
East Tennessee State University

Digital Commons @ East
Tennessee State University

Electronic Theses and Dissertations Student Works

12-2015

Characterization of SBIP68: A Putative Tobacco
Glucosyltransferase Protein and Its Role in Plant
Defense Mechanisms
Abdulkareem O. Odesina
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Biology Commons, Molecular Biology Commons, and the Plant Biology Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It

has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State

University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Odesina, Abdulkareem O., "Characterization of SBIP68: A Putative Tobacco Glucosyltransferase Protein and Its Role in Plant Defense
Mechanisms" (2015). Electronic Theses and Dissertations. Paper 2598. https://dc.etsu.edu/etd/2598

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F2598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F2598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F2598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F2598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F2598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=dc.etsu.edu%2Fetd%2F2598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=dc.etsu.edu%2Fetd%2F2598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=dc.etsu.edu%2Fetd%2F2598&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Characterization of SBIP68: A Putative Tobacco Glucosyltransferase Protein and Its 
Role in Plant Defense Mechanisms 

    A thesis 

presented to 

the faculty of the Department of Biological Sciences 

East Tennessee State University 

In partial fulfillment 

of the requirement for the degree 

Master of Science in Biology 

by 

Abdulkareem Olakunle Odesina 

December 2015 

Dhirendra Kumar, Chair, PhD 

Cecilia A. McIntosh, PhD 

Jonathan Peterson, PhD 

Keywords: Nicotiana tabacum, SA, SABP2, SBIP68, Glucosyltransferase, Pichia 

pastoris, E. coli 



2 

 

ABSTRACT 

Characterization of SBIP68: A Putative Tobacco Glucosyltransferase Protein and Its 
Role in Plant Defense Mechanisms 

by 

Abdulkareem Olakunle Odesina 

  

Plant secondary metabolites are essential for normal growth and development in plants 

ultimately affecting crop yield. They play roles ranging from appearance of the plants to 

defending against pathogen attack and herbivory. They have been used by humans for 

medicinal and recreational purposes amongst others. Glycosyltransferases catalyze the 

transfer of sugars from donor substrates to acceptors. Glucosyltransferases are a 

specific type of glycosyltransferases known to transfer glucose molecules from a 

glucose donor to a glucose acceptor (aglycone) producing the corresponding glucose 

secondary metabolite or glycone, in this case glucosides. It was hypothesized that 

SBIP68, a tobacco putative glucosyltransferase-like protein glucosylated salicylic acid. 

Salicylic acid is an essential plant defense secondary metabolite. SBIP68 was cloned 

and heterologously expressed in both prokaryotic and eukaryotic systems. Results from 

activity screening suggest that SBIP68 is a UDP-glucose flavonoid glucosyltransferase 

with broad substrate specificity. Further studies are required to fully characterize 

SBIP68. 

 

 

 



3 

 

     DEDICATION 

To my beloved parents Dr. Idowu Adekunle Odesina and Mrs. Olajumoke 

Oluwatoyin Odesina who inspire me and have never failed to support me in fulfilling my 

aspirations, and to my Lord, in whom I place my trust.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to members of my committee, Dr. Dhirendra 

Kumar, Dr. Cecilia McIntosh, and Dr. Jonathan Peterson, for their guidance, support, 

and constructive criticisms. I would like to specially thank Dr. Dhirendra Kumar for his 

guidance, and the knowledge and skills I acquired during the course of this research. I 

would like to thank the staff/ faculty of the Department of Biological Sciences here at 

ETSU. I would like to acknowledge the support of my colleagues in the lab, both 

graduates and undergraduates. Special thanks to Dr. Shivakumar Devaiah, Preethi 

Sathanantham, and Sangam Kandel of Dr. Cecilia McIntosh’s laboratory for their help 

during this research, and the ETSU School of Graduate Studies for the tuition 

scholarship. This research was supported by a grant from the National Science 

Foundation (MCB#1022077) to DK and funds from the Department of Biological 

Sciences, ETSU. Lastly, to my sister, Abisola, my friend and brother, Jubril, and all the 

members of my family, and my friends, here in the United States and back home, I 

would like to say thank you for their unrelenting support and encouragement throughout 

my stay at ETSU. 

 

 

 

 

 

 



5 

 

TABLE OF CONTENTS 
              Page 

ABSTRACT  .................................................................................................................... 2 

ACKNOWLEDGEMENTS  .............................................................................................. 4 

LIST OF TABLES ............................................................................................................ 9 

LIST OF FIGURES ........................................................................................................ 10 

 

Chapter 

1. INTRODUCTION  ...................................................................................................... 12 

 Salicylic Acid Binding Protein 2 (SABP2)  ................................................................. 24 

 UGTs, SA, and the Significance of Glucosylation   ................................................... 27 

 Hypothesis ................................................................................................................ 32 

2. MATERIALS AND METHODS  ................................................................................. 33 

 Plant Materials  ......................................................................................................... 33 

 Chemicals and Reagents  ......................................................................................... 33 

 Cells and Vectors  ..................................................................................................... 35 

 Oligonucleotides  ...................................................................................................... 35 

 Apparatus  ................................................................................................................. 36 

 Methods  ................................................................................................................... 36 

 Cloning and Expression of SBIP68 in E. coli  ........................................................ 36 

Total RNA Extraction .......................................................................................... 37 

cDNA Synthesis .................................................................................................. 39 

Polymerase Chain Reaction (PCR)  ................................................................... 39 

Agarose Gel Electrophoresis  ............................................................................. 40 

Purification of PCR Product  ............................................................................... 41 

Construction of pGEMT-SBIP68 Clone .............................................................. 41 

Preparation of Fresh Competent DH5α Cells  .................................................... 42 

Transformation of E. coli DH5α with pGEMT-SBIP68 Plasmid DNA  ................. 43 

Verification of pGEMT-SBIP68 Plasmid by Colony PCR .................................... 43 

Plasmid DNA Isolation from pGEMT-SBIP68 Clones  ........................................ 44 

Sequencing of pGEMT-SBIP68 Recombinant Plasmid  ..................................... 44 

Cloning of SBIP68 into E. coli Expression Plasmid pET-28a .............................. 45 



6 

 

Transformation of E. coli BL21(DE3) pLysE with pET-28a-SBIP68 Plasmid  ..... 46 

Test for Recombinant pET-28a-SBIP68 Protein Expression  ............................. 46 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)  ..... 47 

Western Blot Analysis  ........................................................................................ 47 

Recombinant pET-28a-SBIP68 Protein Solubility Test  ...................................... 49 

Optimization of Conditions for Protein Solubility ................................................. 50 

Cell Lysis and Purification of Recombinant SBIP68 Protein  .............................. 51 

Analysis of Glucosyltransferase Activity Reaction Products using HPLC  .......... 52 

Cloning and Expression of SBIP68 in P. pastoris  .................................................. 53 

PCR Amplification of SBIP68 for Cloning into pPICZA ....................................... 53 

Purification of PCR Product  ............................................................................... 54 

Construction of pGEMT-SBIP68’ Clone   ............................................................ 55 

Recombinant Plasmid pGEMT-SBIP68’ Propagation and Isolation  ................... 55 

Sequencing of pGEMT-SBIP68’ Recombinant Plasmid  .................................... 55 

Digestion of pGEMT-SBIP68’ Plasmid and pPICZA Vector  ............................... 55 

Ligation of SBIP68’ into pPICZA  ........................................................................ 56 

Transformation of E. coli DH5α with pPICZA-SBIP68’ Plasmid DNA  ................ 56 

Verification of the Presence of pPICZA-SBIP68’ Plasmid by Colony PCR ......... 57 

Recombinant Plasmid pPICZA-SBIP68’ Propagation and Isolation ................... 57 

Sequencing of pPICZA-SBIP68’ Recombinant Plasmid  .................................... 58 

Preparing pPICZA-SBIP68’ DNA for Transformation into Pichia pastoris ........... 58 

Preparation of Electrocompetent Pichia pastoris X-33 Mut+ Cells  ..................... 59 

Transformation of P. pastoris  ............................................................................. 60 

Direct PCR Screening of P. pastoris Clones  ..................................................... 60 

Time Course Expression of Recombinant SBIP68’  ........................................... 61 

Preparing Samples for SDS-PAGE and Western Blot Analysis  ......................... 62 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)  ..... 63 

Western Blot Analysis  ........................................................................................ 63 

Large Scale Expression of Pichia-SBIP68’  ........................................................ 63 

Purification of Recombinant SBIP68’ Protein Expressed in Pichia pastoris ........ 64 

Purification of Recombinant SBIP68’ using Anion Exchange Chromatography .. 65 

Analysis of Glucosyltransferase Activity using Radioactive Method ................... 65 



7 

 

Analysis of Glucosyltransferase Activity Reaction Products using HPLC ........... 66 

3. RESULTS  ................................................................................................................. 68 

 Cloning and Expression of SBIP68 in E. coli  ............................................................ 68 

Bioinformatics Analyses of SBIP68 .................................................................... 68 

Subcellular Localization of SBIP68 ..................................................................... 70 

RNA Extraction ................................................................................................... 71 

cDNA Synthesis .................................................................................................. 71 

PCR Amplification of SBIP68.............................................................................. 72 

Purification of PCR Product ................................................................................ 73 

Cloning SBIP68 in pGEMT Plasmid  .................................................................. 73 

Plasmid Isolation and DNA Sequencing of pGEMT-SBIP68  ............................. 74 

PCR Screening of pET-28a-SBIP68 Bacterial Clones ........................................ 83 

Test for Recombinant pET-28a-SBIP68 Protein Expression  ............................. 84 

Recombinant pET-28a-SBIP68 Protein Solubility Test  ...................................... 86 

Optimization of Conditions for Protein Solubility ................................................. 87 

Affinity Purification of Recombinant SBIP68 Protein ........................................... 90 

HPLC Analysis of Glucosyltransferase Activity Assay Products ......................... 92 

Cloning and Expression of SBIP68 in P. pastoris ...................................................... 98 

PCR Amplification of SBIP68 with Modified Ends for Cloning into pPICZA ........ 98 

Sequencing of pGEMT-SBIP68’ Recombinant Plasmid  .................................... 99 

PCR Screening of pPICZA-SBIP68’ Transformed Bacterial Clones  ................ 102 

Sequencing of pPICZA-SBIP68’ Recombinant Clones  .................................... 102 

Transformation of pPICZA-SBIP68’ Plasmid DNA into Pichia pastoris ............. 105 

Screening of P. pastoris Clones  ...................................................................... 106 

Expression of Recombinant SBIP68’ in Pichia pastoris  ................................... 107 

Large Scale Expression and Purification of Recombinant SBIP68’ Protein  ..... 110 

Purification of recombinant SBIP68’ using Anion Exchange Chromatography . 111 

Analysis of Glucosyltransferase Activity of SBIP68’ using Radioactive Method 114 

Analysis of Glucosyltransferase Activity using HPLC ....................................... 116 

4. DISCUSSION .......................................................................................................... 120 

 Future Directions  .................................................................................................... 136 

REFERENCES ............................................................................................................ 137 



8 

 

APPENDICES ............................................................................................................. 154 

Appendix A – Abbreviations ..................................................................................... 154 

Appendix B – Buffers, Reagents, and Media ........................................................... 155 

VITA ............................................................................................................................ 167 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



9 

 

LIST OF TABLES 

Table               Page 

1. Primers Used in This Study ....................................................................................... 35 

2. Activity Screening of SBIP68’ using UDP-14C-glucose  ........................................... 115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

LIST OF FIGURES 

Figures             Page 

1. Chemical Structure of Abscisic Acid .......................................................................... 19 

2. Chemical Structure of Ethylene ................................................................................. 20 

3. Chemical Structure of Jasmonic Acid ........................................................................ 21 

4. Chemical Structure of Salicylic Acid .......................................................................... 22 

5. Salicylic Acid Biosynthetic Pathways  ........................................................................ 23 

6. Schematic Representation of Systemic Acquired Resistance in Plants .................... 24 

7. Amino Acid Sequence of NtGT4 ............................................................................... 26 

8. Possible Role of SBIP68 in Plants ............................................................................ 27 

9. Map of E. coli Expression Plasmid pET-28a ............................................................. 37 

10. Map of pGEM-T Easy Vector .................................................................................. 42 

11. Map of pPICZ Vector ............................................................................................... 54 

12. Nucleotide and Translated Amino Acid Sequence of SBIP68 ................................. 68 

13. Flavonoid Glucosyltransferase (NtGT4) Accession Number BAD93688.1  ............. 69 

14. Subcellular Localization Prediction using MultiLoc2 ................................................ 70 

15. Subcellular Localization Prediction using Target v1.1 ............................................. 70 

16. Localization of SBIP68 as Predicted by PSORT ..................................................... 70 

17. Scan from Nanodrop Spectrophotometer  ............................................................... 71 

18. PCR Amplification of EF1α ...................................................................................... 72 

19. RT-PCR Amplification of SBIP68  ........................................................................... 72 

20. Purified SBIP68 PCR Products  .............................................................................. 73 

21. Screening of SBIP68 Inserts by Colony PCR  ......................................................... 74 

22. Nucleotide Sequence Alignment of NtGT4 and pGEMT-SBIP68 Clones ................ 79 

23. Amino Acid Sequence Alignment of NtGT4 and pGEMT-SBIP68 Clones ............... 80 

24. Full Length SBIP68 Sequence Cloned from Nicotiana tabacum  ............................ 81 

25. SBIP68 Protein BLAST Query ................................................................................. 82 

26. Alignment of SBIP68 with Other Similar Glucosyltransferases ................................ 83 

27. Colony PCR Screening of pET28a-SBIP68 Clones  ................................................ 84 

28. SDS-PAGE of pET-28a-SBIP68 (644 & 645) Expressed in E. coli  ......................... 85 

29. Test for Expression of pET28a-SBIP68 (644) and (645) in E. coli .......................... 86 

30. Solubility Test of Expressed pET28a-SBIP68 (644) and (645)  ............................... 87 



11 

 

31. Optimization of Protein Solubility ............................................................................. 89 

32 A-J. Ni-NTA Purification of SBIP68 Expressed in E. coli .......................................... 91 

33 A-D. GT Assay using E. coli Expressed SBIP68 (645) ............................................. 94 

34 A-D. GT Assay using E. coli Expressed SBIP68 (644) ............................................. 96 

35. PCR Amplification of SBIP68 for Cloning into pPICZA  ........................................... 98 

36. Verification of pGEMT-SBIP68’ Clones  .................................................................. 99 

37. Alignment of Cloned SBIP68’ in pGEMT with Reference Gene   .......................... 101 

38. Colony PCR to Verify Presence of SBIP68’ in pPICZA Plasmid .......................... .102 

39. Nucleotide Sequence Alignment of Cloned SBIP68’ in pPICZA ............................ 104 

40. Amino Acid Sequence of pPICZA-SBIP68’ Clone # C4 ......................................... 105 

41. Agarose Gel Electrophoresis of pPICZA-SBIP68’ Plasmid DNA ........................... 105 

42. Agarose Gel Showing Colony PCR of P. pastoris Clones ..................................... 106 

43. Recombinant SBIP68’ Expression in P. pastoris ................................................... 108 

44. Time Course Expression of Recombinant SBIP68’ ............................................... 109 

45. Ni-NTA Affinity Chromatography Purification of SBIP68’  ...................................... 111 

46. Ni-NTA Affinity Chromatography Purification of SBIP68’  ...................................... 112 

47. Chromatogram Showing Purification of SBIP68’ on MonoQ Column  ................... 113 

48. MonoQ Anion Exchange Chromatography Purification of SBIP68’  ...................... 114 

49. Relative Activity of SBIP68’ with Different Potential Acceptor Substrates ............. 116 

50.A-E: Identification of Reaction Products by HPLC .................................................. 117 

51. Model Suggesting SBIP68 Function in planta ....................................................... 134 

 

 

  



12 

 

CHAPTER 1 

INTRODUCTION 

Plant disease refers to an abnormal condition that causes damages to a plant, 

leading to a subsequent reduction in its productivity. The disease could be caused by a 

biotic agent or abiotic factors (McMullen and Lamey, 2001). Given the importance of 

plants and their products on our daily lives, the study of plant diseases is of utmost 

importance. Between 1845 and 1852, the great famine in Ireland led to the starvation, 

death of about one million people and caused one million more to emigrate from Ireland 

(Ross, 2002). The famine was a result of Potato Blight Disease. In the United States 

alone, an estimated $30 billion is lost every year as a result of plant diseases (Pimentel 

et al., 2000; Pimentel and Burgess, 2014). The ever increasing world population and 

resulting higher demands for food supplies makes the control of plant diseases even 

more critical (Emmert and Handelsman, 1999). Various means have been employed to 

prevent/control herbivory and plant diseases; among them is the use of chemicals 

called pesticides. Fungicides, herbicides, insecticides and the like, are all pesticides 

employed in the protection of plants (Rangwala et al., 2013). In the United States alone, 

more than $10 billion is spent yearly on the use of pesticides (Pimentel et al., 1994; 

Pimentel and Burgess, 2014). Pesticides play a major role in maintaining food 

production globally, as it has been estimated that without the use of pesticides, there 

would be a 10% increase in losses due to pests. The use of pesticides, however, may 

not necessarily result in a decrease in crop losses (Pimentel et al., 1992). For instance, 

in the United States, losses due to pests from 1945 to 1989 nearly doubled from 7% to 
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13% despite the ten-fold increase in the use of insecticides (Pimentel et al., 1991; 

Pimentel and Burgess, 2014). 

In recent times, there have been concerns over the excessive use of pesticides 

(Pimentel et al., 1992; Pimentel and Burgess, 2014). Approximately 355,000 people die 

as a result of unintentional poisonings yearly (WHO, 2003). Pesticides and other toxic 

chemicals have been strongly associated with two-thirds of these deaths (Goldman and 

Tran, 2002; FAO/UNEP/WHO, 2004). Dibromo-chloro-propane (DBCP, a banned 

pesticide) was found to cause testicular dysfunction in animals (Foote et al., 1986) and 

associated with infertility in humans exposed to it (Potashnik and Yanai-Inbar, 1987). 

Reports from animal studies have shown that pesticides can cause immune dysfunction 

(Thomas and House, 1989). Chronic health problems have been linked to 

organophosphorus pesticides (Ecobichon et al., 1990) resulting in irreversible 

neurological defects (Lotti, 1984). Neurotoxic effects have been found to persist 

following poisoning (Ecobichon et al., 1990). Other issues related to the use of 

pesticides include: poisoning in bees and reduced pollination, destruction of crop and 

crop products, contamination of surface and ground water and fishery losses among 

others. Despite their negative effects, pesticides still remain valuable pest control tools 

(Pimentel et al., 1992; Pimentel and Burgess, 2014).  

Cultivated plants such as Chinese cabbage, cowpea, cucumber, melon, potato, 

strawberry, tobacco, tomato, water melon, are known to be attacked by viral pathogens 

such as cucumber green mottle mosaic virus (CGMMV), cucumber mosaic virus (CMV), 

lettuce mosaic virus (LMV), melon necrotic spot virus (MNSV), potato virus X (PVX), 

and tobacco mosaic virus (TMV), etc. (Shigematsu et al., 1978). These plant viruses are 
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ubiquitous, occurring in plants, seeds, and soil, and readily infect plants by the suction 

of plant juices by insects, contact with virus-containing soil during planting, and contact 

with farm equipment, or humans (Shigematsu et al., 1978). A number of chemicals are 

known to control these viruses, these include antibiotics and nucleic acid-like 

compounds, both of which function by suppressing the proliferation of plant viruses 

(Shigematsu et al., 1978). These substances however, are toxic to humans, plants, and 

animals, and have not been applied practically except in the case of one chemical that 

contains sodium alginate as its main component (Shigematsu et al., 1978). 

Despite advances in agriculture, certain cultural practices have been known to 

augment the devastating potential of plant diseases (De Waard et al., 1993). Some of 

these practices include the growth of plant cultivars that are vulnerable to pathogens, 

the propagation of genetically similar crop plants in monoculture, and the application of 

inorganic fertilizers at concentrations that increase disease susceptibility (De Waard et 

al., 1993). Crop losses due to pathogenic fungi are estimated at approximately 30 % 

(Schwinn, 1992). The control of plant diseases is heavily dependent on fungicides to 

attack the plethora of fungal diseases that threaten the productivity of agricultural crops 

(Schwinn, 1992). For farmers, the obtainability of progressively effective fungicides has 

varied remarkably in its impact. These benefits include the reduction of yield losses, and 

the prevention of complete crop losses, e.g. the preservation of potato from 

Phytophthora infestans in Western Europe (Schwinn and Margot, 1991). 

Fungicides have been known to improve crop quality, enhancing marketability 

and food safety (Ragsdale et al., 1991). Improved food safety is associated with the 

reduction of mycotoxins and phytoalexins (De Waard et al., 1993). Mycotoxins are 
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capable of being carried over from fungal infections of live plants to stored plant 

material, and decomposing plant matter (De Waard et al., 1993). They constitute a 

threat in food technology, greater than the misuse of fungicides (Natl Acad Sci, 1987). 

Mycotoxins are ubiquitous, they include tenuazonic acid, patulin, fusarium toxins, ergot 

toxins, and aflatoxins (Ragsdale et al., 1991; Schwinn, 1992). Certain phytoalexins 

known to occur in potato and leguminous plants are toxic to humans and other higher 

animals (Ragsdale et al., 1991). Fungicides are capable of preventing and/or 

diminishing the production of these toxic compounds (De Waard et al., 1993). Without 

doubt, fungicides play a significant role in the defense against plant pathogens, 

however, there are emerging concerns on the use of fungicides. 

Ethylene-bis-dithiocarbamate (mancozeb) is a widely used fungicide that has 

been found to induce embryo apoptosis in mice (Paro et al., 2012). Mancozeb was 

shown to affect oocyte meiotic spindle morphology, and impair the rate at which 

fertilization occurs, even when used at very low concentrations (Paro et al., 2012). It is a 

reproductive toxicant that affects the somatic cells of the mammalian ovarian follicles, 

by inducing a premalignant-like status in both mouse and human granulosa cells (Paro 

et al., 2012). The fungicide residues benomyl, dichlofluanid, iprodione, procymidone, 

and vinclozolin found in red and white bottled wines, were shown to have a negative 

effect on yeast growth, with dichlofluanid and benomyl being the most toxic (Calhelha et 

al., 2006). In wheat seedlings, carbendazim was found to alter biochemical parameters 

such as protein content, carbohydrate content, total chlorophyll, chlorophyll a, 

chlorophyll b, and alkaline protease activity (Rangwala et al., 2013). An increase in 

concentration of the fungicide brought about a decrease in the concentration of protein, 



16 

 

carbohydrate, total chlorophyll, chlorophyll a, and chlorophyll b, and an increase in 

alkaline protease activity (Rangwala et al., 2013). A maximum decline in the 

concentration of protein (– 62.49%), carbohydrate (– 62.5%), total chlorophyll (-

57.44%), chlorophyll a (-47.89%) and chlorophyll b (-63.44%), and a maximum 

elevation in alkaline protease activity (152%) was obtained at a fungicide concentration 

of 2500 mg/l (Rangwala et al., 2013).  

The fungicides azoxystrobin, boscalid, chlorothalonil, fenarimol, fludioxonil, 

myclobutanil, pyraclostrobin, pyrimethanil, and zoxamide are emerging chemicals of 

concern due to their increasing rates of use globally, the frequency at which they are 

detected in surface waters, and their likely persistence in the environment (Elskus, 

2014). Significant sublethal effects of fungicides on aquatic invertebrates and 

ecosystems, fish reproduction and immune function, zooplankton community, metabolic 

enzymes, and ecosystem processes such as leaf decomposition in streams, have been 

observed (Elskus, 2014). Some of these effects are known to occur at concentrations 

well below single-species acute lethality values, killing 50 percent of the organisms 

within 48 to 96 hours (Elskus, 2014). This is an indication that single-species toxicity 

values may be a misrepresentation of the toxic effects of certain fungicides (Elskus, 

2014). Fungicides are also capable of showing synergistic effects when used in 

combination with other fungicides and insecticides (Elskus, 2014). The frequency of 

fungicide use is projected to increase drastically in the next few years (Troy, 2011), 

making them an emerging concern in freshwater systems in the United States (Elskus, 

2014). 



17 

 

More recently, there’s been an increase in the use of nonchemical based pest 

control methods commonly called “biological control” (Emmert and Handelsman, 1999), 

as most of the synthetic pesticides are likely to lose their usefulness over time, arising 

from revised safety regulations (Duke et al., 1993; Benbrook et al., 1996; NRC Report, 

1996), development of resistance in pathogens (Russell, 1995), and negative effects on 

non-target organisms (Felton and Dahlman, 1984; Guy et al., 1989; Dernoeden and 

McIntosh, 1991; Elmholt,  1991). Biological controls, such as microbes, are much more 

environmental friendly compared to the use of pesticides in controlling plant diseases. 

Apart from being environment friendly, the rich diversity of microbes makes them a 

seemingly endless resource and a better alternative to the use of pesticides (Emmert 

and Handelsman, 1999). Some rhizobacteria that function as effective biocontrol 

substances by suppressing a number of economically important plant pathogens usually 

promote plant growth and yield, either when applied to crop seed or into the soil (Burr et 

al., 1978; Kloepper et al., 1980a, 1980b; Kloepper et al., 1989; Brown and Surgeoner, 

1991; Turner and Backman, 1991; Bashan, 1998). These bacterial strains promote plant 

growth even in the absence of pathogens (Harris et al., 1994). They are referred to as 

plant growth promoting rhizobacteria, PGPR (Kloepper et al., 1989). 

In-depth analysis into various plant defense mechanisms and the biocontrol of 

plant diseases is essential to the development of better and safer disease control 

methods. The innate immune system otherwise referred to as the “non-specific immune 

system” (Grasso, 2002) is the first line of defense against invading pathogens. Unlike 

the adaptive immune system found in vertebrates, the innate immune system does not 

keep memory of antigens / pathogens and therefore does not provide an organism with 
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long-lasting immunity (Alberts et al., 2003). Because plants possess neither mobile 

defender cells nor the adaptive immune system characteristic of mammals, they defend 

themselves against pathogens using the innate immunity of individual cells and 

systemic signals produced by infected cells (Dangl and Jones, 2001; Ausubel, 2005; 

Chisholm et al., 2006; Bent and Mackey, 2007). 

Plants respond to a number of chemical stimuli produced by the soil and plant-

associated microbes (Pal and Gardener, 2006). These stimuli are capable of inducing 

plant host defenses via biochemical changes that boost resistance against subsequent 

infections by different pathogens (Pal and Gardener, 2006). Depending on the type, 

source, and amount of stimuli, the induction of the host defense mechanisms could be 

local and/or systemic (Pal and Gardener, 2006). Attempts are being made by plant 

pathologists to fully characterize the components of pathways involved in induced 

resistance triggered by biological control agents and other non-pathogenic micro-

organisms. Upon pathogen infection, large amounts of salicylic acid is produced, 

leading to the expression of pathogenesis-related (PR) proteins (Yalpani et al., 1991). 

PR proteins consist of a variety of enzymes with different modes of action (Yalpani et 

al., 1991). Some PR proteins lyse invading cells, others reinforce the host cell wall, and 

some trigger localized cell death (Pal and Gardener, 2006).  

In hypersensitive response (HR; a form of innate immunity), pathogen attack 

triggers rapid cell death at the site of infection and immediate surrounding cells (Agrios, 

1988; Goodman and Novacky, 1994). HR can be triggered by an array of pathogens 

and it occurs within a few hours upon pathogen contact (Morel and Dangl, 1997). In 

addition to HR, plants have a form of secondary resistance referred to as systemic 
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acquired resistance (SAR) (Morel and Dangl, 1997). SAR is an inducible defense 

mechanism that is activated in the distal uninfected parts of plants in response to a local 

infection by pathogens (reviewed in Shah et al., 2014). It confers non-specific and 

prolonged levels of resistance in uninfected parts of a plant to secondary infections by a 

wide range of pathogens (Ryals et al., 1996). SAR is triggered by pathogens that cause 

cell death due to HR (Morel and Dangl, 1997). However, HR is not required to generate 

the SAR signal (Mishina and Zeier, 2007). Plants defend themselves against pathogens 

through an interconnection of signaling pathways involving three signal molecules: 

ethylene, jasmonic acid and salicylic acid (Kunkel and Brooks, 2002).  

