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ABSTRACT 

MICROWAVE-ASSISTED SYNTHESIZED SAPO-56 AS A CATALYST IN THE 

CONVERSION OF CO2 TO CYCLIC CARBONATES 

 

Zhenzhen Xie 

08/15/2013 
 

The effective utilization of CO2 as a renewable raw material for the production of 

useful chemicals is an area of great interest. In particular, the catalytic conversion of CO2 

into cyclic carbonates, which are useful chemical intermediates employed for the 

production of plastics and organic solvents, represents an attractive route for the efficient 

use of carbon dioxide. Microporous crystals, including zeolites and metal organic 

frameworks (MOFs), and mesoporous ordered oxides possess many desirable properties, 

which make them appealing for cycloaddition reactions. In general, these porous 

materials display chemical and thermal stability, moderate to high CO2 uptakes, an open 

porous structure for improved mass transfer, accessible pore volumes, acid sites which 

are known as active sites for cycloaddition reactions, high surface areas. 

SAPOs (silicoaluminophosphates), a particular type of small pore molecular 

sieves, have received considerable interest because of their applications in separations, 

catalysis, and adsorption. Their unique functional properties are associated with their 

chemical and thermal stability, unique shape selectivity, molecular sieving properties, 

ordered microporous crystalline structure, and surface properties. SAPO-56 is a 
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crystalline microporous silicoaluminophosphate in which silicon substitutes for some of 

the phosphorous and aluminum atoms in the structural framework. The AFX topology of 

SAPO-56 is characterized by a three dimensional structure with pore cages arranged in 

interconnected networks, with window (pore size) sizes of ~3.4×3.6 Å. Due to its pore

size similar to the kinetic diameter of several relevant gas molecules such as CO2, CH4, 

O2, N2 as well as due to relatively high CO2 uptakes, SAPO-56 may find potential 

applications for CO2 conversion to useful chemicals. 

A conventional hydrothermal synthesis approach used to synthesize SAPO-56 

requires typically long synthesis times (days) and relatively high hydrothermal 

temperatures (200 °C). Microwave heating offers several advantages over conventional

heating, such as fast crystallization, phase selectivity, narrow particle size distribution, 

abundant nucleation, morphology and size control and rapid and uniform heating.   

Herein we present the synthesis of SAPO-56 crystals via microwave heating. The 

resultant crystals displayed high catalytic activity in the synthesis of chloropropene 

carbonate from CO2 and epichlorohydrin. The Microwave as-synthesized SAPO-56 

displayed crystal size as ~3-4 µm, while the crystal size hydrothermal as-synthesized 

SAPO-56 is ~50 µm. When 3-4 µm crystals were used, the yield to chloropropene 

carbonate was 84.8%, whereas the yield to the carbonate was only 42.2% when crystals 

of about 50 µm were used. The enhanced catalytic activity of SAPO-56 crystals was 

related to their high CO2 adsorption capacity, small crystal size, and the presence of acid 

sites. In addition, silica nanospheres present in the surface of the smaller SAPO-56 

crystals may display a role as specific surface sites for the cycloaddition reaction. For this 
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particular reaction, SAPO-56 seems to be robust catalytic phase because it can be 

recycled without loss in the catalytic activity.    
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CHAPTER 1 INTRODUCTION 
 

1.1       Environmental and energy concerns for carbon dioxide 

 
The concentration of greenhouse gases like CO2, CH4, NOx in the environment 

are increasing at fast rate since the beginning of industrial revolution. In particular, 

carbon dioxide is the primary greenhouse gas emitted through human activities. In 2011, 

CO2 accounted for about 84% of all U.S. greenhouse gas. CO2 emissions have increased 

dramatically, mainly due to the combustion of fossil fuels, such as coal, natural gas and 

oil for the energy and transportation, although certain industrial processes and land-use 

changes also emit CO2. The CO2 emissions from different sources are shown in Figure 1.1 

Figure 22 shows that global carbon emissions from fossil fuels have significantly 

increased since 1900. Emissions increased by over 16 times between 1900 and 2008.  

           Carbon dioxide concentrations in the atmosphere have been increasing over the 

past century compared to the rather steady level evident during the pre- industrial era 

(about 280 parts per million in volumes, or ppmv) and is now linked to climate change. 3 

The 2005 concentration of CO2 (379 ppmv) was about 35% higher than in the mid-1800s, 

with the fastest growth occurring in the past years (1.9 ppmv/year in the period 1995-

2005). Significant increases have also occurred in levels of methane and nitrous oxide. 



2 

 

 
Figure 1 World energy consumption by fuel 

 

 

Figure 2 Global CO2 emissions from fossil- fuels 

 

As these gases, especially CO2, continue to increase, potential adverse effects on 

regional and global climate, ecosystem function, and human health increase as well. The 

main solution being proposed to allow continued energy generation by combustion of 
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fossil fuels whilst stabilizing global atmospheric carbon dioxide levels is carbon capture 

and storage (CCS) in which the CO2 is separated, purified,  pressurized and transported 

for long term underground or undersea storage. 4 However, CCS is a very energy 

intensive process which has been estimated to require around 30% of the total energy 

produced by a power station. 

