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Investigation of Air Jigging and Air Classification to Recover 

Metallic Particles from Analytical Samples  

 

 

Abstract 
Analyzing “nuggety” gold samples commonly produces erratic fire assay results, due to 

random inclusion or exclusion of coarse gold in analytical samples. Preconcentrating gold 

samples might allow the nuggets to be concentrated and fire assayed separately. In this 

investigation synthetic gold samples were made using similar density tungsten powder 

and silica, and were preconcentrated using two approaches: an air jig and an air classifier. 

Current analytical gold sampling method is time and labor intensive and our aim is to 

design a set-up for rapid testing. It was observed that the preliminary air classifier design 

showed more promise than the air jig in terms of control over mineral recovery and 

preconcentrating bulk ore sub-samples. Hence the air classifier was modified with the 

goal of producing 10-30 grams samples aiming to capture all of the high density metallic 

particles, tungsten in this case. Effects of air velocity and feed rate on the recovery of 

tungsten from synthetic tungsten-silica mixtures were studied. The air classifier achieved 

optimal high density metal recovery of 97.7% at an air velocity of 0.72 m/s and feed rate 

of 160 g/min. Effects of density on classification were investigated by using iron as the 

dense metal instead of tungsten and the recovery was seen to drop from 96.13% to 

20.82%. Preliminary investigations suggest that preconcentration of gold samples is 

feasible using the laboratory designed air classifier. 
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1. Introduction 
Determining the gold content of low-grade ores (< 5 g/t) is a labor- and time- intensive 

process. Furthermore, the presence of the “Nugget Effect” (where the bulk of the gold 

content is found in a few sporadic nuggets) can cause erratic fire assay results. When 

analytical samples are prepared, small amounts (10 grams, Clifton et al. 1969) of samples 

are randomly chosen to be analyzed by fire assay or by atomic adsorption spectroscopy 

to estimate the gold content. This sample is assumed to be a representative of the 

analytical sample but the presence or absence of gold nugget in this randomly chosen 

sample from the analytical sample cannot be assured. The inclusion or exclusion of these 

nuggets in a particular analytical sample can have an effect of over-estimating or under-

estimating the total gold content respectively. Hence a method to preconcentrate all the 

gold particles and nuggets from a bulk sample into a sample small enough to be analyzed 

directly by fire-assay / atomic adsorption spectroscopy needs to be formulated.  

Current approach towards gold sampling is screening. This is a tedious time-and-labor 

intensive approach. Can this approach be addressed by developing an alternative rapid 

testing approach that takes advantage of high density gold particles in the gold ore? 

The potential of a Knelson concentrator was recently investigated as a means to 

preconcentrate bulk gold samples. Typically operated on a wet basis, it was suggested to 

convert a Knelson concentrator to a dry basis by using air instead of water (Greenwood 

2013). Tungsten recovery was seen to range between 70-80% for particles in a size range 

of -300 to +38 microns at an air pressure of 2 PSI, but the tungsten grade was very poor. 

A wind tunnel designed to classify granular material particles of approximately similar 

density with varying particle size has been patented as granular material separating device 

(Vickery 1991); this device consists of a scattering assembly which facilitates effective 

dispersion of the granular feed material prior to classification. The granular material 

separating device can be more effectively used as a gold separation tool rather than an 

analytical gold sampling tool. Gold pans with water delivery cups were designed and 

patented to separate gold particles from black sand (Krenzler 1999).  
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Figure 1: Current gold sampling scenario 

1.1 Current Gold Sampling Scenario 
The causes and nature of nugget effect have been studied (Carrasco 2010). Gold sampling 

leads to erratic results due non-uniform distribution and nuggety nature of gold ore. The 

current gold sampling scenario is demonstrated in Figure 1. 

To determine the potential of gold mining on a desired site, bulk ore samples are crushed 

until the mineral liberation size. The crushed sample is rotary split to sub-samples 

weighing approximately 200 grams and from these samples, random scoops weighting 

between 10-30 grams are selected and analyzed for their gold content by using techniques 

like atomic adsorption spectroscopy or fire assaying. The underlying assumption is that 

the random scoop is a representative of the rotary split sub- sample. In case of nuggety 

gold sample the inclusion or exclusion of the gold nugget from the scoop (10-30 grams) 

will lead to erratic spectroscopy or fire assay results due to non-uniform gold distribution. 
10 

 



Hence there is a need to develop an approach to reduce the erratic nature of sampling and 

to minimize time-and-labor requirements.      

1.2 Research Scope 
In this thesis, we investigate the potential for air jigging and air classifier to be applied to 

preconcentrate gold particles in analytical gold sampling. Synthetic gold ore made from 

tungsten and silica was used to mimic actual gold ore in all the experiments. A dry basis 

was chosen for rapid separation and sample analysis.   

Air classifiers are widely used in a variety of applications mainly including de-dusting of 

fines, controlling particle size distribution and removing impurities and contaminants 

from valuable products. Specific applications include  (Everett and Peirce 1990, 

Muscolino 2010):  

 Removal of fine dust particles from coarse aggregate products. 

 Controlling the size distribution of dry-milled powders such as limestone, silica, 

feldspar, zirconia, alumina, and cementitious materials. 

 Recovering valuable metallics from mineral processing slags.  

 Segregating valuable material from municipal solid waste to be used as Refuse 

Derived Fuel. 

