 

continuous loop system shown in Figure 8. 
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2.4 Carbon Dioxide Studied 

The cells were cultivated with inoculation of 1x105 cells per mL in a 250-mL Erlenmeyer 

flask, irradiated with fluorescent light bulbs and cultured at room temperature (25oC). 15% 

CO2 balanced with 85% nitrogen and normal room air containing 0.0387% CO2 were used. 

The volumetric flowrate of 15% CO2 was control at 70 mL/min using a flow meter 

(Gilmont Industrial Flowmeter, Fisher Scientific). This was regulated at such flow rate (70 

mL/min) to ensure equal bubbling in each culture flasks. 

 
2.5 Determination of Cells Growth 

A 1 mL sample was taken from each of the stock cultures into 250 ml flask solution, placed 

into an Eppendorf tube, diluted with one drop of iodide solution (I2KI) and mixed well. 

Later a 20 µL Eppendorf droplet of immersion solution was placed on a microscope 

hemocytometer containing 9 squares. The cells in 5 of the hemocytometer squares were 

averaged and the total cell counts were obtained. Each sample taken from the culture was 

used for counting cell concentration and measuring pH readings. The procedure was 

repeated on a daily and every other day basis. 

 

2.6 Determination of Cells Diameter 

A 1 mL sample was taken from each cultured algae solution, placed into cuvette and the 

average cells diameter was measured with a Zetasizer Nano ZS (Malvern Instrument, 

Westborough, UK). 
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2.7 Determination of Cells Imaging 

Regular and fluorescent cell image was obtained using a microscope equipped with LAS 

EZ color and fluorescent camera (Leica EZ DMI3000 B, Buffalo Grove, IL) with objective 

lenses of 10, 20, & 40X. The microscope also had a shutter UV lamp box. For regular cell 

imaging, 1 mL sample was taken from each cultured algae solution, placed into an 

eppendorf tube and mixed well. Later a 20 µL Eppendorf droplet of immersion solution 

was placed on a microscope slip, attached to the microscope and the cell image was 

acquired. 

 

2.8 Gas Chromatography Mass Spectrometer (GC/MS) 

The CO2 concentration in each cell culture flask was analyzed by a gas chromatography 

mass spectrometer (GCMS QP5050,Shimadzu, Canby, OR) using a column of DB-5MS 

UI with dimension of 25 m x 0.25 mm x 0.25 µm and a flame ionization detector (FID).  A 

sample was taken from each flask as shown in Figure 9. About 0.25 µL of each sample 

were injected into the column.  The parameters for the program were set at 200°C injection 

temperature of 250°C interface temperature, 32.2 kPa column inlet pressure. One mL per 

min of column flow and a nitrogen split ratio of 99:1 was used as the carrier. 
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Figure 9. GCMS sampling equipment setup. 

 

 

2.9 Determination of Lipid Content 

The lipid content of the microalgae was detected through the use of Nile red dye (Sigma 

Aldrich, St Louis, MO). This approach was utilized to study the amount of lipid being 

produced each day under the different cell cultivation conditions. The dye was used as a 

hydrophobic fluorescent probe for the detection of lipid deposits in the cell.  A stock 

solution was prepared using 0.001 g of the Nile red in 3 mL of dimethyl sulfoxide (DMSO), 

stored and protected from light. To stain the algae cells, 1 mL of the cultured algae solution 

was obtained, centrifuged at 3500 rpm at 4oC for 5 min. The supernatant liquid was 

separated from the solid cell pellet and discarded. One drop of the Nile red solution was 

added to the solid cell pellet for 10 min for the dye to enter into the cells wall. Then the 

mixture was centrifuged, the cell pellets were washed with distilled water, centrifuged 
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again, 1 mL of culture media added and mixed well. The mixture was examined by a 

fluorescence microscope. Depending on the amount of cell lipid present in the solution, 

one could observe the fluorescence under the microscope and determine the cell 

fluorescence intensity. In addition, cell fluorescence intensity was detected by a 

spectrofluorometer (Synergy Mx, Biotek,Winooski, VT). This procedure was repeated 

daily for each culture condition. 

 

For fluorescent imaging, 1 ml sample was taken from each cultured algae solution, placed 

into an eppendorf tube and centrifuged at 1200 rpm at 4 oC for 10 min. The supernatant 

liquid was separated from the solid cell pellet and discarded. One drop of the Nile red 

solution was added to the solid cell pellet for 10 min for the dye to enter into the cells wall. 