Instead of just dumping the CO2, it is attractive to consider utilizing it in the large 

scale production of chemicals. In this way, an unwanted waste product can be turned into 

a valuable commodity. 

1.2       Motivation of producing chemicals from CO2 

There is an increasing trend to consider carbon dioxide as a raw material resource 

and a business opportunity rather than a waste with a cost of disposal. Carbon dioxide is a 

cheap, non-toxic and non-flammable feedstock that can frequently replace toxic 

chemicals such as phosgene or isocyanates. CO2 is a totally renewable feedstock 

compared to oil or coal. The production of chemicals from CO2 can lead to totally new 

materials such as polymers. New routes to existing chemical intermediates and products 

could be more efficient and economical than current methods. The production of 

chemicals from CO2 could have a small but significant positive impact on the global 

carbon balance.  

1.3      Objectives of this work 

The specific objectives are: 

1) Synthesis  of SAPO-56 crystals via microwave assisted thermal approach 

2) Study the catalytic performance of SAPO-56 crystals in the conversion of CO2 

into cyclic carbonates. 
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3) Establish fundamental structure/catalytic relationships of SAPO-56 catalysts 

in the conversion of CO2 into cyclic carbonates. 
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CHAPTER 2 BACKGROUND 
 

Zeolites are one of the most important porous materials for wide variety of 

applications, including catalysts. In this chapter, generalities on zeolites are presented. 

Structural features and different synthesis methods employed for SAPO-56 are described. 

The importance and advantages of microwave heating as an alternative approach to 

prepare zeolite crystals is highlighted. In the second part of this chapter we present the 

mechanism of the CO2 reaction to cyclic carbonates.  

2.1      Introduction to Zeolites 

Zeolites are crystalline minerals that are broadly present in nature and have been 

known to mankind for almost 250 years. Zeolite molecular sieves comprise a class of 

microporous, crystalline compounds composed of three-dimensional network of atoms 

such as Si, Al, P, etc. These tetrahedrally coordinated atoms (T atoms) are coordinated to 

four oxygen atoms and are linked to other T atoms by sharing each oxygen with a 

neighboring T-atom tetrahedron. Zeolites exhibit very uniform pore size distribution, 

high specific surface area, high porosity, variable chemical composition and controllable 

acid-base properties. 

Today, synthetic zeolites are used commercially more often than natural zeolites 

due to the purity of crystalline products and the uniformity of particle sizes. The sources 

for early synthesized zeolites were standard chemical reagents. Much of the study of 
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basic zeolite science was done on natural zeolites. The main advantages of synthetic 

zeolites in comparison to naturally-occurring zeolites are that they can be engineered with 

a wide variety of chemical properties and pore sizes and that they have greater thermal 

stability. Zeolite synthesis involves the hydrothermal crystallization of aluminosilicate 

gels (formed upon mixing an aluminate and silicate solution in the presence of alkali 

hydroxides and/or organic bases), or solutions in a basic environment. The crystallization 

is in a closed hydrothermal system at increasing temperature, autogeneous pressure and 

varying time (few hours to several days). Nowadays, it is still very difficult to have a 

deep understanding of the formation mechanism and crystallization of zeolites because 

the type of zeolite is affected by the following factors 29-31:  

(1) Composition of the reaction mixture (silica to alumina ratio; OHˉ; inorganic 

cations). First, increasing the Si/Al ratio strongly affects physical properties of the 

zeolites. Second, OHˉ modifies the nucleation time by influencing transport of silicates 

from the solid phase to solution. Third, inorganic cations cat as structure directing agents 

and balance the framework charge. They affect the crystal purity and product yield.  

(2) Nature of reactants and their pretreatments. The zeolite synthesis is carried out 

with inorganic as well as organic precursors. The inorganic precursors yielded more 

hydroxylated surfaces whereas the organic precursors easily incorporated the metals into 

the network. 

(3) Temperature of the process. The rate of crystallization is directly proportional 

to temperature while the rate of nucleation is inversely proportional to temperature.  
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(4) Reaction time. Crystallization parameter must be adjusted to minimize the 

production of the other phases while also minimizing the time needed to obtain the 

desired crystalline phase.  

(5) pH of the reaction mixture. The process of zeolitezation is carried out in 

alkaline medium (pH>10).  

(6) Other factors. The synthesis can be carried out on a continuous or semi 

continuous mode, which enhances the capacity, making it compatible for industrial 

applications. 

Nowadays, zeolites are available on a large scale and in a variety of applications. 

Zeolites are mainly used as ion exchangers in laundry detergents where they remove 

calcium and magnesium from water by exchanging it for sodium present in the zeolite. 

Furthermore, zeolites are applied as adsorbents in the purification of gas streams to 

remove water and volatile organic species, and in the separation of different isomers and 

gas-mixtures, moreover they are applied in the clean-up of radioactive waste. However, 

here the focus will entirely be on the application of zeolites as catalysts. 

