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ABSTRACT 

Cloning, Expression, and Biochemical Characterization of Recombinant Putative 

Glucosyltransferases Clone 3 and 8 from Grapefruit (Citrus paradisi) 

 

by 

Deborah Hayford 

The grapefruit plant, Citrus paradisi, tends to accumulate high levels of flavonoid glycosides 

such as flavanones and flavones. Flavonoids have a vast array of important functions in plants 

and also in humans. Glucosyltransferases (GTs) are enzymes responsible for glucosylation 

reactions. In our pursuit to study the structure and function of flavonoid GTs, we have used 

molecular approaches to identify, clone, express, and functionally characterize the enzymes. This 

research was designed to test the hypothesis that PGT3 is a flavonoid glucosyltransferase and is 

subject to biochemical regulation. PGT3 has been tested for GT activity with compounds 

representing subclasses of flavonoids as well as some simple phenolics. Results indicate GT 

activity with 6 substrates, p-hydroxybenzoic acid, vanillin, vanillic acid,                                       

p-hydroxyphenylpyruvate, gentisic acid, and catechol.  A second project designed to clone 

putative PGT8 into the Pichia expression system has been completed.  
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CHAPTER 1 

INTRODUCTION 

Plant Secondary Metabolites 

There are 2 major classes of metabolites existing in plants. These are primary metabolites 

and secondary metabolites (Korkina 2007). Primary metabolites include carbohydrates, lipids, 

amino acids, and proteins that are necessary for basic cellular function and reproduction 

(Kutchan 2001 and ref. therein). Plants produce a variety of other organic compounds called 

secondary metabolites that have crucial roles in plant development as well as in the interaction of 

a plant with its biotic and abiotic environment (Kutchan 2001 and ref. therein).  

Plant secondary metabolites have been described as being antibiotic, antifungal, antiviral, 

able to protect plants from pathogens (phytoalexins), and  toxic to some plants (allelopathy) 

(Bourgard et al. 2001). They are also known to have important UV absorbing properties 

therefore preventing plants from damaging light (Li et al. 1993).  

There are many types of compounds that are categorized as secondary metabolites. They 

are often classified under several major large molecular families such as the phenolics, alkaloids, 

and terpenoids (Bourgaud et al. 2001). There are about 30,000 terpenoids, 12,000 alkaloids, and 

over 10,000 phenolics of which flavonoids are a part (Martens et al. 2010 and ref. therein). 

Flavonoids represent a large family of low molecular weight secondary polyphenolic compounds 

that are widely distributed throughout the plant kingdom ranging from mosses to angiosperms 

(Koes et al. and ref. therein 1994).  This important group of secondary metabolites has attracted 

the interest of many scientists over the years for several reasons such as the vast occurrence, 
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complex diversity, and numerous functions of the compounds (Forkman and Martens 2001; 

Martens et al. 2010 and ref. therein). 

The Flavonoids 

The flavonoids are a group of naturally occurring plant phenolic compounds with a basic 

C6-C3-C6 carbon structure (McIntosh 1990 and ref. therein). This carbon skeleton contains 2 

benzene rings (A and B) joined by a heterocyclic ring (C) (Fig. 1).  

 

Figure 1. The Carbon Skeleton Structure of Flavonoids Without Modification. Rings A, B, and C 

are labeled. 

The oxidation state of the heterocyclic ring and the position of ring B are important in the 

classification of flavonoids (Fig. 2). These classes include chalcones, aurones, flavanones, 

flavones, isoflavones, flavonols, dihydroflavonols, leucocyanidins, and anthocyanidins (Heller 

and Forkman 1993). 

 

 

A C 

B 

http://en.wikipedia.org/wiki/File:Flavan.PNG
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Figure 2. The chemical structures of the different classes of flavonoids. (McIntosh 1990 

used with permission) 
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Among all the classes, the chalcones have been shown to be the first true flavonoid in the 

pathway (Heller and Forkman 1993 and ref. therein; Owens and McIntosh 2011 and ref. therein). 

Chalcone is the key step to flavoniod biosynthesis because chalcones are the precursor to the rest 

of the flavonoids. Chalcones can be isomerized into flavanones, and from these intermediates, 

different classes of flavonoids can be synthesized based on the oxidative state of the heterocyclic 

ring (Marais et al. 2007; Owens and McIntosh 2011 and ref. therein). 

Another subclass of flavonoids, flavanones, is widely accumulated in citrus species 

(Jourdan et al. 1985 and ref. therein). Naringenin is one of the most common flavanones in citrus 

species and it exists in glycosidic forms (Kesterson and Hendrickson 1957). Naringin is 

accumulated mostly in grapefruit and pummel and is a major contributor to the bitterness in 

grapefruit and processed grapefruit products (Mansell et al. 1983 and ref. therein). Naringin is 

also known to account for 40 to 70% of the dry weight of young green grapefruit and leaves 

(Kesterson and Hendrickson 1957: Jourdan et al. 1985). Isoflavones are the largest group of 

naturally occurring isoflavonoids (Dewick 1993). Two of the naturally occurring plant 

isoflavones, genestein and daidzen, are found in soybeans and other leguminous plants where 

they function as phytoalexins (Jung et al. 2000). The isoflavonoids are a distinct subclass of 

flavonoids with a limited distribution in the plant kingdom (Harborne 1993; Livingstone et al. 

2011 and ref. therein). Isoflavonoids are predominantly found in legumes (Liu et al. 2003). 

Dihydroflavonols have a wide distribution in the plant kingdom and have been described 

in ferns, gymnosperms, and angiosperms (Bohm 1993 and ref. therein; Ashihara et al. 2010 and 

ref. therein).  Dihydrokaempferol and dihydroquercetin are the most common members of the 

group (Harborne 1993). Quercetin, a flavonol, is known to have over 350 different conjugate 

forms in plants (Jones et al. 2003 and ref. therein).  Aurones constitute the smallest subclass of 
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flavonoids (Harborne 1988). The distribution of flavones in plants is diverse, they can be found 

in various parts of plants, above and below ground, seeds, fruits, leaves, barks, stem, roots, and 

several other parts (Martens and Mithofer 2005). Apart from flavones being present in 

angiosperms, they have also been described within the gymnosperms (Harborne and Baxter 1999 

and ref. therein).   