Abscisic acid (ABA; Fig. 1), is a phytohormone that also plays an important part 

in plant responses to environmental stress and in defense against plant pathogens 

(Swamy and Smith, 1999; Chinnusamy et al., 2004). ABA is known to play an essential 

role in various coordinating cellular processes including seed germination, seed 

development, dormancy, and growth with responses to environmental changes. These 

involve complex regulatory mechanisms that regulate its biosynthesis, catabolism, 

perception, and transduction (Xiong and Zhu, 2003). It is produced in response to 

different forms of stress which include but are not limited to cold, salinity and drought 

 

                       Figure 1: Chemical Structure of Abscisic Acid 
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(Wu et al., 1997). It reduces water loss due to transpiration by triggering the closing of 

stomata (Schroeder et al., 2001). ABA’s glucose ester is gradually dispersed from 

leaves recovering from water stress thereby maintaining abscisic acid levels for a period 

of time after the leaves have regained turgor (Hiron and Wright, 1973). Apart from its 

role in environmental stress, ABA-mediated signaling is also important in plant – 

pathogen interactions (Seo and Koshiba, 2002). It is involved in increasing resistance to 

pathogens by plants through its positive effect on callose deposition (Mauch-Mani and 

Mauch, 2005). Wounding induces an increase in the synthesis of ABA. 

Ethylene (Fig. 2), is a gaseous phytohormone with roles in various processes in 

plants such as growth and development (Yang and Hoffman, 1984). It is also a regulator 

of fruit ripening (Van Loon et al., 2006). Its biosynthesis in plants has been found to 

increase rapidly following exposure to pathogens (Ecker and Davis, 1987). The increase 

in ethylene biosynthesis in infected plants brings about a subsequent increase in 

chitinase activity in these plants (Roby et al., 1986) and the deposition of hydroxyproline 

in the cell walls of the infected tissues (Roby et al., 1985). Hydroxyproline rich 

glycoproteins are the major structural proteins present in plant cell walls. Chitinases are 

enzymes that are responsible for the breakdown of glycosidic bonds in chitin (Jollès and 

 

               Figure 2: Chemical Structure of Ethylene 

http://en.wikipedia.org/wiki/Glycosidic_bond
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Muzzarelli, 1999) which is an important component of fungal cell-walls and the 

exoskeleton of arthropods, thereby conferring protection against fungal attack and 

attack from arthropods on plant cells. Ethylene effects the accumulation of mRNAs of 

genes responsible for plant defense (Ecker and Davis, 1987). Ethylene has been found 

to contribute to disease resistance in some interactions (Thomma et al., 1999; Norman-

Setterblad et al., 2000), while it is known to promote disease in other interactions (Bent 

et al., 1992; Lund et al., 1998; Hoffman et al., 1999). 

Jasmonic acid (JA; Fig. 3), is a phytohormone with a number of physiological 

roles including regulation of growth and development and response to biotic and abiotic 

stress factors (Creelman and Mullet, 1995). JA, derived from lipids (Schaller and Stintzi, 

2009) is biosynthesized from linolenic acid (Creeman and Mullet, 1995). JA also 

controls pollen maturation and wound responses (Turner et al., 2002). JA and its ester 

methyl jasmonate (MeJA) promote senescence (cell death), acting as growth regulators 

as mentioned earlier (Creelman and Mullet, 1997). Inhibiting the biosynthesis of JA in 

Arabidopsis thaliana greatly increases plant susceptibility to a wide array of pathogens 

(Staswick et al., 1998; Thomma et al., 1998; Vijayan et al., 1998; Norman-Setterblad et 

al., 2000). 

 

                Figure 3: Chemical Structure of Jasmonic Acid 
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Salicylic acid (SA; Fig. 4), is a phenolic phytohormone that is widely distributed in 

plants, with its basal levels differing by as much as 100-fold between different plant 

species (Raskin et al., 1990). It has various roles in plants ranging from growth and 

development, ion transport, photosynthesis, response to abiotic stresses including 

drought (Munne´- Bosch and Penuelas, 2003; Chini et al., 2004), heat (Larkindale and 

Knight, 2002; Larkindale et al., 2005), osmotic stress (Borsani et al., 2001) and heavy 

metal tolerance (Metwally et al., 2003; Yang et al., 2003; Freeman et al., 2005). It is well 

studied for its involvement in plant defense signaling against pathogen infections (Hayat 

and Ahmad, 2007; Kumar, 2014) in which case it induces the production of PR proteins 

(Hooft van Huijsduijnen et al., 1986). SA induces resistance in uninfected parts of plants 

through SAR (Fig. 6). SAR induces resistance against pathogens in other nearby plants 

too by gaseous diffusion of methyl salicylate (MeSA), a salicylic acid ester (Shulaev et 

al., 1997). MeSA is likely converted into SA to induce resistance (Shulaev et al., 1997). 

SA biosynthesis occurs through two differentiated pathways (Fig. 5), that make use of 

different precursors: the phenylpropanoid (phenylalanine dependent) and the 

isochorismate (non-phenylalanine dependent) pathways in the cytoplasm and 

chloroplast, respectively (Rivas-San Vicente and Plasencia, 2011; Kumar 2014). The 

 

 
 
        Figure 4: Chemical Structure of Salicylic Acid 
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isochorismate pathway involves isochorismate synthase and isochorismate pyruvate 

lyase, and is responsible for synthesizing most of the pathogen-induced salicylic acid in 

Arabidopsis (Wildermuth et al., 2001), Nicotiana benthamiana (Catinot et al., 2008), and 

tomato (Uppalapati et al., 2007). Upon infection, SA concentration increases at the 

pathogen infection sites, leading to the formation of necrotic lesions from hypersensitive 

response. This activates the SAR pathway (Ryals et al., 1996) and activation of SAR 

produces a broad-spectrum systemic resistance (Hunt and Ryals, 1996; 

Neuenschwander et al., 1996). 

 

      
 
Figure 5: Salicylic Acid Biosynthetic Pathways. Enzymes are shown in italics. PAL, 
Phenylalanina Ammonia Lyase; ISC, Isochorismate Synthase; BA2H, Benzoic Acid 2-
Hydroxylase; IPL, Isochorismate Pyruvate Lyase; SAGT, Salicylic Acid 
Glucosyltransferase; SAMT, Salicylic Acid Methyltransferase; SABP2, Salicylic Acid 
Binding Protein 2; MES, Methyl Esterase; SGE, Salicyoyl Glucose Ester; SAG, Salicylic 
Acid O-β-Glucoside; MeSA, Methyl Salicylate (Figure adapted from Vlot et al. 2009).  
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Salicylic Acid Binding Protein 2 (SABP2) 

There are four proteins that currently are known to bind SA in tobacco and these 

are collectively referred to as salicylic acid binding proteins (SABP) (Vlot et al., 2009), 

although recent studies suggest the presence of additional new SABPs in Arabidopsis 

(Kumar, 2014; Manohar et al., 2014). One of the SABP, salicylic acid binding proteins 2 

(SABP2) has the highest affinity for salicylic acid (Du and Klessig, 1997). It is a 29 kDa 

protein required for both local resistance and SAR after infection by tobacco mosaic 

virus (TMV) (Kumar and Klessig, 2003). It catalyzes the synthesis of methyl salicylic 

acid (MeSA) into SA to induce SAR (Forouhar et al., 2005). Exogenous application of 

 
 
 
Figure 6: Schematic Representation of Systemic Acquired Resistance (SAR) in Plants. 
Volatile MeSA diffuses to uninfected parts and neighboring plants to induce pathogen 
resistance. 
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SA or its analog acibenzolar-S-methyl (ASM) also induces SAR as SABP2 catalyzes the 

conversion of ASM into acibenzolar which induces SAR (Tripathi et al., 2010). SABP2-

silenced tobacco plants neither express PR-1 proteins nor induce SAR expression to a 

significant level when treated with ASM (Tripathi et al., 2010). Conversely, treatment of 

the same type of plants with acibenzolar induces full SAR indicating that SABP2 is 

required for induction of resistance (Kumar and Klessig, 2003; Tripathi et al., 2010). 

SABP2 is feedback inhibited by reverse binding of the product of the reaction it 

catalyzes, SA. This inhibition promotes the accumulation of the more volatile MeSA to 

be translocated through the phloem to uninfected parts of the plant (Forouhar et al., 

2005; Park et al., 2007).  

To better understand the role of SABP2 in inducing SAR, an attempt was made 

to identify its interacting proteins. One of the best ways to identify interacting proteins is 

to use a yeast two-hybrid screen (Y2H). Y2H is a technique used in the discovery of 

protein–protein interactions (Young, 1998) and also protein–DNA interactions (Joung et 

al., 2000; Hurt et al., 2003) by testing for physical interactions between two proteins or a 

protein and a DNA molecule. Typically one of the proteins, the known one, is termed the 

‘bait’ and the unknown one(s) the ‘prey’. Interaction between the proteins causes 

activation of a reporter gene which could be detected by change of color, antibiotic 

resistance growth on depleted minimal media. With the aid of Y2H using full length 

SABP2 as a bait, a number of interacting tobacco proteins were discovered. These 

interacting proteins have been collectively referred to as ‘SABP2 interacting proteins’ 

(SBIPs). SBIP68, the focus of this research, is one of the interacting proteins. 

Bioinformatics analyses revealed that the partial amino acid sequence of SBIP68 is 
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100% identical to an annotated putative UDP-glucose: flavonoid glucosyltransferase 

from Nicotiana tabacum (Fig. 7), with NCBI accession number BAD93688.1. It is a B 

type (fold) glycosyltransferase with 496 amino acid residues in its primary chain (NCBI). 

It is encoded by the NtGT4 gene with a protein coding region that is 1491 base pairs 

long (NCBI).  

SBIP68 has the 44 amino acid C-terminal signature motif characteristic of family 

1 of plant GT’s (UGT’s), the plant secondary product glycosyltransferase (PSPG) box 

(Fig. 7; amino acid residues numbers 355 - 398), which is thought to be responsible for 

binding the glucose donor substrate, UDP-glucose (Hughes and Hughes 1994). Results 

from the Y2H screening showing that SBIP68 interacts with SABP2, which has high 

affinity for SA (Kumar and Klessig, 2003), and bioinformatics analyses predicting 

SBIP68 to be a UGT, both indicate that SBIP68 might be involved in the glucosylation of 

SA during stress responses in plants (Fig. 8).  

 

 

        1 MATQVHKLHF ILFPLMAPGH MIPMIDIAKL LANRGVITTI ITTPVNANRF SSTITRAIKS 

       61 GLRIQILTLK FPSVEVGLPE GCENIDMLPS LDLASKFFAA ISMLKQQVEN LLEGINPSPS 

      121 CVISDMGFPW TTQIAQNFNI PRIVFHGTCC FSLLCSYKIL SSNILENITS DSEYFVVPDL 

      181 PDRVELTKAQ VSGSTKNTTS VSSSVLKEVT EQIRLAEESS YGVIVNSFEE LEQVYEKEYR 

      241 KARGKKVWCV GPVSLCNKEI EDLVTRGNKT AIDNQDCLKW LDNFETESVV YASLGSLSRL 

      301 TLLQMVELGL GLEESNRPFV WVLGGGDKLN DLEKWILENG FEQRIKERGV LIRGWAPQVL 

      361 ILSHPAIGGV LTHCGWNSTL EGISAGLPMV TWPLFAEQFC NEKLVVQVLK IGVSLGVKVP 

      421 VKWGDEENVG VLVKKDDVKK ALDKLMDEGE EGQVRRTKAK ELGELAKKAF GEGGSSYVNL 

      481 TSLIEDIIEQ QNHKEK 

 
Figure 7: Amino Acid Sequence of NtGT4. The PSPG Motif is shown in bold, 
amino acid residues numbers 355–398. 
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UGTs, SA, and the Significance of Glucosylation  

 Based on bioinformatics analyses, SBIP68 shows similarity (24% - 52% 

identity) with many UDP-glycosyltransferases in Arabidopsis. UGT group D family 

includes 13 members in Arabidopsis and it also contains genes identified in other plant 

species, including tobacco, to be involved in plant stress responses (Langlois-Meurinne 

et al., 2005). However, different patterns of expression in response to pathogens and 

defense signal molecules such as SA, MeJA and H2O2 have been observed (Langlois-

Meurinne et al., 2005). None of them are induced by MeJA even though UGT73B genes 

(B1-B5) expression are induced upon wounding (Langlois-Meurinne et al., 2005). Only 

three of them, UGT73B3, UGT73B5, and UGT73C1 have been found to respond to 

H2O2 (Langlois-Meurinne et al., 2005). Most of them respond to SA treatment (Langlois-

Meurinne et al., 2005). UGT73C6, a UDP-glucose: flavonol glucosyltransferase 

              

Figure 8: Possible Role of SBIP68 in Plants. SBIP68 might be involved in the 
glucosylation of SA during stress responses.  
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belonging to the Arabidopsis UGT group D, has been found to glucosylate the 7-OH 

position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively 

(Jones et al., 2003). Presently, it is the only Arabidopsis UGT group D enzyme for which 

the endogenous substrates are known (Langlois-Meurinne et al., 2005).  

 Salicylic acid has been found to be glycosylated at both the hydroxyl and the 

carboxyl groups (Song, 2006). In TMV or Pseudomonas syringae pv. phaseolicola -

inoculated tobacco (Nicotiana tabacum cv. Xanthi-nc NN genotype) leaves, newly 

synthesized SA is converted primarily to SA 2-O-β-D-glucoside (SAG) by glucosylation 

at the hydroxyl group, and to glucosyl salicylate (GS), a relatively minor metabolite, by 

glucosylating the carboxyl group, implying this to be a general process in tobacco plants 

(Lee and Raskin, 1998). GS is rapidly produced while levels of SAG increases gradually 

over a longer period of time making it a more stable metabolite of SA (Lee and Raskin, 

1998). Biosynthesis of GS and SAG are catalyzed by UDPG/SA carboxyl 

glucosyltransferase (SACGT) and UDPG/SA 2-O-glucosyltransferase (SAGT), 

respectively (Lee and Raskin, 1998).  

 Unlike methyl salicylate, the glucosylated conjugates of SA accumulate only in 

and around inoculated (or infected) parts of the plants where hypersensitive necrotic 

lesions are formed, as there are no detectable levels of glucosylated SA in phloem sap 

or uninoculated areas of TMV-inoculated plants (Enyedi et al., 1992 ; Malamy et al., 

1992). This suggests that glucosylation is not necessary for long distance signaling 

during systemic acquired resistance (SAR) (Lee and Raskin, 1998). Just as inoculation 

of tobacco leaves with TMV causes the activity of β-GTase to increase significantly as a 

result of increased SA biosynthesis, exogenous application of SA produces similar 
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results, showing that tobacco does not differentiate between endogenously produced 

SA and exogenously supplied SA with regards to compartmentalization and biological 

activity (Enyedi and Raskin, 1993).  

 Like most other enzymes, glucosyltransferases show substrate specificity. Most 

plant glucosyltransferases are specific for UDP-glucose and a given phenolic compound 

(Bechthold et al., 1991: Sun and Hrazdina, 1991: Fukuchi-Mizutani et al., 2003). An 

exception to this is UDP-glucose:cinnamic acid glucosyltransferase present in sweet 

potato that is involved in the conjugation of a range of phenolic compounds (Shimizu 

and Kojima, 1984). Tobacco UDP-glucose: salicylic acid 3-O-glucosyltransferase (β-

GTase) has been found to be specific for the UDP-glucose as sugar donor and SA as 

glucose acceptor (Enyedi and Raskin, 1993). 

Because tobacco leaves rapidly metabolize SA to β-O-D-glucosylsalicylic acid 

(GSA), most of the SA in TMV-inoculated leaves of tobacco is present in the form of 

GSA (Enyedi et al., 1992; Malamy et al., 1992). Induction of  β-GTase activity by SA has 

been found to be  inhibited by RNA synthesis inhibitors applied to cell-suspension 

cultures of  M. japonicus (Tanaka et al., 1990) and  roots of oat plants (Yalpani et al., 

1992) indicating that SA triggers the de novo synthesis of β-GTase (Enyedi and Raskin, 

1993). However, high concentrations of SA may inhibit plant growth (Pareek and Gaur, 

1973; Chou and Patrick, 1976) by SA-induced disruption of membrane and inhibition of 

ion absorption (Glass, 1973; Harper and Balke, 1981; Macri et al., 1986). Conversion of 

SA to GSA may be required for sequestering excessive SA in the vacuole (Ben-Tal and 

Cleland, 1982), hence protecting plant tissues from excessive damage by SA. This 

makes sense as SA is required in a certain amount for increased activity of β-GTase 
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and a subsequent increase in GSA. GSA may also serve to store metabolized SA 

during plant defense (Enyedi and Raskin, 1993). 

 In strawberry plants, the expression of FaGT6 and FaGT7 glucosyltransferases 

were found to be induced by certain plant defense signals suggesting their involvement 

in stress responses (Griesser et al., 2008). Both glucosyltransferases were found to 

glucosylate a number of exogenous substrates which do not occur in strawberry fruits in 

vitro, suggesting they may have a role in detoxification (Griesser et al., 2008). 

 In Picrorhiza, MeJA treatment resulted in the upregulated expression of UGTs 

UGT86C4 and UGT94F2. UGT86C4 expression was observed to increase 8-fold 12 

hours post-application of MeJA and the expression of UGT94F2 increased 15-fold 24 

hours post MeJA application (Bhat et al., 2013). Upon application of SA, UGT94F2 

displayed maximum increase by 10-fold, 12 hours after induction while a 16-fold 

increase in expression levels occurred with UGT86C4, 6 hours after induction (Bhat et 

al., 2013). The rapid increase in the transcript levels of these UGT genes post 

application of MeJA or SA is indicative of a possible role for these UGTs in plant 

defense responses (Bhat et al., 2013). 

 Glycosylation is just one of the many mechanisms involved in the maintenance 

of cellular homeostasis in plants. Glycosides are known to perform a number of 

functions in plants including but not limited to serving as high-energy donors and 

signaling molecules. They are involved in the biosynthesis of plant cell walls (Ostrowski 

and Jakubowska, 2014). UGT’s catalyze the conjugation of plant hormones, a 

regulatory mechanism that may serve to check the concentration of physiologically 

active plant hormones during growth and development (Ostrowski and Jakubowska, 
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2014). Mutations leading to loss of function in UGT genes are known to have adverse 

effects on the phenotype of the plants involved (Ostrowski and Jakubowska, 2014). 

 The significant role of SA in plants responding to stress suggests that it makes 

use of an important signaling molecule whose concentration must be strictly controlled 

(Ostrowski and Jakubowska, 2014). Even though the biological importance of SA 

conjugates is still not fully understood, it is assumed that some of them serve to 

increase the polarity of SA, thereby enabling its accumulation in plant vacuoles and 

protection from degradation (Ostrowski and Jakubowska, 2014). Based on these, SA 

glucosides may serve to transport and store SA (Ostrowski and Jakubowska 2014). 

Further studies on the role of UGT’s in plants will enable us to come up with ways to 

better control plant diseases and improve crop yield, by enhancing the resistance of 

plants to pathogens and diseased conditions and consequently improve the life of 

animals and humans alike.  

 This research aims at cloning the full length SBIP68, expression and 

purification using a heterologous system (E. coli and/or yeast) and functionally 

characterizing by testing a number of potential substrates (including but not limited to 

salicylic acid) with the recombinant purified protein in vitro. Attempts will be made to 

understand the effect of interaction of SBIP68 with SABP2, effect of SA on SBIP68, and 

its possible role (if any) in the plants defense signaling mechanism. 
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Hypothesis 

Hypothesis: SBIP68 is a UDP-glucosyltransferase which glucosylates salicylic acid. 

Yeast two hybrid screening revealed that SBIP68 interacts with SABP2 which 

has high affinity for SA (Kumar and Klessig, 2003), and bioinformatics analyses 

predicted SBIP68 to be a UGT. Based on these, it was hypothesized that SBIP68 is a 

UDP-glucosyltransferase which glucosylates salicylic acid. It is also possible that 

SBIP68 does not glucosylate SA, instead it glucosylates other molecules with important 

roles in SA-mediated defense signaling in tobacco plants and its interaction with SABP2 

modulates its activity or vice-versa. 
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CHAPTER 2 

MATERIALS AND METHODS 

Plant Materials 

Nicotiana tabacum cv. Xanthi-nc NN (XNN) plants were utilized for the purpose 

of this experiment. Soil containing peat moss (Fafard Canadian growing mix F-15, 

Agawam, MA) was used to cultivate the plants. The soil was autoclaved for 20 minutes 

and allowed to cool to room temperature, after which an average of 20 seeds were 

sown in a 4 x 4 inch plastic container. The container with the seeds was placed in a 

controlled environment, a growth chamber (PGW 36, Conviron, Canada) set at 16-h day 

cycle and 22 °C, the plants would be maintained under these conditions through the 

course of the experiment. After 14 days, seedlings were transferred to 4 x 4 inch pots (2 

per pot), and maintained in these for 3 weeks. Young plants were then transferred one 

per   8” pot. Fertilizer (nitrogen, phosphorus, and potassium; 21:5:20) was diluted and 

applied to the plants 3 days after transferring to 8” pots. The plants were grown until 

they were 6 to 8 weeks old before using them for the experiments.  

Chemicals and Reagents 

Agar (Acros organics), agarose (SeaKem), ammonium persulfate (APS), 

ammonium sulfate (NH4)2SO4), benzamidine-HCl, ß-mercaptoethanol (ß-ME), bovine 

serum albumin (BSA), chloroform, coomassie brilliant blue G-250, coomassie brilliant 

blue R-250, ethylenediaminetetraacetic acid (EDTA), glycerol, glycine, imidazole, 

isopropanol, magnesium chloride (MgCl2), methanol, phenylmethanesulfonyl fluoride 

(PMSF), ponceau-S, sodium chloride (NaCl), potassium phosphate dibasic (K2HPO4), 

potassium phosphate monobasic (KH2PO4), sodium dodecyl sulfate (SDS), 
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tetramethylethylenediamine (TEMED), TRIS base, tween-20, ethidium bromide, phenol, 

isoamyl alcohol, 100% ethanol, glacial acetic acid, yeast extract, yeast nitrogen base 

powder, and all other standard chemicals were purchased from Fisher Scientific 

(Pittsburgh, PA). Liquid nitrogen (Airgas, TN), proteose peptone 3 (Becton and 

Dickenson), dithiothreitol (DTT), diethylpyrocarbonate (DEPC), TRI reagent, mouse 

monoclonal anti poly-histidine antibody, HRP conjugated goat anti-mouse IgG, mouse 

anti c-myc monoclonal antibody, lyticase enzyme from Arthobacter luteus, and acid 

washed glass beads (0.5mm), were purchased from Sigma-Aldrich. Acrylamide solution 

(30%), pre-stained low molecular weight marker, SDS sample buffer, and Gene Pulser 

cuvettes (0.2 cm) were purchased from Bio-Rad, Hercules, CA. Pierce ECL Western 

blotting substrate was purchased from Thermo Scientific, Rockford, IL. WesternSure 

PREMIUM Chemiluminescent Substrate was purchased from LI-COR, Lincoln, NE. 

Polyvinylidene fluoride (PVDF) membranes were purchased from Millipore, Billerica, 

MA. Oligo dT-20, and Taq DNA polymerase were purchased from Invitrogen, CA. 

RNAse free DNAse, recombinant RNAsin, and MMLV reverse transcriptase were 

purchased from Promega. dNTP, 100 bp and 1 kb DNA ladders, and restriction 

enzymes (New England Biolabs), and gel loading dye (Bio-Rad). ZeocinTM was 

purchased from Research Products International Corps (Illinois). QIAprep Spin Miniprep 

Kit, QIAGEN Plasmid Midi Kit, and QIAquick Gel Extraction Kit were purchased from 

Qiagen (Valencia, CA). Advantage HF 2 PCR Kit was purchased from Clontech.  
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Cells and Vectors 

pGEM®-T easy vector was purchased Promega, pET-28a vector from Novagen, 

and pPICZA vector from Invitrogen (Carlsbad, CA). X-33 strain of Pichia pastoris was a 

gift from Dr. Cecilia McIntosh, East Tennessee State University (Johnson City, TN). 

Oligonucleotides 

All the primers used in this study were custom synthesized by Eurofins MWG 

Operon (Huntsville, AL). The lyophilized oligonucleotides were re-suspended in 

nuclease-free water and diluted to give a final concentration of 10 μM. Table 1 lists all 

the primers and their respective uses. 

Table 1: Primers Used in This Study 

Primers                   Sequence (5’ – 3’) Tm       Purpose 

DK639 
forward  

GCCTCGAGGTCATGGCAACTCAAGTGCAC 
AAACTTCATTTCATACTATTC 

72.9 Cloning in P. 
pastoris 

DK640 
reverse  

GAGGGCCCTTTTTCCTTGTGATTTTGTTGC 
TCAATGATGTCTTCAATCAG 

72.1 Cloning in P. 
pastoris 

DK641 
forward  

GACTGGTTCCAATTGACAAGC 
60.6 Sequencing 

in P. pastoris 
DK642 
reverse  

GCAAATGGCATTCTGACATCC 
60.6 Sequencing 

in P. pastoris 
DK643 
forward  

GGATCCATGGCAACTCAAGTGCACAAACT 
TCATTTCATACTATTC 

70.2 Cloning in E. 
coli 

DK644 
reverse  

CTCGAGCTATTTTTCCTTGTGATTTTGTTG 
CTCAATGATGTCTTC 

69.3 Cloning in E. 
coli 

DK645 
reverse  

CTCGAGTTTTTCCTTGTGATTTTGTTG 
CTCAATGATGTCTTCAAT 

68.4 Cloning in E. 
coli 

DK551 
forward  

GTAAAACGACGGCCAG 
56.7 

Sequencing 

DK552 
reverse  

CAGGAAACAGCTATGAC 
54.8 

Sequencing  
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Apparatus 

Mastercycler (Eppendorf, NY), ND-1000 nanodrop spectrophotometer (Thermo 

scientific), agarose gel electrophoresis apparatus (Fisher Biotech) and SDS-PAGE 

apparatus (BIO-RAD), Gene Pulser (BIO-RAD), Western blot apparatus (BIO-RAD), gel 

doc (UVP) system, pH meter (Beckman), high speed centrifuge (Sorvall RT6000 

refrigerated centrifuge, DuPont, Waltham, MA), UV transilluminator (UVP Bioimaging 

Systems), LI-COR C-DIGIT Western blot imager (LI-COR). Spectrophotometer, French 

press (Thermo Sciencific), centrifuge (Beckman, model J2-21 or Sorvall RC5B), 

sonicator, AKTA purifier 10 (GE) system, Beckman LS 6500 scintillation counter 

(McIntosh lab, ETSU), Waters Breeze HPLC system (McIntosh lab, ETSU). 

Methods 

Cloning and Expression of SBIP68 in E. coli 

To clone and express SBIP68 in E. coli, gene specific primers (DK 643, DK644 

and DK645) were synthesized and used. All primers were designed with a restriction 

enzyme site to enable cloning into an E. coli expression plasmid. The forward primer 

DK643, had a BamHI restriction endonuclease site. Both the reverse primers, DK644 

and DK645 had Xho I restriction endonuclease sites. The plasmid pET-28a (Figure 9) 

used for cloning and expression of SBIP68 in E.coli has both an N- and C- terminal 6x 

polyhistidine tag coding sequence to help ease purification of recombinant proteins. The 

reverse primer DK644 was designed to have the original stop codon present in the 

SBIP68 gene, in which case the expressed protein was expected to be fused to the N-

terminal 6x polyhistidine tag of the pET-28a vector. Reverse primer DK645 on the other 
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hand did not have the stop codon of the SBIP68 gene in it, the expressed protein in this 

case was to be fused to either the C-terminal 6x polyhistidine tag or both the N and C -

terminal 6x polyhistidine tags of the pET-28a vector. 