2.2      SAPO-56  

SAPOs (silicoaluminophosphates), a particular type of small pore molecular 

sieves, have received considerable interest because of their applications in separations,32 

catalysis,33 and adsorption.34  Their unique functional properties are associated with their 

chemical and thermal stability, unique shape selectivity, molecular sieving properties, 

ordered microporous crystalline structure, and surface properties. SAPO-56 is a 

crystalline microporous silicoaluminophosphate in which silicon substitutes for some of 
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the phosphorous and aluminium atoms in the structural framework. 35 The AFX topology 

of SAPO-56 is characterized by a three dimensional structure with pore cages arranged in 

interconnected networks, with window (pore size) sizes of ~3.4 × 3.6 Å. 35c The 

framework of AFX is shown in Figure 3. Due to its pore size similar to the kinetic 

diameter of several relevant gas molecules such as CO2, CH4, N2, O2 as well as due to 

relatively high CO2 uptakes, 35d SAPO-56 may find potential applications for CO2 capture 

from natural gas or flue gas and /or CO2 conversion to useful chemicals. 

 

Figure 3 SAPO-56 crystal structures 
 

2.3     Zeolite synthesis method 

2.3.1  Self-Assembly-Hydrothermal-Assisted Approach 

           Hydrothermal synthesis is a method to produce different chemical compounds and 

materials using closed system physical and chemical processing flowing in aqueous 

solutions at temperatures above 100 ⁰C and pressure above 1 atm. Hydrothermal research 

was initiated in the middle of the 19th century by geologists and was aimed at laboratory 
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simulations of natural hydrothermal phenomena. Later in the 20th century, hydrothermal 

synthesis was clearly identified as an important technology for material synthesis, 

predominantly in the fields of hydrometallurgy and single crystal growth. 11 

            Hydrothermal synthesis method is a process that utilizes single or heterogeneous 

phase reactions in aqueous media at elevated temperature (T>25 ⁰C) and pressure (P>100 

kPa) to crystallize ceramic materials directly from solution. However, researchers also 

use this term to describe processes conducted at ambient conditions. Syntheses are 

normally conducted at autogeneous pressure, which corresponds to the saturated vapor 

pressure of the solution at the specified temperature and composition of the hydrothermal 

solution.  Upper limits of hydrothermal synthesis extend to over 1000 ⁰C and 500 MPa 

pressures. 12 However, mild conditions are preferred for commercial processes where 

temperatures are less than 350 ⁰C and pressure less than 50 MPa. Intensive research has 

led to a better understanding of hydrothermal chemistry, which has significantly reduced 

the reaction time, temperature and pressure for hydrothermal crysta llization of materials 

(T<200 ⁰C, P<1.5 MPa).13, 14, 15 This breakthrough has made hydrothermal synthesis 

more economical since processes can be engineered using cost-effective and proven 

pressure reactor technology and methodologies already established by the chemical 

process industry. 

Hydrothermal synthesis offers many advantages over conventional and non-

conventional synthetic methods. The ability to precipitate already crystallized powders 

directly from solution regulates the rate and uniformity of nucleation, growth and aging, 

which results in improved control of size and morphology of crystallites and significantly 

reduced aggregation levels, which is not possible with many other synthesis processes. 16 
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The purity of hydrothermally synthesized powders significantly exceeds the purity of the 

starting materials. Hydrothermal processing can take place in a wide variety of 

combinations of aqueous and solvent mixture-based systems. In general, processing with 

liquids allows for automation of a wide range of unit operations such as charging, 

transportation, mixing and product separation. Moreover, relative to solid state processes, 

liquids give a possibility for acceleration of diffusion, adsorption, reaction ra te and 

crystallization, especially under hydrothermal conditions. 14 However, unlike many 

advanced methods that can prepare a large variety of forms and chemical compounds, 

such as chemical vapor-based methods, the respective costs for instrumentation, energy 

and precursors are far less for hydrothermal methods. Hydrothermal methods are more 

environmentally benign than many other synthesis methods, which can be attributed in 

part to energy conserving low processing temperatures, absence of milling, ability to 

recycle waste, and safe and convenient disposal of waste that cannot be recycled. 14 The 

low reaction temperatures also avoid other problems encountered with high temperature 

processes, for example poor stoichiometry control due to volatilization of components 

(e.g., Pb volatilization in Pb-based ceramics).  

2.3.2    Microwave heating approach 

The reduction of zeolite crystal size has been a major research field for the past 

several years as the decrease of dimension leads to substantial changes in the p roperties 

of the materials. 17 This has an impact on the performance of zeolites in applications such 

as catalysis and separation. 18, 19 Additionally, this development has led to developments 

of new synthesis strategies yielding nanosize materials with narrow particle size 

distributions.  
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Conventional heating has a heat source on the outside and relies on transferring 

the heat to the surface of the material and then conducting the heat to the middle of the 

material. Compared with conventional heating, microwave dielectric heating has the 

following advantages for chemical synthesis 20 (thermal effects of microwave): 

a) the introduction of microwave energy into a chemical reaction can lead to much 

higher heating rates than those which are achieved conventionally;  

b) the microwave energy is introduced into the chemical reactor remotely without 

direct contact between the energy source and the reacting chemicals; 

c) it is volumetric and instantaneous (or rapid) heating with no wall or heat diffusion 

effects;  

d) it can realize selective heating because chemicals and the containment materials 

for chemical reactions do not interact equally with microwaves;  

e) “hot spots” yielded on local boundaries by reflections and refractions may result 

in a “super-heating” effect, which can be described best as local overheating and 

is comparable to the delayed boiling of overheated liquids under conventional 

conditions.  