 Anthocyanins are plant colorants and are perhaps one of the most important groups of 

plant pigments that are soluble in water (Harborne 1993 and ref. therein). They are responsible 

for most of the pigmentation found in flowers and leaves and these pigmentation serve various 

functions (Gould et al. 2005 and ref. therein). They are predominantly found in solution within 

the vacuole (Pecket and Small 1980).  

Roles of Flavonoids in Plants 

Flavonoids can exist in both colored and colorless forms and the visual effect of color on 

humans and animals may be contributed by flavonoids (Brouillard and Dangles 1993). 

Chalcones and aurones give yellow and orange colors to tissues in which they are found 

(Ribereau-Gayon 1975). Furthermore, aurones have been shown to give more color to flowers 

than flavones (Brouillard and Cheminat 1988).  

Flavonoids are involved in many critical processes in plants. Anthocyanins, a class of 

flavonoids, are glycosides of anthocyanidins (Kong et al. 2003 and ref. therein).  There are 6 

substitution patterns that can occur on the B ring (Fig. 3) (Kong et al. 2003). These substitution 

patterns influences the color of anthocyanins (Table 1). There are over 17 naturally occurring 

anthocyanidins (aglycones). Six of them are commonly found in higher plants (Table 1) and they 

are pelargonidin, peonidin, cyanidin, malvidin, petunidin, and delphinidin (Kong et al. 2003 and 
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ref therein). The glycosides of cyanidin, delphinidin, and pelargonidin are the most predominant 

in nature occurring in 80% of pigmented leaves, 69% of fruits, and 50% of flowers (Kong et al. 

2003 and ref. therein ). 

 

Figure 3. The Anthocyanidin Skeleton Structure.  R1 and R2 are OH, H or OMe, R3 is H or a 

Glycosyl and R4 is Glycosyl or OH (Kong et al. 2003 and ref. therein).  

 

Table 1.  The 6 Most Commonly Found Anthocyanins (Adapted from Kong et al. 2003) 

 
Note: B.red indicates bluish red and O.red indicates orange red. 

 

 

A commonly known physiological function of anthocyanin pigments and flavonol 

copigments is providing beautiful pigmentation in flowers, fruits, and leaves (Winkel-Shirley 

2001 and ref. therein; Gould et al. 2005 and ref. therein). This coloration aids in the attraction of 

pollinators and seed dispersers (Winkel-Shirley 2001 and ref. therein; Gould et al. 2005 and ref. 

C 
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therein). An important function of these pigments is to attract insects and other animals that may 

help in cross pollination (Brouillard 1993). The unique structure and combination of various 

flavonoids in different plant species produce visible and UV reflection spectra that can be 

detected by insects and larger animals, facilitating successful pollination and fertilization (Yu et 

al. 2006). Flavones can also be used as copigments of delphinidin derivatives in blue flowered 

plants and this contributes to the attraction of pollinators (Harborne and Williams 2000 and ref. 

therein). 

Anthocyanins have also helped in the understanding of the phenomenon of 

cosuppression, particularly in Petunia hybrida (Winkel–Shirley 2001 and ref. therein). 

Cosuppression can be defined as the silencing of a gene by the presence of a related gene 

(Melche 1997).  An example is shown in Petunia hybrida where transformation of Petunia with a 

chalcone synthase gene led to the formation of petunia flowers with less pigmentation (Van der 

Krol et al. 1990 and ref. therein). Historically, flavonoids have been an attractive research 

subject. The eye catching anthocyanin pigments have been very useful for genetic experiments 

including Gregor Mendel’s study of the inheritance of genes where the traits seed coat color and 

flower color were significant to the study of genetics (Schijlen et al. 2004). Anthocyanins can 

also act as antioxidants, phytoalexins, and as antibacterial agents (Kong et al. 2003).  

Anthocyanins may also play important roles with other flavonoids such as in the 

resistance of plants to insect attack (Harborne 1988; Simmonds, 2003 and ref.therein). An 

example was shown in cotton leaves where cyanidin 3-glucoside, the most widespread 

anthocyanin imparted protection against tobacco budworm (Hedin 1983 and ref. therein). 

Another example reviewed in Simmonds, 2003, anthocyanin was associated with the expression 

of red spots in sorghum upon attack by aphids serving as a response mechanism to offer 
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resistance against further attack. Anthocyanins have been shown to be electron donors for 

reactive oxygen species example hydrogen peroxide (Casati and Walbot 2003 and ref. therein). 

This shows that anthocyanins have the potential for in vitro activity. Studies have been 

conducted to investigate the range of sensitivity of various bacterial strains to flavonoids by 

Ulanowska et al. 2006. Flavonoids from various subgroups were used in this study such as 

isoflavones (genisten and daidzein), flavones (apigenin), flavanone (naringenin), and flavonol 

(kaempferol). Effects of various flavonoids on growth of cultures of 3 model bacterial species 

(Escherichia coli, Vibrio harveyi, and Bacillus subtilis) were used and strong inhibition of 

growth of cultures of a gram negative bacterium, V. harveyi, was observed (Ulanowska et al. 

2006). The most severe effects were caused by genisten, apigenin, and kaempferol (Ulanowska 

et al. 2006). 

The ability of flavonols to absorb UV light is another important physiological function of 

these compounds that has attracted interest in recent years owing to the deterioration of the 

earth’s ozone layer (Jordan 1996 and ref. therein). Plants, in their capture of energy from sunlight 

for photosynthesis, are exposed to harmful UV radiation (Jordan 1996: Reuber et al. 1996). The 

photons in these wavelengths can cause damage to DNA, RNA, and proteins that may result in 

mutagenesis, cell damage, and death (Bieza and Lois 2001). It has been noted that flavonoids act 

as sunscreens for plants that may be vulnerable to UV radiation exposure (Jordan 1996: Reuber 

et al. 1996). Flavonoids are found in the epidermal layer of leaf tissue and in pollen and are 

known to be rapidly synthesized when pollen and leaf tissue is exposed to UV-B radiation (Ryan 

et al. 2002).  