 

Total RNA Extraction 

To minimize degradation during total RNA isolation, all material used were either 

disposable or sterilized by autoclaving. Fresh DEPC treated water (Appendix B) was 

autoclaved and was used. Leaf discs were obtained from wild type tobacco XNN plants 

with the aid of a cork borer. The discs were transferred into eppendorf tubes, and snap 

frozen by dropping into liquid nitrogen. The frozen tissues were homogenized to fine 

 
 
Figure 9: Map of E. coli Expression Plasmid pET-28a (Novagen). Bam HI and Xho I 
restrictriction sites of the multiple cloning area were used to clone SBIP68 in E. coli. 
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powder using a mechanical grinder and liquid nitrogen. To the finely ground leaf powder 

(~50-100 mg), 1 ml TRI reagent was added and vortexed. The sample mixture was 

incubated for 5 mins at room temperature. Two hundred microliters of chloroform was 

added to the sample mixture, mixed gently by inverting the tubes several times, and 

incubated at room temperature for 3 minutes. Following incubation, the sample was 

centrifuged at 12,000 x g for 10 minutes at 4 °C. The supernatant resulting from the 

centrifugation step was transferred to a fresh eppendorf tube. To the supernatant,     

500 μl isopropanol was added, mixed and followed by a 10 minute incubation period at 

28 °C. The sample was centrifuged at 12,000 x g for 10 minutes at 4 °C and the 

supernatant was discarded, while making sure the pellets remained in the tube. The 

pellet was resuspended in 1 ml of 75 % cold ethanol (prepared with DEPC treated 

water) and centrifuged at 7500 x g for 5 minutes at 4 °C. The supernatant was 

discarded and the pellet was air dried for 5-10 minutes. The pellet was resuspended in 

43 μl DEPC-treated (ribonuclease free) water and incubated at 37 °C for 5 minutes. Five 

microliters DNase buffer and 2 μl DNase (RNase free) were added to the sample, 

mixed, and incubated at 37 °C for 20 minutes. To the sample, 0.5 ml of TRI reagent was 

added and vortexed, followed by a 5 minute incubation at room temperature. One 

hundred microliters of chloroform was added to the sample, mixed very gently and 

incubated at room temperature for 3 minutes. The sample was centrifuged at 12,000 x g 

for 10 minutes at 4 °C and the resulting supernatant was transferred to a fresh tube. To 

this, 250 μl isopropanol was added followed by a 10 minute incubation period at 28 °C. 

The sample was centrifuged at 12,000 x g for 10 minutes at 4 °C. The supernatant was 

carefully decanted. To the pellet, 0.5 ml of 75 % cold ethanol was added. The sample 
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was centrifuged at 7500 x g for 5 minutes at 4 °C. The supernatant was discarded, the 

pellet air dried for 10 minutes and resuspended in 20 μl DEPC-treated water. The 

sample was incubated at 55 °C for 10 minutes after which RNA concentration was 

determined using a nanodrop spectrophotometer at 260 nm. The purity of the sample 

was also determined from the value of OD260:OD280 (>1.8 shows low protein 

contamination). 

cDNA Synthesis 

In synthesizing first strand cDNA, 1 μl (0.5 μg/μl) of oligo-dT was added to 9 μl (1 

μg) of total RNA. The sample was mixed and incubated at 75 °C for 10 minutes in a 

thermocycler and then cooled to 4 °C for annealing to occur. In a separate tube, 10 μl of 

RT (reverse transcriptase) reaction mix was made. The RT reaction mix constituted 3 µl 

of DEPC-treated water, 4 µl of 5 x RT buffer,  1 μl of 10 mM dNTP, 1 μl RNasin (RNase 

inhibitor), and 1 µl MMLV reverse transcriptase (RT) enzyme. Ten microliters of the RT 

mix was added to 10 μl of the RNA/oligo-dT mix. This new 20 μl sample was briefly 

vortexed and incubated in a thermocycler at 42 °C for 60 minutes and at 70 °C for 10 

minutes for reverse transcription and inactivation of the RT enzyme to occur, 

respectively. One microliter of the newly synthesized cDNA was used to carry out a 

polymerase chain reaction (PCR) of the tobacco housekeeping gene EF1α to check the 

integrity of cDNA. The 10 µl PCR reaction mix composed of 1 μl cDNA, 1 μl of 10 x Taq 

polymerase buffer, 1 μl of 10 x dNTP mix, 0.2 μl of 10 μM forward primer, 0.2 μl of 10 

μM reverse primer, 0.2 μl of Taq DNA polymerase, 6.4 μl of H2O. The PCR conditions 

were as follows: hot start and initial denaturation at 94 °C for 2 minutes, 30 cycles of 

denaturation, annealing, and elongation at 94 °C, 55 °C, and 72 °C, for 30 seconds, 30 
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seconds, and 45 seconds respectively, and a final extension step at 72 °C for 5 

minutes. The rest of the cDNA was preserved at - 20 °C for future use. 

Polymerase Chain Reaction (PCR) 

The SBIP68 gene was PCR amplified using cDNA prepared from tobacco leaves 

and Advantage HF 2 PCR Kit (Clontech) following manufacturer’s instructions. 

Advantage HF 2 polymerase contains a mixture of Taq DNA polymerase and a 

proofreading enzyme.  Each PCR reaction mix composed 3 μl cDNA, 5 μl of 10 x HF2 

PCR Buffer, 1 μl of 50 x HF dNTP mix, 1 μl of 10 μM forward primer, 1 μl of 10 μM 

reverse primer, 1 μl of 50 x Advantage HF polymerase mix, 40 μl of H2O. The PCR 

conditions were as follows: hot start and initial denaturation at 94 °C for 4 minutes, 30 

cycles of denaturation, annealing, and elongation at 94 °C, 55 °C, and 72 °C, for 30 

seconds, 30 seconds, and 90 seconds respectively, and a final extension step at 72 °C 

for 10 minutes. DK643 forward primer, and DK644 reverse primer (with the SBIP68 stop 

codon) were used to facilitate cloning into E.coli with a 6xHis fusion tag at the 5’ end of 

the gene. DK643 forward primer, and DK645 reverse primer (without the SBIP68 stop 

codon) were used to facilitate cloning into E.coli with a 6xHis tag codon at both the 5’ 

and 3’ ends of the gene.  

Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used to separate nucleic acids based on size 

differences. The PCR products were analyzed by gel electrophoresis using 1.2 % 

agarose gel containing ethidium bromide.  Ten microliters of 6 x DNA loading dye was 

mixed with 50 μl of PCR product. Eight microliters (25 ng/μl) of a 1 kb DNA ladder was 
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loaded into the first well, and the samples were loaded into the other wells. The gel was 

run at 80 volts for ~ 90 minutes and visualized on a UV transilluminator. 

Purification of PCR Product 

SBIP68 DNA bands were cut out and purified using Qiagen Gel Extraction kit 

following the manufacturer’s instructions. The purified DNA was quantified using a 

Nanodrop spectrophotometer at 260 nm and subsequently analyzed on a 1.2 % 

agarose gel as previously described. 

Construction of pGEMT-SBIP68 Clone  

Taq DNA polymerase adds a single deoxyadenosine nucleotide base to the 3´-

ends of PCR amplified fragments, in a template-independent fashion (Zhou and Gomez-

Sanchez, 2000). Cloning into pGEMT easy vector (Promega) is made possible due to 

these deoxyadenosine bases added to the PCR amplicons. The vector, pGEMT, is 

provided as a linear plasmid with single terminal thymidine bases added to both 3´ ends 

(Fig. 10). The single 3´-T overhangs present at the insertion site of the vector greatly 

improve the efficiency of ligation of PCR amplicons having 3´-deoxyadenosine bases 

into the plasmids by preventing recircularization of the vector and providing a 

compatible overhang for these PCR products (Zhou and Gomez-Sanchez, 2000; 

Promega). The plasmid, pGEMT allows for blue/white screening on indicator plates and 

carries an ampicillin resistant gene (Promega).  
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A 10 µl ligation reaction was set up as follows: 5 µl 2 x rapid ligation buffer, 1 µl 

pGEMT easy vector, 2 µl purified PCR product, 1 µl T4 DNA ligase, and 1 µl H2O. The 2 

x rapid ligation buffer was vortexed vigorously before use. A control reaction which had 

all the constituents of the standard reaction without the PCR products was also set up. 

Ligation reactions were incubated overnight at 4 °C for maximum number of 

transformants. 

Preparation of Fresh Competent DH5α Cells 

E. coli DH5α cells from a glycerol stock stored at -80 °C freezer were streaked on 

an LB plate and incubated overnight at 37 ºC. The following day, single isolated 

colonies from the plate were used to inoculate 3 ml of LB-broth and grown at 37 °C and 

250 rpm until the cultures had an OD600 of ~ 0.45. The cultures were transferred to pre-

chilled tubes (on ice) for 15 minutes. They were then centrifuged at 3000 x g for 10 

minutes at 4 °C. The pellet was gently resuspended in 0.6 ml of ice cold sterile 0.1 M 

 

 

                    Figure 10: Map of pGEM-T Easy Vector (Promega)  
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CaCl2 and incubated on ice for 30 minutes. The bacterial suspensions were centrifuged 

at 3000 x g for 10 minutes at 4 °C, the supernatants were discarded, and the pellet 

resuspended in 120 μl of ice cold 0.1 M CaCl2. The resuspended cells (50 μl) were used 

for transformation. 

Transformation of E. coli DH5α with pGEMT-SBIP68 Plasmid DNA 

The ligation reactions were vortexed briefly and 2 µl of each ligation reaction was 

added to 50 μl of freshly prepared competent cells in a 1.5 ml tube. The tubes were 

gently flicked and incubated on ice for 20 minutes. After 20 minutes, the cells were heat-

shocked for 50 seconds in a water bath at 42 °C and immediately returned to ice for 2 

minutes. Following incubation, 950 μl LB medium was added to each tube containing 

transformation mix. The samples were incubated for 90 minutes at 37 °C with shaking at 

150 rpm. The transformation mix was centrifuged at 5,000 x g for 1 min and pellet was 

resuspended in 200 μl LB medium (Appendix B). The resuspended transformation mix 

was spread on LB/ampicillin/IPTG/X-Gal plates (Appendix B) using sterile glass beads 

and incubated overnight at 37 °C. The following morning, white colonies were selected 

for further analysis for the presence of insert using colony PCR. 

Verification of pGEMT-SBIP68 Plasmid by Colony PCR 

 A colony PCR was performed to screen for positive clones containing SBIP68. 

Single isolated white bacterial colonies were picked using sterile tips from the plates 

and streaked on a fresh LB/ampicillin plate. Each colony was assigned a number for 

future reference. Following streaking, each tip was put in a 0.2 ml PCR tube containing 

40 μl of sterile water and pipetted up and down a few times to suspend the remaining 
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bacteria. Ten microliters bacterial suspension from each colony was used as template in 

the PCR reaction. Each PCR reaction mix was composed of 10 μl bacterial suspension, 

2 μl of 10 x PCR Buffer, 2 μl of 0.1 M dNTP mix, 0.8 μl of M13 forward primer, 0.8 μl of 

M13 reverse primer, 0.5 μl Taq DNA polymerase, and 3.9 μl sterile H2O. The PCR 

conditions were as follows: 94 °C for 4 minutes, 30 cycles of denaturation, annealing, 

and elongation at 94 °C, 55 °C, and 72 °C, for 30 seconds, 30 seconds, and 90 seconds 

respectively. The PCR products were analyzed by agarose gel electrophoresis as 

described earlier. 

Plasmid DNA Isolation from pGEMT-SBIP68 Clones 

 Positive clones following confirmation by colony PCR, were selected for plasmid 

purification. Corresponding colonies from master plate were used to inoculate 3 ml LB 

broth containing ampicillin (100 μg/ml). The bacterial cultures were grown at 37 °C and 

250 rpm overnight. Plasmid DNA’s were isolated from the overnight cultures using the 

QIAprep Spin Miniprep kit according to the manufacturer’s instructions. The 

concentration and purity of the isolated plasmids were determined using a nanodrop 

spectrophotometer at 260 nm. The quality of the plasmid DNA was also checked using 

a 0.8 % agarose gel as described earlier. 

Sequencing of pGEMT-SBIP68 Recombinant Plasmid 

 The purified plasmid DNA (0.5 – 1.0 μg each), were sent to the DNA Analysis 

Facility at Yale University to be sequenced. The Sanger DNA Sequencing method was 

employed in sequencing the pGEMT-SBIP68 constructs. The plasmids were sequenced 

using M13 forward and M13 reverse primers. Analysis of the sequencing results helped 
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in identifying clones with the highest similarities to the database gene sequence 

(NtGT4). Of the 1,488 nucleotides in the protein coding sequence, there was only one 

nucleotide difference, at position 552. This was a pyrimidine to pyrimidine (T to C) base 

change and upon translation did not result in an amino acid change in the primary 

sequence of the protein. 

Cloning of SBIP68 into E. coli Expression Plasmid pET-28a 

 The positive pGEMT-SBIP68 clone following DNA sequence analysis was 

selected for further cloning into pET-28a. To excise out SBIP68 from pGEMT, the 

pGEMT+SBIP68 plasmid was restriction digested with BamHI and Xho I restriction 

enzymes. Similarly, the destination plasmid pET-28a was also restriction digested with 

BamHI and Xho I. The reaction mixture for the pGEMT-SBIP68 plasmids included: 10 μl 

pGEMT-SBIP68 plasmid-DNA, 2 μl NEB buffer #3, 2 μl BSA (10mg/ml), 4 μl sterile H2O, 

1 μl BamHI, and 1 μl Xho I. The digestion reaction for the pET-28a vector included: 5 μl 

pET-28a vector, 2 μl NEB buffer 3, 2 μl BSA (10mg/ml), 9 μl sterile H2O, 1 μl BamHI, 

and 1 μl Xho I. The reactions were incubated at 37 °C for 3 hours. The restriction 

digested plasmid DNA were separated by running on a 0.8 % agarose gel. The DNA 

band corresponding to SBIP68 was excised out and purified using QIAquick Gel 

Extraction Kit according to the manufacturer’s instructions. Similarly the BamHI and Xho 

I restriction digested pET-28a was also gel purified. Concentration and purity for SBIP68 

and pET-28a were determined using a nanodrop spectrophotometer at 280 nm. 

 After gel purification, SBIP68 was ligated into pET-28a using T4 DNA ligase 

following manufacturer’s instructions. Each reaction mixture consisted of 3 μl SBIP68-
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644 (24.1 ngμl-1) or SBIP68-645 (28.6 ngμl-1) DNA, 2 μl pET-28a vector (14.5 ngμl-1),    

1 μl 10 x ligase buffer, 1 μl T4 DNA ligase, and 3 μl H2O. The reaction mixtures were 

incubated at 16 °C overnight for ligation. 

Transformation of E. coli BL21(DE3) pLysE with pET-28a-SBIP68 Plasmid 

 The ligated products from pET-28a-SBIP68 were used to transform E. coli BL21 

(DE3) pLysE competent bacterial cells. The competent cells were prepared (as 

described earlier) and stored at – 80 °C. Frozen competent cells were thawed by 

placing them on ice for ~ 5 minutes. Two microliters of ligation products were added to 

1.5 ml eppendorf tubes containing 50 μl competent cells. The contents of the tubes 

were mixed gently and incubated on ice for 20 minutes. Cells were heat-shocked for 45 

seconds using a water bath at 42 °C and the tubes were immediately returned to ice for 

2 minutes. To the transformation mixture, 950 μl of LB broth was added and incubated 

at 37 °C for 1 hour at ~ 150 rpm. Transformed bacterial cells were plated on 

LB/Kanamycin (50 μg/ml) plates using sterilized glass beads as described earlier. 

Plates were incubated at 37 °C overnight. 

Test for Recombinant pET-28a-SBIP68 Protein Expression 

 Colony PCR using pET-28a specific primers was performed as described earlier 

to test for clones containing the plasmid of interest. Positive clones were used to 

inoculate 3 ml LB broth containing kanamycin (50 μg/ml). Cell cultures were incubated 

at 37 °C with shaking at 250 rpm for 2 hours. One milliliter of each culture was 

transferred into a 1.5 ml microcentrifuge tube and centrifuged at maximum speed for 3 

minutes. The supernatants were discarded and the pellets (uninduced controls) stored 
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at - 20 °C. To the remaining 2 ml cultures, 4 μl of 0.5 M isopropyl-beta-D-

thiogalactopyranoside (IPTG) was added to a final concentration of 1mM for the 

induction of recombinant protein expression. Induction was carried out at 37 °C and 250 

rpm for 3 hours. After 3 hours, the bacterial cultures were centrifuged at 5000 x g for 3 

minutes, the supernatants were discarded and the pellets stored at – 20 °C. The pellets 

from both induced and uninduced samples were heated. They were analyzed by SDS-

polyacrylamide gel electrophoresis.  

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 SDS-PAGE was performed by mixing each protein sample with an equivalent 

amount of 2 x SDS sample buffer containing 5 % βME added just before use. The 

mixtures were placed in a boiling water bath for 5 minutes and centrifuged at 16,200 x g 

for 10 minutes at room temperature. The samples were loaded on an SDS gel and run 

using electrophoresis at 200 volts until the dye reached the bottom of the gel ~ 50 

minutes. The gel was stained using coomassie blue stain for 20 minutes and 

subsequently destained with a destaining solution (Appendix B) to remove the 

background dye as much as possible to make separated proteins visible. 

Western Blot Analysis 

Upon the separation of protein samples using SDS-PAGE, the proteins were 

transferred from the gel to a membrane by electroblotting. The membrane used 

throughout this study was PVDF (polyvinylidene difluoride) membrane. Prior to 

electroblotting, the PVDF membrane was incubated in 100% methanol for 15 seconds 

after which it was rinsed with water for 2 minutes. The membrane was placed in 1x 
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Western blot transfer buffer (Appendix B) and allowed to shake gently on a platform 

shaker for 10 minutes. The foam pads and 3 mm Whatman papers were presoaked in 

the 1x Western blot transfer buffer to be used for electroblotting. The gel and PVDF 

membrane were sandwiched in between the Whatman papers which were sandwiched 

between the foam pads. A roller was used to remove any air bubbles trapped in the 

sandwich. The sandwich was placed in the gel cassette holder such that the gel was on 

the black colored (negative) side of the gel cassette holder and the membrane was on 

the clear side (positive) of the gel cassette holder. A small magnetic stir bar was placed 

in the electrophoresis tank which was to be placed on a magnetic stirrer. A cold ice pack 

was also placed in the electrophoresis tank. The cassette holding the gel and 

membrane was placed in the electrophoresis tank such that the black colored side of 

the cassette and the electrophoresis unit were in contact and the clear side of the 

cassette was towards the red side of the electrophoresis unit.  

Electroblotting was carried out at ~ 96 volts for 1 hour at 4 °C. After 1 hour, the 

PVDF was taken out of the cassette, rinsed with methanol for 15 seconds, and allowed 

to air dry for about 1 minute. The membrane was again rinsed with 100% methanol for 

15 seconds and then placed in ponceau S stain (Appendix B) for 2 minutes to verify 

protein transfer. The membrane was rinsed with deionized water and visualized for 

protein transfer. Ponceau S stain was washed off with 1x PBS (phosphate buffered 

saline, Appendix B). Once the membrane was clear of the ponceau S stain, the PBS 

was discarded and blocking buffer (1 % non-fat dry milk, 3 % BSA in 1 x PBS, Appendix 

B) containing mouse monoclonal anti-polyhistidine primary antibody (1:2,500) was 

added to the membrane. The membrane with primary antibody was incubated on a 
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rocking platform overnight at 4 °C. The next morning, the membrane was sequentially 

washed twice with 1 x PBS, twice with1 x PBS containing 3 % tween 20, and twice with 

1 x PBS for a duration of 5 minutes per wash step. The membrane was then incubated 

with anti-mouse IgG conjugated with horseradish peroxidase in blocking buffer (1:5,000) 

at room temperature for 2 hours on a rocking platform. The membrane was washed as 

described above. After washing, the membrane was incubated in 2 ml of WesternSure 

PREMIUM Chemiluminescent Substrate for 5 minutes at room temperature making sure 

the entire surface area of the membrane was covered by the substrate. The membrane 

was removed from the substrate and the excess substrate left on the membrane was 

allowed to drip off. The membrane was placed protein side down in a C-Digit Blot 

Scanner and a plastic wrap was placed on top of the membrane. The blot was scanned 

for 12 minutes for maximum sensitivity and several pictures were captured. Following 

scanning, the blot was stained with coomassie blue. 

Recombinant pET-28a-SBIP68 Protein Solubility Test 

 To check if recombinant pET-28a-SBIP68 protein was present in soluble or 

insoluble form, a solubility test was carried out. Positive bacterial colonies were used to 

inoculate 3 ml of LB with kanamycin (50μg/ml). Cell cultures were incubated at 37 °C 

with shaking at ~ 250 rpm for 2 hours. After 2 hours, 1 ml of each culture was 

centrifuged and the pellets preserved at –20 °C to serve as uninduced controls. To the 

remaining 2 ml cultures, 4 μl of 0.5 M isopropyl-beta-D-thiogalactopyranoside (IPTG) 

was added to give a final concentration of 1 mM for the induction of protein expression. 

Induction was carried out at 37 °C and 250 rpm for 3 hours. After 3 hours, the bacterial 

cultures were centrifuged at maximum speed (18,800 x g) for 3 minutes, the 
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supernatants were discarded and the pellets preserved at – 20 °C. The following day, 

pellets from both induced and uninduced 1 ml samples were resuspended in 100 µl of 

Ni-NTA binding buffer each. The samples were sonicated while placed on ice at an 

amplitude of 10 % for 5 seconds and a 15 second interval for 3 times. The samples 

were centrifuged at 16,200 x g for 5 minutes at 4 °C. Supernatants were transferred into 

fresh microcentrifuge tubes and mixed with 2 x SDS sample buffer ratio 1:1. These were 

placed in a boiling water bath for 5 minutes. The samples were centrifuged at 16,200 x 

g for 2 minutes and analyzed using SDS-PAGE and Western blot. To the pellets derived 

just before placing the supernatants in the water bath above, 200 μl of SDS sample 

buffer was added to each. These were placed in a boiling water bath for 5 minutes after 

which they were analyzed using SDS-PAGE and Western blot as described earlier. 

Optimization of Conditions for Protein Solubility  

Protein expression at 37 °C and 1mM IPTG concentration resulted in mostly 

insoluble recombinant SBIP68 and a small amount of soluble protein. To increase the 

solubility of recombinant SBIP68, the expression conditions were fine-tuned by lowering 

the incubation temperature for expression to 17 °C and lowering the concentration of 

IPTG (0.1 mM, and 0.01 mM). Induction at 37 °C and 1 mM IPTG concentration was 

also performed simultaneously to serve as a control. Single colonies from the plates 

were used to inoculate 3 ml LB/kan media which were incubated at 37 °C and 250 rpm 

overnight. The following morning, 1 ml of each culture was used to inoculate 100 ml of 

LB/kan medium each. One hundred milliliter cultures were grown at 37 °C and 250 rpm 

until the OD600 was within 0.6 – 0.7. One milliliter samples were taken from each 

culture to serve as uninduced controls. To the remaining 99 ml cultures, 198 μl, 19.8 μl, 
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and 1.98 μl of 0.5 M IPTG were added to a final IPTG concentration of 1 mM, 0.1 mM, 

and 0.01 mM, respectively, to induce SBIP68 expression. The 37 °C cultures were 

incubated for 3 hours at 250 rpm, while the 17 °C cultures were incubated overnight at 

250 rpm. Upon the completion of incubation, 1 ml of each culture was put in separate 

1.5 ml tubes to be processed by Western blot analysis of SBIP68 solubility as previously 

described. The remaining 99 ml cultures were transferred to separate tubes and 

centrifuged at 21,000 x g for 10 minutes at 4 °C. The supernatants were discarded and 

the cell pellets saved at - 20 °C until they were purified for recombinant SBIP68 protein. 

Cell Lysis and Purification of Recombinant SBIP68 Protein 

 Each pellet from 100 ml culture was resuspended in 3 ml of 1 x Ni-NTA binding 

buffer containing 30 μl PMSF (phenylmethylsulfonyl flouride – a protease inhibitor, 

Appendix B), and 15 mM imidazole. Bacterial cells were lysed 3 times using a French 

press mini cell (stored at 4 °C prior to use) at 20,000 psi and the lysed samples were 

collected on ice. Samples were centrifuged at 21,000 x g for 15 minutes at 4 °C. The 

soluble fractions (supernatants) were collected in fresh tubes and the pellets were 

stored at - 20°C. Twenty-five milliliters of 1 x Ni-NTA binding buffer was used to 

equilibrate 2 ml of Ni-NTA resin. Each soluble fraction was gently transferred to the 

respective Ni-NTA column with the aid of a pipette and allowed to settle. The stop valve 

was opened to collect flow-through and the column was washed with at least 15 ml of 1 

x Ni-NTA wash / binding buffer (containing 15 mM imidazole). The bound 6xHis-tag 

SBIP68 protein was eluted with 1 x Ni-NTA elution buffer (pH 8.0) containing 250 mM 

imidazole at room temperature. The eluted proteins were collected in 0.5 ml fractions 

which were stored at 4 °C. SDS-PAGE and Western blot analysis were performed to 
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verify the presence of the protein of interest in the purified samples. Fractions with 

highest recombinant SBIP68 were pooled, concentrated, and used for GT activity. 

Analysis of Glucosyltransferase Activity Reaction Products using HPLC  

GT activity assays were carried out using purified recombinant SBIP68 and 

HPLC was performed to identify the products of the glucosyltransferase reactions 

(Owens and McIntosh, 2009).  Each 150 μl reaction mix consisted of 10 μl acceptor 

substrate (100 nmol aglycone in ethylene glycol monomethyl ether), 100 μl assay buffer 

(50 mM sodium phosphate buffer pH 7.5, 14 mM βME), 20 μl donor substrate (200 nmol 

UDP-glucose), and 20 μl (34 µg, of which SBIP68 was about a tenth or less of this) 

partially purified SBIP68 recombinant enzyme. The acceptor substrates used were 

kaempferol, quercetin, naringenin, or hesperetin. The reaction mix was incubated with 

gentle shaking at 37 °C for 120 minutes. After 120 minutes, 30 μl 6 M HCl was added to 

the sample tube and mixed by vortexing briefly. Five hundred microliters of ethyl acetate 

was added to the sample to separate the formed glucosides from unincorporated UDP-

glucose, the reaction tube was vortexed and centrifuged very briefly.  Three hundred 

microliters from the upper organic phase of the sample (containing the reaction 

products) was transferred to a fresh tube. The reaction products were dried using 

nitrogen gas. The dried components were redissolved in 60 µl of HPLC grade methanol  

and 10 µl of this was run on a Waters Breeze HPLC system that consists of an in-line 

degasser AF, a binary HPLC pump 1525 and a dual wavelength absorbance detector 

2487 operated by Breeze software version 3.30 (Waters, Milford, MA). The mobile 

phase was acetic acid:water (15:85) and a gradient of 95:5 acetonitrile:water was the 

organic phase over a period of 28 minutes. Sample fractionation was performed at room 
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temperature using a Nova-Pak® C18 (3.9 x 150 mm) column at a flow rate of 1.0 

ml/min. The wavelengths used for detection were 290 and 365 nm. Kaempferol, 

kaempferol 3-O-glucoside, quercetin, quercetin 3-O-glucoside, naringenin, naringenin 7-

O-glucoside, and hesperetin were used as standards in the identification of the reaction 

products. 

Cloning and Expression of SBIP68 in P. pastoris 

Two gene specific primers, a forward primer DK639 and a reverse primer DK640 

were utilized in the cloning of SBIP68 in P. pastoris. Both primers were designed to 

carry a restriction enzyme site to enable cloning into an expression system. The forward 

primer DK639, had an Xho I restriction endonuclease site, while the reverse primer 

DK640 had an Apa I restriction endonuclease site. The vector pPICZA (Fig. 11), 

containing a c-myc epitope tag coding sequence and a C-terminal 6x polyhistidine tag 

coding sequence to facilitate the detection and purification of recombinant proteins 

respectively (Invitrogen) was used for cloning and expression of recombinant SBIP68. 

The reverse primer DK640 was designed without the stop codon present in the SBIP68 

gene thereby making use of the stop codon just after the C-terminal 6x polyhistidine tag 

in the vector.  

PCR Amplification of SBIP68 for Cloning into pPICZA  

SBIP68 was PCR amplified using a verified pGEMT-SBIP68 clone as a template. 

The PCR reaction mix composed of 3μl pGEMT-SBIP68 plasmid DNA, 5 μl of 10 x HF2 

PCR Buffer, 1 μl of 50 x HF dNTP mix, 1 μl of 10 μM forward primer, 1 μl of 10 μM 

reverse primer, 1 μl of 50 x Advantage HF polymerase mix, 40 μl of H2O. The PCR 
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conditions were as follows: hot start and initial denaturation at 94 °C for 4 minutes, 30 

cycles of denaturation, annealing, and elongation at 94 °C, 55 °C, and 72 °C, for 30 

seconds, 30 seconds, and 90 seconds respectively, and a final extension step at 72 °C 

for 10 minutes.  

 

Purification of PCR Product 

The products of the PCR reaction (SBIP68’) were analyzed using agarose gel 

electrophoresis as described earlier. SBIP68’ DNA bands were cut out for purification 

following gel electrophoresis. The bands were purified using Qiagen Gel Extraction kit 

following the manufacturer’s instructions. The purified products were quantified using a 

nanodrop spectrophotometer and subsequently analyzed on 0.8 % agarose gel. 