Similarly, jigging is also used in a variety of applications: 

 Separation of mineral contaminants from coal using an air jig (Oder and 

Weinstein 2008). 

 Recovering ferroalloys [Ferrochrome (FeCr), Ferromanganese (FeMn), and 

Ferrovanadium (FeV)] from slag to recover metal value. 

Classifier designs vary based on the desired separation to be carried out, but the separation 

is governed by particle behavior in the imposed air flow. Our design is a simple straight 

tube air classifier which classifies particles based on their terminal settling velocities.  

11 
 



Similarly, jigs may operate on either wet or dry basis depending on the jigging fluid. Our 

jig design incorporates air as the jigging fluid and the speaker generates pulsations of air 

through the particle bed and separates particles based on their density and size.  
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2. Research Objective:  
Our research objectives were as follows: 

 We planned to construct and test an air jig and air classifier to compare their 

abilities to separate a high density gold analogue (tungsten) from 200-300 grams 

of silica. 

 Determine most effective approach amongst the air jig and air classifier and 

improve its design to maximize high density metal capture into a sample smaller 

than 30 grams. 

 Rationale for selecting tungsten for experimental trials: tungsten was chosen to 

mimic gold because of its closeness in density with gold. Gold will behave in a 

similar fashion as tungsten, and hence, if the testing procedure is feasible for 

separating tungsten from a tungsten-silica mixture, it can be applied to separate 

gold from gold ore. 
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3. Preliminary Designs 
Two designs were initially proposed, an air jig and an air classifier. Each of them are 
described separately in this section. 

3.1 Air Jig- Preliminary Design  

3.1.1 Introduction 
Jigging is a well-known method of gravity concentration. Jigging separates minerals of 

different densities based on their behavior under gravity and the resistance to motion 

offered by a viscous fluid, such as air or water. Effective separation can be ensured if 

there is a significant density difference between the mineral and the gangue. The ease of 

separating a heavy mineral from a light mineral from a mineral mixture by jigging can be 

predicted using a ratio known as “concentration criterion” C.C., (Wills 1985): 

. . =            
Equation 1 

Where,  is the density of heavy mineral,  is the density of light mineral/gangue, and 

 is the density of the fluid medium. If the concentration criterion is greater than 2.5 

gravity separations are relatively easy and are highly efficient. 

Example Calculation: 

Concentration criterion calculations for Tungsten-Silica mixtures with air as the fluid 

medium are as shown below. 

Density of heavy mineral (tungsten),  = 19.3 g/cm3 

Density of light mineral (silica),  = 2.65 g/cm3 

Density of fluid medium (air),  = 0 g/cm3 (approximated to be zero) 

On substituting for densities in the C.C. Equation, we have: 

. . = 19.3 2.952.65 0 = 6.28 
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The concentration criterion of 6.28 for jigging tungsten from silica indicates a very easy 

separation. Jigging units can achieve a good recovery down to 150 microns and 

acceptable recoveries down to 75 microns (Wills 1985). Our project describes gold 

nuggets to be in the size range of 75 microns and above, which implies acceptable 

recoveries based on concentration criterion. Bulk samples can be ground and sized to the 

desired feed size range for jigging.  

3.1.1.1 Air Jigging Theory 
In a jig, the separation of minerals of different densities is accomplished in a bed which 

is fluidized by a pulsating current of air or water so as to produce stratification. Jigging 

periodically expands and contracts the packed bed of materials being treated and controls 

the dilation so that the heavier, smaller particles rise up through the gaps of the bed and 

the larger high density particles fall down to the bottom of the bed. The pulsed air lifts 

the bed as a mass, then as velocity decreases the bed tends to expand; fine particles pass 

upwards through the gaps in the bed and coarse particles fall to the bottom.  

Mechanisms of air jigging can be explained based on the following steps shown in Figure 

2: 

 

Figure 2: Mechanism of Air jigging. Figure adapted from (Gupta and Yang 2006) 

 

Bed at rest Fluidization
Hindered 
Settling

Consolidation
Trickling

Light Particles Heavy Particles

Particles are at rest 
in a packed bed

A pulsation stroke 
breaks up the 
packed bed

Particles settle and 
the bed begins to 

stratify

The suction stroke 
brings fine heavy 

particles through the 
bed
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Each step from the above figure can be explained as follows: 

 Bed at rest: The particle bed is at rest on top of the screen.   

 Fluidization: The particle bed is given a pulsed motion by pulsation of 

compressed air.  Differential acceleration separates based upon density alone. 

This stroke can be provided by means of a plunger; in our case we used an 

amplifier to provide the pulsation. 

 Hindered Settling: As the pulsation stroke continues and goes into the suction 

stroke, hindered settling is the key mechanism of separation.  At this point drag 

forces start becoming important and the particles separate based on density and 

size. 

 Consolidation Trickling: Finally, the bed compacts during the suction stroke.  

The fine dense particles are pulled through the dense coarse particles and into the 

dense particle concentrate.  This is called consolidation trickling, and is dependent 

on particle size. 
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3.1.2 Materials  
Synthetic ore was prepared by mixing silica and tungsten powder to mimic the 

composition of gold ore. Tungsten was chosen to mimic gold due to closeness in densities 

(tungsten 19.25 g/cm3 and gold 19.3 g/cm3) and will therefore behave similar to gold.  