Flavonoids are also known to be involved in a variety of other interactions between plants 

and microorganisms, functioning as defense factors (phytoalexins) and as signaling molecules 
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(Korkina 2007). Flavones and flavanones, which are present in many major land plant lineages, 

play a role as signaling molecules between legumes and nitrogen fixing rhizobia (Martens and 

Mithofer 2005). Flavonoids such as apigenin, luteolin, eriodictyol, and naringenin were 

identified as inducers of rhizobium nodulation genes (Peters and Long 1988). 

Flavonoids can act as feeding deterrents (Harbone 1993 and ref. therein) to phytophagous 

insects at relatively low concentrations (Harbone 1993 and ref. therein). For example, flavonoids 

inhibit the larvae of some insects from feeding and they can repress the development of corn 

earworm moth, Heliothis zea (Martens and Mithofer 2005 and ref. therein).  There is a rather thin 

dividing line between attraction and repellence. In some instances, a flavonoid may act as an 

attractant to one insect and a deterrent to another (Harbone 1993 and ref.therein).  

A variety of antifungal flavonoids, including flavanones and flavonols, have been 

identified in the sapwood of tree species (Kemp and Burden 1986). These antifungal flavonoids 

are found usually after wounding or fungal attack (Kemp and Burden 1986 and ref. therein). 

These compounds pinosylvin and its monomethyl ether have been observed to be induced in 

pinus species and are considered to be phytoalexins (Kemp and Burden 1986 and ref. therein). 

Isoflavanoids predominantly found in legumes such as beans, peas, alfafa, and clover are also 

attributed with antifungal properties (Winkel 1996). The isoflavone genistein is known to have 

antifungal activity and is shown to be induced during disease as a disease response (Yu et al. 

2000 and ref. therein). 

Complex isoflavonoid derivatives such as rotenoids, rotenone, deguelin, and 

amorphigenin from Amorpha, Lonchocarpus, Derris, and Tephrosia species are characterized 

with insecticidal and parasiticidal properties (Lambert et al. 1993). These complex isoflavonoid 
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derivatives are also accumulated in the leaves of Tephrosia vogelii and the leaves of this plant 

have 4% of dry mass as rotenoids (Lambert et al. 1993). 

Flavonoids and Human Health 

Flavonoids have attracted the interest of many due to the promise of being powerful 

antioxidants that may protect the human body from free radicals because flavonoids have 

hydrogen radical donating abilities (reviewed in Aghel and Beiranvand 2008). Hesperidin, a 

flavanone diglycoside, is found in sweet orange and lemon (Hendrickson and Kesterson 1964). 

Hesperidin may be associated with potential benefits in the prevention of diseases such as 

decreasing capillary permeability as well as anti-inflammatory, antimicrobial, and 

anticarcinogenic effects (Aghel and Beiranvand 2008). Hesperidin been also been associated 

with control of oedema and excess swelling of legs due to accumulation of fluids (Aghel et al. 

2008 and ref. therein). 

Epidemiological studies strongly suggest that the intake of flavonoids from the diet is 

helpful in the prevention of atherosclerosis and its related events including coronary heart 

disease (Kris-Etherton et al. 2002; Terao et al. 2008). Isoflavonoids have also been linked to the 

anticancer benefits of soy-based foods (Liu 2004 and ref. therein). Isoflavonoids such as  

genisten and diadzen are reported to have health benefits such as the reduction of osteoporosis, 

relief of menopausal symptoms, lowering the risk of certain cancers, and lowering the risk of 

coronary heart disease (Jung et al. 2000 and ref. therein). Isoflavonoids have also been shown to 

increase the levels of good choloestrol (HDL) and lower the levels of bad cholesterol (LDL) thus 

its use aids in the prevention of artherosclerosis (This et al. 2011 and ref. therein).The chemical 

structure of genisten and diadzen is similar to estradiol (Yum et al. 2011 and ref. therein). The 
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structural similarity gives these compounds estrogenic effects (Yum et al. 2011 and ref. therein). 

The stilbenes and anthocyanins in red wine have been shown to exhibit an inverse effect on 

coronary heart diseases (Kris-Etherton et al. 2002 and ref. therein).  

Naringin, a flavanone diglycoside produced in large quantities in the leaves and fruit 

tissues of grapefruit, is responsible for much of the bitter taste in grapefruit and grapefruit 

products (Owens and McIntosh 2011 and ref. therein).  The bitterness that this compound 

imparts to grapefruit and its processed products makes it an interesting area of research and 

investigation (Kesterson and Hendrickson 1957; Berhow et al. 1998; Owens and McIntosh 2011 

and ref. therein). Naringin has been reported to have antioxidative and metal chelating properties 

(Yilmaz et al. 2011 and ref. therein). It has been reported that naringin may have the ability to 

reduce genomic damage made by exposure to cadmium (Yilmaz et al. 2011 and ref. therein). 

Flavonoid Biosynthesis 

Various enzymes are involved in the synthesis of the different classes of flavonoids. 

There are 2 main pathways that synthesize key precursors for flavonoid production. The 

shikimate/arogenate pathway leads to the production of phenylalanine and the hydroxycinnamate 

acid pathway leads to the formation of one of the critical precursor molecules for flavonoid 

biosynthesis, 4 –Coumaroyl-CoA (Fig. 4) from phenylalanine (Heller and Forkmann 1993 and 

1988 and ref. therein; Owens and McIntosh 2011 and ref. therein). 
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Figure 4.  The Synthesis of 4-coumaroyl CoA from Phenylalanine. PAL= Phenylalanine 

ammonia-lyase (Adapted from Koukol and Conn 1961); Cinnamate 4-hydroxylase (Russell and 

Conn 1967); 4-Coumarate-CoA ligase (Hahlbrock and Grisebach 1970).                  