The first patent on MW synthesis was reported on the synthesis of zeolite A. 21 

Since then, MW heating has been widely used in the synthesis of different zeolite 

compositions 22, 23 including catalysts, 24 membranes, 25 and films. 26 Comprehensive 

reviews on zeolite synthesis using MW have been reported. 27, 28 

Microwave heating can remarkably reduce synthesis time compared with 

conventional heating. In the synthesis of porous materials, it has been reported that the 
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microwave synthesis method could provide an efficient way to control particle size 

distribution, phase selectivity, and macroscopic morphology.  

2.4       Catalytic synthesis of carbonates 

There is an increasing trend to consider carbon dioxide as a raw material resource 

and a business opportunity rather than a waste with a cost of disposal. Increasing amounts 

of low-cost and relatively pure CO2 will be soon available from plants for carbon 

sequestration and storage. Carbon dioxide represents potentially a feedstock of nearly 

zero or even negative cost for conversion to fuels and useful chemicals.  

Cyclic carbonates are useful intermediates for electrolytes in lithium ion batteries, 

green solvents and polycarbonates. 5,6 Currently, cyclic carbonate precursors are 

manufactured employing the highly toxic phosgene. 6 An alternative and green approach 

for the synthesis of cyclic carbonates is the insertion reaction of CO2 into an epoxide 

(Figure 5). This route represents a very useful approach to effectively use CO2 for the 

conversion of chemicals. The commercial production of cyclic carbonates employs non-

expensive catalysts like homogeneous quaternary ammonium salts. 7,8  SAPO-56 displays 

both remarkably high CO2 adsorption capacity and Bronsted acid sites associated with Al 

ions and Lewis acid sites associated with OH groups 35d in its framework. This promoted 

us to evaluate its catalytic performance in the cycloaddition of CO2 to epichlorohydrin.  
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Figure 4 Schematic showing the catalytic conversion of CO2 into a cyclic carbonate 

 

The synthesis of cyclic carbonates from epoxides and carbon dioxide has been a 

commercial process since the 1950s 9 and is now operated commercially by many 

different companies worldwide. The interest in cyclic carbonates is driven by their wide 

range of chemical and technological applications. 10  
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R = -CH3, -CH2Cl, -C6H5
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CHAPTER 3 EXPERIMENTAL APPROACH 
 

3.1       Synthesis of SAPO-56 crystals via hydrothermal synthesis 

SAPO-56 crystals were synthesized hydrothermally following the synthetic 

procedure reported before 44. In a typical synthesis, shown in Figure 5, a solution of 

orthophosphoric acid (85% wt.%, Sigma-Aldrich) deionized water, and aluminium 

hydroxide (76.5% min, Alfa Aesar) was vigorously stirred for ~1 hour. To this solution, 

Ludox AS-40 colloidal silica (40 wt.%, Sigma-Aldrich) and N,N,N’,N’-tetramethyl-

hexane-1,6-diamine (TMHD, Aldrich) were added. The resultant solution was stirred for 

24 hours at room temperature. The gel composition was: 2.0 TMHD: 0.6 SiO2: 0.8 Al2O3: 

P2O5: 40H2O. The resultant gel was transferred into a 50 mL Teflon vessel. The vessel 

was placed into the stainless- steel autoclave, Figure 7, to allow the solution to reach an 

autogeneous pressure as heated. The autoclave was placed into an oven, Figure 8, at 200 

⁰C for 96 hours. Then, the autoclave was cooled down and the solid product was 

recovered by centrifugation at 3000 rpm, Figure 9, and washed three times with 

deionized water and dried at 100 ⁰C overnight. The resulting crystals was calcined in a 

programmable oven, Figure 10, with heating rate of 1⁰C/min and cooling rate of 5 ⁰C/min 

from room temperature to 400 ⁰C for 20 hours.  
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Figure 5 SAPO-56 crystals synthesis procedure using hydrothermal method 

 

3.2   Synthesis SAPO-56 via microwave approach 

The hydrothermal synthesis approach used to synthesize SAPO-56 requires typically 

long synthesis times (days) and relatively high hydrothermal temperatures (200 C). 

Microwave (MW) heating offers several advantages over conventional heating, such as 

fast crystallization, phase selectivity, narrow particle size distribution, abundant 

nucleation, morphology and size control and rapid and uniform heating.  

The gel required for synthesizing SAPO-56 crystals via MW was prepared the same 

with hydrothermal approach, Figure 6. The resultant solution was stirred for 24 hours at 

room temperature. The homogeneous gel was transferred to a glass tube and MW heating 

for different times was carried out with continuous stirring in a computer controlled MW 
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oven (Mars 5, CEM corp., frequency of ~1010 Hz), (Figure 11), at 150 C and 250 psi. 