 

 

 
 

Figure 11: Map of pPICZ Vector (Invitrogen). The restriction sites Xho I and Apa I 
were used in cloning SBIP68 in P. pastoris 
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Construction of pGEMT-SBIP68’ Clone  

Gel purified SBIP68’ was ligated into pGEMT easy vector and transformed into 

competent DH5α cells as described earlier. The cells were plated on LB/ampicillin 

containing IPTG/X-Gal and incubated overnight at 37 °C. The following morning, white 

colonies were selected and streaked on fresh LB/ampicillin plates. The colonies were 

also tested for presence of SBIP68’ using colony PCR as described earlier. 

Recombinant Plasmid pGEMT-SBIP68’ Propagation and Isolation 

Positive clones were propagated and used for plasmid purification using the 

QIAprep Spin Miniprep kit. The concentration and purity of the isolated plasmids were 

determined as previously described. 

Sequencing of pGEMT-SBIP68’ Recombinant Plasmid 

Each of the purified plasmids (0.5 – 1.0 μg) was sent to the DNA Analysis Facility 

at Yale University to be sequenced. The plasmids were sequenced using M13 forward 

(DK551) and M13 reverse primers (DK552). Analysis of the sequencing results helped 

in identifying clones whose protein coding sequence were 100 % identical to pGEMT-

SBIP68 used for PCR amplification.  

Digestion of pGEMT-SBIP68’ Plasmid and pPICZA Vector 

 pGEMT-SBIP68’ plasmid and pPICZA plasmid were both digested with Xho I and 

Apa I. The digestion reaction for the pGEMT-SBIP68’ plasmids included in each tube: 

10 μl pGEMT-SBIP68’ plasmid-DNA, 2 μl CutSmart buffer, 6 μl sterile H2O, 1 μl Xho I, 

and 1 μl Apa I. The digestion reaction for the pPICZA vector included: 5 μl pPICZA 
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vector, 2 μl CutSmart buffer, 11 μl sterile H2O, 1 μl Xho I, and 1 μl Apa I. All the 

constituents of each of the reactions were added at the initial stage with the exclusion of 

the Xho I enzyme. The samples were incubated at 25 °C (optimum temperature for Apa 

I) for ~ 2 hours. After about 2 hours, Xho I was added to each sample and the samples 

were incubated at 37 °C for 3 hours. Both enzymes were heat inactivated at 65 °C for ~ 

20 minutes. The digested samples were gel purified as described earlier. The 

concentration and purity of digested DNA and vector was determined using a nanodrop 

spectrophotometer as previously described. 

Ligation of SBIP68’ into pPICZA 

 After purification, the products of the digestion reactions were ligated to create 

pPICZA-SBIP68’ constructs. Each reaction contained a mixture of 10 μl SBIP68’ DNA, 

1.3 μl pPICZA vector, 2 μl 10 x ligase buffer, 1 μl T4 DNA ligase, and 5.7 μl H2O. A 

control reaction was also set up that had 1.3 μl pPICZA vector, 2 μl 10 x ligase buffer, 1 

μl T4 DNA ligase, and 15.7 μl H2O. The reactions were incubated at 16 °C overnight. 

Transformation of E. coli DH5α with pPICZA-SBIP68’ Plasmid DNA 

The ligation reaction mix was centrifuged briefly and 2 µl was added to a sterile 

1.5 ml tube on ice containing 50 µl of freshly prepared DH5α competent cells. All steps 

were followed as described earlier. The cells were plated on low salt LB plates 

(Appendix B) with 25 μg/ml zeocin and incubated overnight at 37 °C. The following 

morning, colonies were streaked on fresh low salt LB/zeocin plates. The colonies were 

tested for incorporation of the SBIP68’ plasmid using colony PCR. 
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Verification of the Presence of pPICZA-SBIP68’ Plasmid by Colony PCR 

 A colony PCR was performed to screen for positive clones containing the 

pPICZA-SBIP68’ target plasmid. Two hundred microliter PCR tubes containing 40 μl of 

water each were numbered serially. Single isolated white positive colonies were picked 

from the low salt LB/zeocin plate and streaked on fresh low salt LB/zeocin plates 

divided into numbered sections, these were to be the master plates. It is important that 

low salt LB media be used for efficient selection as zeocin is only active under 

conditions of low salt concentration  and a pH of 7.5 (Invitrogen). The colonies were 

streaked using sterile micropipette tips. Each of the tips was put in a PCR tube 

containing 40 μl of sterile water and pipetted up and down a few times to suspend the 

bacteria. Ten microliters each of the bacterial suspensions would serve as cDNA 

templates in the PCR amplification of pPICZA-SBIP68’ target plasmids. Each PCR 

reaction mix was composed of 10 μl bacterial suspension, 2 μl 10x PCR Buffer, 2 μl 

0.1M dNTP mix, 0.8 μl 5’ AOX1 (DK 641) forward primer, 0.8 μl 3’ AOX1 (DK 642) 

reverse primer, 0.5 μl Taq polymerase, and 3.9 μl sterile H2O. The PCR conditions were 

as follows: 94 °C for 4 minutes, 30 cycles of denaturation, annealing, and elongation at 

94 °C, 55 °C, and 72 °C, for 30 seconds, 30 seconds, and 120 seconds respectively, 

and a final extension step at 72 °C for 10 minutes. The PCR products were analyzed by 

agarose gel electrophoresis using 0.8 % agarose gels as previously described. 

Recombinant Plasmid pPICZA-SBIP68’ Propagation and Isolation 

 Positive clones from the master plate as confirmed by colony PCR were selected 

for plasmid propagation and purification using the QIAGEN CompactPrep Plasmid Midi 
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Kit according to the manufacturer’s instructions. The concentration and purity of the 

isolated plasmids were determined as previously described. 

Sequencing of pPICZA-SBIP68’ Recombinant Plasmid 

 The plasmids were sequenced using 5’ AOX1 forward and 3’ AOX1 reverse 

primers. One hundred percent positive plasmids were used to transform P. pastoris. 

Preparing pPICZA-SBIP68’ DNA for Transformation into Pichia pastoris 

To transform P. pastoris, ~ 10 μg of pPICZA-SBIP68’ plasmid DNA was 

linearized by digesting with the restriction enzyme Pme I. Linearization of plasmid DNA 

prior to transformation is not obligatory but is strongly recommended as linear DNA is 

capable of generating extremely stable transformants of Pichia pastoris via homologous 

recombination between the transforming DNA and regions of homology present within 

the P. pastoris genome (Cregg et al. 1985; Cregg et al. 1989). The digestion reaction 

mix contained: 6 μl plasmid DNA, 1 μl 10 x CutSmart buffer, 1 μl Pme I restriction 

enzyme, 2 μl autoclaved milliQ water. The reactions were incubated at 37 °C for 4 

hours. After 4 hours, 1 μl of Pme I was added to each reaction and incubated at 37 °C 

overnight. The following morning the enzyme was heat inactivated by incubating the 

reactions at 65 °C for 20 minutes. To ensure complete linearization, the digested DNA 

mixture were analyzed by running 2 μl of each on a 0.8 % agarose gel. Following 

verification, the total volume of linearized DNA was adjusted to 300 μl using sterile 

water. Three hundred microliters phenol:chloroform:isoamyl alcohol (25:24:1) was 

added to each 300 μl of linearized DNA. This mixture was vortexed for 20 seconds, and 

centrifuged at 16,000 x g for 5 minutes. The upper aqueous phase of each mixture was 
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carefully transferred to a fresh tube making sure none of the middle layer (phenol) was 

transferred with it. Ethanol precipitation was performed by adding 0.1 volume of 3 M 

sodium acetate (Appendix B) and then adding 2.5 volumes of 100 % ethanol. Samples 

were mixed and incubated at - 80 °C for 1 hour and centrifuged at 16,000 x g for 30 

minutes at 4° C. The supernatants were carefully decanted without disturbing the DNA 

pellets. To each pellet, 500 μl of ice cold 80 % ethanol was added, and they were 

centrifuged at 16,000 x g for 15 minutes at 4 °C. The ethanol was discarded, and the 

pellets were air dried and then re-suspended in 10 μl each of sterile deionized water. 

DNA concentration and purity were determined using a nanodrop spectrophotometer. 

DNA was used to transform P. pastoris. 

Preparation of Electrocompetent Pichia pastoris X-33 Mut+ Cells  

Pichia pastoris strain X-33 Mut+ glycerol stock was used to inoculate 5 ml of YPD 

(Appendix B) which was grown at 30 °C and 250 rpm overnight in a 50 ml flask. The 

following day, 0.2 ml of the overnight culture was used to inoculate 200 ml of fresh YPD 

medium. The culture was again grown overnight at 30 °C and 250 rpm overnight in a 1 

L flask until its OD600 was within 1.3 – 1.5. The cells were centrifuged at 1500 x g for 5 

minutes at 4 °C. Cells were resuspended with 200 ml of ice cold sterile water and 

centrifuged at 1500 x g for 5 minutes at 4 °C. Cells were resuspended with 100 ml of ice 

cold sterile water and centrifuged at 1500 x g for 5 minutes at 4 °C. Cells were 

resuspended in 8 ml of ice cold sterile 1 M sorbitol and centrifuged at 1500 x g for 5 

minutes at 4 °C. Finally the cells were resuspended in 0.4 ml of ice cold sterile 1 M 

sorbitol (Appendix B). The cells were kept on ice and used the same day. 
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Transformation of P. pastoris 

To transform P. pastoris with pPICZA-SBIP68’, both linearized and circular DNAs 

were used in two separate transformation reactions. Transformation was achieved by 

electroporation of freshly prepared electrocompetent P. pastoris. In one tube, 80 μl of 

the cells was mixed with ~ 10 μg of linearized pPICZA-SBIP68’ DNA, while in the other 

tube 80 μl of cells was mixed with ~ 40 μg of circular pPICZA-SBIP68’ DNA. These 

were transferred to pre-chilled 0.2 cm electroporation cuvettes. The cuvettes with the 

cells were incubated on ice for 5 minutes, after which they were each pulsed once at 1.5 

volts using BIORAD Gene Pulser. Immediately after pulsing, 1 ml of ice cold 1 M 

sorbitol was added to each cuvette. The contents of the cuvettes were each transferred 

to separate sterile 15 ml tubes and were incubated at 28 °C for ~ 2 hours without 

shaking. Transformed cells (10 μl, 25 μl, 50 μl, 100 μl, and 200 μl) were spread using 

glass beads on YPDS/zeocin (100 μg/ml) plates (Appendix B). The plates were 

incubated at 28 °C until colonies formed, at approximately 2.5 days.             

Direct PCR Screening of P. pastoris Clones 

Colony PCR was performed to screen for positive Pichia clones containing the 

pPICZA-SBIP68’ target DNA. PCR tubes (0.2 ml), each containing 15 μl of sterile water 

were numbered serially. Single isolated Pichia colonies were picked (and numbered for 

identification purposes) from the YPDS/zeocin plates with the aid of sterile micropipette 

tips. Each tip was dipped in each PCR tube containing 15 μl of sterile water and 

pipetted up and down a few times to suspend the cells. Ten microliters of each cell 

suspension was mixed with 5 μl of a 5 U/μl solution of the enzyme lyticase in TE buffer. 
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These were incubated at 37 °C, - 80 °C, and 95 °C, for 30 minutes, 10 minutes, and 10 

minutes respectively. The addition of lyticase to the cells and their subsequent freezing 

and heating treatment are necessary to lyse the cells as yeast cells are known to have 

tough chitinous cell walls. The 5 μl of each cell lysate (cell suspension with lyticase, 

after cold and heat treatment) would serve as the DNA template to be amplified during 

the PCR. Each PCR mix was composed of 5 μl cell lysate, 1 μl 10 x PCR Buffer, 1 μl 

0.1 M dNTP mix, 0.5 μl 5’ AOX1 forward primer, 0.5 μl 3’ AOX1 reverse primer, 0.5 μl 

Taq polymerase, and 1.5 μl sterile H2O. The PCR conditions were as follows: 95 °C for 

5 minutes, 30 cycles of denaturation, annealing, and elongation at 95 °C, 50 °C, and 72 

°C, for 30 seconds, 30 seconds, and 90 seconds respectively. A 0.8 % agarose gel was 

used to analyze the PCR products using agarose gel electrophoresis. Clones that 

tested positive were used to inoculate YPD/zeocin media and grown overnight at 30 °C 

with shaking at 250 rpm. These overnight cultures were used in the preparation of 

Pichia-SBIP68’ glycerol stocks. 

Time Course Expression of Recombinant SBIP68’ 

 Pichia pastoris containing SBIP68’ from glycerol stocks were streaked on 

YPD/zeocin plates and incubated at 28 °C until colonies formed (~ 2.5 days). A few 

single isolated colonies were each used to inoculate 3 ml of YPD/zeocin media and 

grown at 30 °C in a shaker at 250 rpm overnight. To start a large scale liquid culture, 

100-125 μl of the overnight grown cultures were used to inoculate 25 ml of BMGY 

medium (Appendix B) each in a 250 ml baffled conical flask. BMGY cultures were grown 

at 29 °C and 250 rpm until their OD600 = 2-6 (log-phase growth) approximately 15-18 

hours. The cells were harvested by centrifuging at 2,500 x g for 5 minutes at room 
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temperature. The supernatants were discarded and the pellets were washed to remove 

all traces of glycerol from the BMGY medium. Cells were washed by resuspending each 

cell pellet in 30 ml BMMY (Appendix B) media and centrifuging at 2,500 x g for 5 

minutes at room temperature. The washing step was repeated once. Cell pellets were 

resuspended in BMMY media to an OD600 of 1.0 (typical resuspension volumes were 

between 75 - 250 ml) in 1 L autoclaved baffled flasks. One milliliter samples were taken 

from the cultures to serve as 0 hour post-induction time points. The flasks were covered 

with 2 - 4 layers of sterile cheesecloth and incubated at 29 °C and 250 rpm. Every 24 

hours, 100 % methanol was added to each culture to give a final methanol 

concentration of 0.5 %. One milliliter samples were taken from the cultures at different 

times post-induction to determine the optimal post-induction time to harvest. Time point 

samples were centrifuged at 16,200 x g for 3 minutes at room temperature, 

supernatants were discarded, and pellets were frozen in liquid nitrogen and stored at – 

80 °C until ready to assay. Pellets were later analyzed for protein expression using 

SDS-PAGE and Western blot.  

Preparing Samples for SDS-PAGE and Western Blot Analysis 

 Pichia- SBIP68’ cell pellets were removed from the – 80 °C freezer and placed 

on ice briefly to thaw. Each 1 ml sample pellet was re-suspended in 100 µl of breaking 

buffer (Appendix B). An equal volume of 0.5 mm acid-washed glass beads was added 

to each sample. The samples were alternately vortexed for 30 seconds and rested on 

ice for 30 seconds, this was repeated for a total of 8 times. The cell lysates together 

with the pellets (total cell protein) were analyzed by Western blot.  
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Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 SDS-PAGE was performed by adding 200 µl of 2 x SDS sample buffer 

(containing 5 % βME added just before use) to each sample. The samples were placed 

in a boiling water bath for 10 minutes and 10 µl of each sample was loaded on an SDS 

gel and run by electrophoresis at 200 volts. 

Western Blot Analysis 

Upon the separation of protein samples using SDS-PAGE, the proteins were 

transferred from the gels to PVDF (polyvinylidene difluoride) membranes as described 

earlier. After electroblotting, the PVDF membranes were taken out of the cassettes and 

processed for Western blot analysis using anti-polyhistidine primary antibody as 

described earlier. 

Large Scale Expression of Pichia-SBIP68’ 

 Pichia-SBIP68’ cells from glycerol stocks were streaked on an YPD/zeocin plates 

and incubated at 28 °C until colonies formed, ~ 2.5 days. A few single isolated colonies 

were each used to inoculate 3 ml of YPD/zeocin media and grown at 30 °C and 250 rpm 

overnight. To inoculate 25 ml of BMGY medium each in a 250 ml baffled conical flask, 

100-125 µl of overnight culture was used. BMGY cultures were grown at 29 °C and 250 

rpm until their OD600 was within 2 – 6 (log-phase growth) approximately 15 – 18 hours. 

The cells were harvested by centrifuging at 2,500 x g for 5 minutes at room 

temperature. The supernatants were discarded and the pellets were washed to remove 

all traces of glycerol from the BMGY medium. Cells were washed by resuspending each 

cell pellet in 30 ml BMMY media (Appendix B) and centrifuging at 2,500 x g for 5 
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minutes at room temperature. The washing step was repeated once. Cell pellets were 

resuspended in BMMY media to an OD600 of 1.0 (typical resuspension volumes were 

between 75 – 250 ml) in 1 liter sterile baffled flasks. One milliliter samples were taken 

from the cultures to serve as 0 hour control. The flasks were covered with 2 - 4 layers of 

sterile cheesecloth and incubated at 29 °C and 260 rpm. Every 24 hours, 100 % 

methanol was added to each culture to give a final methanol concentration of 0.5 %. 

Cells were grown for a total of 96 hours and harvested by centrifuging at 2,500 x g for 5 

minutes at room temperature. Pellets were saved at – 80 °C until they were processed 

for purification of target protein. 

Purification of Recombinant SBIP68’ Protein Expressed in Pichia pastoris 

 Each pellet derived from the 530 ml culture was resuspended in 40 ml of 1 x Ni-

NTA binding buffer containing PMSF. Cells were lysed using a French press 40K cell at 

20,000 psi at least 5 times, and lysate was collected on ice. Sample was centrifuged at 

20,000 x g for 15 minutes at 4 °C. The soluble fraction (supernatant) was collected in a 

fresh tube and the pellet stored at – 80 °C. Soluble SBIP68’ was purified on Ni-NTA 

column as previously described. After purification, the fractions with the highest 

concentration of proteins were pooled and concentrated using a centrifugal filter unit 

(Amicon Centricon Centrifugal Filter, 30 kDa cut off) at 4,700 x g and 4 °C until the 

sample volume was reduced to 500 µl. Two milliliters of enzyme assay buffer was 

added to the sample and centrifuged again until the volume was 500 µl. Western blot 

analysis was performed to verify the presence of SBIP68’ in the eluted purified fractions 

and in the concentrated sample. The concentrated Ni-NTA purified SBIP68’ was used 

for glucosyltransferase activity assay. 
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Purification of Recombinant SBIP68’ using Anion Exchange Chromatography 

Fractions 7 - 13 containing SBIP68’ (as confirmed by Western blot analysis) from 

the Ni-NTA affinity chromatography were pooled and desalted on a Hi-Trap Desalting 

Column (2x5 ml) (GE Healthcare). The desalted sample (9 ml) was further purified using 

a Mono-Q anion exchange column (Mono-Q 5/50 GL, GE Healthcare) on AKTA purifier 

10. The bound proteins were eluted with a linear gradient of 0-500 mM sodium chloride 

in potassium phosphate buffer pH 7.5 (Appendix B) and collected as 1 ml fractions. 

Western blot was performed to determine which fractions contained SBIP68’.  

Analysis of Glucosyltransferase Activity using Radioactive Method  

Recombinant purified SBIP68 was screened for glucosyltransferase activity 

following a method developed by McIntosh et al. (1990). Briefly, radioactive (14C) UDP-

glucose was used as the sugar donor substrate and the amount of radioactive 14C-

glucose incorporated into the reaction product was measured. Each 75 μl reaction mix 

composed of 5 μl acceptor substrate (50 nmol aglycone in ethylene glycol monomethyl 

ether), 50 μl assay buffer (50 mM sodium phosphate buffer pH 7.5, 14 mM βME), 10 μl 

donor substrate (UDP-[U- 14C] glucose, 0.025 µCi, 19,670 cpm), 10 μl (34 µg, of which 

SBIP68 was about a tenth or less of this) semi-purified and concentrated recombinant 

SBIP68 enzyme. A control reaction with 60 µl assay buffer and no enzyme and 

kaempferol was used as the acceptor substrate. Each reaction mix was incubated with 

gentle shaking at 37 °C for 10 minutes. A total of 14 potential acceptor substrates were 

tested, these are: salicylic acid, methyl salicylate, benzoic acid, azelaic acid, p-

hydroxybenzoic acid, kaempferol, quercetin, hesperetin, naringenin, gossypetin, 4'-
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acetoxy-7-hydroxy-6-methoxyisoflavone, apigenin, luteolin, and fisetin. The reactions 

were terminated by the addition of 15 μl 6 M HCl and mixed by vortexing briefly. Two 

hundred and fifty microliters of ethyl acetate was added to each tube to separate the 

formed glucosides from unincorporated UDP-[U- 14C] glucose, the reaction tubes were 

vortexed and centrifuged briefly.  A hundred and fifty microliters of the upper organic 

phase of each sample was transferred to separate 7 ml scintillation vials containing 2 ml 

of scintillation fluid each. The radioactive count for each reaction product was 

determined using a scintillation counter (Beckman LS 6500). 

Analysis of Glucosyltransferase Activity Reaction Products using HPLC  

HPLC was performed to identify the products formed from separate 

glucosyltransferase reactions involving kaempferol, quercetin, naringenin, hesperetin, 

and salicylic acid as acceptor substrates (Owens and McIntosh, 2009). Each 150 μl 

reaction mix composed of 10 μl acceptor substrate (100 nmol aglycone in ethylene 

glycol monomethyl ether for flavonoid substrates, 100 nmol aglycone in water (pH 7) for 

salicylic acid), 100 μl assay buffer (50 mM sodium phosphate buffer pH 7.5, 14 mM 

βME), 20 μl donor substrate (200 nmol UDP-glucose), and 20 μl (68 µg, of which 

SBIP68 was about a tenth or less of this) partially purified SBIP68 recombinant enzyme. 

The reaction mix was incubated with gentle shaking at 37 °C for 120 minutes. For 

reactions involving flavonoid substrates, after 120 minutes, 30 μl 6 M HCl was added to 

the sample tube and mixed by vortexing briefly. Five hundred microliters of ethyl acetate 

was added to the sample to separate the formed glucosides from unincorporated UDP-

glucose, the reaction tube was vortexed and centrifuged very briefly.  Three hundred 

microliters from the upper organic phase of the sample (containing the reaction 
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products) was transferred to a fresh tube. The reaction products were dried using 

nitrogen gas. The dried components were redissolved in 60 µl of HPLC grade methanol  

and 10 µl of this was run on a Waters HPLC system that consists of an in-line degasser 

AF, a binary HPLC pump 1525 and a dual wavelength absorbance detector 2487 

operated by Breeze software version 3.30 (Waters, Milford, MA). The mobile phase was 

acetic acid:water (15:85) and a gradient of 95:5 acetonitrile:water was the organic 

phase over a period of 28 minutes. Sample fractionation was performed at room 

temperature using a Nova-Pak® C18 (3.9 x 150 mm) column at a flow rate of 1.0 

ml/min. The wavelength used for detection was 365 nm. Kaempferol, kaempferol 3-O-

glucoside, quercetin, quercetin 3-O-glucoside, naringenin, naringenin 7-O-glucoside, 

and hesperetin were used as standards in the identification of the reaction products. For 

the reaction involving salicylic acid as substrate, after 120 minutes, 300 μl of ethanol 

was added to the sample tube and mixed by vortexing briefly. The sample was cooled 

to – 80 °C for 120 minutes, and centrifuged for 30 minutes at 21,000 x g and 4 °C. The 

supernatant was transferred to a fresh tube and the volume was reduced to 60 µl using 

a concentrator (Thermo Electron Corporation Savant ISS110 SpeedVac Concentrator) 

with the drying rate set to low, and 10 µl of this was run on the Waters HPLC system as 

described for the other reactions. Detection of reaction products was at 296 nm. 

Salicylic acid was used as a standard in the identification of the reaction products. 
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CHAPTER 3 

RESULTS 

Cloning and Expression of SBIP68 in E. coli 

Bioinformatics Analyses of SBIP68 

Previous work involving a yeast two-hybrid screening using SABP2 as a bait and 

tobacco leaf proteins as prey led to the identification of several putative SABP2 

interacting proteins. The nucleotide sequence (Fig. 12A) of one of the SABP2 

interacting proteins, SBIP68, was translated to protein (Fig. 12B) and used to perform a 

BLAST analysis using the NCBI database. 

  

A. 
AGGGGTAATAAAACTGCAATTGATAATCAAGATTGCTTGAAATGGTTAGATAATTTTGAAAC

AGAATCCGTGGTTTATGCAAGTCTTGGAAGTTTATCTCGTTTGACATTATTGCAAATGGTGG

AACTTGGTCTTGGTTTAGAAGAGTCAAATAGGCCTTTTGTATGGGTATTAGGAGGAGGTGAT

AAATTAAATGATTTAGAGAAATGGATTCTTGAGAATGGATTTGAGCAAAGAATTAAAGAAAG

AGGAGTTTTGATTAGAGGATGGGCTCCTCAAGTGCTTATACTTTCACACCCTGCAATTGGTG

GAGTATTGACTCATTGCGGATGGAATTCTACATTGGAAGGTATTTCAGCAGGATTACCAATG

GTAACATGGCCACTATTTGCTGAGCAATTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAA

AATTGGAGTGAGCCTAGGTGTGAAGGTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAG

TTTTGGTAAAAAAGGATGATGTTAAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAA

GGACAAGTAAGAAGAACAAAAGCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGA

AGGTGGTTCTTCTTATGTTAACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATC

ACAAGGAAAAATAGTATATTATGATTATTTTTTTTCTAATAAAAAAAAAAAAAAAAAAAAAA

AAAACAC 

 

B. 
RGNKTAIDNQDCLKWLDNFETESVVYASLGSLSRLTLLQMVELGLGLEESNRPFVWVLGGGD

KLNDLEKWILENGFEQRIKERGVLIRGWAPQVLILSHPAIGGVLTHCGWNSTLEGISAGLPM

VTWPLFAEQFCNEKLVVQVLKIGVSLGVKVPVKWGDEENVGVLVKKDDVKKALDKLMDEGEE

GQVRRTKAKELGELAKKAFGEGGSSYVNLTSLIEDIIEQQNHKEK 

 
Figure 12: Nucleotide and Translated Amino Acid Sequence of SBIP68 
Obtained from Yeast Two-Hybrid Screening. A. Nucleotide sequence. B. 
Translated amino acid sequence of SBIP68. 
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The bioinformatics revealed that SBIP68 showed 100% identity to the C-terminal 

of a putative UDP-glucose: flavonoid glucosyltransferase with NCBI accession number 

BAD93688.1, that has 496 amino acids (Fig. 13A) and is encoded by the tobacco 

NtGT4 gene with an open reading frame that is 1,488 bp long (Fig. 13B). The 

      

A. 
MATQVHKLHFILFPLMAPGHMIPMIDIAKLLANRGVITTIITTPVNANRFSSTITRAIKSGLRIQIL

TLKFPSVEVGLPEGCENIDMLPSLDLASKFFAAISMLKQQVENLLEGINPSPSCVISDMGFPWTTQI

AQNFNIPRIVFHGTCCFSLLCSYKILSSNILENITSDSEYFVVPDLPDRVELTKAQVSGSTKNTTSV

SSSVLKEVTEQIRLAEESSYGVIVNSFEELEQVYEKEYRKARGKKVWCVGPVSLCNKEIEDLVTRGN

KTAIDNQDCLKWLDNFETESVVYASLGSLSRLTLLQMVELGLGLEESNRPFVWVLGGGDKLNDLEKW

ILENGFEQRIKERGVLIRGWAPQVLILSHPAIGGVLTHCGWNSTLEGISAGLPMVTWPLFAEQFCNE

KLVVQVLKIGVSLGVKVPVKWGDEENVGVLVKKDDVKKALDKLMDEGEEGQVRRTKAKELGELAKKA

FGEGGSSYVNLTSLIEDIIEQQNHKEK  
 

B. 
ATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCTCCAGGCCACATGATTC
CTATGATAGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATTACCACTATCATCACCACTCCAGT

AAACGCCAATCGTTTCAGTTCAACAATTACTCGTGCCATAAAATCCGGTCTAAGAATCCAAATTCTT

ACACTCAAATTTCCAAGTGTAGAAGTAGGATTACCAGAAGGTTGCGAAAATATTGACATGCTTCCTT

CTCTTGACTTGGCTTCAAAGTTTTTTGCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTT

AGAAGGAATAAATCCAAGTCCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAAATT

GCACAAAATTTTAATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTTTTATGTTCCT

ATAAAATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAGTATTTTGTTGTTCCTGA

TTTACCCGATAGAGTTGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAATACTACTTCTGTT

AGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAGGAATCATCATATGGTGTAA

TTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAAGAATATAGGAAAGCTAGAGGGAAAAA

AGTTTGGTGTGTTGGTCCTGTTTCTTTGTGTAATAAGGAAATTGAAGATTTGGTTACAAGGGGTAAT

AAAACTGCAATTGATAATCAAGATTGCTTGAAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTT

ATGCAAGTCTTGGAAGTTTATCTCGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGA

AGAGTCAAATAGGCCTTTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGG

ATTCTTGAGAATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCTC

AAGTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCATTGCGGATGGAATTCTACATT

GGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATTTGCTGAGCAATTTTGCAATGAG

AAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTGAAGGTGCCTGTCAAATGGGGAG

ATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGATGTTAAGAAAGCATTAGACAAACTAATGGA

TGAAGGAGAAGAAGGACAAGTAAGAAGAACAAAAGCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCA

TTTGGAGAAGGTGGTTCTTCTTATGTTAACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAA

ATCACAAGGAAAAATAG 

 
Figure 13: Flavonoid Glucosyltransferase (NtGT4) Accession Number BAD93688.1. 
A. Amino acid sequence, the underlined sequence shows 100% identity to the 
SBIP68 sequence in figure 13B. B. Open reading frame of NtGT4 gene. 
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smaller size and exact match of the SBIP68 to the C-terminus of NTGT4 indicated that it 

is a partial sequence and lacks N-terminus. 