 

B Ring Synthesis          

Phenylalanine is a product of the Shikimate pathway and is the origin of the B ring in the 

flavonoid skeletal structure (Koukol and Conn 1961). It has been shown that phenylalanine 

undergoes a series of reactions involving transamination, reduction, and dehydration (Koukol 

and Conn 1961). Phenylalanine ammonia lyase (PAL) deaminates phenylalanine to trans-

cinnamic acid (Koukol and Conn 1961). Cinnamate 4-hydroxylase (C4H) catalyzes the synthesis 

of p-hydroxycinnamate from trans-cinnamate to produce 4-coumarate (Potts et al. 1973 and ref. 

therein). C4H is a member of the cytochrome P-450 monooxygenase superfamily (Potts et al. 

1973 and ref. therein). The conversion of cinnamate to p-coumaric acid (4-coumarate) consumes 

molecular oxygen and NADPH (Kyun Ro et al. 2001).  The next enzyme in the biosynthetic 

pathway is coumaroyl CoA ligase (4CL), which converts p-coumarate to its coenzyme-A ester, 

Phenylalanine 

Cinnamate 



29 

 

thus forming 4 coumaroyl CoA (Knobloch and Hahlbrock 1977). This reaction consumes ATP 

and uses Mg 
2+

 as a cofactor (Ragg et al. 1981).  

A Ring Synthesis 

In the biosynthesis of the A ring of the  flavonoid structure, a molecule of 4- coumaroyl 

CoA is condensed with 3 molecules of malonyl-CoA resulting in naringenin chalcone (Fig.5). 

This is catalyzed by chalcone synthase (Kreuzaler and Hahlbrock 1972; Heller and Forkman; 

1988 and ref.therein). 

Figure 5.  Formation of the Naringenin Chalcone (Kreuzaler and Hahlbrock, 1972). 

Chalcone is the first true flavonoid compound synthesized in the pathway and is the 

precursor to all other flavonoids (Heller and Forkman 1993 and ref. therein). After the synthesis 

of chalcones, the enzyme chalcone isomerase (CHI) isomerizes chalcones to flavanones 

(Moustafa and Wong 1967). Flavonones are the first branch metabolite in the pathway. The 

isomerization of chalcones to flavanones can occur in solution giving a racemic mixture or be 

catalyzed by CHI producing a specific epimer (Moustafa and Wong 1967).   

Flavanones can be converted into flavones by the enzyme flavone synthase (FSI),      

(Fig. 6). This conversion is known to be catalyzed by 2 different isomeric enzyme systems 

(Kochs and Griesebach 1986). In one reaction, flavanone was converted to flavone by the 

enzyme obtained from cell suspension cultures of parsley; this enzyme was classified as a 2-
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oxoglutarate dependent dioxygenase because it required 2-oxoglutarate, Fe
2+

, and ascorbate as 

cofactors (Britsch et al. 1981 and ref. therein). In another study, the enzyme isolated from 

flowers of Anthirrhinum majus catalyzed the conversion of flavanone to flavones was localized 

in the microsomal fraction and required NADPH as cofactor (Stotz and Forkmann 1981). The 

NADPH- dependent flavone synthase, a P450 enzyme, was also isolated from flower extracts of 

Verbena hybrida and Taraxacum officinale (Stotz and Forkmann 1981and ref. therein). 

 

Figure 6. Flavonoid Biosynthetic Pathway. CHI= chalcone isomerase, IFS= Isoflavone synthase, 

FSI= flavone synthase, F3H= flavanone 3- hydroxylase, DFR= dihydroflavonol 4-reductase, 

FLS= flavonol synthase, ANS= anthocyanidin synthase and F3GT= flavonoid 3-O-

glucosyltransferase (Figure adapted from Heller and Forkmann 1999).  

 

Isoflavones originate from a flavanone precursor by a 2, 3 -migration of the B ring     

(Fig. 6) (Griesebach and Doerr 1960; Grisebach and Brandner 1961). The conversion of 

flavanones to isoflavones has been shown to occur in 2 steps (Kochs and Griesebach 1986). In 
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the first step, (2 S) - naringnenin (flavanone) is converted to an intermediate compound by the 

enzyme isoflavone synthase (IFS), which is localized in the microsomal fractions of elicitor 

induced soybean cell suspension cultures (Kochs and Griesebach 1986). This reaction requires 

NADPH and molecular oxygen as cofactors. In the second step, the intermediate compound is 

converted to the isoflavone genisten (Kochs and Griesebach 1986).  

Flavanone 3-hydroxylase isolated from cell cultures of Haplopappus gracilis and Petunia 

hybrida has been shown to catalyze the conversion of (2S)-naringenin (flavanone) to (2R, 3R)-

dihydrokaempferol (dihydroflavonol) (Fritsch and Griesebach 1975: Britsch and Griesebach 

1986). Hydroxylation of (2S)-flavanone to (2R, 3R)-dihydroflavonol is a prominent step in the 

synthesis of flavonols and anthocyanins (Britsch and Griesebach 1986 and ref. therein). The 

enzyme preparation of flavanone 3-hydroxylase (F3H) from flowers of Mattiola incana was 

shown to require 2-oxoglutarate, Fe
2+

, and ascorbate as cofactors (Heller and Griesebach 1980). 

Crude extract from cell cultures of parsley was also shown to contain flavanone 3-hydroxylase 

and flavonol synthase (FLS) and it catalyzed the conversion of flavanones to flavones and 

dihydroflavonol to flavonols using the same cofactors (Britsch et al. 1981). Dihydroflavonols are 

the second branch metabolite in the pathway (Fig. 6). 