Tungsten Powder: Tungsten alloy shavings were ground to tungsten powder and sized 

to a -100 +270 mesh. The density of tungsten was determined to be approximately16.3 

g/cm3. Tungsten was sized in this manner because to represent gold distribution in 

Newmont gold samples. 

Silica: Ottawa sand was procured from US Silica. Bulk silica material was sized into the 

following size fractions (Tyler mesh) and these size fractions were mixed in proportions 

representative to Newmont gold samples as 48x65, 65x100, 100x150, 150x250, 250x325, 

325x500, and -500 (Figure 3). Silica density was determined to be 2.64 g/cm3.  

Density was measured using specific gravity bottles. 

 

Figure 3: Size distribution of Newmont samples vs silica crushed at Michigan Tech. 
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3.1.3 Experimental Setup 
An air jigging unit was designed shown in Figure 4 and its laboratory scale 

experimental setup is shown in Figure 5. 

 

Figure 4: Air jigging preliminary design 

The Air Jig has the following important parts: 

 Sample holder (head): Our design consisted of an open vessel which acted as a 

sample holder, with a relatively coarse screen (openings larger than the size of the 

coarsest particle) at the bottom.  

o A filter paper below the screen ensures that the coarse material was 

retained on the screen. The screen holds the material in place and disperses 

air flow allowing good bed fluidization.  

o The preconcentrate is collected from the bottom of the sample holder. 

 Pressure Regulator: A side port allowed supply of constant pressure air to be 

introduced; this pressure was typically maintained between 7-9 PSI.  

 Air Diffuser: Helped in fluidizing the incoming air. 

Steel plate

Pressure 
regulator 
and valve

Air

Clamp points

Speaker

Amplifier Computer

Sample Holder 
(head)

14’’

14’’

12’’

Air diffuser 

7-9 psi

Filter paper 
and Screen
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 Speaker (Frequency Generator): Bed pulsation was provided by a 12 inch 1440 

Watt subwoofer (speaker) powered by a computer and signal amplifier. The 

speaker frequency was varied between 25-125 Hz. 

 

 

 

Figure 5: Air jigging laboratory set up and speaker top view 

  

Air inlet

Speaker

850 CCA
Batteries

Sample holder

Speaker

Air inlet

1440 Watt 
Amplifier
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3.1.4 Working Principle  
Fluidization of fine particles cannot be easily achieved by airflow alone. Some type of 

agitation must be introduced to disrupt any channeling that may occur. When a pulse of 

air is forced in, it will rise up through the screen and fluidize the bed of particles allowing 

the coarser, higher-density material to descend through the other particles. Head space at 

the top of the vessel will allow the bed to expand as fluidization increases the bed volume. 

When the bed expands, dense and light particles are suspended in the sample holder and 

dense particles settle down because their density is much greater than that of the bulk 

density of the bed. When fluidization ends, heavy particles settle below light particles in 

the bed; they are then separated by carefully sliding the sample holder (Figure 4) across, 

to separate fines and the bottom of the bed is collected and weighed. Due to the sample 

holder design this jigging was a batch process and not operator friendly. Combining 

frequencies increases the sharpness of the pulse, causing an increase in fluidization. The 

pulsation cycle could repeat for 25-125 pulsations per minute allowing ample 

opportunities for the metallics to migrate to the bottom of the suspended bed and to be 

removed. 

3.1.4.1 Air jig testing procedure 
The procedure used for testing of air jig was as follows (Tungsten-Silica mixtures): 

 Known mass of silica (250-500 grams) was prepared and placed into the sample 

holder. 

 Air flow was increased, typically to 7 PSI until the silica surface began to 

“bubble”. When a pulse of air was forced in, it rises up through the screen and 

fluidizes the bed of particles allowing the coarser, higher-density material to 

descend through the other particles. 

 Signal amplifier was turned on. 

 Silica bed was allowed to fluidize and air flow was adjusted as required and 

recorded. When the bed expands, dense and light particles are suspended in the 

sample holder and dense particles settle down because their density is much 

greater than that of the bulk density of the bed. 

20 
 



 Known mass of tungsten alloy (2-6 grams) was added to the fluidized bed and the 

fluidization times are timed. 

 At a predetermined time signal amplifier and air supply are turned off, sample is 

removed and metal (tungsten) recovery was estimated by panning the concentrate.  

3.1.5 Results and Discussions 
Table 1: Results from the air jig preliminary design 

 

Tungsten-silica mixture samples were introduced into the fluidization bed, frequency and 

fluidization time were varied and the observations are as shown in Table 1. 

%  = 1  .     + .   100 

Equation 2 

The air jig was fluidized using two different combinations of multiple frequencies. 

Multiple frequencies combinations were achieved by overlapping frequencies on a 

computer program. Fluidization was carried out for 2 and 5 minutes. Percentage mass 

reduction is important due to the desired size of analytical samples (15-30 grams) and 

hence it is essential to have a high % mass reduction and high % metal recovery for the 

same set of parameters. The air pressure for all the runs was maintained constant at 7 psi.  

Run Freq.  