Subcellular Localization of SBIP68 

Various subcellular localization prediction software was used to predict the 

subcellular localization of SBIP68 (Figs. 14-16). Most analyses predicted SBIP68 to be 

 

 

 

neither a mitochondrial nor a chloroplast localized protein. MultiLoc 2 predicted it to be a 

cytoplasmic protein (Fig. 14), while Target v1.1 predicted it to be a secretory protein 

Protein: SBIP68  
Predicted Location: cytoplasmic: 0.5  extracellular: 0.12 peroxisomal: 0.11 Golgi 

apparatus: 0.07 plasma membrane: 0.06 mitochondrial: 0.05 vacuolar: 0.04 ER: 0.03 
nuclear: 0.01 chloroplast: 0.01 

Figure 14: Subcellular Localization Prediction using MultiLoc2. This predicts that the 
protein is most probably a cytoplasmic protein with the highest score of 0.5. 

 

 

Figure 15: Subcellular Localization Prediction using Target v1.1. This indicates that 
SBIP68 is most probably a secretory protein (SP) and neither a mitochondrial 
transfer protein (mTP) nor a chloroplast transfer protein (cTP). 

 

 Name                  Len     cTP    mTP     SP  other  Loc  RC 
---------------------------------------------------------------------- 
SBIP68                496   0.018  0.046  0.469  0.118   S    4 
---------------------------------------------------------------------- 
cutoff                      0.000  0.000  0.000  0.000 

 

 

Figure 16:  Localization of SBIP68 as Predicted by PSORT. 

 endoplasmic reticulum (membrane) --- Certainty= 0.550(Affirmative) < succ> 
    endoplasmic reticulum (lumen) --- Certainty= 0.100(Affirmative) < succ> 
                          outside --- Certainty= 0.100(Affirmative) < succ> 
           microbody (peroxisome) --- Certainty= 0.100(Affirmative) < succ> 
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(Fig. 15) and PSORT predicted to be endoplasmic reticulum membrane localized 

protein (Fig. 16).   

RNA Extraction 

Total RNA from young tobacco leaves was purified and quantitated using a 

nanodrop spectrophotometer. The result is as shown in Fig. 17. The concentration of 

the purified total RNA was 637.2 ng/μl and the A260/280 ratio was 2.01 which showed 

high purity level. 

 

cDNA Synthesis 

The endogenous tobacco EF1α was amplified via PCR to check the quality of the 

newly synthesized cDNA. Figure 18 shows agarose gel picture of the PCR amplified 

EF1α with expected size of 550 bp. The other thick diffused bands at the bottom are 

likely from primer dimers. Lane numbers 2 and 3 are duplicate samples of the same 

cDNA preparation. 

 

                         Figure 17: Scan from Nanodrop Spectrophotometer.  



72 

 

 

PCR Amplification of SBIP68  

To amplify full length SBIP68, PCR amplification was performed using primers 

specific for SBIP68. Three separate cDNA preparations (lane #2, 3, & 4) were used 

(Fig. 19). Full length SBIP68 (~1491 bp) was amplified but some unexpected products 

were also amplified (lane #2) as shown in Figure 18. This was probably due to non-

specific binding of the primers used for PCR, to templates other than SBIP68 cDNA.  

 

 

Figure 18: PCR Amplification of EF1α. DNA ladder (100 bp) was used to compare 
size of purified products. 
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Figure 19: RT-PCR Amplification of SBIP68. Ethidium bromide stained 1.2 % 
agarose gel showing amplification of SBIP68 (~1491bp).  
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Purification of PCR Product  

The RT-PCR amplified SBIP68 was gel purified  as described in material and 

methods before using them for other downstream applications. Figure 20 shows 

aliquots of the gel purified PCR products. 

      

Cloning SBIP68 in pGEMT Plasmid 

The purified SBIP68 PCR amplified products were ligated into pGEMT plasmids 

via TA cloning. Ligated products were transformed into freshly prepared competent 

cells. Transformed cells were plated on selective media (LB/ampicillin), and incubated 

at 37 °C overnight. Isolated colonies were tested for the presence of pGEMT-SBIP68 

using colony PCR, and the PCR amplified products were analyzed by electrophoresis 

on a 0.8 % agarose gel (Fig. 21). Several clones containing the expected size bands 

(#2, 3, 4 and #6 -10 for DK644) (#3 - 6 and 8 -10 for DK645) were selected for plasmid 

DNA isolation followed by DNA sequencing. Clones in lane #5 (Fig. 21A), and lane #2 

and 7 (Fig. 21B) showed faint and smaller sized bands. The fact that these clones grew 

 

Figure 20: Purified SBIP68 PCR Products. Ethidium bromide stained 1.2 % agarose 
gel showing SBIP68 purified PCR produtcs. DNA ladder (100 bp) was used to 
compare size of purified products. 
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as white colonies on selective media meant two things: they were transformed by the 

vector which conferred resistance to ampicillin, and they were not transformed by empty 

vectors otherwise they would have shown up as blue colonies due to α-

complementation and the presence of X-Gal. 

 

Plasmid Isolation and DNA Sequencing of pGEMT-SBIP68 

 Ten clones (five each of pGEMT-SBIP68 (644) and pGEMT-SBIP68 (645)) were 

selected for plasmid DNA isolation. Plasmid DNA was isolated and sequenced. Of the 

ten clones, seven of them had good quality readable sequences. These were compared 

to the NtGT4 sequence from the NCBI database. All clones showed over 90% identity to 

the reference sequence (NtGT4). Four of these clones, C2, C15, C18, and C20, showed 

 

Figure 21: Screening of SBIP68 Inserts by Colony PCR. Agarose gel (0.8%) 
showing PCR amplified SBIP68. Lane numbers 2 through 10 are individual clones. 
Clones that tested positive for the inserts of interest have been underlined. A. 
Shows colony PCR of 644. B. Shows colony PCR of 645 in pGEMT. Plasmid 
specific M13 forward primer, and gene specific DK644 and DK645 reverse primers 
were used for PCR amplifications.  
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99% identity to NtGT4. These four clones differed from the reference sequence (NtGT4) 

by one nucleotide change at base number 552 (Fig. 22). This single nucleotide 

difference was a pyrimidine (T) to pyrimidine (C) change. Upon translation this resulted 

in no change in amino acid (Fig. 23). C2 is pGEMT-SBIP68 (644) with the stop codon 

as present in NtGT4, while C15, C18, and C20, are pGEMT-SBIP68 (645) without the 

stop codon. Full length SBIP68 nucleotide sequence and translated amino acid 

sequence are shown in Figure 24A and Figure 24B respectively. Figure 25 shows the 

result of a protein blast performed on NCBI with full length SBIP68 protein, showing 

SBIP68 to belong to the glycosyltransferase_GTB_type superfamily. It has a putative 

GT1_Gtf_like conserved protein domain (276 - 464) and a putative UDP-glucoronosyl 

and UDP-glucosyltransferase (UDPGT, 287 - 408) conserved domain. Full length 

SBIP68 showed homology to enzymes of glycosyltransferase family 1(Fig. 26). It 

showed 100 % similarity to a predicted: UDP-glycosyltransferase from Nicotiana 

tomentosiformis (NCBI reference sequence: XP_009623864.1), which also has 496 

amino acids and is yet to be characterized. This 100 % similarity did not come as a 

surprise as N. tabacum (a tetraploid) from which SBIP68 was derived is supposedly a 

hybrid of N. tomentosiformis and N. sylvestris (Ren and Timko, 2001; Sierro et al., 

2014). SBIP68 also showed 88 % similarity to a putative glycosyltransferase UGT73E5 

from Lycium barbarum (GenBank: BAG80535.1) with 503 amino acids (Noguchi et al., 

2008). UGT73E5 was cloned alongside other LbGT’s including UGT73A10 (49 % 

similarity to SBIP68). UGT73E5 and UGT73A10 belong to the same phylogenetic 

cluster and UGT73A10 has been shown to be a flavonoid: UDP-glycosyltransferase with 

regiospecific activity towards flavan-3-ols (Noguchi et al., 2008). UGT73A10 is highly 
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specific for the donor substrate UDP-glucose has broad acceptor substrate specificity 

with the highest preference for naringenin (Noguchi et al., 2008).  

SBIP68 also showed 58 % similarity to a putative flavonoid UDP-

glucosyltransferase 2 from Citrus paradisi (GenBank: AIS39471.1) with 491 amino acids 

(Devaiah et al., in review). A previously characterized salicylic acid glucosyltransferase, 

UDP-glucose: salicylic acid glucosyltransferase (SA GTase) from Nicotiana tabacum 

(GenBank: AAF61647.1) with 459 amino acids showed only 29 % similarity to SBIP68 

(Lee and Raskin, 1999). SA GTase uses UDP-glucose as the sole sugar donor to 

glucosylate SA forming SA 2-O-beta-D-glucoside (SAG) and glucosyl salicylate (GS) 

and has broad acceptor substrate specificity to simple phenolics. SA GTase mRNA is 

also induced by SA and incompatible pathogens. “Currently, PSPG function and 

specificity cannot be fully predicted based on sequence information alone” (Noguchi et 

al., 2008). 

C15        GGATCCATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCTCCA 

C18        GGATCCATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCTCCA 

C20        GGATCCATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCTCCA 

NtGT4      ------ATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCTCCA 

C2         GGATCCATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCTCCA 

                 ****************************************************** 

C15        GGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATTACC 

C18        GGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATTACC 

C20        GGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATTACC 

NtGT4      GGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATTACC 

C2         GGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATTACC 

           ************************************************************ 

C15        ACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACAATTACTCGTGCCATA 

C18        ACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACAATTACTCGTGCCATA 

C20        ACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACAATTACTCGTGCCATA 

NtGT4      ACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACAATTACTCGTGCCATA 

C2         ACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACAATTACTCGTGCCATA 

           ************************************************************ 

 

 

 

 

 

 

 

 

Figure 22 (continued on next page) 
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C15        AAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGTGTAGAAGTAGGATTA 

C18        AAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGTGTAGAAGTAGGATTA 

C20        AAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGTGTAGAAGTAGGATTA 

NtGT4      AAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGTGTAGAAGTAGGATTA 

C2         AAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGTGTAGAAGTAGGATTA 

           ************************************************************ 

C15        CCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTGGCTTCAAAGTTTTTT 

C18        CCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTGGCTTCAAAGTTTTTT 

C20        CCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTGGCTTCAAAGTTTTTT 

NtGT4      CCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTGGCTTCAAAGTTTTTT 

C2         CCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTGGCTTCAAAGTTTTTT 

           ************************************************************ 

C15        GCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAAGGAATAAATCCAAGT 

C18        GCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAAGGAATAAATCCAAGT 

C20        GCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAAGGAATAAATCCAAGT 

NtGT4      GCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAAGGAATAAATCCAAGT 

C2         GCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAAGGAATAAATCCAAGT 

           ************************************************************ 

C15        CCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAAATTGCACAAAATTTT 

C18        CCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAAATTGCACAAAATTTT 

C20        CCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAAATTGCACAAAATTTT 

NtGT4      CCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAAATTGCACAAAATTTT 

C2         CCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAAATTGCACAAAATTTT 

           ************************************************************ 

C15        AATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTTTTATGTTCCTATAAA 

C18        AATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTTTTATGTTCCTATAAA 

C20        AATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTTTTATGTTCCTATAAA 

NtGT4      AATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTTTTATGTTCCTATAAA 

C2         AATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTTTTATGTTCCTATAAA 

           ************************************************************ 

C15        ATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAGTATTTTGTTGTTCCT 

C18        ATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAGTATTTTGTTGTTCCT 

C20        ATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAGTATTTTGTTGTTCCT 

NtGT4      ATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAGTATTTTGTTGTTCCT 

C2         ATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAGTATTTTGTTGTTCCT 

           ************************************************************ 

C15        GATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAATACT 

C18        GATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAATACT 

C20        GATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAATACT 

NtGT4      GATTTACCCGATAGAGTTGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAATACT 

C2         GATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAATACT 

           ***************** ****************************************** 

 

C15        ACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAGGAA 

C18        ACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAGGAA 

C20        ACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAGGAA 

NtGT4      ACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAGGAA 

C2         ACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAGGAA 

           ************************************************************ 

C15        TCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAAGAA 

C18        TCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAAGAA 

C20        TCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAAGAA 

NtGT4      TCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAAGAA 

C2         TCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAAGAA 

           ************************************************************ 

 

 

 

 

 

 

 

 

Figure 22 (continued on next page) 
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C15        TATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTTTCTTTGTGTAATAAG 

C18        TATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTTTCTTTGTGTAATAAG 

C20        TATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTTTCTTTGTGTAATAAG 

NtGT4      TATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTTTCTTTGTGTAATAAG 

C2         TATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTTTCTTTGTGTAATAAG 

           ************************************************************ 

C15        GAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGATAATCAAGATTGCTTG 

C18        GAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGATAATCAAGATTGCTTG 

C20        GAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGATAATCAAGATTGCTTG 

NtGT4      GAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGATAATCAAGATTGCTTG 

C2         GAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGATAATCAAGATTGCTTG 

           ************************************************************ 

C15        AAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGTCTTGGAAGTTTATCT 

C18        AAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGTCTTGGAAGTTTATCT 

C20        AAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGTCTTGGAAGTTTATCT 

NtGT4      AAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGTCTTGGAAGTTTATCT 

C2         AAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGTCTTGGAAGTTTATCT 

           ************************************************************ 

C15        CGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAAGAGTCAAATAGGCCT 

C18        CGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAAGAGTCAAATAGGCCT 

C20        CGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAAGAGTCAAATAGGCCT 

NtGT4      CGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAAGAGTCAAATAGGCCT 

C2         CGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAAGAGTCAAATAGGCCT 

           ************************************************************ 

C15        TTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGGATTCTTGAG 

C18        TTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGGATTCTTGAG 

C20        TTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGGATTCTTGAG 

NtGT4      TTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGGATTCTTGAG 

C2         TTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGGATTCTTGAG 

           ************************************************************ 

C15        AATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCTCAA 

C18        AATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCTCAA 

C20        AATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCTCAA 

NtGT4      AATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCTCAA 

C2         AATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCTCAA 

           ************************************************************ 

C15        GTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCATTGCGGATGGAATTCT 

C18        GTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCATTGCGGATGGAATTCT 

C20        GTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCATTGCGGATGGAATTCT 

NtGT4      GTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCATTGCGGATGGAATTCT 

C2         GTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCATTGCGGATGGAATTCT 

           ************************************************************ 

C15        ACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATTTGCTGAGCAA 

C18        ACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATTTGCTGAGCAA 

C20        ACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATTTGCTGAGCAA 

NtGT4      ACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATTTGCTGAGCAA 

C2         ACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATTTGCTGAGCAA 

           ************************************************************ 

C15        TTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTGAAG 

C18        TTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTGAAG 

C20        TTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTGAAG 

NtGT4      TTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTGAAG 

C2         TTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTGAAG 

           ************************************************************ 

C15        GTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGATGTT 

C18        GTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGATGTT 

C20        GTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGATGTT 

NtGT4      GTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGATGTT 

C2         GTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGATGTT 

           ************************************************************ 

 

 

 Figure 22 (continued on next page) 
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C15        AAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAAGTAAGAAGAACAAAA 

C18        AAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAAGTAAGAAGAACAAAA 

C20        AAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAAGTAAGAAGAACAAAA 

NtGT4      AAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAAGTAAGAAGAACAAAA 

C2         AAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAAGTAAGAAGAACAAAA 

           ************************************************************ 

C15        GCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGTGGTTCTTCTTATGTT 

C18        GCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGTGGTTCTTCTTATGTT 

C20        GCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGTGGTTCTTCTTATGTT 

NtGT4      GCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGTGGTTCTTCTTATGTT 

C2         GCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGTGGTTCTTCTTATGTT 

           ************************************************************ 

C15        AACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCACAAGGAAAAACTCGAG 

C18        AACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCACAAGGAAAAACTCGAG 

C20        AACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCACAAGGAAAAACTCGAG 

NtGT4      AACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCACAAGGAAAAATAG--- 

C2         AACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCACAAGGAAAAATAGCTC 

           ******************************************************       

C15        AATCACTAGT--- 

C18        AATCACTAGT--- 

C20        AATCACTAGT--- 

NtGT4      ------------- 

C2         GAGAATCACTAGT 

 

 

 

 

 

 

 

Figure 22: Nucleotide Sequence Alignment of NtGT4 and pGEMT-SBIP68 Clones. 
Clones C2, C15, C18, and C20. The arrow indicates the single nucleotide difference 
between NtGT4 and pGEMT-SBIP68 clones. 
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Figure 23: Amino Acid Sequence Alignment of NtGT4 and pGEMT-SBIP68 Clones, 
C2 and C15. All sequences are identical. 
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>SBIP68_Nucleotide 

ATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCTCCAGGCCACATGATTCCTATGAT

AGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATTACCACTATCATCACCACTCCAGTAAACGCCAATCGTT

TCAGTTCAACAATTACTCGTGCCATAAAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGTGTA

GAAGTAGGATTACCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTGGCTTCAAAGTTTTTTGC

TGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAAGGAATAAATCCAAGTCCAAGTTGTGTTATTT

CAGATATGGGATTTCCTTGGACTACTCAAATTGCACAAAATTTTAATATCCCAAGAATTGTTTTTCATGGTACT

TGTTGTTTCTCACTTTTATGTTCCTATAAAATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGA

GTATTTTGTTGTTCCTGATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAATA

CTACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAGGAATCATCATATGGT

GTAATTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAAGAATATAGGAAAGCTAGAGGGAAAAAAGT

TTGGTGTGTTGGTCCTGTTTCTTTGTGTAATAAGGAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAA

TTGATAATCAAGATTGCTTGAAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGTCTTGGAAGT

TTATCTCGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAAGAGTCAAATAGGCCTTTTGTATG

GGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGGATTCTTGAGAATGGATTTGAGCAAAGAATTA

AAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCTCAAGTGCTTATACTTTCACACCCTGCAATTGGTGGAGTA

TTGACTCATTGCGGATGGAATTCTACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATT

TGCTGAGCAATTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTGAAGGTGC

CTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGATGTTAAGAAAGCATTAGACAAA

CTAATGGATGAAGGAGAAGAAGGACAAGTAAGAAGAACAAAAGCAAAAGAGTTAGGAGAATTGGCTAAAAAGGC

ATTTGGAGAAGGTGGTTCTTCTTATGTTAACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCACA

AGGAAAAATAG 

 

  
>SBIP68_Protein 

MATQVHKLHFILFPLMAPGHMIPMIDIAKLLANRGVITTIITTPVNANRFSSTITRAIKSGLRIQILTLKFPSV

EVGLPEGCENIDMLPSLDLASKFFAAISMLKQQVENLLEGINPSPSCVISDMGFPWTTQIAQNFNIPRIVFHGT

CCFSLLCSYKILSSNILENITSDSEYFVVPDLPDRVELTKAQVSGSTKNTTSVSSSVLKEVTEQIRLAEESSYG

VIVNSFEELEQVYEKEYRKARGKKVWCVGPVSLCNKEIEDLVTRGNKTAIDNQDCLKWLDNFETESVVYASLGS

LSRLTLLQMVELGLGLEESNRPFVWVLGGGDKLNDLEKWILENGFEQRIKERGVLIRGWAPQVLILSHPAIGGV

LTHCGWNSTLEGISAGLPMVTWPLFAEQFCNEKLVVQVLKIGVSLGVKVPVKWGDEENVGVLVKKDDVKKALDK

LMDEGEEGQVRRTKAKELGELAKKAFGEGGSSYVNLTSLIEDIIEQQNHKEK 

 

Figure 24: Full Length SBIP68 Sequence Cloned from Nicotiana tabacum.  . 
Nucleotide sequence. B. Translated amino acid sequence, a putative PSPG Box 
(355-398) is highlighted.  
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Figure 25: SBIP68 Protein BLAST Query. SBIP68 is a GTB_type protein with 
putative GT1_Gtf and UDPGT conserved domains amongst others. 
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PCR Screening of pET-28a-SBIP68 Bacterial Clones 

The pGEMT-SBIP68 (644 & 645) plasmids were restriction digested and the 

fragments gel purified. The gel purified SBIP68 (644 & 645) were ligated into pET-28a 

vector digested with the same set of enzymes. The resulting pET-28a-SBIP68 

constructs were used to transform competent bacterial cells (BL21(DE3) pLysE) 

capable of recombinant protein expression. The cells were plated and incubated, after 

which several clones were tested for presence of the plasmids using colony PCR. The 

PCR products were analyzed by agarose electrophoresis (Fig. 27). 

 

Figure 26: Alignment of SBIP68 with Other Similar Glucosyltransferases. N. 
tomentosiformis putative UDP-glycosyltransferase (NCBI reference sequence: 
XP_009623864.12014), Lycium barbarum putative glucosyltransferase UGT73E5 
(GenBank: BAG80535.1), Citrus paradisi putative flavonoid UDP-
glucosyltransferase 2 (GenBank: AIS39471.1), Nicotiana tabacum SA GTase 
(GenBank: AAF61647.1).  

PSPG box is underlined.
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Test for Recombinant pET-28a-SBIP68 Protein Expression 

Clones which were positive for pET-28a-SBIP68 were used for protein 

expression. To start the culture, 3 ml of LB with kanamycin were inoculated with a single 

isolated colony and incubated in a shaker at 37 °C for 2 hours (see materials and 

methods).  Protein expression was induced by adding 1mM IPTG (final concentration) 

and cultures were further incubated for 3 hours at 37°C. Pellets were collected and 

processed as previously described. Samples were analyzed by SDS PAGE gel followed 

 

Figure 27: Colony PCR Screening of pET28a-SBIP68 Clones. Agarose gel (0.8%) 
showing PCR amplified SBIP68. All clones tested were positive for the presence of 
insert. A. Colony PCR of 644, gene specific DK643 forward and DK644 reverse 
primer were used for PCR. Lane numbers 2, 3, 4, 5, and 6 represent clones 1, 2, 3, 
4, and 5, respectively. B. Colony PCR of 645, gene specific DK643 forward primer 
and gene specific DK645 reverse primer were used for PCR. Lane numbers 2, 3, 4, 
5, and 6 represent clones 6, 7, 8, 9, and 10, respectively. 
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by coomassie blue staining (Fig. 28). It is not clear from the SDS-PAGE analysis which 

of the expressed proteins are SBIP68 644 (expected size, ~58.5 kDa) or 645 (expected 

size, ~59.6 kDa). 

 

To specifically detect recombinant SBIP68, Western blot analysis using anti-

polyhistidine primary antibody was performed (Fig. 29A). Recombinant SBIP68 was 

highly expressed in IPTG induced cultures (Lane #3, 5, 7, and 9) compared to 

uninduced cultures (Lane #2, 4, 6, and 8).  Recombinant SBIP68 was expressed at 

higher levels in 645 (lane #2 - 5) compared to 644 (Lane #6 - 9). Low level recombinant 

protein was also detected in uninduced cultures (lane #2, 3, 6, and 8). The extra bands 

seen in lane #3, 5, 7, and 9 (Fig. 29A) could be as a result of degradation of SBIP68. It 

is also possible that there are proteins indigenous to the expression host that have 

       

Figure 28: SDS-PAGE of pET-28a-SBIP68 (644 & 645) Expressed in E. coli. In lane 
1 is the low molecular weight marker, lanes 2 and 4 are pET-28a-SBIP68 (644) from 
uninduced bacterial cultures. Lanes 3 and 5 contain pET-28a-SBIP68 (644) from 
0.1mM and 1mM IPTG induced bacterial cultures respectively. Lane number 6 
contains pET-28a-SBIP68 (645) from uninduced bacterial culture, while lane 
numbers 7 and 8 contain pET-28a-SBIP68 645 from 0.1mM and 1mM IPTG induced 
bacterial cultures respectively. ‘U’ in the figure stands for uninduced and ‘I’ is for 
induced. 
 

0 mM 0 mM 0 mM
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polyhistidine. To visualize the loaded proteins, the blot was later stained with coomassie 

blue (Fig. 29B). 

 

Recombinant pET-28a-SBIP68 Protein Solubility Test 

 A solubility test was performed to verify if SBIP68 was being expressed in the 

soluble or insoluble protein fractions. pET-28a-SBIP68 (644) and 645 in E. coli cells 

were cultured and the pellets derived following induction with IPTG were processed as 

described in materials and methods. The supernatants (soluble) and pellet (insoluble) 

fractions were analyzed by Western blot (Fig. 30A). Western blot analysis revealed that 

pET-28a-SBIP68 (644) & (645) are both expressed mostly in the insoluble (lane # 3, 5, 

 

 

 

 

 

 

 

Figure 29: Test for Expression of pET28a-SBIP68 (644) and (645) in E. coli. A. 
Western Blot Analysis of pET-28a-SBIP68 (644 & 645) recombinant proteins 
expression in E. coli. Lane 1 shows the low molecular weight marker, lanes 2 and 4 
are pET-28a-SBIP68 644 from uninduced bacterial cultures, while lanes 3 and 5 are 
pET-28a-SBIP68 644 from 0.1mM and 1mM IPTG induced bacterial cultures 
respectively. Lane numbers 6 and 8 contain pET-28a-SBIP68 645 from uninduced 
bacterial cultures, while lane numbers 7 and 9 contain pET-28a-SBIP68 645 from 
0.1mM and 1mM IPTG induced bacterial cultures respectively. Lane 10 served as a 
positive control for Western blot. B. Corresponding coomassie blue stained blot. 
The membrane was stained after Western blot analysis. ‘U’ in the figures stand for 
uninduced and ‘I’ for induced. The asterisk indicates SBIP68’s expected position on 
the blot.  
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7, and 9) form but a small fraction was also expressed in the soluble form (lane # 4, 6, 

8, and 10). The extra bands seen in lane # 3, 5, 7, 8, 9, and 10 (Fig. 30A), are either 

degradation products of SBIP68 and/ or non-specific host proteins. Upon the completion 

of Western blot, the membrane was stained with coomassie blue (Fig. 30B).  

 

Optimization of Conditions for Protein Solubility  

In a bid to increase the amount of soluble SBIP68 recombinant protein, the 

conditions for expression were fine-tuned by lowering the incubation temperature for 

expression to 17 °C and different IPTG concentrations (1 mM, 0.1 mM, and 0.01 mM). 