Then the mixture was centrifuged, the cell pellets were washed with distilled water, 

centrifuged again, 1 mL of culture media added and mixed well. A 20 µL Eppendorf droplet 

of the immersion solution was placed on a microscope slide, attached to the microscope 

and the fluorescent cells image was acquired. The desired camera objective lenses used for 

all imaging were 20X and 40X. The procedure was repeated on a daily and every other day 

basis.  
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Chapter 3 Results and Discussion 
 

3.1 Growth Kinetics 

In Figure 10, it gives the effect of light on the growth of C. protothecoides under a variety 

of light intensities ranging from 30 to 210 µmol m-2s-1 in an open batch culture system 

exposed to normal room air for a total cultivation period of 8 days (Figure 6). As reported 

by Ling et al. (2009), C. vulgaris was cultured using different light intensities ranging from 

0-185 µmol m-2s-1. It was found that using light intensity of 0-90 µmol m-2s-1 and anything 

above these conditions could result in photoinhibition. However in this study, the 

maximum cell density of C.protothecoides obtained was 2.5 x 106 cells mL-1 using a light 

intensity of 210 µmol m-2s-1 as shown in Figure 11. The average cell sizes obtained were 

1.66, 1.18, 1.13 & 1.11 µm for light intensity of 210, 140, 70 and 35 µmol m-2s-1, 

respectively after 8 days of culture (see Figure 12).  

 

 

 
Figure 10. Effect of light intensity on the growth of C. protothecoides. Flask A, B, C & 
D were irradiated respectively with light intensity of 35, 70, 140 & 210 µmol m-2s-1 and 
exposed to normal room air at ambient temperature. The cultures were inoculated with 

1.4 × 105 cells mL-1 and grown for 8 days. 
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Figure 11. Growth kinetics of C. protothecoides cultures A, B, C & D exposed to normal 
room air, light intensity of 35, 70, 140 and 210 µmol m-2s-1 and ambient temperature with 

initial cell concentration of 1.4 ×105 cells mL-1. 

 

 

Figure 12. Average cell size of C. protothecoides cultured at (A) 35 (B) 70 1 (C) 140 and 
(D) 210 µmol m-2s-1and exposed to normal room air with initial cell concentration of 1.4 

×105 cells mL-1. 

 

After studying the effect of light on the growth of C. protothecoides under the four light 

intensities and normal room air, two of the four light intensities (35 and 140 µmol m-2s-1) 
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were chosen for further investigation using 15% CO2 concentration due to its higher lipid 

content produced. The primary objective was to study the effect on the growth kinetic of 

C. protothecoides using both light and CO2 concentration. Figure 13 shows the 

combination effect of light and CO2  on the growth kinetic of C. protothecoides using light 

intensities of 35 and 140 µmol m-2s-1 in a batch culture incubated with 15% CO2 above for 

a total cultivation period of 9 days in an open batch system (Figure 7). The maximum cell 

density of C. protothecoides obtained was 17 × 105 cells mL-1 using a light intensity of 140 

µmol m-2s-1as shown in Figure 14. The average cell sizes obtained were 1.69 and 1.50 µm 

for light intensity of 140 and 35 µmol m-2s-1, respectively as shown in Figure 15.  

 

 
Figure 13. Effect of light intensity and CO2 on the growth of C. protothecoides. Flasks A 
& C are exposed to light intensity of 35 & 140 µmol m-2s-1, respectively while injecting 

15% CO2 concentration with initial cell concentration of 3.5 ×105 cells mL-1 for 9 days of 
cultivation. 
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Figure 14. Growth kinetics of C. protothecoides. Flasks A & C are exposed to light 

intensity of 35 & 140 µmol m-2s-1, respectively while injecting 15% CO2 concentration 
with initial cell concentration of 3.5 ×105 cells mL-1. 

 

 

Figure 15. Average cell size of C. protothecoides cultured at (A) 35 and (C) 140 µmol m-

2s-1and 15% CO2 concentration with initial cells concentration of 3.5 ×105 cells mL-1. 

 

 As show in Figures 16-17, the effect of light and CO2 on the growth kinetic of C. 

protothecoides using light intensities of 35 and 140 µmol m-2s-1 with 15% CO2 in a closed 

continuous loop system (as described in Figure 8) was studied. To study the sequestration 

of CO2 concentration by microalgae at each cultivation stage, four new flasks were made 

and cultured for a total cultivation period of 7 and 10 days for light intensities of 35 and140 

µmol m-2s-1, respectively. 
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Figure 16. Effect of light intensity and CO2 on the growth of C. protothecoides. Flasks 
A, B, C & D were exposed to light intensity of 35 µmol m-2s-1, 15% CO2 concentration 
and cultured in the closed continuous loop system with initial cell concentration of 3 × 

105 cells mL-1 for 7 days of cultivation. 
 