 
 

Time  Silica  Tungsten  Concentrate  

Metal 
in 

Conc.  % Mass  % Metal  
No. (Hz) (min) (g) (g) (g) (g) Reduction Recovery 

1 45/60/80 2 265.6 2.99 114.6 1.71 57.33 57.21 
2 45/60/80 2 259.9 3.19 95.6 2.53 63.66 79.35 
3 45/60/80 2 502.8 3.99 122.5 1.18 75.83 29.58 
4 45/60/80 2 500.4 3.97 130 3.07 74.23 77.28 
5 45/60/80 5 500.2 4.01 123.8 1.40 75.45 34.84 
6 45/60 2 302.8 5.78 126.9 5.16 58.88 89.25 
7 45/60 2 303 2.49 128 1.69 58.10 67.87 
8 45/60 2 303.4 2.75 129.5 2.42 57.70 87.97 
9 45/60 2 304.5 2.92 124.1 2.04 59.63 69.98 

10 45/60 5 300 2.32 127.4 1.33 57.86 57.41 
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Frequency combinations of 45/60/80 Hz were investigated in order to optimize recovery, 

but it was observed that when the bed was fluidized for 2 minutes, there was a wide range 

of inconsistency in the metal recovery, 57.21 and 79.35% for runs 1 and 2 respectively. 

When the amount of silica in the feed was increased for the same combinations of 

frequency (runs 3 and 4), it was observed that the metal recovery showed a wider range 

of inconsistency with 29.58 and 77.28% recovery for runs 3 and 4 respectively. When 

fluidizing time was increased to 5 minutes (run 5), the recovery decreased to 34.84%, 

indicating that the problem was not insufficient time.  

For a frequency combination of 45/60, and fluidizing time of 2 minutes, it was observed 

that the % metal recovery was still inconsistent. Percentage metal recovery for runs 6, 7, 

8 and 9 (replicate runs) varied from 67.87 to 89.25%, showing an increase in metal 

recovery as compared to the prior runs. When the fluidization time was increased to 5 

minutes for run 10, the % metal recovery was seen to fall down to 57.41%. Reasons for 

this drop in recovery are unknown.  

A consistency in the concentrate mass was observed due fixed size of the sample holder, 

as the sample holder can hold approximately 120 grams. However, the metal recovery 

results showed inconsistency when tested for repeatability despite of similar percent mass 

reduction.  

The objective of the preliminary design was to generate samples the size of analytical 

samples with maximum mineral recovery. Preliminary testing using the designed air jig 

were not promising due to poor and inconsistent recovery, and, insufficient mass 

reduction of the bulk samples so a second approach was evaluated, air classification. 
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3.2 Air Classifier - Preliminary Design 

3.2.1 Introduction  
Classification is a method of separating mixtures of minerals into two or more products 

on the basis of the velocity with which the particles fall through a fluid medium (Wills 

1985). A classifier sizes particles according to their settling velocities. Particle settling 

velocity is affected by the following factors: 

 Density affects the particle mass and therefore its settling velocity.  Particle 

behavior in air can be discussed based on the aerodynamic diameter. 

 Particle shape affects the particle behavior as particles deviate from spherical 

shape. Irregular surface area introduces a variable drag force on a particle in the 

air stream, which may cause difficulty in separation. Most calculations assume 

the particle shape to be spherical as it is difficult to determine shape factors of 

non-spherical particles (Wilson and Huang 1979).  

Aerodynamic diameter is defined as the diameter of a sphere with unit density that 

has aerodynamic behavior identical to that of the particle in question (EPA 2011). 

Particles having the same aerodynamic diameter may have different dimensions and 

shapes. If the  particle diameter (dparticle particle) are known, 

the aerodynamic diameter (daero) can be estimated based on Equation 3 (Zelenyuka et 

al. 2005). 

=       
Equation 3 

Where = 1000 kg/m3 

For example, a 74 micron particle with density 2000 kg/m3 will behave in the same 

manner as a 53 micron particle with a density 4000 kg/m3; both have an aerodynamic 

diameter of 105 micron.  
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In an air classifier, particles of varying size, shape and density are acted upon by fluid 

drag, gravity and buoyancy forces (Figure 6). Buoyancy is often neglected because 

the density of solid particles is much greater than the density of air; hence, the buoyant 

force is negligible. Under free fall, particles accelerate continuously due to their 

weight, but the influence of a fluid drag force resists their downward motion. When 

particles are fed to the classifier, if the drag force exceeds the weight, particles get 

swept out of the top of the classifier. Conversely, when the weight exceeds the drag 

force, particles travel downwards and are collected at the bottom. 

 

Figure 6: Force balance on a particle in motion under drag force 

On equating drag force and particle weight, particle settling velocity is written as 

(Baron 2001): 

= 4 3 /
 

Equation 4 

This equation can be used to predict the necessary air velocity required for separation. 

For particle diameters 0.5 to 150 microns, the terminal settling velocity is determined 

by substituting values for  and . Drag coefficient , depends on the Reynolds 

Particle

Weight

Drag force =
Cd g V2 dp

2

8 Cc

=
p g dp

3

6

g = air density

V= particle settling velocity
p = particle density

dp = particle diameter
Cc = Cunningham slip factor
Cd = Drag coefficient
g = gravitational acceleration

Buoyancy force can be 
neglected as ( p- g) ~ p

Assumed spherical 
particles
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number. Corresponding settling velocities are plotted against particle diameters and 

the air velocity required for separation can be predicted. Settling velocities for gold 

(density 19.3 g/cm3), silica (density 2.65 g/cm3) and iron (density 6.73 g/cm3) were 

estimated and plotted as shown in Figure 7.   

 

Figure 7: Calculated settling velocities of spherical particles of various specific 
gravities as a function of particle diameter 

For example, in a classifier with air velocity 1 m/s, particles with settling velocity above 

1 m/s are collected at the bottom and that below 1m/s are swept out from the top of the 

separation column. 