After cooling, the product was separated using centrifugation for 3 times (each for 20 min 

at 3000 rpm) and dried overnight at 60 C. The as-synthesized crystals were calcined at 

400 C for 20 hours at 1 C/min and 5C/min heating and cooling rates respectively to 

remove the organic template.  

 

Figure 6 SAPO-56 crystal syntheses via MW 
 

3.3   Characterization 

The resulting crystals were then characterized using X-ray diffraction, scanning 

electron microscopy, transmission electron microscopy and adsorption isotherms. The 

morphology of the crystals was determined with a FE-SEM (FEI Nova 600), Figure 13, 

with an acceleration voltage of 6 kV. Powder X-ray diffraction patterns were collected 
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using a Bruker D8-Discover diffractometer, Figure 14, at 40 kV, 40 mA with Cu K 

radiation. Transmission electron microscopy (TEM) studies, including TEM imaging, 

selected area electron diffraction (SAED), and energy-dispersive x-ray spectroscopy 

(EDS), were performed using a FEI Tecnai F20 transmission electron microscope. A field 

emission gun (FEG) was used for the electron source and the studies were performed at 

the accelerating voltage of 200 keV. Carbon dioxide adsorption isotherms were collected 

using a Micromeritics Tristar 3000 porosimeter, Figure 15, at room temperature 

employing water as coolant. Prior to the measurements, the samples were degassed at 150 

C for ~3 hours. 

The acidic properties of the MW SAPO-56 were determined using NH3 as a probe 

molecule. In temperature-programmed desorption of ammonia (NH3-TPD; Micromeritics 

Auto Chem 2910 instrument, Figure 16),  0.1 g of the catalyst was taken in a U-shaped, 

flow-through, quartz sample tube. Prior to measurements, the catalyst was pretreated in 

He (30 ml/min) at 250 ⁰C for 1 hr. A mixture of NH3 in He (10 vol%) was passed (30 

ml/min) at 50 ⁰C for 1 hr. The sample was, then, flushed with He (30 ml/min) for 1 hr. 

TPD measurements were carried out by raising the temperature from 100 to 500 ⁰C at a 

heating rate of 5 ⁰C/min. From the areas of the desorption peaks and from the calibration 

curves generated prior to the analyses of the catalyst samples, the amount of acid sites 

present in the catalysts were determined. 

The solid-state NMR (nuclear magnetic resonance) spectra were recorded at room 

temperature and ambient pressure on a Tecmag Discovery spectrometer (Varian 7600 AS 
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400 MHz), using a Doty Scientific magic angle-spinning (MAS) probe with 7 mm 

(outside diameter) sapphire rotors, Figure 17. 

Cross-polarization with MAS (CP-MAS) was used to acquire 29Si data at 59.622 

MHz. The 1H ninety-degree pulse width was 3.7 µs. The mixing time was 1.5 ms. The 

MAS sample spinning rate was 2.5 kHz or 4 kHz. Recycle delay between scans was 2 s 

with the acquisition time to be 20.48 ms, determined by observing no apparent loss in the 

29Si signal from one scan to the next. The 29Si chemical shifts are given relative to 

hexamethylcyclotrisiloxane ([(CH3)2SiO]3) as secondary reference, which has a chemical 

shift to be 9 ppm calibrated using the 29Si signal of TMS assigned to zero ppm. 

For one pulse experiments, the 29Si data was also acquired at 59.622 MHz. The 29Si 

pulse width was 1.5 µs, and the delay time was 30 s. The spinning rate of the rotors was 

either 2.5 kHz or 3.0 kHz, depending upon the stability of the rotation. All the other 

parameters were the same as CP-MAS experiments. 

3.4   SAPO-56 catalyzed CO2 conversion to carbonates 

The catalytic activity of SAPO-56 was evaluated in the cycloaddition of CO2 to 

epichlorohydrin to form chloropropene carbonate. In a typical cycloaddition reaction, 18 

mmol of epichlorohydrin and 100 mg of SAPO-56 were placed in a 250 ml stainless steel 

high pressure Parr reactor (Model 4576A), Figure 12. The reactor was pressurized with 

CO2 at 10 bar, and the reaction was carried out under stirring at different temperatures for 

4 hr. After the reaction, the reactor was cooled to room temperature, the unreacted CO 2 
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was vented out, the catalyst was separated by centrifugation, and the products were 

analyzed by 1H NMR spectrometry.  

3.5   Equipment 

The following equipment was used for the hydrothermal synthesis of SAPO-56: 

hydrothermal synthesis autoclaves (Figure 7) and oven (Figure 8). For the MW synthesis  

(Figure 11); reaction of the cyclic carbonate (Figure 12). The instrumentation needed for 

characterizing SAPO-56 is shown in Figure 13 to 17. 

3.5.1. Hydrothermal synthesis of SAPO-56 

 

Figure 7 Hydrothermal Autoclave with 50mL Teflon Vessel36 
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Figure 8 Hydrothermal Synthesis oven 
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Figure 9 Eppendorf Centrifuge 

Model No:5702 
Series No: 5702YN320989 

 

Figure 10 Programming oven 
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Ney® Vulcan 3-550 Furnace 
Dentsupply Ceramco International 

Serial No.: 9493308 
York, PA 1740437 

 
Figure 11 Microwave instrument 

Mars 5, CEM corp. 