 

 

 
Figure 17. Effect of light intensity and CO2 on the growth of C. protothecoides. Flasks 
A, B, C & D exposed to light intensity of 140 µmol m-2s-1, 15% CO2 concentration and 

cultured in the continuous loop system with initial cell concentration of 2 × 105 cells mL-1 
for 10 days of cultivation. 
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The maximum cell densities of C. protothecoides obtained were 1.3 ×106 and 1.1 × 106 

cells mL-1 as shown in Figures 18 and 19, respectively. The average cell size obtained were 

2.02, 1.98, 1.39, 1.43, 1.43 µm for light intensity of 35 m-2s-1 and 1.83, 1.69, 2.46, 2.44µm 

for light intensity of 140 µmol m-2s-1 as shown in Figures 20 and 21, respectively. 

  

  
Figure 18. Growth kinetics of C. protothecoides. Flasks A, B, C & D were exposed to 
the same light intensity of 35 µmol m-2s-1, 15% CO2 concentration and cultured in the 

closed continuous loop system with initial cell concentration of 3×105 cells mL-1.     

 

     

Figure 19. Growth kinetics of C. protothecoides. Flasks A, B, C & D were exposed to 
the same light intensity of 140 µmol m-2s-1, 15% CO2 concentration and cultured in the 

closed continuous loop system with initial cell concentration of 2 × 105 cells mL-1. 

29 
 



 

 

Figure 20. Average cell size of C. protothecoides cultured at light intensity of 35 µmol 
m-2s-1 using 15% CO2 concentration in the continuous loop system with initial cell 

concentration of 3 × 105 cells mL-1. 

 

 
Figure 21. Average cell size of C. protothecoides cultured at light intensity of 140 µmol 

m-2s-1 using 15% CO2 concentration in the continuous loop system with initial cell 
concentration of 2 × 105 cells mL-1. 

 

The results suggested as the light intensity increases, the cell concentration increases 

exponentially and photoinhibition begin to occur.  Increased light intensity causes the algae 

cultures to obtain a yellowish color in the open system when exposed to normal 

atmospheric CO2. This effect was probably because the cells were under too much 
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photoinhibition stress with reduced carbon and nutrient source which resulted in pH 

change. These different findings on the effects of the light intensity on cell growth kinetics 

could have been due to the fact that, as photoinhibition occurred, the cell multiplication 

became stagnant because the cells closer to the light source were inactive and the cells at 

the center were less affected. It was also observed that with high light and high CO2 

concentration in both open and closed systems, the microalgae cultures obtained a darker 

green color. The result illustrates that with high light and high CO2 concentration, the cell 

growth responded well with increased cell concentration after day 5 of cultivation stage 

without any photoinhibition effect.  The increase in light played an important role in the 

photosynthesis of the microalgae. As the light increases, the photosynthesis and 

photosystem 2 (PSII) efficiency declines due to photo damage of the cell wall caused by 

absorption of photon energy to accumulate lipid [51]. The electron acceptor which is needed 

for the photosynthetic reaction decreases as the light increases, causing an oxidative 

damage to the polyunsaturated fatty acid (PUFA) [55].  

 

3.2 pH Effect on Growth Kinetics 

In order to study the carbon and nutrient effect on the algae, pH was measured daily for 

each experiment. The initial pH for the medium was 6.83 for all algae culture. Figures 22 

and 23 give the pH profile of C. protothecoides cultured at different light intensities, 

exposed to normal room air and 15% CO2 concentration, respectively cultured in an open 

system.  Figures 24 and 25 show the pH profile of C. protothecoides at light intensities of 

35 and 140 µmol m-2s-1 using 15% CO2 concentration cultured in a closed continuous loop 

system.  
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Figure 22. pH measurement of C. protothecoides. Flasks A, B, C & D were exposed to 
normal room air and light intensity of 35, 70, 140 and 210 µmol m-2s-1, respectively in an 
open system with initial cell concentration of 1.4 ×105 cells mL-1. 