 

 

 

 

 

 

  

Figure 30: Solubility Test of Expressed pET28a-SBIP68 (644) and (645). A. 
Western blot analysis of 644 & 645 recombinant proteins.  Lane#1 shows the low 
molecular weight marker. Lane#2 is 644 from uninduced bacterial culture. Lanes 3 
and 4 consist of insoluble and soluble cell fractions from 0.1mM IPTG induced 644 
bacterial culture respectively, while lanes 5 and 6 are insoluble and soluble cell 
fractions from 1mM IPTG induced 644 bacterial culture respectively. Lanes 7 and 8 
contain insoluble and soluble cell fractions from 0.1mM IPTG induced 645 bacterial 
culture respectively, while lanes 9 and 10 contain insoluble and soluble cell fractions 
from 1mM IPTG induced 645 bacterial culture respectively. B. Corresponding 
coomassie blue stained blot. The membrane was stained after Western blot 
analysis. ‘U’ and ‘I’ in the figures stand for uninduced and induced respectively. ‘In’ 
and ‘S’ represent insoluble and soluble respectively. The asterisk indicates 
SBIP68’s expected position on the blot.  
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Induction at 37 °C and 1 mM IPTG concentration was also performed simultaneously to 

serve as a control. pET-28a-SBIP68 (644) and 645 in E. coli cells were cultured and 

protein expression induced with IPTG. The pellets were processed as described in 

materials and methods. The supernatants (soluble) and pellet (insoluble) fractions from 

the 17 °C expression (Fig. 31A), and 37 °C expression (Fig. 31C), were analyzed by 

Western blot. Western blot analysis revealed that there was no significant difference in 

the amount of soluble pET-28a-SBIP68 (644) & (645) recombinant proteins expressed 

at the different temperatures (17 °C and 37 °C). The membranes were stained with 

coomassie blue after Western blot to visualize total protein loaded in the gel (Fig. 31B, 

and Fig. 31D for 17 °C and 37 °C, respectively). 
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Figure 31: Optimization of Protein Solubility. Solubility Test of Expressed pET28a-
SBIP68 (644) and (645). A. Western blot bnalysis of 644 & 645 recombinant protein 
solubility at 17 °C.  Lane one shows the low molecular weight marker. Lane 2 is 644 
from uninduced bacterial culture. Lanes 3 and 4 consist of insoluble and soluble cell 
fractions from 0.1mM IPTG induced 644 bacterial culture respectively, while lanes 5 
and 6 are insoluble and soluble cell fractions from 0.01mM IPTG induced 645 
bacterial culture respectively. B. Corresponding coomassie blue stained blot after 
Western blot analysis. C. Western blot analysis of 644 & 645 recombinant protein 
solubility at 37 °C.  Lane one shows the low molecular weight marker. Lane 2 is 644 
from uninduced bacterial culture. Lanes 3 and 4 consist of insoluble and soluble cell 
fractions from 1mM IPTG induced 644 bacterial culture respectively. Lane 5 is 645 
from uninduced bacterial culture while lanes 6 and 7 are insoluble and soluble cell 
fractions from 1mM IPTG induced 645 bacterial culture respectively. D. Coomassie 
blue stained blot after Western blot analysis. There appears to be no significant 
difference in the amount of soluble SBIP68 produced at different temperatures. The 
major difference here is the amount of insoluble protein being produced and this is 
due to the different concentrations of IPTG used in inducing expression. The 
asterisks indicate SBIP68’s expected position on the blots.  

*

*
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Affinity Purification of Recombinant SBIP68 Protein 

To purify the soluble recombinant SBIP68, large scale expression was 

conducted. Bacterial cell pellets derived from 100 ml cultures from expression at 17 °C 

and 37 °C were resuspended in 3 ml of 1 x Ni-NTA binding buffer containing PMSF 

each. The cell lysates were collected and recombinant SBIP68 was purified using a Ni-

NTA column. The column was washed with 15 ml of 1 x Ni-NTA wash / binding buffer 

(containing 15 mM imidazole) at room temperature. Elution of 6xHis-tagged SBIP68 

protein was achieved by 1 x Ni-NTA buffer containing 250 mM imidazole. The eluted 

fractions (1 ml each) were analyzed by Western blot (Fig. 32A, Fig. 32C, Fig. 32E). After 

Western blot, the membranes were stained with coomassie blue (Fig. 32B, Fig. 32D, 

Fig. 32F). In lane # 3 of Figures 32A, 32C, and 32E, SBIP68 can be seen in the flow 

through. This is probably as a result of the presence of 15 mM imidazole in the 

wash/binding buffer. The pellets were resuspended in the binding buffer before lysis 

with the French press. In other words, the binding buffer served as the lysis buffer, this 

was done to minimize non-specific binding by non-target proteins. Another possibility is 

that the Ni-NTA columns were saturated by the bound protein and could not hold any 

more (their binding capacity was reached), so the excess proteins eluted in the flow 

through. A combination of both factors, that is imidazole and binding capacity, could 

also have been responsible for the elution of SBIP68 in the flow through.  
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Figure 32 A-F: Ni-NTA Purification of SBIP68 Expressed in E. coli.  A. Western blot 
analysis of 644 expressed at 37 °C and 1 mM IPTG concentration. In lane 2 is the 
cell lysate before purification, lane 3 is the flow through and lane 4 wash. Lanes 5 to 
10 contain fraction numbers 2, 3, 4, 5, 6, and 8, respectively collected from the 
purification process. B. Corresponding coomassie blue stained blot. C. Western blot 
analysis of 645 expressed at 17 °C and 0.01 mM IPTG concentration. In lane 2 is the 
cell lysate before purification, lane 3 is the flow through and lane 4 wash. Lanes 5 to 
10 contain fraction numbers 1, 2, 3, 4, 5, and 6, respectively. D. Corresponding 
coomassie blue stained blot. E. Western blot analysis of 645 expressed at 37 °C and 
1 mM IPTG concentration. In lane 2 is the cell lysate before purification, lane 3 is the 
flow through and lane 4 wash. Lanes 5 to 10 contain fraction numbers 2, 3, 4, 5, 6, 
and 7, respectively. F. Corresponding coomassie blue stained blot. The asterisks 
indicate SBIP68’s expected position on the blots. 
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HPLC Analysis of Glucosyltransferase Activity Assay Products  

After determining that large scale expression of SBIP68 in E. coli produced some 

soluble protein, SBIP68 was again expressed, purified, and used to test enzymatic 

activity (Fig. 32G, Fig. 32I). HPLC analysis was performed to identify the products of the 

 

Figure 32 G-J: Ni-NTA Purification of SBIP68 Expressed in E. coli.  G. Western blot 
analysis of 645 expressed at 37 °C and 0.2 mM IPTG concentration. In lane 2 is the 
cell lysate before purification, and lane 3 is the flow through. Lanes 4 to 9 contain 
fraction numbers 2, 3, 4, 5, 6, and 7, respectively collected from the purification 
process. H. Corresponding coomassie blue stained blot. I. Western blot analysis of 
644 expressed at 37 °C and 0.2 mM IPTG concentration. In lane 2 is the cell lysate 
before purification, and lane 3 is the flow through. Lanes 4 to 9 contain fraction 
numbers 2, 3, 4, 5, 6, and 7, respectively collected from the purification process. J. 
Corresponding coomassie blue stained blot. The asterisks indicate SBIP68’s 
expected position on the blots. 
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glucosyltransferase reactions using purified SBIP68 as described in the materials and 

methods. The acceptor substrates tested were kaempferol, quercetin, hesperetin, and 

naringenin (Fig. 33, Fig. 34). Kaempferol, kaempferol 3-O-glucoside, quercetin, 

quercetin 3-O-glucoside, naringenin, naringenin 7-O-glucoside, and hesperetin were 

used as standards in the identification of the reaction products. 

The cloning and heterologous expression of SBIP68 in E. coli (prokaryote) and P. 

pastoris (eukaryote) was performed simultaneously. This was done because there are 

well known limitations to the expression of functional recombinant proteins with 

eukaryotic origins in prokaryotic systems, and at the time of cloning there was no idea 

as to just how much SBIP68 would be expressed in the soluble (functional) form in      

E. coli. As can be seen from the results of the expression of SBIP68 in E. coli, a greater 

percentage of expressed SBIP68 was present in the (non-functional) insoluble form 

(Figs. 30 and 31). 



94 

 

 

 

 

Figure 33 A-B: GT Assay using E. coli Expressed SBIP68 (645).  . Top panel shows 
retention time for kaempferol standard at 12.7 minutes, middle panel shows retention 
time for kaempferol 3-O-glucoside standard at 9.2 minutes. The bottom panel shows 
the products formed from the reaction with SBIP68-645, kaempferol 3-O-glucoside 
and kaempferol, with retention times at 9.2 minutes and 12.8 minutes respectively.  . 
Top panel shows retention time for quercetin standard at 11.2 minutes, middle panel 
shows retention time for quercetin 3-O-glucoside standard at 8 minutes. The bottom 
panel shows the products formed from the reaction with SBIP68-645, quercetin 3-O-
glucoside and quercetin, with retention times at 8 minutes and 11.2 minutes 
respectively. 
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Figure 33 C-D: GT Assay using E. coli Expressed SBIP68 (645). C. Top panel shows 
retention time for naringenin standard at 12.2 minutes, middle panel shows retention 
time for naringenin 7-O-glucoside standard at 9.2 minutes. The bottom panel shows 
the products formed from the reaction with SBIP68-645, naringenin 7-O-glucoside 
and naringenin, with retention times at 9.2 minutes and 12.2 minutes respectively. D. 
Top panel shows retention time for hesperetin standard at 12.8 minutes.The bottom 
panel shows the products formed from the reaction with SBIP68-645, hesperetin 
glucoside and hesperetin, with retention times at 10.2 minutes and 12.8 minutes 
respectively. It appears there is a second hesperetin glucoside with a retention time 
of 9.7 minutes. There were no hesperetin glucoside standards available at the time of 
this experiment. 
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Figure 34 A-B: GT Assay using E. coli Expressed SBIP68 (644).  . Top panel shows 
retention time for kaempferol standard at 12.7 minutes, middle panel shows retention 
time for kaempferol 3-O-glucoside standard at 9.2 minutes. The bottom panel shows 
the products formed from the reaction with SBIP68-644, kaempferol 3-O-glucoside 
and kaempferol, with retention times at 9.2 minutes and 12.8 minutes respectively.  . 
Top panel shows retention time for quercetin standard at 11.2 minutes, middle panel 
shows retention time for quercetin 3-O-glucoside standard at 8 minutes. The bottom 
panel shows the products formed from the reaction with SBIP68-644, quercetin 3-O-
glucoside and quercetin, with retention times at 8 minutes and 11.2 minutes 
respectively. 
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Figure 34 C-D: GT Assay using E. coli Expressed SBIP68 (644). C. Top panel shows 
retention time for naringenin standard at 12.2 minutes, middle panel shows retention 
time for naringenin 7-O-glucoside standard at 9.2 minutes. The bottom panel shows 
the products formed from the reaction with SBIP68-644, naringenin 7-O-glucoside 
and naringenin, with retention times at 9.2 minutes and 12.2 minutes respectively. D. 
Top panel shows retention time for hesperetin standard at 12.8 minutes.The bottom 
panel shows the products formed from the reaction with SBIP68-644, hesperetin 
glucoside and hesperetin, with retention times at 10.2 minutes and 12.8 minutes 
respectively. It appears there is a second hesperetin glucoside with a retention time 
of 9.7 minutes. There were no hesperetin glucoside standards available at the time of 
this experiment. 
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Cloning and Expression of SBIP68 in P. pastoris 

PCR Amplification of SBIP68 with Modified Ends for Cloning into pPICZA 

For cloning full length SBIP68 into P. pastoris, primers were synthesized and 

used for PCR amplification. The pGEMT-SBIP68 plasmid (Clone# C2) was used as a 

template for PCR, while DK639 and DK640 primers were used for amplification. Figure 

35 below shows an ethidium bromide stained agarose gel of the PCR products. 

 

The PCR products were gel purified and ligated into pGEMT forming a new set of 

pGEMT-SBIP68’ constructs. Selected clones were tested for presence of the plasmids 

using colony PCR. M13 forward and reverse primers were used in this PCR 

amplification. PCR products were analyzed by electrophoresis using a 0.8 % agarose 

gel (Fig. 36). Size of the amplified product is relatively large due to the amplification of 

pGEMT fragments on both sides of SBIP68’. Several isolated positive colonies (C2, C3, 

C5, C9, C10, C11, C12, C15, C17, C18) were chosen for plasmid DNA isolation.  

   

Figure 35: PCR Amplification of SBIP68 for Cloning into pPICZA. Ethidium bromide 
stained 0.8 % agarose gel picture of SBIP68’. Lane numbers 2, 3, 5, 6, and 7 
contain replicates of the same PCR reaction. 
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Sequencing of pGEMT-SBIP68’ Recombinant Plasmid 

The plasmid DNA from several positive clones identified by colony PCR 

screening (Fig. 36), were used for DNA sequencing. Ten clones (C2, C3, C5, C9, C10, 

C11, C12, C15, C17, C18) were sequenced, of these, two of them (C11, and C18) were 

a 100 % match to the pGEMT-SBIP68 used as template for PCR.  The only difference 

being the new restriction enzyme sites introduced for cloning into pPICZA by the new 

primers. The other eight clones (C2, C3, C5, C9, C10, C12, C15, C17), showed greater 

than 90 % identity (not shown) to the pGEMT-SBIP68 used as template for PCR. Figure 

37 shows the sequence alignment of the new pGEMT-SBIP68’ clones (C11 and C18) 

and the original pGEMT-SBIP68 from which they were derived. The different restriction 

enzyme sites between pGEMT-SBIP68 and pGEMT-SBIP68’ can also be seen 

highlighted in boxes. 

 

 

Figure 36: Verification of pGEMT-SBIP68’ clones. Ethidium bromide stained 0.8 % 
agarose gel showing PCR amplified pGEMT-SBIP68’. For PCR amplification 
pGEMT specific M13 forward and reverse primers were used. Lanes 2 – 18 are 
representative of individual isolated clones from colonies C2, C3, C4, C5, C6, C7, 
C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, and C18, respectively. C8 in 
lane 8 likely did not contain the SBIP68 insert of interest. 
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ref      ---GGATCCATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCT 
C11      CTCGAGGTCATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCT 
C18      CTCGAGGTCATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTCCCTTTAATGGCT 
            *    **************************************************** 

ref      CCAGGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATT 

C11      CCAGGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATT 

C18      CCAGGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAATCGCGGTGTCATT 

         ************************************************************ 

ref      ACCACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACAATTACTCGTGCC 

C11      ACCACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACAATTACTCGTGCC 

C18      ACCACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACAATTACTCGTGCC 

         ************************************************************ 

ref      ATAAAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGTGTAGAAGTAGGA 

C11      ATAAAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGTGTAGAAGTAGGA 

C18      ATAAAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGTGTAGAAGTAGGA 

         ************************************************************ 

ref      TTACCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTGGCTTCAAAGTTT 

C11      TTACCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTGGCTTCAAAGTTT 

C18      TTACCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTGGCTTCAAAGTTT 

         ************************************************************ 

ref      TTTGCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAAGGAATAAATCCA 

C11      TTTGCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAAGGAATAAATCCA 

C18      TTTGCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAAGGAATAAATCCA 

         ************************************************************ 

ref      AGTCCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAAATTGCACAAAAT 

C11      AGTCCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAAATTGCACAAAAT 

C18      AGTCCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAAATTGCACAAAAT 

         ************************************************************ 

ref      TTTAATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTTTTATGTTCCTAT 

C11      TTTAATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTTTTATGTTCCTAT 

C18      TTTAATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTTTTATGTTCCTAT 

         ************************************************************ 

ref      AAAATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAGTATTTTGTTGTT 

C11      AAAATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAGTATTTTGTTGTT 

C18      AAAATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAGTATTTTGTTGTT 

         ************************************************************ 

ref      CCTGATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAAT 

C11      CCTGATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAAT 

C18      CCTGATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGATCGACGAAAAAT 

         ************************************************************ 

ref      ACTACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAG 

C11      ACTACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAG 

C18      ACTACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATCAGATTAGCCGAG 

         ************************************************************ 

ref      GAATCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAA 

C11      GAATCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAA 

C18      GAATCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAAGTGTATGAGAAA 

         ************************************************************ 

ref      GAATATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTTTCTTTGTGTAAT 

C11      GAATATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTTTCTTTGTGTAAT 

C18      GAATATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTTTCTTTGTGTAAT 

         ************************************************************ 

ref      AAGGAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGATAATCAAGATTGC 

C11      AAGGAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGATAATCAAGATTGC 

C18      AAGGAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGATAATCAAGATTGC 

         ************************************************************ 

ref      TTGAAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGTCTTGGAAGTTTA 

C11      TTGAAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGTCTTGGAAGTTTA 

C18      TTGAAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGTCTTGGAAGTTTA 

         ************************************************************ 

 

 

 

 

Figure 37 (continued on next page) 
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ref      TCTCGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAAGAGTCAAATAGG 

C11      TCTCGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAAGAGTCAAATAGG 

C18      TCTCGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAAGAGTCAAATAGG 

         ************************************************************ 

ref      CCTTTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGGATTCTT 

C11      CCTTTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGGATTCTT 

C18      CCTTTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAGAAATGGATTCTT 

         ************************************************************ 

ref      GAGAATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCT 

C11      GAGAATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCT 

C18      GAGAATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGAGGATGGGCTCCT 

         ************************************************************ 

ref      CAAGTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCATTGCGGATGGAAT 

C11      CAAGTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCATTGCGGATGGAAT 

C18      CAAGTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCATTGCGGATGGAAT 

         ************************************************************ 

ref      TCTACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATTTGCTGAG 

C11      TCTACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATTTGCTGAG 

C18      TCTACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCACTATTTGCTGAG 

         ************************************************************ 

ref      CAATTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTG 

C11      CAATTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTG 

C18      CAATTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTGAGCCTAGGTGTG 

         ************************************************************ 

ref      AAGGTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGAT 

C11      AAGGTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGAT 

C18      AAGGTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTAAAAAAGGATGAT 

         ************************************************************ 

ref      GTTAAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAAGTAAGAAGAACA 

C11      GTTAAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAAGTAAGAAGAACA 

C18      GTTAAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAAGTAAGAAGAACA 

         ************************************************************ 

ref      AAAGCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGTGGTTCTTCTTAT 

C11      AAAGCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGTGGTTCTTCTTAT 

C18      AAAGCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGTGGTTCTTCTTAT 

         ************************************************************ 

ref      GTTAACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCACAAGGAAAAACTC 

C11      GTTAACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCACAAGGAAAAAGGG 

C18      GTTAACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCACAAGGAAAAAGGG 

         *********************************************************    

ref      GAG 

C11      CCC 

C18      CCC 

 

 

 

 

 

 

Figure 37: Alignment of Cloned SBIP68’ in pGEMT with Reference Gene. The 
sequences match perfectly except for the new restriction enzyme sites at 5’ (Xho 1) 
and 3’ (Apa 1) ends of pGEMT-SBIP68’. The restriction enzyme sites are highlighted 
in boxes. 
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PCR Screening of pPICZA-SBIP68’ Transformed Bacterial Clones 

The positive clones (pGEMT-SBIP68’) were digested with restriction enzymes 

(Xho 1 and Apa 1) and ligated into pPICZA digested with same set of enzymes as 

described in material and methods. The ligated pPICZA-SBIP68’ products were used to 

transform competent bacterial cells. Selected clones were tested for presence of the 

pPICZA-SBIP68’ plasmid by colony PCR using the vector specific 5’ AOX1 (DK 641) 

forward and 3’ AOX1 (DK 642) reverse primers. Figure 39 shows the agarose gel 

electrophoresis of the PCR amplified products. 

 

Sequencing of pPICZA-SBIP68’ Recombinant Clones 

Clones that tested positive in colony PCR analyses were used for plasmid DNA 

isolation. Plasmid DNA samples were sent for sequencing. Sequencing was important 

to ensure that the SBIP68 gene (in the recombinant pPICZA-SBIP68’ plasmid) was in-

 

Figure 38: Colony PCR to Verify Presence of SBIP68’ in pPICZA Plasmid. Colony 
PCR was performed using pPICZA specific AOX1 primers. Ethidium bromide 
stained 0.8 % Agarose gel picture of pPICZA-SBIP68’.  Lanes 2 – 20 are 
representative of individual clones C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, 
C15, C16, C17, C18, C23, C26, C28, and C30, respectively. Positive clones have 
been underlined. 
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frame with the rest of the plasmid. This would ensure that the stop codon, fusion tags 

and other sequences necessary for expression and purification of the protein are in 

place. Fifteen clones were sequenced, out of which fourteen showed 100 % identity to 

the reference (expected sequence), and one sequence showed 99 % identity with a 

single nucleotide difference. Figure 39 shows one of the sequenced clones (C4) as a 

representative of the clones that showed 100 % identity to the reference (expected) 

sequence, together with the reference sequence. Figure 40 shows the translated amino 

acid sequence. The c-myc epitope and 6xHis-tag necessary for detection and 

purification of the recombinant SBIP68’ protein are shown in blue and red respectively 

(Fig. 40).  

ref      TCGGATCGGTACCTCGAGGTCATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTC 

C4       TCGGATCGGTACCTCGAGGTCATGGCAACTCAAGTGCACAAACTTCATTTCATACTATTC 

         ************************************************************ 

ref      CCTTTAATGGCTCCAGGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAAT 

C4       CCTTTAATGGCTCCAGGCCACATGATTCCTATGATAGACATAGCTAAACTTCTAGCAAAT 

         ************************************************************ 

ref      CGCGGTGTCATTACCACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACA 

C4       CGCGGTGTCATTACCACTATCATCACCACTCCAGTAAACGCCAATCGTTTCAGTTCAACA 

         ************************************************************ 

ref      ATTACTCGTGCCATAAAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGT 

C4       ATTACTCGTGCCATAAAATCCGGTCTAAGAATCCAAATTCTTACACTCAAATTTCCAAGT 

         ************************************************************ 

ref      GTAGAAGTAGGATTACCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTG 

C4       GTAGAAGTAGGATTACCAGAAGGTTGCGAAAATATTGACATGCTTCCTTCTCTTGACTTG 

         ************************************************************ 

ref      GCTTCAAAGTTTTTTGCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAA 

C4       GCTTCAAAGTTTTTTGCTGCAATTAGTATGCTGAAACAACAAGTTGAAAATCTCTTAGAA 

         ************************************************************ 

ref      GGAATAAATCCAAGTCCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAA 

C4       GGAATAAATCCAAGTCCAAGTTGTGTTATTTCAGATATGGGATTTCCTTGGACTACTCAA 

         ************************************************************ 

ref      ATTGCACAAAATTTTAATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTT 

C4       ATTGCACAAAATTTTAATATCCCAAGAATTGTTTTTCATGGTACTTGTTGTTTCTCACTT 

         ************************************************************ 

ref      TTATGTTCCTATAAAATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAG 

C4       TTATGTTCCTATAAAATACTTTCCTCCAACATTCTTGAAAATATAACCTCAGATTCAGAG 

         ************************************************************ 

ref      TATTTTGTTGTTCCTGATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGA 

C4       TATTTTGTTGTTCCTGATTTACCCGATAGAGTCGAACTAACGAAAGCTCAGGTTTCAGGA 

         ************************************************************ 

  Figure 39 (continued on next page) 
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ref      TCGACGAAAAATACTACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATC 

C4       TCGACGAAAAATACTACTTCTGTTAGTTCTTCTGTATTGAAAGAAGTTACTGAGCAAATC 

         ************************************************************ 

ref      AGATTAGCCGAGGAATCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAA 

C4       AGATTAGCCGAGGAATCATCATATGGTGTAATTGTTAATAGTTTTGAGGAGTTGGAGCAA 

         ************************************************************ 

ref      GTGTATGAGAAAGAATATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTT 

C4       GTGTATGAGAAAGAATATAGGAAAGCTAGAGGGAAAAAAGTTTGGTGTGTTGGTCCTGTT 

         ************************************************************ 

ref      TCTTTGTGTAATAAGGAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGAT 

C4       TCTTTGTGTAATAAGGAAATTGAAGATTTGGTTACAAGGGGTAATAAAACTGCAATTGAT 

         ************************************************************ 

ref      AATCAAGATTGCTTGAAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGT 

C4       AATCAAGATTGCTTGAAATGGTTAGATAATTTTGAAACAGAATCTGTGGTTTATGCAAGT 

         ************************************************************ 

ref      CTTGGAAGTTTATCTCGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAA 

C4       CTTGGAAGTTTATCTCGTTTGACATTATTGCAAATGGTGGAACTTGGTCTTGGTTTAGAA 

         ************************************************************ 

ref      GAGTCAAATAGGCCTTTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAG 

C4       GAGTCAAATAGGCCTTTTGTATGGGTATTAGGAGGAGGTGATAAATTAAATGATTTAGAG 

         ************************************************************ 

ref      AAATGGATTCTTGAGAATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGA 

C4       AAATGGATTCTTGAGAATGGATTTGAGCAAAGAATTAAAGAAAGAGGAGTTTTGATTAGA 

         ************************************************************ 

ref      GGATGGGCTCCTCAAGTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCAT 

C4       GGATGGGCTCCTCAAGTGCTTATACTTTCACACCCTGCAATTGGTGGAGTATTGACTCAT 

         ************************************************************ 

ref      TGCGGATGGAATTCTACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCA 

C4       TGCGGATGGAATTCTACATTGGAAGGTATTTCAGCAGGATTACCAATGGTAACATGGCCA 

         ************************************************************ 

ref      CTATTTGCTGAGCAATTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTG 

C4       CTATTTGCTGAGCAATTTTGCAATGAGAAGTTAGTAGTCCAAGTGCTAAAAATTGGAGTG 

         ************************************************************ 

ref      AGCCTAGGTGTGAAGGTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTA 

C4       AGCCTAGGTGTGAAGGTGCCTGTCAAATGGGGAGATGAGGAAAATGTTGGAGTTTTGGTA 

         ************************************************************ 

ref      AAAAAGGATGATGTTAAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAA 

C4       AAAAAGGATGATGTTAAGAAAGCATTAGACAAACTAATGGATGAAGGAGAAGAAGGACAA 

         ************************************************************ 

ref      GTAAGAAGAACAAAAGCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGT 

C4       GTAAGAAGAACAAAAGCAAAAGAGTTAGGAGAATTGGCTAAAAAGGCATTTGGAGAAGGT 

         ************************************************************ 

ref      GGTTCTTCTTATGTTAACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCAC 

C4       GGTTCTTCTTATGTTAACTTAACATCTCTGATTGAAGACATCATTGAGCAACAAAATCAC 

         ************************************************************ 

ref      AAGGAAAAAGGGCCCGAACAAAAACTCATCTCAGAAGAGGATCTGAATAGCGCCGTCGAC 

C4       AAGGAAAAAGGGCCCGAACAAAAACTCATCTCAGAAGAGGATCTGAATAGCGCCGTCGAC 

         ************************************************************ 

ref      CATCATCATCATCATCATTGAGTTTTAGCCTTA 

C4       CATCATCATCATCATCATTGAGTTTTAGCCTTA 

         ********************************* 

 

 

Figure 39: Nucleotide Sequence Alignment of Cloned SBIP68’ in pPICZA. C4 is a 
pPICZA-SBIP68’ clone, and ref is the reference sequence. The reference sequence 
was derived from a combination of the SBIP68 and pPICZA sequences. The 
underlined nucleotides are part of the pPICZA vector, which include the c-myc and 
6xHis tag coding sequences.  
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Transformation of pPICZA-SBIP68’ Plasmid DNA into Pichia pastoris 

For transforming P. pastoris, both linear and circular plasmids can be used. 

However it is desirable to linearize the plasmid before using it to transform P. Pastoris. 

Linearized plasmids are believed to produce more stable transformants. Figure 41 

shows the picture of a 0.8 % agarose gel with both linearized (~4800 bp) and circular 

pPICZA-SBIP68’ plasmids. The restriction enzyme Pme I was used in linearization. 

   

MATQVHKLHFILFPLMAPGHMIPMIDIAKLLANRGVITTIITTPVNANRFSSTITRAIKSGLRIQIL

TLKFPSVEVGLPEGCENIDMLPSLDLASKFFAAISMLKQQVENLLEGINPSPSCVISDMGFPWTTQI

AQNFNIPRIVFHGTCCFSLLCSYKILSSNILENITSDSEYFVVPDLPDRVELTKAQVSGSTKNTTSV

SSSVLKEVTEQIRLAEESSYGVIVNSFEELEQVYEKEYRKARGKKVWCVGPVSLCNKEIEDLVTRGN

KTAIDNQDCLKWLDNFETESVVYASLGSLSRLTLLQMVELGLGLEESNRPFVWVLGGGDKLNDLEKW

ILENGFEQRIKERGVLIRGWAPQVLILSHPAIGGVLTHCGWNSTLEGISAGLPMVTWPLFAEQFCNE

KLVVQVLKIGVSLGVKVPVKWGDEENVGVLVKKDDVKKALDKLMDEGEEGQVRRTKAKELGELAKKA

FGEGGSSYVNLTSLIEDIIEQQNHKEKGPEQKLISEEDLNSAVDHHHHHH Stop 

Figure 40: Amino Acid Sequence of pPICZA-SBIP68’ Clone # C4. Underlined and 
highlighted in blue and red are the c-myc epitope and the 6xHis-tag for detection 
and purification of the recombinant protein respectively. 