 Flavonol synthase, (FLS) is classified as a 2-oxoglutarate-dependent dioxygenase that 

converts dihydroflavonols to flavonols (Fig. 6) (Britsch et al. 1981 and ref. therein). The enzymic 

conversion of dihydroflavanols to leucocyanidin is catalyzed by the enzyme, dihydroflavonol 4-

reductase, (DFR) (Stafford and Lester 1982).  Crude soluble protein extracts from Douglas fir 

have been shown to catalyze the conversion of (+)-dihydroquercetin to its 3, 4-diol 

(leucocyanidin) (Stafford and Lester 1982). DFR was shown to be an NADPH-dependent 

enzyme (Stafford and Lester 1982). 
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 The final steps in the formation of anthocyanins have not been fully elucidated. However, 

it has been postulated that the precursor for anthocyanin formation is leucoanthocyanidins 

(Harborne 1986; Saito et al. 1999). Leucoanthocyanidins are converted to the anthocyanidin 

flavylium cation by hydroxylation subsequently followed by 2 dehydration reactions (Harborne 

1986 and ref. therein). The enzymic conversions leading to the formation of anthocyanins from 

leucocyanidins has however not yet been fully shown in vitro (Forkmann 1991; Saito et al. 

1999). However in a recent study, cDNA sequence from a perennial herb, Perilla frutescens that 

encodes anthocyanin synthase (ANS) was shown to share similarities in the amino acid region 

with family 2-oxoglutarate dependent oxygenases. This putative ANS was recombinantly 

expressed and the rANS catalyzed conversion of leucocyanidin to anthocyanin (Saito et al. 

1999). 

Modification of Flavonoids 

At every branch point of flavonoid biosynthesis, flavonoids can be converted into other 

classes of flavonoids through the enzymes of the core biosynthetic pathway (Fig. 6) or 

derivatized to give the distinct compounds found in plants (McIntosh et al. 1990). Modification 

of flavonoids such as glycosylation, methylation, acetylation, and hydroxylation occurs within 

each flavonoid class as well as sulfation, prenylation, and C- glycosylation (Heller and Forkman 

1993 and ref. therein; Schijlen et al. 2004 and ref. therein; Owens and McIntosh, 2011 and ref. 

therein). These modifications are essential to the functions of flavonoids in plants. 

Glycosylation of Flavonoids 

  Most naturally occurring flavonoids exist in glycosylated forms; this suggests that 

glycosylation is an important plant biochemical process for flavonoid production (McIntosh and 
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Mansell 1990; Kramer et al. 2003; Owens and McIntosh 2011 and ref. therein). Glycosylation is 

a prominent modification reaction and is usually the last step in the biosynthesis of natural 

compounds (McIntosh and Mansell 1990: Vogt and Jones 2000 and ref. therein). Glycosylation 

in coordination with hydroxylation, acylation, and methylation reactions contributes to the 

variety and complexity of plant secondary metabolites (Vogt and Jones 2000 and ref. therein). 

The enzymes leading to glycoside formation, the glycosyltransferases, transfer nucleotide-

diphosphate –activated sugars to low molecular weight substrates and this can result in changes 

in the activity of the acceptor molecule and affect the subcellular localization of the acceptor 

molecule (Campbell et al. 1997; Lim et al. 2002; Kramer et al 2003 and ref. therein). The 

activated sugars are usually UDP-glucose but UDP-galactose and UDP-rhamnose are also found 

(Vogt 2000 and ref. therein). The attachment of sugar to the flavonoid aglycone can be directly 

to the C15 carbon structure resulting in a C-C bond or can attach to a hydroxyl group in this case 

forming a C-O bond (Harborne and Williams 1988 and ref. therein). The formation of glycosides 

has been shown to occur on almost every position on the C-15 backbone, however, the 3, 5, 

and/or 7 hydroxyl positions have been predominant (Harborne 1988; Harborne 1993 and ref. 

therein; Berhow 1998; Vogt and Jones 2000 and ref. therein; Owens and McIntosh 2011 and 

ref.therein). 

Importance of Glycosylation 

 Glycosylation plays an essential role in plant metabolism by controlling the bioactivity, 

storage, and transport of plant natural products such as secondary metabolites, hormones, etc. 

(Jones et al. 2000 and ref. therein; Shao et al. 2005 and ref. therein). The addition of sugars to 

aglycones may lead to an enhancement of water solubility and stability of the compounds 
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(Paquette et al. 2003 and ref. therein; Wang et al. 2009 and ref. therein; Owens and McIntosh, 

2011 and ref. therein).  

Another major importance of glycosylation is the organoleptic properties it can endow 

particularly in Citrus species, where the accumulation of certain flavonoid glycosides results in 

bitter, tasteless, sweet, or bittersweet products (Horowitz and Gentili 1969). Grapefruit 

accumulates mainly the bitter flavanone 7-O-neohesperidosides (example, naringin) and orange 

and lemons mainly accumulate the tasteless flavanone 7-O-rutinosides (example, hesperidin) 

(Barthe et al. 1988; McIntosh et al. 1990; Owens and McIntosh 2011 and ref. therein). During 

the formation of naringin, naringenin is glucosylated by a 7-O- glucosyltransferse (Fig. 7). A 1-2 

rhamnosyltransferase, rhamnosylates naringenin 7-O- glucoside to form the bitter flavonoid 

diglycoside compound (Fig. 7). This accounts for the bitter taste in grapefruit (Horowitz and 

Gentili 1963; Horowitz et al. 1986 and ref. therein).  Interestingly if rhamnose is attached to the 

6-OH position of the glucose attached to prunin, it results in a tasteless product (Fig. 7) 

(Horowitz and Gentili 1963; Horowitz et al. 1986 and ref. therein; McIntosh and Mansell 1990; 

Owens and McIntosh, 2011). Naringin has been shown to be the most abundant flavonoid in 

grapefruit and can account to about 40-70% of the dry weight of young green grapefruit and 

leaves (Jourdan et al. 1985 and ref. therein; Owens and McIntosh 2011 and ref. therein).  