From Figure 7, it can be seen that, for an air velocity of 1 m/s, gold-silica separation may 

be easier for particles of larger size. It can also be observed that as particles diameter 

decreases, the particle settling velocity decreases and hence separating particles with 

small diameter becomes difficult for a given air flow. For two particles with similar 

diameters but with different densities, the particle with higher density will have higher 
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settling velocity and will settle faster at the bottom as compared to the low density 

particle.  

In order to optimize the tungsten recovery and ensure that all the tungsten/gold particles 

are collected at the bottom of the separation column, air velocity can be varied to achieve 

an optimum separation.  

3.2.2 Materials  
Feasibility of the preliminary air classifier design to preconcentrate bulk sub-samples was 

first studied with unmixed samples of silica and tungsten. Later on, Magnetite-Silica 

mixtures were also tested.  

Silica: Ottawa sand was purchased from US Silica. Silica was crushed to achieve a size 

distribution of 80% passing 140 microns (Figure 3). Density of silica was determined to 

be 2.65 g/cm3. 

Magnetite powder: magnetite powder was produced from a coarse magnetite particles. 

The coarse sample was crushed and sieved into the following size fractions: 14x3, 30x48, 

48x100, 100x200 and 200x270. The density of magnetite powder was determined to be 

5.15 g/cm3.  

Tungsten powder: tungsten alloy shavings were ground to tungsten powder and sized to 

a -100 +270 mesh. The density of tungsten was determined to be approximately 16.3 

g/cm3. 

Density measurements were done by using specific gravity bottle method. 
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3.2.3 Experimental Setup                                  
A preliminary air classifier design was proposed as shown below in Figure 8: 

 

Figure 8: Air classifier -preliminary design 

The preliminary air classifier design comprises of a separation column and cyclone as its 

main constituents (Figure 8). A removable sample collector and fines collector are used 

to collect the heavy and the light fraction respectively. Counter gravity drag force is 

induced in the separation column with the help of a vacuum connected to the cyclone 

overflow.  

Air classifier design parameters are as shown in Table 2. (Note: An existing cyclone from 

the laboratory was used to conduct preliminary studies). The cyclone had the following 

specifications: body outer diameter: 6 in; body height: 3.75 in; cone height: 10.75 in; inlet 

outer diameter: 5.5 in; height of vortex finder: 1 in; diameter of dust outlet: 0.375 in. 

Table 2: Air classifier (preliminary design) design parameters. 

Parameter Value 
Length of Separator Column (in)   36 
Diameter of Separator Column (in) 3 
Volume of Fines Collector (cm3)   800 
Air flow at Valve fully open (m/s) 0.56 
Type of Vibratory Feeder used    None 

To Vacuum

Cyclone

Removable 
Fines Collector

Separation Column

Removable Sample 
Collector

Light

Heavy

Sample (Manually fed)

Feed hopper
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3.2.4 Working Principle 
At the beginning of each run air velocity was set to 0.54 m/s, this was the maximum air 

velocity that could be attained in the separation column based on the preliminary design. 

The presence of cyclone in between the separation column and the vacuum causes a high 

pressure drop and hence lower air velocity in the separation column. Feed was fed 

manually through the feed hopper. Air velocity in the column produces a drag on the 

particles suspended in the separation column and separates the mixture in two fractions, 

light and heavy. The heavy fraction, which is collected at the bottom, is referred to as the 

preconcentrate here. If drag force dominates gravity force of the particles in motion, they 

travel upwards and are collected in the cyclone as light fraction; if particle gravity force 

dominates the induced drag force on particles, they travel downwards and are collected 

at the bottom as heavy fraction.  

Sample preparation: 

Silica samples: Finely ground silica from the bulk sample silica sample was split into 

subsamples of 45-50 grams each. 

Magnetite-silica mixtures: A magnetite silica mixture was prepared by adding 0.5 grams 

of magnetite powder at the desired size to 45-50 grams of silica. 

Blank tungsten samples: The tungsten samples were used alone and not mixture form. 

Initial experimental trials: 

 Set I trials: these tests were conducted to observe the separation of silica particles 

into different size fraction based on particle size 

o Blank silica was run through the air classifier. 

o Air velocity 0.54 m/s. 

o Manual feeding. 

 Set II trials: These tests were conducted to observe change in recovery with 

varying particle density in a mixture.  

o Magnetite-silica mixtures were run through the classifier. 

o Air velocity 0.54 m/s. 
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o Manual feeding. 

 Set III trials: These tests were conducted to observe recovery of high density 

(tungsten) particles. 

o Blank tungsten was run through the classifier. 

o Air velocity 0.54 m/s. 

o Manual feeding.  

Magnetic separation was carried out to recover magnetite from silica. 

Note: All the samples were fed to the classifier manually, which may potentially lead to 

slightly variable feed rates during each trials.  
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3.2.5 Results and Discussions  
Set I results: Blank silica runs  

Total material recovered from the top and bottom was 89%, with the heavy fraction 

accounting to 73 wt% and the light fraction accounting to 27 wt%. The heavy fraction 

was observed to be 80% passing 165 μm and the light fraction was observed to be 80% 

passing 80 μm. 