                         

Figure 41: Agarose Gel Electrophoresis of pPICZA-SBIP68’ Plasmid DNA. Ethidium 
bromide stained 0.8 % gel shows cicular (uncut) and linearized pPICZA-SBIP68’ 
plasmid DNAs. In lanes 2 and 4 are uncut circular plasmids while lanes 3 and 5 are 
plasmids that have been cut using the enzyme Pme I, making them linear. 
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Competent Pichia pastoris strain X-33 Mut+ cells were prepared for electroporation. 

Both linearized and circular pPICZA-SBIP68’ DNAs were used in two separate 

transformation reactions. The transformed cells were plated on YPDS/zeocin plates. 

Screening of P. pastoris Clones 

Selected clones after 3.5 days were verified by colony PCR for successful 

incorporation of SBIP68’ into the P. pastoris genome. PCR was performed using 5’ 

AOX1 (DK 641) forward primer, and 3’ AOX1 (DK 642) reverse primer. The result of the 

colony PCR is shown in Fig. 42. In this picture (Fig. 42), two distinct bands are 

noticeable. P. pastoris has an AOX1 gene in its genome which is ~2.2 kb.  

 

The pPICZA plasmid also has 5’ and 3’ AOX1 priming sites, and the SBIP68’ 

gene is actually cloned in between the 5’ and 3’ AOX1 priming sites of the pPICZA 

plasmid. The 5’ and 3’ AOX1 primers used in PCR therefore amplified both the AOX1 

 

Figure 42: Agarose Gel Showing Colony PCR of P. pastoris Clones. The upper 
band is the AOX1 gene (2.2 Kb) native to P. pastoris while the lower band (1.8 Kb) 
is a combination of the SBIP68’ gene (~1.5 kb) and the AOX1 sites (325 bp) of the 
pPICZA-SBIP68’ construct used to transform P. pastoris. 

2000 bp
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1500 bp 

AOX1 gene ~2.2kb

SBIP68’ + AOX1

Lane #      1         2        3        4       5        6       7        8         9       10
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native to P. pastoris and the AOX1 sites (and everything in between which includes 

SBIP68’) introduced by the plasmid. The lower of the two bands in the picture is ~1.8 kb 

and comprises the SBIP68’ gene (~1.5 kb) and the AOX1 sites of the plasmid (325 bp) 

Expression of Recombinant SBIP68’ in Pichia pastoris 

 Pichia-SBIP68’ was initially grown in BMGY medium to generate biomass and 

later transferred during log-phase growth to BMMY medium for the recombinant protein 

expression. Samples were taken regularly at various time points (0, 24, 48, and 72 hr) 

to determine the optimal recombinant SBIP68’ protein expression. The collected Pichia 

samples were centrifuged and the supernatants discarded. Pellets were stored at -80°C 

until ready for analyses. The pellets were resuspended in breaking buffer and lysed as 

described in the materials and methods section. A Western blot analysis was performed 

to specifically detect expression of recombinant SBIP68’ (Fig. 43A). 
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Due to the presence of multiple bands (other than SBIP68’) in Figure 43A, a 

second expression was performed in which samples were collected at earlier time 

points (6 hr, 12 hr, 24 hr) following induction with methanol. An uninduced sample 

(SBIP68’ in BMGY) was also maintained. These put together would help in determining 

if some of the extra immunopositive bands seen in Figure 43A were due to degradation 

of SBIP68’ over time, or these are other proteins present in the expression system. The 

result of the uninduced sample and the shorter time points are shown in Figure 44A. 

 

 

 

 

 

 

 

 

Figure 43: Recombinant SBIP68’ expression in P. pastoris. Both linear (Colony 4 or 
C4) and circular (Colony 17 or C17) pPICZA-SBIP68’ DNA’s were used to transform 
P. pastoris and both transformant have been analyzed for expression of the 
recombinant protein. A. Western blot analysis of SBIP68’ recombinant protein (57.6 
kDa) expression in P. Pastoris. In lanes 2, 3, 4, and 5 are 0 hr, 24 hr, 48 hr, and 72 
hr time point expression samples derived from C4. In lanes 6, 7, 8, and 9 are 0 hr, 
24 hr, 48 hr, and 72 hr time point expression samples derived from C17. B. 
Corresponding coomassie blue stained blot. The membrane was stained after 
Western blot analysis. 
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It can be deduced from the Western blot in Figure 44A that the bright band (UPP) 

directly below SBIP68’ in lanes 4, 5, and 6 is not a degradation product of SBIP68’ as it 

is seen to be strongly expressed in the uninduced sample in lane 1. The lowest band 

(just above 30 kDa) in lane 6 (24 hr) is likely a degradation product of SBIP68’ due to 

proteases present in the expression host. This band is not seen in the 12 hr and 6 hr 

time points, the amount of SBIP68’ in the 24 hr time point (lane 6) also appears to be 

less than the amount of SBIP68’ in the 12 hr time point (lane 5). It may be desirable to 

express SBIP68’ for no longer than 12 hours for subsequent applications. This will 

reduce the extent of degradation and also gives less room for other undesirable proteins 

 

 

Figure 44: Time Course Expression of Recombinant SBIP68’. Linear pPICZA-
SBIP68’ DNA transformed colony C4 was used. A. Western blot analysis of SBIP68’ 
recombinant protein (57.6 kDa) expression in P. Pastoris. In lane 1 is an uninduced 
sample (C4 in BMGY), lane 2 the low molecular weight ladder, lanes 3, 4, 5, and 6 
are 0 hr, 6 hr, 12 hr, and 24 hr time point expression samples derived from C4. U 
stands for uninduced, and UPP means unidentified Pichia protein. B. 
Corresponding coomassie blue stained blot. The membrane was stained after 
Western blot analysis.  
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to be expressed to a great extent. It will also result in better purification of SBIP68’ with 

less non-specific bands.    

Large Scale Expression and Purification of Recombinant SBIP68’ Protein 

 Approximately 500 ml culture of Pichia-SBIP68’ in BMMY media was used for 

large scale expression. After 96 hrs of induction, the cell pellets were harvested and 

pellets were saved at – 80 °C until they were processed for purification of recombinant 

protein. To lyse Pichia cells, a French press was utilized. The cell lysate was collected 

and the recombinant SBIP68’ was purified using a Ni-NTA column. The bound 6xHis-

tagged SBIP68’ protein was eluted with 150 mM imidazole in 1 x Ni-NTA elution buffer 

at 4 °C. The eluted samples were collected as 1 ml fractions, and the fractions with the 

highest concentration of proteins were pooled and concentrated before testing the 

enzyme for activity. Figure 45A shows a Western blot analysis of selected fractions after 

purification.  
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Purification of recombinant SBIP68’ using Anion Exchange Chromatography 

 In an attempt to optimize the purification of SBIP68’, a new batch of 200 ml (96 hr 

induction) culture of Pichia-SBIP68’ was used. Initial purification was achieved by Ni-

NTA column using AKTA purifier 10 (Fig. 46). Fractions 7 to 13 containing SBIP68’ were 

pooled, desalted, and purified on a Mono-Q anion exchange column using AKTA purifier 

10 (Figure 47-48). Bound proteins were eluted with a linear gradient of 0-500 mM NaCl 

in potassium phosphate buffer pH 7.5. Western blot analysis was performed on the 

eluted fractions to detect SBIP68’ (Fig. 48).  

 

Figure 45: Ni-NTA Affinity Chromatography Purification of SBIP68’. A. Western Blot 
Analysis of SBIP68’ recombinant protein present in P. pastoris. In lane 1 is the 
concentrated sample, lane 2 the low molecular weight ladder. Lanes 3 to 8 contain 
fraction numbers 8, 7, 6, 5, 4, and 3, respectively, collected from the purification 
process. B. Corresponding coomassie blue stained blot. The membrane was 
stained after Western blot analysis. 
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Coomassie blue staining of the blots (Fig. 48B and Fig. 48D) revealed that 

proteins other than SBIP68’ were still present in the eluted fractions and that SBIP68’ 

was not the major protein present in the samples. One of the major contaminating 

protein (~40 kDA) was eluted in earlier fractions. One option to further purify SBIP68’ 

will be to perform size-exclusion chromatography.  

 

 

 

 

 

 

 

 
Figure 46: Ni-NTA Affinity Chromatography Purification of SBIP68’. A. Western Blot 
analysis of SBIP68’ recombinant protein present in P. pastoris. In lane 1 is the cell 
lysate before purification, lane 2 is the flow through, and lane 3 the wash. Lane 4 
contains the low molecular weight ladder. Lane numbers 5 to 10 contain fractions 5, 
6, 7, 8, 10, and 12 respectively. The extra bands seen to coelute with SBIP68’ in 
fractions 7 and 8 are likely Pichia proteins with polyhistidine-like sequences and 
therefore bind to the column. Expression of SBIP68’ at shorter time points should 
minimize the appearance of some of the bands as previously demonstrated. B. 
Corresponding coomassie blue stained blot. The membrane was stained after 
Western blot analysis. The asterisk indicates SBIP68’s expected position on the 
blot.  
 

 

45 

97 

66 

30 

SBIP68 

Lane #    1       2     3     4      5       6     7      8      9    10      

Western blot Coomassie blue stained blot 

KDa 

A B 

KDa 

L
M

W
 

C
e
ll 

ly
sa

te
 

f5 f6 f7 f8 f10 F
lo

w
 t

h
r 

Lane #    1       2      3     4     5     6      7     8     9     10      

45 

97 

66 

30 

W
as

h 

f12 L
M

W
 

C
e
ll 

ly
sa

te
 

f5 f6 f7 f8 f10 F
lo

w
 t

h
r 

W
as

h 

f12 

* 



113 

 

 

 
 
Figure 47: Chromatogram Showing Purification of SBIP68’ on MonoQ Column. The 
vertical axis represents electrical conductivity; the horizontal axis represents the 
volume of eluted sample. The red lines on the horizontal axis represent the eluted 
(0.5 ml) fractions. The blue line represents the absorbance of the protein sample at 
280 nm, the green line represents the salt concentration, and the dark brown line 
represents salt conductivity.  
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Analysis of Glucosyltransferase Activity of SBIP68’ using Radioactive Method  

 A radioactive assay was performed to test for glucosyltransferase activity of 

purified recombinant SBIP68 as described in the materials and methods section 

(McIntosh et al., 1990). UDP-[U- 14C] glucose was the donor substrate while a total of 

14 different aglycones were each used as potential acceptor substrates. The 

incorporation of 14C glucose (CPM, counts per minute) for each of the substrates tested 

is represented in Table 2 below. SBIP68’ showed highest activity with kaempferol. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 48: MonoQ Anion Exchange Chromatography Purification of SBIP68’. A. Western 
Blot Analysis of SBIP68’ recombinant protein. Lanes 2 to 10 represent fractions 4, 5, 6, 7, 8, 
9, 10, 11, and 12 derived from MonoQ anion exchange chromatography. B. Corresponding 
coomassie blue stained blot of A. C. Lanes 2 to 7 represent fractions 13, 14, 15, 22, 23, 
and 24 derived from MonoQ anion exchange chromatography. Lanes 8, 9, and 10 
represent the flow-through, the input ( Ni-NTA purified, desalted sample), and the un-
desalted sample respectively. D. Corresponding coomassie blue stained blot of C. The 
asterisks indicate SBIP68’s expected position on the blots.  
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Figure 49 and Table 2 show the relative activity (kaempferol was considered100%) for 

each substrate tested. Two independent reactions were performed for each substrate 

tested and the average of the values are also shown (Table 2). This radioactive assay 

method was developed for the detection of flavonoid glucosides that are soluble in ethyl 

acetate (see materials and methods), and may not be suitable for testing 

glucosyltransferase activity with salicylic acid and other simple phenols, as the solubility 

of their glucosides in ethyl acetate could not be ascertained at the time of this 

experiment. 

 

Substrate Cpm/rxn 

1 
Cpm/rxn 

2 
Average 

cpm/rxn 
     % Relative activity 

Kaempferol 7599 7467 7533 100 
Quercetin 5326 5674 5500 73 
Hesperetin 4295 4909 4602 61 
Naringenin 4277 4208 4243 56 
Gossypetin 2051 2067 2059 27 
4-acetone-7 Hydroxy-6-

methoxy-Isoflavone 
1325 1263 1294 17 

Luteolin 1171 1221 1196 16 
Apigenin 991 966 979 13 
Fisetin 565 462 514 7 
MeSA 269 244 257 3 
Benzoic acid 260 234 247 3 
Azelaic acid 216 257 237 3 
Salicylic acid 235 232 234 3 
p-hydroxybenzoic acid 217 192 205 3 
Blank 59 47 53 1 

 

 

Table 2:  ctivity Screening of S IP68’ using UDP-14C-glucose 
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Analysis of Glucosyltransferase Activity using HPLC  

 An HPLC based method (Owens and McIntosh, 2009) was used to identify the 

products formed from five different reactions involving kaempferol, quercetin, 

naringenin, hesperetin, and salicylic acid as acceptor substrates (Fig. 50). The 

glucosyltransferase reaction using purified SBIP68’ was performed as described in the 

materials and methods. HPLC grade kaempferol 3-O-glucoside, kaempferol, quercetin, 

quercetin 3-O-glucoside, naringenin, naringenin 7-O-glucoside, hesperetin, and salicylic 

acid were also used as standards in the identification of the reaction products. 

 

Figure 49: Relative Activity of SBIP68’ with Different Potential Acceptor Substrates. 
Radioactive UDP glucose was used as the donor substrate. The CPM for each 
reaction was measured with a scintillation counter. All reactions were in duplicates 
and the average was taken.  
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Figure 50 A-B: Identification of Reaction Products by HPLC.  . Top panel shows 
retention time for kaempferol standard at 12.7 minutes, middle panel shows retention 
time for kaempferol 3-O-glucoside standard at 9.2 minutes. The bottom panel shows 
the products formed from the reaction with SBIP68, kaempferol 3-O-glucoside and 
kaempferol, with retention times at 9.2 minutes and 12.8 minutes respectively.  . Top 
panel shows retention time for quercetin standard at 11.2 minutes, middle panel 
shows retention time for quercetin 3-O-glucoside standard at 8 minutes. The bottom 
panel shows the products formed from the reaction with SBIP68, quercetin 3-O-
glucoside and quercetin, with retention times at 8 minutes and 11.2 minutes 
respectively. 
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Figure 50 C-D: Identification of Reaction Products by HPLC. C. Top panel shows 
retention time for naringenin standard at 12.2 minutes, middle panel shows retention 
time for naringenin 7-O-glucoside standard at 9.2 minutes. The bottom panel shows 
the products formed from the reaction with SBIP68, naringenin 7-O-glucoside and 
naringenin, with retention times at 9.2 minutes and 12.2 minutes respectively. D. Top 
panel shows retention time for hesperetin standard at 12.8 minutes.The bottom panel 
shows the products formed from the reaction with SBIP68, hesperetin glucoside and 
hesperetin, with retention times at 10.2 minutes and 12.8 minutes respectively. It 
appears there is a second hesperetin glucoside with a retention time of 9.7 minutes. 
There were no hesperetin glucoside standards available at the time of this 
experiment. 
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Figure 50 E: Identification of Reaction Products by HPLC. E. Top panel shows 
retention time for salicylic acid standard at 17.2 minutes.The bottom panel shows the 
product(s) from the SBIP68 reaction involving salicylic acid as a potential acceptor 
substrate. SA is seen to have a retention time of 17.2 minutes, no SA glucosides are 
observed. There were no salicylic acid glucoside standards available at the time of 
this experiment. 
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CHAPTER 4 

DISCUSSION 

Salicylic acid is a well-established signal molecule when it comes to defense 

responses in plants (Chen et al., 2009). The exogenous application of SA has been 

known to induce the expression of plant pathogenesis-related genes (Ward et al., 

1991), and disease resistance (White, 1979). SA is not only involved in inducing 

hypersensitive response in infected areas of the plant but also systemic acquired 

resistance (SAR) in uninfected and distal parts (Malamy et al., 1990; Yalpani et al., 

1991; Yalpani et al., 1993). The majority of the SA produced by plants undergoes 

glucosylation and/or methylation (Rivas-San Vicente and Plasencia, 2011). 

Glucosylation of SA at the hydroxyl group produces SA 2-O-β-D-glucoside (SAG), while 

glucosylation at the carboxyl group produces the SA glucose ester in large and minute 

amounts respectively (Rivas-San Vicente and Plasencia, 2011). SA 

glucosyltransferases are responsible for these glucosylation reactions which are 

induced upon the application of SA or during response to pathogen attack in tobacco 

and Arabidopsis (Lee and Raskin, 1999; Song, 2006). SAG stored in the vacuole may 

serve as an inactive form of SA capable of releasing free SA when required (Dean and 

Mills, 2004; Dean et al., 2005).  

The methylation of SA by SA carboxyl methyltransferase produces methyl 

salicylate (MeSA), a volatile SA derivative that plays a crucial role serving as a long 

distance signal during systemic acquired resistance in tobacco and Arabidopsis 

(Shulaev et al., 1997; Chen et al., 2003; Park et al., 2007; Vlot et al., 2008). Tobacco 

SABP2 is the enzyme responsible for converting the volatile methyl salicylate into 

http://jxb.oxfordjournals.org/search?author1=Mariana+Rivas-San+Vicente&sortspec=date&submit=Submit
http://jxb.oxfordjournals.org/search?author1=Javier+Plasencia&sortspec=date&submit=Submit
http://jxb.oxfordjournals.org/search?author1=Mariana+Rivas-San+Vicente&sortspec=date&submit=Submit
http://jxb.oxfordjournals.org/search?author1=Javier+Plasencia&sortspec=date&submit=Submit
http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-79
http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-136
http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-35
http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-35
http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-36
http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-133
http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-26
http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-110
http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-149
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salicylic acid in the distal parts of the plant to induce SAR (Park et al., 2007; Tripathi et 

al., 2010). An improved knowledge of SABP2 functionality would be a great 

achievement in the quest to understand how plants respond to stress. In a bid to 

achieve this, a yeast two-hybrid screening was performed with tobacco SABP2 as a bait 

and total expressed tobacco leaf proteins as prey. This led to the identification of 

several interacting proteins including SBIP68. Computational analysis revealed that 

SBIP68 belongs to the Family 1 of plant GTs (UGT), and it has the C-terminal PSPG 

signature motif characteristic of this group. The PSPG box is predicted to be involved in 

the binding of the UDP moiety of the sugar-donor substrate in the glycosylation reaction 

(Hughes and Hughes, 1994).  

As mentioned previously, SABP2 has high affinity for salicylic acid and is 

important for the induction of SAR in the event of a pathogen attack (Kumar and 

Klessig, 2003). Since SBIP68 possessed the characteristics of a potential 

glucosyltransferase as determined by bioinformatics, and it interacts with SABP2, it is 

logical to hypothesize that SBIP68 might be a UGT involved in the glucosylation of 

salicylic acid during plant stress signaling. 

UGTs have been known to participate in the detoxification of metabolites 

produced by plant-pathogens (Schweiger et al., 2013), or detoxification of harmful 

compounds including herbicides (Kreuz et al., 1996). They also enhance the solubility of 

low molecular weight compounds in water (Hrazdina, 1988), and are involved in the 

regulation of the action of essential compounds like indole acetic acid and cytokinins 

(Dixon et al., 1989; Szerszen et al., 1994).  

http://jxb.oxfordjournals.org/content/62/10/3321.full#ref-110
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As previously mentioned, a number of glucosyltransferases have been found to 

glucosylate salicylic acid, and their expression has been induced by SA. In Oryza 

sativa, probenazole (an agrochemical) induced the expression of OsSGT1, a UDP-

glucose:SA glucosyltransferase involved in catalyzing the conversion of SA into SA O-β-

glucoside (SAG) (Umemura et al., 2009). RNAi silencing of OsSGT1 was observed to 

reduce to a large extent, the probenazole-dependent resistance to blast disease 

(Umemura et al., 2009). This strengthens the suggestion that OsSGT1 is a key player in 

the development of chemically induced disease resistance in rice (Umemura et al., 

2009). OsSGT1 may be involved in the SA signaling pathway by inducing the up-

regulation of SAG in rice (Umemura et al., 2009).  

In tobacco plants possessing the ‘N’ resistance protein, bacterial or viral 

pathogens were observed to induce tobacco UDP-glucose:salicylic acid 

glucosyltransferase (SA GTase) mRNA expression (Lee and Raskin, 1999). This 

observed induction of SA GTase mRNA expression corresponded to an increase in 

endogenous SA found in the inoculated tissue (Lee and Raskin, 1999). Also, treatment 

of plant with SA was found to activate SA GTase mRNA expression, implying that 

induction of the SA GTase gene is through the SA-mediated signal transduction 

mechanism (Lee and Raskin, 1999). 

The aim of the present study was to determine what role SBIP68 plays in 

tobacco and more importantly what kind of relationship exists between SBIP68 and 

SABP2. To gain more insight into the role of SBIP68, it was cloned, expressed and 

characterized functionally in vitro.  
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In silico subcellular localization analysis using various computer software 

predicted SBIP68 to be either present in the cytoplasm, or targeted to the endoplasmic 

reticulum membrane (Fig. 14 and 16), or may be transported (Fig. 15) to some other 

organelle where it exerts its effect. Protein BLAST analyses revealed that SBIP68 has a 

GTB topology, one of two protein topologies found in nucleotide-sugar-dependent 

glycosyltransferases (Marchler-Bauer et al., 2015). GTB proteins are known to have N 

and C terminal domains that are distinct each possessing a typical Rossmann fold 

(Marchler-Bauer et al., 2015). Both domains exhibit high structural homology even 

though they have very little sequence homology (Marchler-Bauer et al., 2015). 

Separating both domains is a large cleft which contains the catalytic center and allows a 

high degree of flexibility (Marchler-Bauer et al., 2015). SBIP68 was also shown to 

possess a putative GT1_Gtf_like conserved protein domain (Marchler-Bauer et al., 

2015). Gtfs are a group of homologous glycosyltransferases that are involved in the last 

steps of the biosynthesis of vancomycin and related chloroeremomycin (Marchler-Bauer 

et al., 2015). They catalyze the transfer of sugars from activated NDP-sugar donors to 

the heptapeptide core of vancomycin group of antibiotics (Marchler-Bauer et al., 2015). 

In contrast, SBIP68 has a PSPG motif (Fig. 26) characteristic of plant GT’s which binds 

the sugar donor substrate (Hughes and Hughes, 1994). 

SBIP68 was cloned and expressed in E. coli. Solubility results revealed that 

recombinant SBIP68 in E. coli were mostly expressed in the insoluble form, and only a 

minor fraction was present in the soluble form (Fig. 30). The construct with C-terminal 

6xHis tag (pET-28a-SBIP68-645) seemed to be better expressed in the soluble form 

compared to one with N-terminal 6xHis tag (pET-28a-SBIP68-644) (Fig. 30). There are 
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certain limitations to expression of recombinant proteins in a prokaryotic system such as 

E.coli, one of which is the formation of densely packed denatured proteins in the form of 

particles referred to as inclusion bodies(Singh and Panda, 2005). They occur as a 

stress response upon the high level expression of recombinant proteins (Sorensen and 

Mortenson, 2005) and they do not have a defined structure (Carrio et al., 2000). 

Formation of inclusion bodies in recombinant systems could be reduced by altering 

certain expression conditions including but not limited to temperature, rate of 

expression, and target protein engineering (Jonasson et al., 2002). In an attempt to 

produce more soluble SBIP68 recombinant protein, the amount of IPTG used in 

inducing expression, the expression temperature, and the duration of time used in 

expression were altered. The altering of these parameters, did not bring about 

significant improvement in the amount of soluble SBIP68 recombinant protein that was 

being produced (Fig. 31). The affinity purified soluble protein, however, showed 

glucosyltransferase activity when tested using four flavonoid acceptor substrates and 

UDP-glucose (Fig. 33, Fig. 34). 

SBIP68 was also cloned into the pPICZA (a yeast expression) plasmid to be 

expressed in P. pastoris, a eukaryotic system. Some important characteristics that 

make yeast cells desirable for protein expression include the ability to proper protein 

folding and post-translational modifications because they are eukaryotes (Mattanovich 

et al., 2012). Presently, Saccharomyces cerevisiae, Hansenula polymorpha, and Pichia 

pastoris are being used in the large scale expression of heterologous proteins. These 

appear to be the most promising yeast strains at the moment (Mattanovich et al., 2012). 

P. pastoris is a methylotrophic yeast capable of growing on simple, inexpensive medium 

http://www.sciencedirect.com/science/article/pii/S0168165604004560#bib15
http://www.sciencedirect.com/science/article/pii/S0168165604004560#bib42
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and is appropriate for small as well as large scale heterologous expression of proteins 

(Daly and Hearn, 2005). It has two alcohol oxidase genes, AOX1 and AOX2, whose 

promoters are methanol inducible (Daly and Hearn, 2005). Usually, the gene for the 

heterologous protein to be expressed is placed under the control of the AOX1 promoter, 

which is strongly induced by methanol. Molecular manipulations like gene targeting, 

high efficiency of DNA transformation, and cloning for the purpose of functional 

complementation are similar to those obtainable with S. cerevisiae (Cereghino and 

Cregg, 2000). In addition to the above, P. pastoris has the ability to integrate 

heterologous DNA into the host chromosome easily, has promoters that are very tightly 

controlled, and is capable of generating more posttranslational modifications, making it  

preferable to S. cerevisiae (Yesilirmak and Sayers, 2009).  

Cloning of SBIP68 into the pPICZA vector resulted in the formation of the 

pPICZA-SBIP68’ construct which was used to transform P. pastoris. Because pPICZA 

has the AOX1 promoter, and SBIP68 had been cloned behind this promoter, expression 

of the SBIP68 gene was made possible by induction of the AOX1 promoter with 

methanol. Recombinant SBIP68 had a c-myc epitope as well as a C-terminal 

6xHistidine tag which facilitated identification and purification, respectively. The Pichia 

pastoris expression system proved to be a preferable alternative to E. coli system in the 

expression of SBIP68 as a large proportion of the protein was present in the soluble 

form. Time point expression studies showed that the amount of SBIP68 produced from 

0 – 96 hours continued to increase, however, after about 6 hours of induction, what 

appears to be a degradation product of SBIP68 starts to form and some other unwanted 

host proteins started accumulating (Figs. 43 and 44). Expression of SBIP68 for more 

http://en.wikipedia.org/wiki/Alcohol_oxidase
http://en.wikipedia.org/wiki/Regulation_of_gene_expression
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than 6 hours but no longer than 12 hours may be best as this may reduce the extent of 

degradation seen in 24 hour and above time points and also reduces the chances of 

expression of some of the non-specific proteins that appear during detection by Western 

blot analysis and also bind to the column during purification (Fig. 45).  

Recombinant SBIP68 from Pichia pastoris was purified by affinity 

chromatography using Ni- NTA. Purification with Ni-NTA got rid of most but not all of the 

unwanted host proteins (Fig. 45). Ni-NTA purified samples were subsequently purified 

using anion exchange chromatography. Anion exchange chromatography further 

purified to a great extent, still several unwanted proteins co-purified as was visualized 

by coomassie blue staining (Fig. 48). It may be desirable to perform a purification using 

size-exclusion chromatography or other available chromatography matrix.  

Based on our hypothesis of SBIP68 being a salicylic acid GT, and bioinformatics 

analysis predicting it to be a flavonoid GT, the purified SBIP68 was screened for GT 

activity with fourteen potential acceptor substrates using UDP-glucose as the sugar 

donor substrate. The acceptor substrates tested included a number of flavonoids, 

simple phenolics, and azelaic acid, a compound known to induce the accumulation of 

salicylic acid in plants after infection (Jung et al., 2009; Everts, 2011).  

In testing the recombinant enzyme for glucosyltransferase activity, a radioactive 

assay (McIntosh et al., 1990) involving radiolabeled UDP-glucose, was employed. 

Recombinant SBIP68 glucosylated flavonols (kaempferol, quercetin, gossypetin, fisetin), 

flavanones (hesperetin, naringenin), flavones (apigenin, luteolin,), and isoflavones (4-

acetone-7 Hydroxy-6-methoxy-isoflavone), displaying broad substrate specificity. 