The glycosylation pattern of flavonoids tends to affect bioavailability in food (Kramer et 

al. 2003 and ref. therein). An example is shown with quercetin, a flavonol present in many foods 

where it exists as the diglycoside rutin (quercetin-3-O-rutinoside) making it relatively 

unavailable for absorption through the intestine (Hollerman et al. 1997). It is suggested that the 

monoglucosides of these compounds are readily absorbed in the intestine through an active 

transport system whereas the diglycosides are absorbed only after the sugar moieties have been 
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cleaved off by microflora in the colon (Scalbert and Williamson 2000). Thus, the conversion of 

quercetin diglycosides into monoglucosides could be a gateway to enhance the bioavailability of 

quercetin in foods (Olthoff et al. 2000; Kramer et al. 2003 and ref. therein). 

 

 

 Figure 7.  Synthesis of Flavanone Neohesperidosides and Rutinosides in Citrus (Figure adapted 

from Owens and McIntosh 2011 and ref. therein). 

Glucosyltransferases 

One of the types of glycosylation is glucosylation. Glucosylation is a modification 

reaction in plants that leads to the formation of glucosides. The enzymes responsible for this 

formation are called glucosyltransferases (GTs). They accomplish this by transferring UDP 



36 

 

activated glucose to a corresponding acceptor molecule such as a flavonoid (Fig. 8) (McIntosh, 

1990 and ref. therein; Owens and McIntosh 2009; Owens and McIntosh 2011 and ref. therein). 

Glucosylation is important because it increases solubility and hence transport (Asen and Jurd 

1967 and ref. therein; Shao et al. 2005 and ref. therein; Owens and McIntosh 2011 and ref. 

therein), regulates the bioavailability of the compounds for other metabolic processes, and also 

stabilizes structures (Asen and Jurd 1967; McIntosh 1990 and ref. therein; Li et al. 2008 and ref. 

therein; Owens and McIntosh 2011 and ref. therein). 

 

Figure 8. Formation of Quercetin 3-O-Glucoside by a Flavonol-specific-3-O-GT. Glucosylation 

reaction showing the formation of a Quercetin 3-O- Glucoside by the action of a flavonol 

specific 3-O-GT enzyme from grapefruit (Figure adapted from Owens and McIntosh 2009).  

Because GTs comprise a large family of enzymes, they have been classified based on the 

degree of primary sequence identities (Osmani et al. 2009 and ref. therein). Family 1 GTs use 

UDP activated sugar as a donor in the glycosylation reactions and are referred to as UGTs    

(UDP-dependent glucosyltransferases) (Mackenzie et al. 1997; Lim and Bowles 2004; Osmani et 

al. 2005).  Due to the ability of plants to synthesize bioactive low molecular weight compounds, 

many of which are glucosylated at specific postions, different glucosides are present in plants 

and have been identified (Osmani et al. 2005). The grape plant alone has been shown to contain 

over 200 glucosides (Sefton et al. 1994). Likewise in Arabidopsis, over 120 UGT putative 
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encoding genes have been identified (Paquette et al. 2003). Although these UGTs have been 

identified though primary sequence analysis, only a few of them have been biochemically 

characterized (Knisley et al. 2009 and ref. therein).  

 Glucosyltransferases, which are involved in secondary plant metabolism, are usually 

soluble enzymes with a molecular weight between 45- 60 kDa with an optimum pH range for 

activity between 6.5-8.5 (McIntosh 1990; Vogt and Jones 2000; Owens and McIntosh 2011 and 

ref. therein). For example, a flavanone-specific 7-O- glucosyltransferase isolated and 

characterized from grapefruit (Citrus paradisi) seedlings was shown to have an optimum pH of 

7.5-8.0 and an apparent molecular weight of 54.9 kDa (McIntosh et al. 1990). In another 

instance, a flavonol-specific 3-O- glucosyltransferase (Fig. 8) from Citrus paradisi, 

heterologously expressed in E.coli, had a pH optimum of 7.5 and a molecular weight of 51.2 kDa 

(Owens and McIntosh 2009).  

Glucosyltransferases (GTs) involved in secondary metabolism share a UDP sugar binding 

motif called a PSPG box (Fig. 9) (Hughes and Hughes 1994; Mackenzie et al. 1997). The PSPG 

box consists of a short stretch of approximately 44 amino acids. Although there is some degree 

of sequence identity within the PSPG box of plant GTs involved in natural product formation 

(Fig. 9), the overall sequence similarity among flavonoid GTs is low (Vogt and Jones 2000 and 

ref. therein; Owens and McIntosh 2009; Owens and McIntosh 2011). Located at the N-terminal 

region of the PSPG box are the highly conserved amino acids W X P Q. Located at the C-

terminus of the PSPG box is the amino acid Q. GTs involved in secondary metabolism have been 

postulated to undergo a transfer reaction where there is an inversion of an anomeric sugar from 

an α linkage in UDP-glucose to a β configuration in the resulting glycoside (Kapitinov and Yu 

1999). Two highly conserved amino acids, histidine and glutamic acid are postulated to be 
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involved in the sugar inversion (Vogt and Jones 2000 and ref. therein). This highly conserved 

histidine residue is present in the active site of all UGT structures (example, His22 in UGT71G1)    

(Wang 2009 and ref. therein). The highly conserved residue is observed to be close to the 

glucose moiety of the sugar donor and acceptor (Wang 2005 and ref. therein). 

  

Fig. 9 Alignment of PSPG Box Sequences from Grapefruit Putative Glucosyltransferase Clone 3 

and other Plant Glucosyltranferases. Regions shaded blue indicate conserved amino acid. These 

glucosyltransferases include putative PGT3 and 9 GTs that have been biochemically 

characterized.  