 
3.5.2. Reaction 
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Figure 12 Parr Reactor Model 4576A 

 

3.5.3. SAPO-56 Characterization 

 
Figure 13 Nova Nano SEM 600  
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FEI38 
 

 
Figure 14 X-Ray Diffraction 

Bruker AXS – Diffraktometer D8 

Serial No.: 203407 
Karlsruhe, Germany D76181 

 

 
Figure 15 Micromeritics Tristar 3000 Porosimeter 
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Figure 16 Micromeritics Autochem 2910 

 

Figure 17 NMR  
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CHAPTER 4 RESULTS AND DISCUSSION 
 

4.1 Characterization of SAPO-56 

 
Figure 18 (a) XRD pattern and (b) SEM image of SAPO-56 crystals synthesized via 

microwave heating at 150 °C and 250 psi for 10 minutes. *Denotes SAPO-17. (c) XRD 
pattern and (d) SEM image of SAPO-56 crystals synthesized via conventional 

hydrothermal treatment. The same gel composition was used for both samples. 

 

Figure 18a shows the XRD pattern of SAPO-56 crystals synthesized via MW for 

10 minutes at 150 ⁰C. All the peaks (but one at an interplanar spacing of ~8.9 Å) 

correspond to SAPO-56 with AFX topology and are in good agreement with the reported 

literature. 35 A secondary reflection at d spacing ~9 Å was assigned to SAPO-17 (ERI 

topology). 35d, 39 We estimated the % of SAPO-17 for this particular sample to be ~15% 
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(from radial intensity distribution profiles).   

In all microwave assisted synthesis, SAPO-17 coexisted as a secondary phase. 

The coexistence of these two zeolite phases has been previously observed. 35a Both 

zeolite phases are prepared with the same structure directing agent, and therefore the 

coexistence of both topologies has been associated with changes in silica, and template 

concentrations 35a as the hydrothermal synthesis progresses. It is likely that longer 

synthesis times resulted in a change in concentration of the template favoring the 

formation of SAPO-17 over SAPO-56. In addition, it is well known that zeolite synthesis 

is governed by the occurrence of successive phase transformations. Thermodynamically, 

the least favorable phase crystallizes first, and is replaced by more stable phases. 40 Our 

results suggest that under the employed MW experimental conditions, SAPO-17 is the 

most thermodynamically stable phase. The morphological features of the MW 

synthesized SAPO-56 crystals revealed homogeneous hexagonal crystals of ~3-4 µm as 

shown in Figure 18b. For comparison, SAPO-56 was prepared by a conventional 

hydrothermal synthesis approach at 200 ⁰C (Figure 18c) for 96 hours. Large hexagonal 

crystals of ~50 micron size were observed (Figure 18d). 
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Figure 19 HRTEM of (a) hexagonal SAPO-56 crystals synthesized via microwave 

heating at 150 °C and 250 psi for 10 minutes, (b) silica nanospheres present at the surface 

of the SAPO-56 crystals, (c) higher magnification of the ∼25 nm silica nanospheres, (d) 

rod-like crystals corresponding to SAPO-17. 
 

Transmission electron microscopy and selected area electron diffraction (SAED) 

were used to confirm the morphology and crystal structure of SAPO-56. Figure 19 shows 

TEM micrographs of representative crystals observed in the MW synthesized sample. In 

agreement with the SEM study, most of the crystals showed hexagonal morphology and 

their sizes were in the ~3-4 µm range (Figure 19a). Nanospheres consisting of silica, as 

confirmed by EDS analysis, were observed on the surface of many crystals present in this 

sample (Figure 19b). A high-resolution TEM image of few such nanospheres is shown in 

Figure 19b. Their occurrence on the surface of SAPO-56 crystals suggests that not all the 

silica source (Ludox) reacted, which is reasonable based on the very short MW synthesis 

time (10 minutes). Few rod- like crystals were observed in this sample as shown in Figure 

19d. This morphology has been associated with SAPO-17. 35d Within the experimental 

error of the EDS analysis, the measured elemental composition of hexagonal and rod- like 
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crystals was in agreement with nominal compositions of SAPO-56 and SAPO-17, 

respectively. It is important to mention that EDS distribution analysis shows that in the 

MW sample silicon was partially incorporated into the SAPO-56 framework (Figure 20), 

supporting the presence of silica nanospheres in the surface of SAPO-56 crystals. 

 
Figure 20 EDS distribution analysis for MW and hydrothermal synthesized samples. 

 

29Si NMR for the MW and hydrothermal synthesized samples are shown in Figure 

21. A strong resonance at ~-80 ppm is present for both samples. In addition for the MW 

sample two peak resonances are evident at -83.9 and -99.5 ppm. 
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Figure 21 29Si NMR of (a) MW synthesized and (b) hydrothermally synthesized SAPO-

56. 
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Typical SAED ring patterns obtained from SAPO-56 crystals synthesized via MW 

are shown in Figure 22 (left). In order to measure all represented d-spacings, radial 

intensity distribution profiles were extracted from these SAED patterns. As shown in 

Figure 22 (right), both profiles reveal peaks at the same d-spacing values and they were 

found to be in agreement with the database XRD pattern of SAPO-56 (except for the 

reflection at ~8.9 Å, which is associated with SAPO-17. 