 

 
Figure 23. pH measurement of C. protothecoides. Flasks A & C were exposed to light 

intensity of 35, & 140 µmol m-2s-1, 5% CO2 concentration in an open system with initial 
cell concentration of 3.5 × 105 cells mL-1. 
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Figure 24. pH measurement of Chlorella protothecoides cultures A, B, C & D exposed 

to light intensity of 35 µmol m-2s-1 and 15% CO2 concentration cultured in the continuous 
loop system with initial cell concentration of 3 x 105 cells mL-1. 

 

 
Figure 25. pH measurement of C. protothecoides. Flasks A, B, C & D were exposed to 

light intensity of 140 µmol m-2s-1, 15% CO2 concentration cultured in the continuous loop 
system with initial cells concentration of 2 ×105 cells mL-1. 

 

The results indicate that, as the light intensity increased when exposed to normal room air, 

the pH increased. When the microalgae culture was exposed to light intensities of 35 and 

140 µmol m-2s-1 using 15% CO2 concentration and cultured in a closed continuous loop 

system, the pH decreased. As the microalgae grew, the faster they consumed CO2, the 
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higher pH was obtained.  As reported by Chen et al. (1994), high pH results in higher 

carbonate, lower bicarbonate and molecular CO2 level in the microalgae culture. In such 

condition where there is less carbon dioxide available for photosynthesis in water, it 

decreases the microalgae abundance over time due to high alkalinity [53, 54].  In the 

photosynthesis process, the CO2 reacts with the water to form H+ and H CO3- or CO3
2-. 

 

3.3 Lipid Induction 

The lipid contents of C. protothecoides were compared using different light intensities and 

carbon dioxide concentrations. Figures 26 and 27 give the total relative fluorescence 

intensity relating to lipid content of C. protothecoides at different light intensities, exposed 

to normal room air and 15% CO2 concentration, respectively cultured in an open system.  

Figures 28 and 29 shows the total relative fluorescence intensity relating to lipid contents 

of C. protothecoides at light intensities of 35 and 140 µmol m-2s-1 using 15% CO2 

concentration cultured in a closed continuous loop system.  

 
Figure 26. Lipid concentration as indicated by fluorescence of C. protothecoides. Flasks 
A, B, C & D were exposed to normal room air and light intensities of 35, 70, 140 and 210 

µmol m-2s-1, respectively in an open system with initial cell concentration of 1.4 ×105 

cells mL-1 for 8 days of cultivation. 
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Figure 27. Lipid concentration as indicated by fluorescence of C. protothecoides. Flasks 
A & C were exposed to light intensity of 35 & 140 µmol m-2s-1, respectively while using 

15% CO2 concentration in an open system with initial cell concentration of 3.5 × 105 cells 
mL-1 for 9 days of cultivation. 

 

 

 

 

Figure 28. Lipid concentration as indicated by fluorescence of C. protothecoides. Flasks 
A, B, C & D were exposed to light intensity of 35 µmol m-2s-1, 15% CO2 concentration 

and cultured in the continuous loop system with initial cell concentration of 3 × 105 cells 
mL-1 for 7 days of cultivation. 

 

35 
 



 

Figure 29. Lipid concentration as indicated by fluorescence of C. protothecoides. Flasks 
A, B, C & D were exposed to light intensity of 140 µmol m-2s-1, 15% CO2 concentration 
and cultured in the continuous loop system with initial cell concentration of 2 ×105 cells 

mL-1 for 10 days of cultivation. 

 

 

Figures 30 and 31 give the total relative fluorescence intensity per cells relating to lipid 

content of C. protothecoides at different light intensities, exposed to normal room air and 

15% CO2 concentration, respectively culture in an open system.  Figures 32 and 33 shows 

the total relative fluorescence intensity per cells relating to lipid contents of C. 

protothecoides at light intensities of 35 and 140 µmol m-2s-1 using 15% CO2 concentration 

cultured in a closed continuous loop system.  
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Figure 30. Lipid concentration per cell as indicated by fluorescence of C. protothecoides. 
Flasks A, B, C & D were exposed to normal room air and light intensities of 35, 70, 140 
and 210 µmol m-2s-1, respectively in an open system with initial cell concentration of 1.4 

×105 cells mL-1 for 8 days of cultivation. 

 

 

 

Figure 31. Lipid concentration per cell as indicated by fluorescence of C. protothecoides. 
Flasks A & C were exposed to light intensity of 35 & 140 µmol m-2s-1, respectively while 

using 15% CO2 concentration in an open system with initial cell concentration of 3.5 × 
105 cells mL-1 for 9 days of cultivation. 
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Figure 32. Lipid concentration per cell as indicated by fluorescence of C.protothecoides. 