SBIP68 barely showed activity in the reactions involving azelaic acid and the simple 
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phenolic compounds benzoic acid, salicylic acid, p-hydroxybenzoic acid, and MeSA, as 

acceptor substrates. Of the fourteen substrates tested, the reaction with kaempferol had 

the highest activity with 7,533 cpm, and quercetin was next with 5,500 cpm. Reactions 

involving hesperetin, naringenin, gossypetin, 4-acetone-7 hydroxy-6-methoxy-

isoflavone, luteolin, apigenin, fisetin, methyl salicylic acid, benzoic acid, azelaic acid, 

and salicylic acid had 4602 cpm, 4243 cpm, 2059 cpm, 1294 cpm, 1196 cpm, 979 cpm, 

514 cpm, 257 cpm, 247 cpm, 237 cpm, and 234 cpm respectively. The reaction with p-

hydroxybenzoic acid had the lowest with 200 cpm (Fig. 49 and Table 2). Because the 

radioactive method was developed for detecting flavonoid glucosides that are soluble in 

the organic ester ethyl acetate (see materials and methods), this method may not be 

suitable for testing glucosyltransferase activity with salicylic acid and other simple 

phenols as the solubility of their glucosides in ethyl acetate could not be ascertained.  

An HPLC based method (Owens and McIntosh, 2009) was used to identify the 

products formed from separate reactions involving kaempferol, quercetin, naringenin, 

hesperetin and salicylic acid as acceptor substrates (Fig. 33, Fig. 34, Fig. 50). 

Kaempferol, kaempferol 3-O-glucoside, quercetin, quercetin 3-O-glucoside, naringenin, 

naringenin 7-O-glucoside, hesperetin, and salicylic acid were also used as standards in 

an attempt to identify the products formed from the reactions with each of the acceptor 

substrates, there were no hesperetin glucoside and salicylic acid glucoside standards 

available at the time of the experiment. These reactions, when analyzed by HPLC, had 

distinct peaks for substrate and products formed. The reactions involving kaempferol as 

acceptor substrate had retention times of 9.2 minutes and 12.8 minutes for kaempferol-

3-0-glucoside and kaempferol, respectively (Fig. 33A, Fig. 34A, Fig. 50A). The reaction 
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with quercetin had retention times of 8 minutes and 11.2 minutes for quercetin 3-O-

glucoside and quercetin, respectively (Fig. 33B, Fig. 34B, Fig. 50B). The reaction 

involving naringenin as acceptor substrate had retention times of 9.2 minutes and 12.2 

minutes for naringenin-7-0-glucoside and naringenin, respectively (Fig. 33C, Fig. 34C, 

Fig. 50C). The reaction with hesperetin had retention times of 9.7 minutes, 10.2 

minutes, and 12.8 minutes for two unidentified hesperetin glucosides and hesperetin, 

respectively (Fig. 33D, Fig. 34D, Fig. 50D), while that with salicylic acid only showed a 

retention time for salicylic acid at 17.2 minutes (Fig. 50E). These results suggest that 

SBIP68 is a UDP-glucose: flavonoid glucosyltransferase, and probably not a salicylic 

acid glucosyltransferase. 

Flavonoids are secondary metabolites synthesized by plants with known 

biological activities, they are involved in the interactions of plants with other organisms 

as well as their environment (Mierziak et al., 2014). Flavonoids undergo modification 

reactions such as methylation and glycosylation by methyltransferases and 

glycosyltransferases respectively (Mierziak et al., 2014). These reactions are known to 

alter their reactivity, solubility, and stability (Mierziak et al., 2014). Due to their diverse 

chemical structures and variety arising from the attached substituent groups, flavonoids 

have various important roles in plants, the most significant of which is UV protection 

(Treutter, 2005; Mierziak et al., 2014). They are involved in plant protection against both 

abiotic and biotic stresses, and they also maintain a redox state in cells arising from 

their antioxidative properties (Mierziak et al., 2014). Fat-soluble flavonoids could distort 

microbial membranes, alter their fluidity and damage the respiratory chain (Haraguchi et 

al., 1998; Mishra et al., 2009). The B ring of flavonoids are capable of intercalating or 
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forming hydrogen bonds with the stacking of nucleic acid bases causing an inhibition of 

DNA and RNA synthesis in bacteria and also enhance the activity of DNA gyrase (Wu et 

al., 2013). This feature is also considered to be the basis of their antiviral properties, as 

they are known to inhibit viral polymerase enzymes and bind to the nucleic acids or 

capsid proteins viruses (Selway, 1986). Flavonols (quercetin, kaempferol, myricetin) 

have also been shown to strongly promote pollen germination frequency, pollen 

development, and pollen tube growth in cultures of tobacco (Nicotiana tabacum L.) 

immature pollen in vitro (Ylstra et al., 1992). Low concentrations of these flavonols 

produced the best results, indicative of a signaling function (Ylstra et al., 1992). 

Cucumber mosaic virus containing satellite RNA (CMV sat) which causes 

catastrophic necrotic tomato disease and is capable of infecting Arabidopsis was used 

in an experiment involving three groups of Arabidopsis plants; control plants which were 

untreated, wounded plants which were treated with buffer, and infected plants which 

were treated with CMV sat (Likić et al., 2014). As mentioned earlier, flavonoids 

participate in the detoxification of ROS in plants after wounding (León et al., 2001; Apel 

and Hirt, 2004). A decrease in kaempferol aglycone levels observed in the treated 

plants confirmed a putative role for kaempferol in the detoxification of ROS (Likić et al., 

2014). Also, based on a model suggesting that H2O 2 induces SA accumulation 

(Summermatter et al., 1995), detoxification of ROS by kaempferol and quercetin would 

inhibit the accumulation of SA in inoculated leaves (Likić et al., 2014). Observed 

changes in the concentrations of kaempferol and SA during the first four time points 

after inoculation with CMVsat were in accordance with the model (Likić et al., 2014). 

Significantly smaller concentrations of kaempferol present in the upper leaves of all 
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CMVsat infected plants as compared to the controls also indicated an important role for 

kaempferol in defense responses induced by CMVsat (Likić et al., 2014). Results from 

the experiment indicate a plausible regulatory function of kaempferol as a part of a 

proposed kaempferol-indole acetic acid dependent defense response where the 

systemic spread of CMVsat is curtailed through the joint action of kaempferol and IAA 

(Likić et al., 2014). This response is believed to be activated prior to the activation of 

well known salicylic acid defense response (Likić et al., 2014).  

Quercetin is known to induce resistance in response to infection by virulent strain 

Pseudomonas syringae pv. tomato DC3000 (Pst) in Arabidopsis, via H2O2 burst and the 

involvement of SA and non-pathogenesis related 1 (NPR1) (Jia et al., 2010). Defense 

responses such as callose deposition, H2O2 burst, cell death, pathogenesis-related 1 

(PR1) and Phenylalanine ammonia-lyase 1 (PAL1) gene expression were observed in 

quercetin-pretreated Pst-inoculated Arabidopsis Col-0 and a strong defense response 

against virulent Pst was found to occur in quercetin-pretreated Arabidopsis (Jia et al., 

2010). In the presence of the enzyme catalase however, the anti-pathogenic effects of 

quercetin on virulent Pst in Arabidopsis was observed to disappear (Jia et al., 2010). 

This suggests that H2O2 is also important in the defense response against Pst (Jia et al., 

2010). Quercetin was shown to have no beneficial effect on pathogen-free leaves in 

Arabidopsis, indicating that pathogen challenge is necessary to induce the defense 

responses observed to occur in quercetin-pretreated Arabidopsis (Jia et al., 2010).  

Two new isoflavones and seven other known isoflavones were isolated from the 

stems and roots of Nicotiana tabacum and their anti-tobacco mosaic virus (anti-TMV) 

activities were evaluated using the half-leaf method (Yan et al., 2010; Chena et al., 
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2012). Two of the tested isoflavones, licoisoflavone and 6-hydroxy-7,3′,4′,5′-

tetramethoxy-isoflavone showed high (48.4%) anti-TMV activity and moderate (22.2%) 

anti-TMV activity respectively by inhibiting replication of the virus (Chena et al., 2012). 

The other seven compounds, 7-hydroxy-6,3′,4′,5′-tetramethoxy-isoflavone, irigenin, 

genistein, glycitein, 8-hydroxyglycitein, 2′,4′,5′,6,7-pentamethoxyisoflavone, and 

2′,3′,4′,6,7-pentamethoxy isoflavone, all displayed weak (< 10%) anti-TMV activities 

(Chena et al., 2012). Ningnanmycin, a commercial product used in controlling plant 

diseases showed 33% inhibition rate and served as a positive control (Chena et al., 

2012). 

Under natural conditions, most flavonoids are present in form of their respective 

glycosides (Bohm, 1998; Forkmann and Heller, 1999). Glycosylation is one key 

mechanism that functions in regulating the storage and bioactivity of phytochemicals 

and the detoxification of xenobiotics in plants (Mackenzie et al., 1997; Bowles et al., 

2005).  Flavonoids are most commonly glycosylated by UGTs with one sugar group or 

more (Harborne and Baxter, 1999), and glucose happens to be the most common sugar 

found in naturally occurring flavonoid glycosides (Noguchi et al., 2009). Certain plants 

however, possess characteristic flavonoids in conjugation with specific sugars as their 

specialized metabolites (Noguchi et al., 2009).  

UGT707B1 a glucosyltransferase found in the cytoplasm and the nucleus of 

stigma and tepal cells of Crocus sativus (saffron) is absent in the tepals of certain 

species (Trapero et al., 2012). Analysis of the glucosylated flavonoids present in the 

tepals of Crocus revealed two main flavonoid compounds present in saffron, these are 

kaempferol-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside and quercetin-3-O-β-D-



132 

 

glucopyranosyl-(1-2)-β-D-glucopyranoside (Trapero et al., 2012). Both of these 

flavonoid glucosides were not found in the tepals of Crocus species that did not express 

UGT707B1 (Trapero et al., 2012). Transgenic Arabidopsis plants constitutively 

expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter 

showed a number of phenotypic changes similar to those observed in previously 

described lines in which flavonoid levels had been altered (Trapero et al., 2012). The 

plants displayed thicker stems, hyponastic leaves, delay in flowering, and a lesser 

amount of trichomes (Trapero et al., 2012). Flavonoid levels present in extracts of the 

transgenic plants varied in their flavonol content as compared to wild-type plants 

(Trapero et al., 2012). Extracts obtained from the stems and flowers showed an 

increase in 3-sophoroside flavonol glucosides (Trapero et al., 2012). A new flavonol 

compound not found in Arabidopsis ecotype col-0 wild-type plants was found in all the 

tissues and this was identified to be kaempferol-3-O-sophoroside-7-O-rhamnoside 

(Trapero et al., 2012). All of these put together indicate that UGT707B1 is involved in 

the biosynthesis of flavonol-3-O-sophorosides and that the overexpression of a 

flavonoid glucosyltransferase could bring about significant changes in flavonoid 

homeostasis in a plant (Trapero et al., 2012).  

UGT73A10 (49 % similarity to SBIP68) a glycosyltransferase cloned from 

Chinese wolfberry (Lycium barbarum L.) was heterologously expressed in E. coli and 

found to show outstanding regiospecific glucosyltransferase activity towards flavan-3-ols 

(e.g., (+)-catechin and epigallocatechin gallate), which are known to occur rarely in 

nature as glucosides (Noguchi et al., 2008). UGT73A10 showed high specificity for the 

donor substrate UDP-glucose and displayed broad acceptor substrate specificity with 
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the highest preference for naringenin (Noguchi et al., 2008). The enzyme glucosylated 

the 7 hydroxyl position of naringenin and was shown to be phylogenetically related to 

flavonoid 7-O-glucosyltransferases (Noguchi et al., 2008). UGT73A10 displayed high 

glucosyltransferase activity, up to 83% glucosyl transfer to (+)-catechin was observed. 

Spectroscopic analyses revealed that the transfer product was 4’-O-β-D-

glucopyranoside, and not the 7-O-β-D-glucoside, of (+)-catechin (Noguchi et al., 2008). 

Stability studies also revealed that this glucoside product had better stability than (+)-

catechin when subjected to alkaline conditions and high temperatures (Noguchi et al., 

2008). The glucosylation of flavonoids by SBIP68 may serve to maintain flavonoid 

homeostasis in tobacco as well as play a protective role in the plant during abiotic or 

biotic stress conditions (Fig. 51). 

As part of an ongoing project intended to elucidate the SA defense pathway in 

plants, and the SA-SABP2 relationship in tobacco, this research aimed at characterizing 

functionally the role of SBIP68 as a glucosyltransferase in the SA-SABP2 interaction. 

Recombinant SBIP68 activity screening performed with fourteen potential acceptor 

substrates and UDP-glucose as the donor substrate revealed SBIP68 to have broad 

substrate specificity, glucosylating flavonols, flavanones, and isoflavones. Kaempferol, 

quercetin, and naringenin appeared to be the preferred substrates, however, further 

experiments will have to be performed to determine SBIP68’s substrate of choice. 

HPLC analysis and comparison with available commercial standards confirmed the 

formed glucosides from the reactions with kaempferol, quercetin, and naringenin, to be 

kaempferol 3-0-glucoside, quercetin 3-0-glucoside, and naringenin 7-0-glucoside, 

respectively.  
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Results from this study, as well as information available in the database indicate 

that SBIP68 is a UDP-glucose: flavonoid glucosyltransferase with broad substrate 

specificity. As earlier mentioned, flavonoids may be involved in plants defense against 

pathogens and most flavonoids occur naturally in their glycosylated forms. Glycosylation 

of flavonoids may function in regulating their storage and bioactivity (Fig. 51).  

The reactions with azelaic acid, benzoic acid, and MeSA have to be repeated 

and optimized, and the reaction products analyzed in order to determine if SBIP68 is 

involved in the glucosylation of any of these. Bacterial infections lead to an increased 

accumulation of azelaic acid, which is known to confer local and systemic resistance 

against the pathogen Pseudomonas syringae in plants. It is required for the 

accumulation of salicylic acid and systemic immunity upon pathogen infection (Jung et 

al., 2009). Methyl salicylate (MeSA) is the in planta substrate of SABP2. SABP2 

converts MeSA into SA, a requirement for the onset of systemic acquired resistance 

 

Figure 51: Model Suggesting SBIP68 Function in planta. SBIP68 may serve to 
maintain flavonoid homeostasis in tobacco plants during abiotic or biotic stress 
conditions, and consequently prevent excessive to the plants. 
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(SAR) in systemic tissues (Park et al., 2007). Infection of tobacco (Nicotiana tabacum cv 

Samsun NN) plants with TMV or elicitation of tobacco cell suspensions with β-

megaspermin brings about a rapid de novo synthesis and accumulation of a conjugated 

form of benzoic acid, benzoyl-glucose, which is a likely involved in the biosynthesis of 

SA (Chong et al., 2001). 

This entire experiment was performed in vitro, and as a result we do not have 

information regarding the substrates of SBIP68 in planta. What we do know from this 

study is that SBIP68 is a glucosyltransferase. This information will be used in attempts 

to determine SBIP68’s natural substrates and its role in planta, and more significantly its 

interaction with SABP2 and its role in the SA induced defense pathway, if any.  
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Future Directions 

The characterization of SBIP68 is only a piece of the puzzle intended at 

deciphering the SA pathway in tobacco. Based on what is known about the 

glucosylation of salicylic acid, and available information indicating that SBIP68 is a 

glucosyltransferase that interacts with SABP2, it was proposed that SBIP68 is likely 

involved in the glucosylation of salicylic acid. Based on the results obtained in this study 

using in vitro enzyme assay, recombinant SBIP68 failed to glucosylate salicylic acid, but 

several potential flavonoid substrates were identified. Further experiments should be 

performed to determine SBIP68’s most preferred substrate, as well as various kinetic 

studies to determine its rate of glucosylation, effect of temperature, pH, metal ions, etc. 

To study the effect of SABP2’s interaction with SBIP68, the glucosyltransferase activity 

assay with flavonoid substrates should be conducted in the presence of SABP2.   

To further study the role of SBIP68 in plant defense, transgenic plants either 

silenced in SBIP68 expression or overexpressing SBIP68 should be generated and 

used. These SBIP68 transgenic plants could be used for a range of experiments 

including challenging with viral pathogens such as tobacco mosaic virus (TMV) or 

bacterial plant pathogens such as Pseudomonas syringae. The results from all these 

proposed experiments is likely to help in understanding the role of SBIP68 in tobacco 

plants, and determine if it is involved in defense against pathogens.  
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APPENDICES 

Appendix A – Abbreviations 

SABP2 - Salicylic acid binding protein 2 

SBIP68 - SABP2 Interacting Protein-68 

HR - Hypersensitive response 

SA - Salicylic acid 

JA - Jasmonic acid 

ET - Ethylene 

SAR - Systemic acquired resistance 

MeSA - Methyl salicylate 

SDS PAGE - Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

TMV - Tobacco mosaic virus 

PR - Pathogenesis-related 

βME - Beta mercaptoethanol 

EFalpha1 - Elongation Factor alpha 1 

TAE - Tris-Acetate EDTA 

KDa - Kilo Dalton 

OD - Optical Density 

UV - Ultra violet 

µg – micro gram 

μl – micro litre 

ml – milli litre 

mM – milli Molar 
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Appendix B – Buffers, Reagents, and Media 

0.8 % Agarose Gel 

Agarose = 0.40 g 

1x TAE Buffer = 50 ml 

Dissolve the agarose in the TAE buffer by heating in a microwave for ~ 60 

seconds.  

Place the mixture in a water bath ~ 60 °C to dissolve the agarose completely.  

Add 2.5 μl (10 mg/mL) ethidium bromide  

20% APS (Ammonium Persulfate) (1 ml) 

Ammonium persulfate = 0.2 g 

Water = 1 ml 

500X B (0.02% Biotin) 

Biotin = 20 mg  

Dissolve in100 ml distilled water  

Filter sterilize solution 

Store at 4 °C  

Breaking Buffer (500 mL) 

Monobasic Sodium Phosphate Monohydrate = 3.45 g 

EDTA (non-salt) = 145 mg 

100 % Glycerol = 25 ml  

Dissolve ingredients in 500 mL dH2O 

Add 10μl of 0.1M PMSF per ml of breaking buffer immediately before use 
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BMGY Medium (1 L) 

1% Yeast extract = 10 g 

2 % Peptone = 20 g 

Dissolve in 700 ml sterile distilled water  

Autoclave for 20 min on liquid cycle 

Cool to room temperature 

Add the following 

1M Potassium Phosphate Buffer (pH=6.0) = 100 ml 

1M 10X Yeast Nitrogen Base = 100 ml 

10X Glycerol = 100 ml  

500X Biotin = 2 ml 

Store at 4 °C  

BMMY Medium (1 L) 

Yeast extract = 10 g 

Peptone = 20 g 

Dissolve in 700 ml distilled water  

Autoclave for 20 minutes on liquid cycle 

Cool to room temperature 

Add the following 

1M Potassium Phosphate Buffer (pH=6.0) = 100 ml 

1M 10X Yeast Nitrogen Base = 100 ml 

10X Methanol = 100 ml 

500X Biotin = 2 ml 
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Store at 4°C 

Coomassie brilliant blue destaining solution (1 L) 

500 ml distilled water 

400 ml methanol 

100 ml acetic acid 

Coomassie Brilliant Blue staining solution (1 L) 

500ml Methanol 

100 ml acetic acid 

400 ml H2O 

Dissolve 1 g of Coomassie Brilliant Blue in the solution. 

10X D (20% Dextrose) (500 ml) 

Dextrose (D-glucose) = 100 g 

Dissolve in 500 ml distilled water 

Autoclave for 15 min on liquid cycle 

Store at room temperature  

0.1% DEPC (Diethyl Pyrocarbonate) Treated Water (0.1 L) 

Diethyl pyrocarbonate = 0.1 ml 

Distilled water = 100 ml 

Mix the above constituents by pipetting the DEPC into the distilled water, 

incubate the mixture at 37°C for ~12 hours. Autoclave at 121°C and 15 psi 

atmospheric pressure for 20 minutes and allow to cool to room temperature. 
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10X GY (10 % Glycerol) (500 ml) 

100 % Glycerol = 50 ml  

Add 450 ml distilled water 

Sterilize by autoclaving for 20 minutes on liquid cycle 

Store at room temperature 

LB/ampicillin/IPTG/X-Gal Plates 

LB Broth = 2.5 g 

Agar = 1.5 g 

Make up to 100 ml with distilled water 

Sterilize by autoclaving for 20 minutes on liquid cycle 

Cool to ~ 50 °C and add 100 µl of ampicillin (100 mg/ml) 

Pour plates to solidify 

Add 20 µl of 0.5 M IPTG and 40 µl of 20 mg/ml X-Gal to each plate and spread 

using glass beads 

LB Medium (1 L) 

LB Broth = 25 g 

Make up to 1000 ml with distilled water 

Sterilize by autoclaving for 15 minutes on liquid cycle 

Store at room temperature 

Low Salt LB-Agar Plates (200 mL) with 25mg/l Zeocin 

0.5 % Yeast Extract = 1 g 

1 % Tryptone = 2 g 

1 % Sodium Chloride = 2 g 
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Dissolve in 150 ml distilled water 

Adjust to pH 7.5 with 1M NaOH 

Make up volume to 200 ml with distilled water 

Add 1.5 % Agar = 3 g 

Autoclave for 20 minutes 

Allow to cool to ~55 °C 

Add 50 μl of filter sterilized zeocin (100 mg/ml) 

Pour plates to solidify 

Store at 4°C in the dark 

Low Salt LB Medium (200 ml) with 25 mg/l Zeocin  

0.5 % Yeast Extract = 1 g 

1 % Tryptone = 2 g 

1 % Sodium Chloride = 2 g 

Dissolve in 150 ml distilled water 

Adjust to pH 7.5 with 1M NaOH 

Make up volume to 200 ml with distilled water 

Autoclave for 20 minutes 

Allow to cool to room temperature 

Add 50 μl filter sterilized zeocin (100 mg/ml) 

Store at 4°C in the dark 

10X M (5% Methanol) (500 ml) 

100 % Methanol = 25 ml 

Add 475 ml of distilled water 
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Filter sterilize  

Store at 4 °C  

Ni-NTA Binding Buffer (1 L) 

Sodium phosphate monobasic (M.W: 137.99 g/mol) = 6.89 g,  

final concentration = 50 mM 

Sodium chloride (M.W: 58.44 g/mol) = 17.53 g, final concentration = 300 mM 

Imidazole (M.W: 68.08) = 0.6808, final concentration = 10 mM 

Ni-NTA Elution Buffer (1 L) 

Sodium phosphate monobasic (M.W: 137.99 g/mol) = 6.896 g,  

final concentration = 50 mM 

Sodium chloride (M.W: 58.44 g/mol) = 17.53 g, final concentration = 300 mM 

Imidazole (M.W: 68.08) = 17.02 g, final concentration = 250 mM 

10X PBS (Phosphate Buffer Saline) (1L) 

Sodium Phosphate dibasic (M.W: 141.96 g/mol) = 10 g, final conc. = 70mM 

Sodium Phosphate monobasic (M.W: 119.96 g/mol) = 4.1g, final conc.= 30mM 

Sodium Chloride (58.44g/mol) = 76 g, final concentration = 1.3M 

Dissolve the above listed in 500 ml distilled water, adjust the volume to 1L with 

distilled water. 

1X PBS (1 L) 

10X PBS = 100 ml 

Distilled water = 900 ml 

Mix the above. 
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1X PBS Plus 3% Tween Twenty (1 L) 

10X PBS = 100 ml 

Distilled water = 870 ml 

Tween twenty = 30 ml 

Mix the above. 

Ponceau S Stain (0.1 L) 

Ponceau S = 0.1 g, final concentration = 0.1% 

Acetic acid = 5 ml, final concentration = 5% 

Distilled water  = 95 ml 

1M Potassium Phosphate Buffer (500 ml) 

Potassium Phosphate Dibasic = 11.5 g 

Potassium Phosphate Monobasic = 59.08 g 

Dissolve in 450 ml distilled water (Final pH=6.0) 

Allow to cool to room temperature 

Make up to 500 ml with distilled water 

Sterilize by autoclaving for 20 minutes on liquid cycle 

Store at 4 °C 

10x SDS-PAGE Running Buffer (1 L) 

Tris base (M.W: 121.1 g/mol) = 30 g 

Glycine (M.W: 75.07 g/mol) = 144 g 

SDS = 10 g 

1x SDS-PAGE Running Buffer (1 L) 

10x SDS-PAGE Running Buffer = 100 ml 
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Distilled water = 900 ml 

4x SDS-PAGE Separating Gel Buffer (500mL) 

Tris base (M.W: 121.1 g/mol) = 90.85 g, final concentration = 1.5M 

Adjust pH to 8.8 

Add SDS to a final concentration of 0.04% = 0.2 g 

4x SDS-PAGE Stacking Gel Buffer (500mL) 

Tris base (M.W: 121.1 g/mol) = 30.28 g, final concentration = 0.5M 

Adjust pH to 6.8 

Add SDS to a final concentration of 0.04% = 0.2 g 

3M Sodium Acetate (100 mL) 

 CH3COONa.3H2O = 40.82 g 

 Dissolve in 50 ml dd H2O 

 Adjust pH to 5.2 with glacial acetic acid 

 Adjust volume to 100 ml with dd H2O 

 Filter and sterilize by autoclaving  

50X TAE (Tris Acetate EDTA) Buffer (500mL) 

Tris base (M.W: 121.1 g/mol) = 121.0 g 

Glacial acetic acid = 28.55 ml   

0.5 M EDTA (pH 8.0) = 50.0 ml 

Bring volume up to 500 ml with distilled water 

5X TBS (Tris Buffered Saline) Buffer (1L) 

NaCl = 40 g 

KCl = 1 g 
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Tris base = 15 g 

Dissolve in 900 ml distilled water  

Adjust to pH=7.4 with concentrated HCl 

Allow the solution to cool to room temperature before final adjustment of pH 

Make up to a final volume of 1L with distilled water 

Store at room temperature 

1X TBS Buffer (1L) 

5X TBS Buffer = 100 ml 

Distilled water= 400 ml 

Western Blotting Blocking Buffer 1(100 ml) 

Fat-free Milk Powder = 5 g 

1X TBS= 100 ml  

Add 100 µl of 20% Sodium azide 

Western Blotting Blocking Buffer 2 (100 ml) 

1X PBS buffer = 100 ml 

Fat-free Milk Powder = 1 g 

BSA = 3 g 

10x Western Blotting Transfer Buffer (1L) 

Tris base (M.W: 121.1 g/mol) = 30.3 g, final concentration = 125 mM 

Glycine (M.W: 75.07 g/mol) = 72.06 g, final concentration = 960 mM 

Dissolve in 500 ml distilled water and make up to 1000 ml. 

1x Western Blotting Transfer Buffer (1L) 

10x Western blotting transfer buffer = 100 ml 
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100% methanol = 100 ml  

Cold distilled water = 800 ml 

10X YNB (500 ml) 

Yeast nitrogen base (YNB) = 17 g 

Ammonium sulfate = 50 g 

Dissolve in 500 ml distilled water  

Heat slightly to dissolve completely 

Filter sterilize solution and store at 4 °C 

YPD (Yeast extract Peptone Dextrose) Medium (200 ml) 

1 % Yeast Extract = 2 g 

2 %Peptone = 4 g 

Dissolve in 180 ml distilled water 

Autoclave for 20 minutes 

Cool to room temperature 

Add 20 ml of 10X D (final concentration = 2%) 

YPD Medium with Zeocin (200 ml) 

Prepare YPD medium as above 

Add 200 μl of filter sterilized Zeocin (100 mg/ml) 

Store in the dark at 4 °C  

YPD Plate with Zeocin (200 ml) 

1 % Yeast Extract = 2 g 

2 % Peptone = 4 g 

Dissolve in 180 ml distilled water 
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Add 2 % Agar = 4 g 

Autoclave for 20 minutes 

Cool to ~ 55°C 

Add the following 

10X D = 20 ml (final concentration = 2%) 

Zeocin (100 mg/ml) = 200μl  

Mix properly by swirling 

Pour medium into plate to solidify 

Store plates in the dark at 4 °C  

YPDS Plates with Zeocin (200 ml)  

1 % Yeast Extract = 2 g 

2 % Peptone = 4 g 

Sorbitol = 36.44 g 

Dissolve in 120 ml distilled water and make up to 180 ml 

Add 2 % Agar = 4 g 

Autoclave for 20 minutes 

Cool to ~ 55°C 

Add the following 

10X D = 20 ml (final concentration = 2%) 

Zeocin (100 mg/ml) = 200μl  

Mix properly by swirling 

Pour medium into plate to solidify 

Store plates in the dark at 4 °C  
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Zeocin (100 mg/ml) Stock Solution (10 ml) 

1g zeocin 

Dissolve in 10 ml distilled water 

Filter sterilize solution 

Store at - 20°C in the dark. 
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