 

 

Figure 22 SAED patterns (left) and radial intensity distribution profiles (right) of SAPO-

56 crystals synthesized via microwave heating at 150 °C and 250 psi for 10 minutes. 
MC03 and MC06 refer to two different analyzed micro-crystals. 

 

 

Figure 23 shows that longer MW synthesis times led to a mixture of SAPO-56 and 

SAPO-17. 
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Figure 23 (a) XRD patterns of MW heated synthesized SAPO-56 crystals at 30 minutes 
and 120 minutes. Representative SEM images of the sample synthesized at (b) 30 

minutes and (b) 120 minutes. 
 

 

4.2 Catalytic activity 
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Figure 24 Yield to chloropropene carbonate at different temperature for hydrothermal 

synthesized SAPO-56. 

 

Figure 24 shows the yield to chloropropene carbonate as a function of temperature 

for hydrothermal synthesized SAPO-56. The optimum temperature (100 °C) was chosen 

to test the catalytic activity of the MW sample. 

The cycloaddition of CO2 to epichlorohydrin yielded chloropropene carbonate as 

the main product, and diols and dimers of epichlorohydrin as minor products. Controlled 

experiments under our reaction conditions confirmed that the reaction did not proceed to 

a significant extent in the absence of the SAPO-56 catalyst. The yield to chloropropene 

carbonate was calculated by using 1H NMR spectra, from signs obtained at chemical 

shifts of 4.54 ppm (1H form chloropropene carbonate), 3.17 ppm (1H from 

epichlorohydrin) and 3.9 ppm (1H from the by-product 3-chloro-1,2-propanediol). GC-
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MS (HP 5890 Gas chromatograph equipped with 5970 Mass Selective Detector; 30 

m×0.32 mm column, HP-5 coated with 5% phenyl methyl poly siloxane stationary phase) 

was employed to confirm the presence of chloropropene carbonate, epichlorohydrin, and 

diol. 

Table 1 Selected properties and catalytic performance of SAPO-56 in the cycloaddition 
of CO2 to epichlorohydrin 

Synthesis 

method a 

Particle size 

(µm) 

CO2 uptake 

(mmol/g)b 

Yield to chloropropene 

carbonate(%) 

Microwave 3-4 6.1 84.8 

Hydrothermal 50 4.2 42.2 

 
a The same gel composition for both methods was used. b At 400 Torr. Reaction 
conditions: 100 °C; 4 h; CO2 pressure= 10 bar; 100 mg catalyst; 18 mmol of 
epichlorohidrin. 

 

Table 1 summarizes the catalytic performance of SAPO-56 crystals prepared via 

MW heating vs SAPO-56 prepared via conventional hydrothermal treatment in the 

cycloaddition of CO2 to epichlorohydrin at 100 °C for 4 hr. The yield of chloropropene 

carbonate over the hydrothermally treated sample was 42.2%. For the MW heated sample 

the yield increased considerably to 84.8%. For the MW sample, when the reaction time 

was decreased to 2 hr, the yield of carbonate was only ~48%. Longer reaction times (i.e. 

8 hr) promoted the polymerization of the product. The enhanced catalytic performance of 

the SAPO-56 crystals prepared via a MW assisted approach as compared to the 

hydrothermally synthesized crystals in the cycloaddition of CO2 to epichlorohydrin may 

be related to the smaller crystal size with narrow particle size distribution and higher CO2 

uptakes (Figure 25). In fact, the yield of chloropropene carbonate correlate with CO2 
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uptake (Figure 26). High CO2 adsorption capacities promote the catalytic conversion of 

CO2 to cyclic carbonates. 41 ZIF-8 and Cu-MOF are metal organic frameworks that were 

also active for this particular reaction. 

 

 
Figure 25 CO2 uptakes for SAPO-56 crystals synthesized via (a) microwave assisted 

approach and (b) hydrothermal treatment. 
 

The higher conversion of microwave sample may be also related with the 

presence of SAPO-17, with ERI as its topology. The pore size of SAPO-17 (~ 3.6 × 5.1 Å) 

is much larger, so this may promote the conversion of CO2 to carbonate. On the other 

hand, the CO2 uptakes for SAPO-17 are much lower than SAPO-56, which is not the 

prerequisite of higher conversion. So we think the higher conversion of CO2 is mainly 

due to the SAPO-56. 
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Figure 26 Correlation between Yield to chloropropene carbonate (%) and CO2 

uptake for different catalysts: (a) ZIF-8, (b) Cu-MOF, 42 (c) SAPO-56 (HT), (d) SAPO-56 
(MW). Reaction conditions for all catalysts: 100 °C, 4 hr, 18 mmol of epichlorohydrin 

and 100 mg of catalyst. CO2 uptakes taken at 400 Torr. 