Flasks A, B, C & D were exposed to light intensity of 35 µmol m-2s-1, 15% CO2 
concentration and cultured in the continuous loop system with initial cell concentration of 

3 × 105 cells mL-1 for 7 days of cultivation. 

 

 
Figure 33. Lipid concentration per cell as indicated by fluorescence of C. protothecoides. 

Flasks A, B, C & D were exposed to light intensity of 140 µmol m-2s-1, 15% CO2 
concentration and cultured in the continuous loop system with initial cell concentration of 

2 ×105 cells mL-1 for 10 days of cultivation. 

 

The results show that the microalgae produce higher lipid contents under the light intensity 

of 30 µmol m-2s-1 when exposed to normal atmospheric CO2 cultured in the open system. 

The maximum fluorescence intensity of C. protothecoides obtained under this condition 

was 336 (Figure 26). With high light and high CO2 concentration in both open and closed 
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systems, the microalgae performed well, producing higher lipid contents indicated my 

fluorescence. Under this condition (high light and high CO2 concentration), the total lipid 

content increases while the lipid per cell decreases. The maximum fluorescence intensity 

of C. protothecoides obtained was 356.8 (Figure 27).  As reported from previous research 

studies, it showed that an increase in carbon source helps accumulation of higher lipid 

contents in microalgae cells [50]. It was also reported, low light intensity, induces the 

formation of the polar lipids membranes which are associated with chloroplasts whereas 

high light decreases the total polar lipid content, increasing the level of neutral lipid storage 

of triacylglycerols (TAGs) [55-61]. Under high light and high CO2 concentration in 

microalgae cultivation, it helps to protect the mechanism of the cells while producing 

higher fatty acid in stored TAG [55]. The differences in results were believed to be due to 

complete photosynthesis, consumption of CO2 by the cells and synthesizing higher lipid  

content by the effect of the light. 

 

3.4 CO2 Sequestration 

Carbon dioxide consumption by C. protothecoides under different light intensities and CO2 

concentration was measured using a GCMS for each cell cultures in both open and closed 

systems. The primary goal was to monitor the uptake of CO2 and the amount of oxygen 

released in each culture flask by the microalgae.  The result was analyzed using the GCMS 

average relative CO2 and O2 percent intensity for the injected 15% CO2 balanced with 85% 

nitrogen in each algae culture.  As show in Figures 34 -36, the effluent CO2 concentration 

for C. protothecoides culture at light intensities of 35 & 140 µmol m-2s-1 using 15% CO2 

concentration cultured both in open and closed systems. 
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Figure 34. Effluent CO2 concentration released in the cultures A & C of C. 

protothecoides when exposed to light intensities of 35 & 140 µmol m-2s-1, respectively  
using 15% CO2 concentration cultured in an open system with initial cells concentration 

of 3.5 × 105 cell mL-1 for9 days of cultivation. 

 

 

 
Figure 35. Effluent CO2 concentration released in the cultures A, B, C & D of C. 

protothecoides when exposed to light intensity of 35 µmol m-2s-1, 15% CO2 concentration 
and cultured in the continuous loop system with initial cell concentration of 3 × 105 cells 

mL-1 for 7 days of cultivation. 

 

40 
 



 

Figure 36. Effluent CO2 concentration released in the cultures A, B, C & D of C. 
protothecoides when exposed to light intensity of 140 µmol m-2s-1, 15% CO2 

concentration and cultured in the continuous loop system with initial cell concentration of 
3 ×105 cells mL-1 for 10 days of cultivation. 

       
 
Figures 37-39, show the effluent O2 concentration intensity of C. protothecoides at light 

intensities of 35 & 140 µmol m-2s-1 using 15% CO2 concentration cultured both in open 

and closed systems. 

 
Figure 37. Effluent O2 concentration released in the cultures A & C of C. protothecoides 
when exposed to light intensities of 35 & 140 µmol m-2s-1, respectively  using 15% CO2 
concentration cultured in an open system with initial cells concentration of 3.5 ×105 cell 

mL-1 for 9 days of cultivation. 
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Figure 38. Effluent O2 concentration released in the cultures A, B, C & D of C. 

protothecoides when exposed to light intensity of 35 µmol m-2s-1, 15% CO2 concentration 
and cultured in the continuous loop system with initial cell concentration of 3 × 105 cells 

mL-1 for 7 days of cultivation. 