Set II results: Magnetite-Silica mixture runs 

 
                                              Figure 9: Magnetite-Silica mixture run results 

Magnetite silica mixtures containing 45-50 grams of silica and 0.5 grams of magnetite 

powder of the desired size fraction were fed to the separator and classified at an air 

velocity of 0.54 m/s. Results for these trials are shown in Figure 9. It is observed that, for 

magnetite-silica mixtures the magnetite recovery was consistently high to a particle size 

of 74 microns. Although the recovery fell significantly as particles size decreased below 

74 microns, the results are very promising as tungsten/ gold have a much higher density 

and should be recovered into the preconcentrate much easier. The only problem was the 

inconsistency in the mass recovery. As the feed stream fell into the classifier tube, it 
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bellowed outwards and some material clung to the walls and some static was noticed in 

the system after the testing. Problem in mass recovery could easily be corrected by 

improving airflow and designing a more appropriate air cyclone. 

Set III results: Blank tungsten runs 

It was observed that blank tungsten runs through the classifier gave a recovery of 99% in 

the heavy fraction and 1% in the light fraction, suggesting that high density particles can 

be recovered more efficiently as compared to low density particles due to higher settling 

velocities. 
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4. Comparison between Preliminary Air Jig 
and Air Classifier Designs 

Experiments were conducted on the air jig and air classifier. Results from both the designs 

were compared in terms of mineral recovery, weight of analytical samples generated and 

feasibility of application to gold samples. During experiments conducted on the air jig 

with tungsten-silica mixtures, it was observed that tungsten recovery was inconsistent, 

varying from 67.87% to 89.25% at the same set of parameters, frequency combination of 

45/60 Hz for a time interval of 2 minutes, for runs 6 to 9 (Table 1).  

The air jig could concentrate the bulk sub-samples (tungsten-silica mixtures) down to 

120-130 grams consistently due to fixed size of the sample holder, but analytical gold 

samples were required to weigh between 10-30 grams as specified by Newmont Mining. 

Air jigging could have been a possible option for gold sampling if the tungsten recovery 

was consistent. Although the concentrate produced was less than 30 grams, this could 

have been easily achieved with a redesigned sample holder.  

With the air classifier it was observed that runs with magnetite-silica mixtures showed 

good consistency in magnetite recovery, achieving approximately 99% recovery for 

magnetite size greater than 74 micron. Magnetite recovery dropped to 60% at feed size 

lower than 74 microns (Figure 8), however the “Nugget Effect” should not be a problem 

below this particle size. The concentrate weights collected at the bottom were in the range 

of 20-25 grams. Blank tungsten results showed improved material recovery suggesting 

that an increase in particle density will have a significant effect on separation.  

In the preliminary air classifier, the cyclone was observed to have a high pressure drop, 

allowing an air velocity of only 0.54 m/s in the separation column. This problem can be 

addressed by re-designing a cyclone such that a lower pressure drop and higher air 

velocity is achievable in the separation column. Higher air velocity will decrease the 

preconcentrate sample size.  
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The air classifier could be modified in such a way as to control the weight collected at the 

bottom and to ensure maximum recovery, hence further modifications are done to the air 

classifier preliminary design as described in the next section. 
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5. Final Design – Air Classifier  
Based on the results from air classifier preliminary design, a final design was proposed. 

The preliminary air classifier deign was modified in the following ways: 

 Control valve: a control valve was installed on line between the cyclone and the 

separation column. The control valve helps in controlling the air velocity in the 

separation column, which in turn helps in achieving control over the drag force 

on particles, controlling separation. 

 Vibratory feeder: A vibratory feeder was installed over the feed hopper. The 

vibratory feeder helps in achieving control over the feed rate with which particles 

fall into the separation column. 

 Air-cyclone: a new cyclone based on Stairmand/Swift cyclone design (Majumdar 

2007) was built (Figure 10). Standard parts were ordered and cyclone was 

assembled with the dimensions given in Table 3: 

 

Table 3: Cyclone design parameters 

    Cyclone Type 
     High Efficiency 

    Stairmand  Swift  
Laboratory 

designed 
Body Diameter (D/D) 1 1 1  
       
Height of Inlet (H/D) 0.5 0.44 0.33  
       
Width of Inlet (W/D) 0.2 0.21 0.33  
       
Diameter of Gas Exit (De/D) 0.5 0.4 0.33  
       
Length of Vortex Finder (S/D) 0.5 0.5 0.66  
       
Length of Body (Lb/D) 1.5 1.4 1.33  
       
Length of Cone (Lc/D) 2.5 2.5 3.33  
       
Diameter of Dust Outlet (Dd/D) 0.375 0.4 0.292  
  Body Diameter of the cyclone, D = 3 inch 
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Figure 10: Cyclone design and cyclone made at Michigan Technological University. 
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5.1 Materials 
Synthetic ore was prepared by mixing silica and tungsten powder to produce a 0.25% 

w/w tungsten mixture. This was intended to mimic the composition of gold ore. A few 

additional experiments were run with iron powder to determine density effects on 

separation. 

Silica: Ottawa sand was sized to achieve a size distribution of 80% passing 150 mesh. 

Silica density was measured to be 2.64 g/cm3. 

Tungsten powder: Tungsten powder was procured from Buffalo Tungsten Inc. and was 

used as received. Tungsten powder had a size distribution of 75%, +200 mesh and 25%, 

-200 mesh and density was measured to be 19.17 g/cm3 (close to gold: 19.25 g/cm3). A 

few tests were conducted using only the +200 mesh powder to study effects of particle 

density at a specific size range. 