 
NH3 TPD was used to identify and quantify the concentration of acid sites of the 

MW and hydrothermal synthesized SAPO-56 crystals. The TPD results for the MW 

sample showed two desorption peaks with a peak maximum at 198 °C and 483 °C 

(Figure 27). The concentration of acid sites was estimated using the total area under the 

curve for the two desorption peaks, and corresponded to 1.240 mmol g-1. For the 

hydrothermally synthesized sample two desorption peaks with peak maxima at 204 °C 

and 496 °C were observed, corresponding to a concentration of acid sites of 1.701 mmol 

g-1. The lower concentration of acid sites in the MW sample may be related to the 

presence of the silica (neutral) nanospheres in the surface.  
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Figure 27 NH3-TPD of (a) MW synthesized and (b) hydrothermally synthesized SAPO-

56. 

 

The silica nanospheres can be visualized as defects, and may play a role as 

specific surface sites for the cycloaddition reaction. Recycle experiments were carried out 

to assess the stability of the catalysts. In the recycle experiments, the catalysts after use in 

the cycloaddition reaction were washed thoroughly with acetone, centrifuged and air 

dried before reuse. There were no evident changes in catalytic activity for both catalysts. 

The stability of other zeolite based compositions for cycloaddition reactions is well 

known. 43  
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CHAPTER 5 CONCLUSIONS 
 

1. The synthesis of SAPO-56 crystals via microwave heating was demonstrated.  

2. In contrast to hydrothermal synthesized crystals, the microwave synthesized 

crystals displayed smaller crystal sizes (3-4 µm) with narrow size distribution and were 

prepared in shorter synthesis times (10 minutes) and lower temperatures (150 ⁰C). Longer 

microwave synthesis time leads to the coexistence of SAPO-56 and SAPO-17. 

 3. The resultant SAPO-56 crystals from microwave displayed high catalytic 

activity in the synthesis of chloropropene carbonate from CO2 and epichlorohydrin 

(84.8%) compare to hydrothermal treatment.   

4. The enhanced catalytic activity of SAPO-56 crystals was related to its high CO2 

adsorption capacity, small crystal size, and the presence of acid sites in their framework 

known to be active sites in cycloaddition reactions. 
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CHAPTER 6 FUTURE DIRECTIONS 
 

Our results demonstrated the synthesis of SAPO-56 crystals by microwave 

process. In the reaction of CO2 and epichlorohydrin to carbonate, the MW-assisted 

crystals displayed higher catalytic activity than hydrothermal-assisted crystals. Future 

work can focus on the reaction of CO2 with other epoxides, such as styrene oxide, 

propene oxide to obtain others carbonates by using the MW-synthesized SAPO-56 

crystals. In the MW experiment, the tube we used was very small so it produced very 

small amount of SAPO-56 crystals by one time. So in the future, we can improve our 

experiment to get more crystals by changing a large container. In that case, the large 

amount of catalysts can meet the industry requirements. In addition, SAPO-56 can be 

also an effective catalyst for the synthesis of carbamate via the catalytic conversion of 

CO2 and amines.  

As we know, the pore size of SAPO-56 is ~3.4×3.6 Å, CO2 is 3.3 Å and the pore 

size of CH4 is 3.8 Å, so in this respect SAPO-56 is of great interest in membrane 

technology. Zeolite membranes can effectively separate CO2 from light gases, which is 

really important both in the environmental and energy perspectively. In the future, 

SAPO-56 membranes can be synthesized for gas mixture separation. 
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APPENDIX 
 

 
Å   = angstrom 

a.u.   =  arbitrary unit 
BET   = Brunauer Emmett Teller 
CO2   = carbon dioxide 
oC   = Celsius 
Cu   = Copper 

Pb   = lead 
θ   = diffraction angle (degree) 
SAPO   = silicoaluminophosphate 

d   = d-spacing (Angstrom) 
GC-MS  = gas chromatograph – mass spectrometry 

g   = gram 
mg   =  miligram 
hr   = hour 

Kα   = K-alpha x-rays 
HT   = hydrothermal 

keV   = kiloelectron volt 
kV   = kilovolt 
ZIF   =  zeolite imidazole framework 

psi   = pounds per square inch 
MW   = microwave 

Bio-MOF  = metal-biomolecule framework 
MOF   = metal-organic framework 
CH4   = methane 

ppm   = parts per million 
µm   = micrometer 

mm   =  milimeter 
mA   =  milliamp 
mL   = milliliter 

mmol   = millimole 
MHz                = megahertz 

MPa   =  Megapascal 
min   =  minute 
ms   = milisecond 

µm   = microsecond 
kPa   = kilopascal 

RPM   = revolutions per minute 



44 

 

SEM   = scanning electron microscopy 
s   = second 

µs   =  microsecond 
NMR   =  nuclear magnetic resonance 

EDS   = energy-dispersive x-ray spectroscopy 
SAED   = selected area electron diffraction 
TEM   = transition electron microscopy 

H2O   =  water 
TPD   = temperature programmed desorption 

XRD   = x-ray diffractometry 
MAS                 = magic angle-spinning 
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