 

 

Figure 39. Effluent O2 concentration released in the cultures A, B, C & D of C. 
protothecoides when exposed to light intensity of 140 µmol m-2s-1, 15% CO2 

concentration and cultured in the continuous loop system with initial cell concentration of 
3 × 105 cells mL-1 for 10 days of cultivation. 

 

The results show that under light intensity of 35 µmol m-2s-1 and high CO2 concentration 

in both open and closed systems, the microalgae did not performed well. The algae did not 

grown until after day 5 of cultivating resulting in consumption of the CO2 due to oxygen 
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built up in the each culture flask. The CO2 concentration in the culture was still high, 

allowing the microalga to produce less lipid contents as compared to the case using high 

light and high CO2 concentration. Under light and high CO2 concentration in the closed 

continuous loop system, the microalgae consumed 1.3 to 2.5 times of the initial 15% CO2 

concentration after 10 days of cultivation.  
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Chapter 4 Conclusion 
 

As demonstrated in this research, microalgae Chlorella protothecoides was grown in an 

open, closed continuous loop system, exposed to different light intensities (35, 70, 140, 

210 m-2s-1 ) with the used of normal room air and 15% CO2 concentration. The primary 

goals was to increase the algae biomass and lipid accumulation for biodiesel production in 

tandem with sequestration of high CO2 concentration.  The results showed that the optimum 

growth condition of Chlorella protothecoides were estimated using a light intensity of 140 

µmol m-2s-1 and 15% CO2 concentration. Under such condition (140 µmol m-2s-1 and 15% 

CO2 concentration), photoinhibition of the microalgae Chlorella protothecoides was 

observed. High average cell concentrations of 7 × 105 cells mL-1 were obtained when 

cultured in both open and close system. The particle size of the microalgae, Chlorella 

protothecoides increases, total lipid accumulation were increased with increasing light 

intensity and use of 15% CO2 concentration as indicated by fluorescence intensity under 

the light microscopy using Nile Red dye. Using both experimental method of culturing 

Chlorella protothecoides in an open and closed continuous loop system with 15% CO2 

concentration. The results indicated that Chlorella protothecoides consumed the CO2 faster 

in the closed continuous loop system reducing the CO2 concentration from 15% to 5% 

overall, about 1.3% to 2.5% CO2 reduction. 
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Chapter 5 Future Work 
 

• Use upper limit of CO2 concentration (> 20%) to study the effect on the growth of 

Chlorella protothecoides under light intensities higher than 140 µmol m-2s-1. 

 
• Establish an efficient model on carbon dioxide sequestration using the closed 

continuous loop system.  

 
• Develop lipid extraction process which is suitable for extracting the algae oil and 

compared with the results obtained by Nile red dye. 
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Appendix A 
 

Table 5.  Raw data of C. protothecoides. Flask A was exposed to light intensity of 35 µmol 
m-2s-1 and normal room air at ambient temperature. The culture were inoculated with 1.4 × 
105 cells mL-1 and grown for 8 days. 

 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105 ) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cells 
size 
(µm) 

0 7.09 56.6 1.42 298 0.8713 
1 7.02 10 2.00 320 0.6109 
2 6.85 115 2.30 340 0.7893 
3 6.90 12.5 2.50 337 1.1885 
4 7.07 139 2.78 336 2.2070 
5 7.02 15 3.00 340 1.1680 
6 7.00 40 8.00 375 1.0808 
7 6.93 470 9.40 389 0.9801 
8 7.01 585 11.70 288 1.1310 
      

  Average 4.8 335.9 1.11 
 

 

Table 6. Raw data of C. protothecoides. Flask B was exposed to light intensity of 70 µmol 
m-2s-1 and normal room air at ambient temperature. The culture were inoculated with 1.4 × 
105 cells mL-1 and grown for 8 days. 

 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cells size 

(µm) 

0 7.09 56.6 1.42 298 0.8713 
1 7.01 10 2.00 310 0.9693 
2 6.85 175 3.50 349 0.8992 
3 6.88 25 5.00 305 0.8147 
4 7.07 413 8.26 320 0.8010 
5 7.12 43.5 8.70 300 1.2231 
6 7.15 47.5 9.50 335 1.3866 
7 7.20 501 10.02 363 1.4970 
8 7.37 599 11.98 356 1.7330 
      

  Average 6.7 326.2 1.13 
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Table 7. Raw data of C. protothecoides. Flask C was exposed to light intensity of 140 µmol 
m-2s-1 and normal room air at ambient temperature. The culture were inoculated with 1.4 × 
105 cells mL-1 and grown for 8 days. 
 