Iron Powder: Iron powder was procured from Chemical Store, screened and the -100 

+200 mesh fraction was retained for experimentation. The iron powder density was 

determined to be 6.73 g/cm3. 

Powder density was determined using specific gravity bottles. 
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5.2 Experimental Setup: 
The air classifier designed and built for the experiments is shown in the Figure 4.  

 

                                                        Figure 11: Air Classifier schematic 

The air classifier has the following parts: 

 Separation column: particles suspended under the influence of drag force are 

separated in the separation column based on their terminal settling velocities.  

 Control valve: controls the air velocity induced in the column. 

 Vibratory feeder: controls the feed rate at which particles enter the separation 

column. 

 Cyclone: assists the collection of separation column overheads (fines) to the fines 

collector. 

 Fines collector: collects fines from the cyclone. 

 Removable sample collector: collects the heavy fraction. 

Laboratory set-up on the next page in Figure 12 

To Vacuum

Control Valve

Cyclone

Fines Collector

Vibratory Feeder

Separation Column

Removable Sample
Collector

Light

Heavy
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Figure 12: Air classifier laboratory set-up 

Ease of Cleaning 

The air classifier was cleaned after each run by blowing compressed air through the entire 

system. This helped to blow out the fine particles accumulated in joints and bends at the 

connections.  

5.3 Working Principle: 
At the beginning of each run, the control valve was adjusted and air velocity in the 

separation column was set. Similarly, the feed rate was set by adjusting the vibratory 

feeder. Feed is sent in through the vibratory feeder. While feed mixture moves down the 

separation column, induced drag force due to air velocity acts on the feed particles and 

To vacuum

Cyclone

Fines Collector

Vibratory feeder

Feed hopper

Control Valve

Separation column

Removable sample 
collector
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separates the mixture into two fractions, light and heavy. If particles have terminal settling 

velocity greater than the separator air velocity, they will be collected at the bottom as the 

heavy fraction. Conversely, particles having terminal settling velocity lower than the 

separator air velocity, they will be swept out of the separation column as the light fraction. 

Air velocities were adjusted to 0.72, 0.85 and 1 m/s and feed rates ranging from 93 to 306 

g/min were tested. Reynolds number for air velocities 0.72, 0.85 and 1 m/s were 

calculated to be 4000, 4700 and 5500 respectively, implying that the air flow in the 

separation column was turbulent.  

Estimating tungsten recovery:  

Tungsten recovery was estimated by manually hand panning the bottom fraction of the 

separation column collected in the removable sample collector (Figure10). In order to 

determine the precision and accuracy of our panning technique tungsten-silica mixtures 

of representative sample sizes and of known concentration were hand panned. Tungsten 

recovery averaged 99.7 % for 3 runs from mixtures containing 0.5 grams tungsten in 30 

grams SiO2, with a standard deviation of 1.042. 
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5.4 Results and Discussions 
The feasibility of a vertical-duct air classifier to pre-concentrate metallic particles from 

analytical samples was investigated by varying air velocity in the classifier and sample 

feed rate. Design goals for the air classifier were to:  

a) Produce a concentrate sample with a mass of 10-30 grams containing all metallic 

particles in the analytical sample; 

b) Collect in excess of 95% of the material fed to the system. 

5.4.1 Percent tungsten recovered in the bottom 
fraction 

 

Figure 13: Tungsten recovery into the fire assay concentrate 

Sample collected at the bottom were hand panned and analyzed for tungsten recovery. 

Our aim was to investigate effects of air velocity and feed rate in order to achieve 

maximum tungsten recovery. Tungsten recovery results are as shown in Figure 13. 
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It was observed that for a given air velocity, as feed rate increases the tungsten recovery 

increases. This can be explained based on the interaction between the entire incoming 

feed and the upward flowing air. Higher feed rates may have forced the feed stream to 

“short-circuit” the separation and fall directly to the bottom. This is corroborated by 

Figure 14, which shows significant increase in bottoms material recovery at higher feed 

rate, and  

, which shows higher tungsten recovery at higher preconcentrate sample sizes.  

For a given feed rate, as the air velocity increases, lower tungsten recoveries were 

achieved. This may be due to the tungsten size distribution, of which about 25% of the 

material was finer than 200 mesh. At higher air velocities, more and more fine material 

would be swept out of the separation column. Additional tests conducted without the -

200 mesh fraction had significantly higher tungsten recoveries (Figure 18). 
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5.4.2 Weight collected at the bottom. 

 

Figure 14: Weight collected at the bottom of the air classifier (direct fire assay 
sample) 

Primary importance was given to controlling the weight collected at the bottom of the 

separator column (heavy fraction), because our project aimed to generate samples which 

can be fire assayed directly to measure the metal content. The criteria for fire assay 

requires samples to be 15-30 grams in mass; hence runs at higher feed rate for air velocity 

0.72 and 0.85 m/s are not carried out (Figure 14).  

It was visually observed that as feed rate increases for a given air velocity, particles enter

the separator tube more like a closely packed rope, shielding each other from the up-

flowing air.  

Consequently as feed rate increased, the weight collected at the bottom of the separation 

column increased.  
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5.4.2.1 Relationship between total tungsten recovered in the 
preconcentrate (%) and preconcentrate sample size 

 

Figure 15: Tungsten recovered vs preconcentrate sample size 
Tungsten recovered in the preconcentrate increases with the weight collected at the 

bottom. As air velocity increases, less mass is collected into the preconcentrate sample as 

expected. However at the higher feed rates, more of the fine tungsten and fine silica

(which would tend to be swept out of the separation column at higher air velocity) is 

forced to the bottom. Hence, tungsten recovery increases.  