 Several putative plant GT sequences can be identified from plant genomic databases by 

use of sequence similarity with the PSPG box (Knisley et al. 2009; Vogt and Jones 2000 and ref. 

therein). Even though there is some degree of homology within the PSPG box, comparison of 

overall nucleotide or amino acid sequence of these enzymes tends to be low (Vogt 2000; Sarker 

et al. 2007; Owens and McIntosh 2009 and ref. therein). Only a few of the putative GTs 

produced by these genes have been biochemically characterized, a majority of which are 3-O-

GTs (Kinsley et al. 2009 and ref. therein). A comparison of amino acid sequences of flavonoid 3-

O-GT from Perilla frutescens, Vitis vinifera, and Ipomoea purpurea showed an overall amino 

acid homology of 25-31% and 65-75% homology within the PSPG Box (Sarker et al. 2007). This 

is evidence that, while similarity searches may be  useful in the identification of putative 

flavonoid glucosyltransferase clones, heterologous expression and biochemical characterization 

of the resulting proteins remains the only way to conclusively establish biochemical function 

(Owens and McIntosh, 2009 ; Osmani et al. 2009; Owens and McIntosh 2011). 
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Citrus paradisi Glucosyltransferase Research 

Grapefruit, Citrus paradisi, is a model plant of choice in this research because it tends to 

accumulate high levels of glycosylated flavonoids, particularly flavanones and flavones, in fruits 

and other vegetative tissues (Jourdan et al. 1985, Owens and McIntosh 2011 and ref. therein). 

Citrus diglycosides are known to be produced in high levels such as the flavanone naringin and 

flavone glycosides (McIntosh et al. 1990; Berhow et al. 1998 and ref. therein; Sarker 2007 and 

ref. therein; Owens and McIntosh 2011 and ref. therein). The preponderance and variety of 

flavonoid glycosides found in Citrus has resulted in an interest in the biosynthesis of these 

derivatives (Lewinsohn et al. 1986; McIntosh 1990; McIntosh and Mansell 1990; Berhow et al. 

1998; Owens and McIntosh 2009; Owens and McIntosh 2011 and ref. therein). The global 

interest in flavonoids from grapefruit can be attributed in part to the organoleptic properties of 

grapefruit and its processed products (Mansell et al. 1983). Grapefruit is also known to produce 

flavonol 3-O glucosides, chalcone glycosides, flavonol 7-O- glycosides, and C glycosylated 

flavonoids (Nogata et al. 1994; Berhow, 1998). 

 A flavanone specific 7-O-glucosyltransferase has been isolated and characterized from 

Citrus paradisi seedlings (McIntosh and Mansell 1990). This enzyme was noted to catalyze the 

glucosylation of the 7-OH group of naringenin to form prunin and was purified and characterized 

(McIntosh et al. 1990; McIntosh and Mansell 1990). Subsequent purification of this enzyme 

revealed the presence of other flavonoid GTs that showed activity with flavonoid compounds 

(flavonols, flavones, chalcone, flavonols) representing all the classes with the exception of 

anthocyanins (McIntosh et al. 1990). In a similar vein, a flavonol specific 3-O-

glucosyltransferase from Citrus paradisi was cloned and biochemically characterized (Owens 

and McIntosh 2009).  
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The study of enzymes through structural and functional analysis provides a basis for 

understanding  enzyme substrate interaction and also helps in the identification of fundamental 

amino acids that may be involved in the binding of the enzyme to the substrate (Li et al. 2007 

and ref. therein ; Osmani et al 2009; Owens and McIntosh 2009). In Shao et al. (2005) the 

elucidation of the crystal structures of UDP flavonoid/triterpene GT UGT71G1 from Medicago 

truncatula bound to UDP –glucose revealed certain key residues that are involved in the 

recognition of substrates. Further studies done with mutagenesis confirmed the involvement of 

those key residues and the roles they played in substrate binding and enzyme activity (Shao et al. 

2005). Also, in Offen et al. (2006), the crystal structure of a UDP-glucose: flavonoid 3-O-

glucosyltransferase (VvGT1) from grape revealed key domains that may be involved in substrate 

binding, donor recognition, and the catalytic activity of the enzyme. The crystal structures of 

these GTs revealed the presence of conserved key amino acids in or near the PSPG box which 

may be responsible for the recognition of an activated sugar donor (Shao et al. 2005 and ref. 

therein; Offen et al. 2006 and ref. therein; Li et al. 2007 and ref. therein).  

 Purification and characterization of flavonoid GTs directly from grapefruit tissues has 

yielded active enzymes (Mcintosh et al. 1990; McIntosh and Mansell 1990). However, due to the 

labile nature of the enzyme and the minute levels of enzyme present in the tissues, accruing 

enough for purification and direct protein sequencing is quite cumbersome and nearly impossible 

(McIntosh et al. 1990; McIntosh and Mansell 1990; Tanner 2000). To overcome this, the use of 

molecular approaches to identify, clone, heterologously express, and characterize resulting 

proteins has been used (Sarker et al. 2007; Owens and McIntosh 2009; Lin 2011). In Owens and 

McIntosh (2009) a recombinant flavonol 3-O-GT was characterized and shown to glucosylate the 

flavonol aglycones kaempferol, myricetin, and quercetin. The enzyme was regioselective, 
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produced a single product that corresponded to glycosylation at the 3 hydroxyl position and was 

confirmed by product identification using HPLC and TLC to be a flavonol 3-O-GT (Owens and 

McIntosh 2009). A host of other grapefruit glucosyltransferase clones have been studied using 

molecular approaches (Sarker 2004; Strong 2005; Mallampalli 2009; Lin 2011).   

 A directionally cloned EST library was created from young grapefruit leaves and mined 

for putative GT clones, (Sarker 2004). Out of this, PGT3, a full length clone was obtained 

(Sarker 2004 and Kiser 2005). The focus of our research is to identify putative flavonoid 

glucosyltransferase clones, to establish the structure/function relationships of these enzymes, to 

study the glucosylation patterns of flavonoid and other phenolic GTs, and the results obtained 

would add to the knowledge of glucosyltransferases.  

Hypotheses 

This thesis research was designed to test the hypothesis that putative glucosyltransferase 

clone 3 (PGT3) is a flavonoid glucosyltransferase and may be subject to biochemical regulation. 

A presentation of results obtained from optimization of the expression of PGT3 in E.coli and 

purification of resulting protein is reported in this thesis. Also in this thesis, results obtained from 

cloning and expression in Pichia pastoris, purification, and biochemical characterization of 

PGT3 protein are reported. 