 

 

 

  

Table 8. Raw data of C. protothecoides. Flask D was exposed to light intensity of 210 
µmol m-2s-1 and normal room air at ambient temperature. The culture were inoculated with 
1.4 × 105 cells mL-1 and grown for 8 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cells size 

(µm) 

0 7.09 56.6 1.42 298 0.8713 
1 7.18 12.5 2.50 286 0.9612 
2 7.47 284 5.68 284 1.0905 
3 7.87 72.5 14.50 310 1.6428 
4 8.42 1163 23.26 336 1.9255 
5 8.51 123 24.60 300 2.1291 
6 8.56 113 22.60 292 2.2143 
7 8.61 1092 21.84 299 2.2545 
8 8.52 1077 21.54 293 1.8335 
      

  Average 15.3 299.8 1.66 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell Concentration 
(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cell size 

(µm) 

0 7.09 56.6 1.42 298 0.8713 
1 7.15 15 3.00 290 0.7719 
2 7.41 320 6.40 278 0.7768 
3 7.85 62.5 12.50 274 1.0531 
4 8.40 886 17.72 279 1.4330 
5 8.48 85 17.00 285 1.5028 
6 8.55 84 16.80 290 1.2119 
7 8.60 830 16.60 321 1.2425 
8 8.56 1016 20.32 315 1.7435 
      

  Average 12.4 292.2 1.18 
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Appendix B 
 

Table 9. Raw data on C. protothecoides. Flask A was exposed to light intensity of 35 µmol 
m-2s-1 and 15% CO2 concentration. The culture were inoculated with 3.5 × 105 cells mL-1 
and grown for 9 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cells 
size 
(µm) 

0 7.08 17.45 3.49 279 1.4515 
1 5.81 95 1.90 292 1.8268 
2 5.97 107 2.14 273 1.1100 
3 5.94 91 1.82 276 1.6755 
4 5.90 63 1.26 292 2.0230 
6 6.00 113 2.26 298 1.3200 
7 5.83 144 2.88 296 1.6330 
8 5.83 147 2.94 297 1.2220 
9 5.87 97 1.94 315 1.1945 
      
  Average 2.3 290.9 1.50 

 

Table 10. Raw data on C. protothecoides. Flask C was exposed to light intensity of 140 
µmol m-2s-1 and 15% CO2 concentration. The culture were inoculated with 3.5 × 105 cells 
mL-1 and grown for 9 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell Concentration 
(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cells size 

(µm) 

0 7.08 17.45 3.49 279 1.4515 
1 6.08 130 2.60 315 1.3045 
2 6.11 136 2.72 340 1.0912 
3 6.10 142 2.84 347 1.0323 
4 6.06 86 1.72 354 1.3340 
6 6.12 284 5.68 371 1.3095 
7 6.05 540 10.80 395 2.6230 
8 6.32 845 16.90 395 2.4865 
9 6.88 859 17.18 415 2.5895 
      

  Average 7.1 356.8 1.69 
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Table 11. Raw data on C. protothecoides. Flask A was exposed to light intensity of 35 
µmol m-2s-1, 15% CO2 concentration and cultured in the continuous loop system. The 
culture were inoculated with 3 × 105 cells mL-1 and grown for 7 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cell size 

(µm) 

0 7.05 117 2.93 354 0.9076 
1 6.03 85 1.70 336 1.3514 
2 6.00 155 3.10 333 0.7703 
3 6.06 265 5.30 348 2.6670 
4 6.19 395 7.90 354 2.6059 
5 6.29 426 8.52 358 2.6435 
6 6.30 485 9.70 360 2.7138 
7 6.34 496 9.92 362 2.5393 
      

  Average 6.1 350.6 2.02 
 

Table 12. Raw data on C. protothecoides. Flask B was exposed to light intensity of 35 
µmol m-2s-1, 15% CO2 concentration and cultured in the continuous loop system. The 
culture were inoculated with 3 × 105 cells mL-1 and grown for 7 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cell size 

(µm) 

0 7.05 117 2.93 354 0.9076 
1 6.10 52 1.04 345 1.0159 
2 5.94 115 2.30 334 0.9850 
3 6.08 178 3.56 339 1.5905 
4 6.53 545 10.90 342 2.1118 
5 6.68 599 11.98 347 2.9650 
6 6.49 579 11.58 350 3.0470 
7 6.36 597 11.94 356 3.2123 
      