Optimum tungsten recoveries greater than 97.7% were obtained at an air velocity of 0.72 

m/s and feed rate 93 g/min. Similar recoveries were observed at air velocities of 0.85 m/s, 

for tungsten +74 microns, Figure 18. We were able to consistently produce a 

preconcentrate sample of the desired size containing essentially all of the metallic 

nuggets.  
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5.4.3 Total material recovery from the system 

 

Figure 16: Total material recovery (fines fraction plus heavy fraction) 
When processing valuable minerals like gold, it was important to ensure minimum 

material loss into the vacuum. Estimating the total mineral recovery helps in analyzing 

the air classifier performance. The % total material recovery is given by: 

   = ( + ) 100
 

Equation 5

Where,  

WP = Weight of the preconcentrate collected at the bottom of the air classifier  

WC = Weight of the overflow collected by the air cyclone 

WA = Weight of sample fed to the air classifier  

44 
 



It was observed that changes in feed rate for a given air velocity do not have a significant 

effect on total material recovery, but at higher feed rates, there is more inconsistency in 

recovery. This may be because, at higher feed more material enters the cyclone and hence 

there are more chances that it might bypass the cyclone. 

It was also observed that increases in air velocity for a given feed rate increases the 

cyclone inlet velocity, increasing the centrifugal force on incoming particles and ensuring 

better entrapment of fines. 
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5.4.4 Cyclone Efficiency  

 

Figure 17: Cyclone efficiency 

The air classifier separated material into two fractions, light and heavy. The heavy 

fraction was collected at the bottom, and the light fraction was collected by the cyclone 

as fines from the separator tube. Our aim was to design a cyclone with maximum 

efficiency in order to ensure that the fine tungsten particles are recovered during rapid 

testing. Cyclone efficiency was calculated based on Equation 6: 

 = ( .    ) 100( . .   )  

Equation 6

Results are as shown in Figure 17. It was observed that change in feed rate at a given air 

velocity does not have a significant effect on the cyclone efficiency; the efficiency 

fluctuates within a maximum average range of 1.5 %. Also as air velocity increases for a 

given feed rate, cyclone efficiency was observed to increase. This could be explained 
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based on the fact that higher inlet velocity at the cyclone helps in strong vortex formation 

due to increase in centrifugal force in the cyclone body, facilitating the entrapment of 

ultra-fines. But under all conditions, the cyclone achieved efficiency greater than 95%, 

implying that the cyclone design worked well enough for rapid tests. 

While fines were efficiently collected, a few samples of ultra-fines that bypassed the 

cyclone were analyzed in SRA Microtrac, and it was seen that particles were below 20 

microns. 
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5.4.5 Tungsten and Iron recovery comparison 

 

Figure 18: Mineral recovery comparison with change in density. Tungsten and iron 
particles sizes were both above 75 microns 
Density effects on mineral recoveries were investigated by running mixtures of Tungsten-

Silica and Iron-Silica through the separation column. Figure 18 shows that tungsten was 

separated much more efficiently than iron due to tungsten’s high density. 
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6. Conclusions 
In experiments using tungsten as an analog for gold nuggets, it was found that an air 

classifier was easier to construct and gave better performance than an air-jig. Air velocity 

0.72 m/s and feed rate 93 g/min resulted in optimal preconcentration of the bulk samples 

to heavy fractions weighing 10-30 grams with 96.68 % tungsten recovery, suggesting that 

if gold nuggets are present in the ore, they could potentially be collected in the bottom 

fraction and directly fire assayed. This coheres with our project objective.  

Tungsten and iron recovery comparisons suggest that density affects the aerodynamic 

behavior of particles under the influence of drag force, for an air velocity of 0.85 m/s and 

feed rate 160 g/min, tungsten and iron recoveries were 95.67% and 27.63% respectively. 

High cyclone efficiency (> 95.3%) and consistency ensures a reliable cyclone design for 

entrapment of fines and minimal dust losses. Preliminary investigations suggest that 

preconcentration of gold samples is feasible using the laboratory designed air classifier. 

Future work is planned to be conducted using analytical gold samples.  
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7. Future Work 
For future we propose to test the air-classifier on actual gold samples for fire assay. The 

results will be compared to a screening procedure similar to current analytical practice. 

Proposed tasks are as follows: 

 More samples weighing 200 grams will be studied to investigate possible effects of 

mineralogy on separation. Particle size, density, and shape are expected to change 

between the different ores and may affect separation performance. Size distribution 

and density will be measured for each sample. 

 Samples will be processed through the air separator. Size distribution and density 

will be used to predict an appropriate air velocity for separation. The air separator 

will then be tested at 2 velocities near the predicted value and 3 feed rates, with 3 

replicates at each test condition. These tests will be repeated for each ore type to 

understand separator performance on relevant gold samples.  

 Each lot will also be analyzed following Newmont’s (funding agency) current 

analytical screening procedure (as described by Newmont), or a mutually acceptable 

alternative. 

 The air separator will be evaluated against the screening procedure: 1) did it reduce 

the nugget effect? 2) is it faster to operate and less labor-intensive? 3) is it easier to 

operate and keep clean? 
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