  Average 7.0 345.9 1.98 
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Table 13. Raw data on C. protothecoides. Flask C was exposed to light intensity of 35 
µmol m-2s-1, 15% CO2 concentration and cultured in the continuous loop system. The 
culture were inoculated with 3 × 105 cells mL-1 and grown for 7 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total Relative 
Fluorescence 

Intensity 

Average 
cell size 

(µm) 

0 7.05 117 2.93 354 0.9076 
1 6.18 62 1.24 338 1.6951 
2 5.93 81 1.62 341 1.0541 
3 6.14 74 1.48 361 0.8609 
4 6.15 76 1.52 360 0.8851 
5 6.17 104 2.08 358 1.0353 
6 6.23 273 5.46 352 1.8687 
7 6.38 332 6.64 346 2.7763 
      

  Average 2.9 351.3 1.39 
 

 
Table 14. Raw data on C. protothecoides. Flask D was exposed to light intensity of 35 
µmol m-2s-1, 15% CO2 concentration and cultured in the continuous loop system. The 
culture were inoculated with 3 × 105 cells mL-1 and grown for 7 days. 

 Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cell size 

(µm) 

0 7.05 117 2.93 354 0.9076 
1 6.14 63 1.26 348 1.8015 
2 5.95 127 2.54 335 0.9731 
3 6.12 189 3.78 365 1.2931 
4 6.17 367 7.34 360 1.1095 
5 6.21 422 8.44 358 1.1635 
6 6.26 637 12.74 353 1.8932 
7 6.42 643 12.86 360 2.2830 
      

  Average 6.5 354.1 1.43 
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Table 15. Raw data on C. protothecoides. Flask A was exposed to light intensity of 140 
µmol m-2s-1, 15% CO2 concentration and cultured in the continuous loop system. The 
culture were inoculated with 2 × 105 cells mL-1 and grown for 10 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cells 
size 
(µm) 

0 7.03 96 2.40 290 1.8005 
2 6.07 71 1.42 303 0.8750 
4 6.30 412 8.24 319 2.4858 
6 6.26 467 9.34 342 1.1499 
8 6.43 481 9.62 330 1.5800 
10 6.41 469 9.38 366 3.0730 
      

  Average 6.7 325.0 1.83 
 

  

Table 16. Raw data on C. protothecoides. Flask B was exposed to light intensity of 140 
µmol m-2s-1, 15% CO2 concentration and cultured in the continuous loop system. The 
culture were inoculated with 2 × 105 cells mL-1 and grown for 10 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cells 
size 
(µm) 

0 7.03 96 2.40 290 1.8005 
2 6.04 58 1.16 331 0.6194 
4 6.34 477 9.54 321 1.0493 
6 6.37 552 11.04 346 1.3651 
8 6.39 529 10.58 364 1.7635 
10 6.38 514 10.28 326 3.5320 
      

  Average 7.5 329.7 1.69 
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Table 17. Raw data on C. protothecoides. Flask C was exposed to light intensity of 140 
µmol m-2s-1, 15% CO2 concentration and cultured in the continuous loop system. The 
culture were inoculated with 2 × 105 cells mL-1 and grown for 10 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cells 
size 
(µm) 

0 7.03 96 2.40 290 1.8005 
2 6.10 59 1.18 314 0.8456 
4 6.37 491 9.82 353 3.6410 
6 6.30 568 11.36 370 2.5365 
8 6.42 559 11.18 400 2.8548 
10 6.32 562 11.24 411 3.0780 
      

  Average 7.9 356.3 2.46 
 

 

 

Table 18. Raw data on C. protothecoides. Flask D was exposed to light intensity of 140 
µmol m-2s-1, 15% CO2 concentration and cultured in the continuous loop system. The 
culture were inoculated with 2 × 105 cells mL-1 and grown for 10 days. 

Time 
(days) 

pH                                  
Reading 

Total Cell 
Counted 

Cell 
Concentration 

(cells/mL x 105) 

Total 
Relative 

Fluorescence 
Intensity 

Average 
cells 
size 
(µm) 

0 7.03 96 2.40 290 1.8005 
2 6.04 44 0.88 295 1.8154 
4 6.39 334 6.68 318 3.2950 
6 6.47 403 8.06 316 1.5165 
8 6.48 413 8.26 359 3.4705 
10 6.45 496 9.92 374 2.7310 
      

  Average 6.0 325.3 2.44 
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