Another project was designed to test that the expression of putative flavonoid 

glucosyltransferase clone 8 (PGT8) protein in yeast, Pichia pastoris will result in more soluble 

protein than in E.coli. This clone had previously been expressed in E.coli; however, the majority 

of the protein expressed was packed in insoluble inclusion bodies. Results obtained from cloning 

are reported. 
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CHAPTER 2 

MATERIALS AND METHODS 

Materials  

Chemicals and Reagents 

Zeocin
TM

 , Luria-Bertani broth powder, agar, ampicillin sodium salt, chloramphenicol, 

isopropyl-ß-D-thiogalactopyranoside (IPTG), tris base, β-mercaptoethanol (βME), 

tetramethylethylenediamine (TEMED, electophoresis grade), ammonium persulfate (APS), 

coomassie brilliant blue, ponceau s, ethidium bromide (EtBr, 10 mg/mL) for DNA gel 

electrophoresis, nitro-blue tetrazolium chloride (NBT), nitrocellulose membrane (0.45µm pore 

size), ethyleneglycol monomethylether, dimethylformamide, Whatman chromatography paper 

(3MM CHR), 5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt (BCIP), sodium phosphate 

(NaH2PO4 · H2O), phenol, chloroform, isoamyl alcohol, 100% ethanol, acrylamide 40% 

solution (acrylamide: bis-acrylamide, 19:1), glacial acetic acid, peptone powder, yeast extract, 

and yeast nitrogen base powder, were purchased from Fisher Scientific (Pittsburgh, PA).  Amido 

black stain 10B was purchased from Corning (Palo Alto, CA). Thioredoxin-tag (trx-tag) 

monoclonal antibody, and goat anti-mouse IgG alkaline phosphatase (AP) conjugates were 

purchased from Novagen (Madison, WI). GoTaq DNA polymerase, 5 X green / colorless buffer 

for polymerase chain reactions (PCR), deoxyribonucleotide triphosphate (dNTP), T4 DNA ligase 

enzyme, ligation buffer, and restriction enzymes Xba1, Xho1, Kpn1, Apa1, and Bstx1 were 

purchased from Promega (Madison, WI). The Mini Trans Blot system for Western blotting, the 

Mini-PROTEIN Tetra gel electrophoresis system, and micro pulser cuvettes were from Bio-rad 

(Hercules, CA). TALON Metal Affinity Resin was purchased from Clonetech (Mountain Veiw, 
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CA).  Amicon Centricon 30 centrifugal filters were purchased from Millipore (Billerica, MA). 

All primers were synthesized by Integrated DNA Technology and ordered through the Molecular 

Biology Core Facility (ETSU, TN). Lyticase enzyme (from Arthobacter luteus) lyophilized 

powder and acid washed glass beads (pore size 0.5mm) were purchased from Sigma Aldrich (St. 

Louis, MO). 

Cells and Vectors 

  The pCD1 vector and E.coli BL21 (DE3) RIL cells were obtained from Brenda Winkel, 

at Virginia Polytechnic Institute and State University (Blacksburg, VA). One shot Top 10 

competent E.coli cells were purchased from Invitrogen (Carlsbad, CA). The pPICZA and 

pPICZAα vectors and X33 parent strain of Pichia pastoris were a kind gift from Sanja Roje at 

Washington State University (Pullman, WA). Competent yeast cells were prepared as described 

in the easy select pichia invitrogen manual. 

Kits 

The Silver Stain Plus Kit was purchased from Bio-Rad (Hercules, CA). The Wizard SV 

Gel and PCR clean-up system kit was from Promega (Madison, WI). TOPO TA Cloning® Kits 

were purchased from Invitrogen (Carlsbad, CA). QIAprep spin Miniprep kits were from Qiagen 

(Valencia, CA). Quantumprep plasmid mididrep kit was purchased from Qiagen (Valencia, CA). 

Buffers 

IMAC elution buffer contained 150 mM imidazole, 0.3 M NaCl, and 5 mM BME in 

50mM phosphate buffer, pH 7.5), IMAC equilibration/ wash buffer contained 50mM sodium 

phosphate, 0.3 M NaCl and 5mM BME, pH 7.5) and IMAC MES (2-(N-morpholino) 



44 

 

ethanesulfonic acid) buffer (pH 5.0) were prepared as described in appendix E. TANK (Tris-

glycine-SDS) Buffer (pH8.3), Western blot transfer buffer (pH 8.3), TBS-T buffer, AP buffer 

(pH 9.5), TAE (Tris-Acetate EDTA) buffer, 50mM Tris-HCl buffer (pH 7.5) was prepared. A 

phosphate buffer (pH 7.5) that contained 50mM βME was prepared. The breaking buffer  

contained 50 mM sodium phosphate (pH 7.4), 1mM PMSF (phenylmethylsulfonyl fluoride), 

1mM EDTA (Ethylenediaminetetraacetic acid), and 5% glycerol. Also, PBS-T buffer was 

prepared (see appendix E). 

Culture Media 

LB (Luria-Bertani), low salt LB medium, YPDS (yeast extract peptone dextrose sorbitol), 

YPD (yeast extract peptone dextrose) liquid media, and plates were prepared as described in 

Appendix B. Buffered glycerol-complex media (BMGY), and buffered methanol-complex media 

(BMMY) were prepared as described in the appendix. Selective LB media contained 100mg of 

ampicillin antibiotic per liter. Selective YPDS media contained 25 mg of zeocin antibiotic per 

liter. 

Flavonoid and Other Phenolic Substrates for Enzyme Assays   

Chalcone (4, 2’, 4’, 6’-tetra-OH-chalcone) was synthesized from naringenin according to 

Moustapha and Wong (1966) by C. McIntosh. Naringenin, prunin, hesperetin, apigenin, 

apigenin-7-O-glucoside, luteolin, kaempferol, quercetin, 4’-methoxyflavonol, and 4’-acetoxy, 7-

hydroxy-6-methoxyisoflavone were taken from stock supplies of Dr. Cecilia McIntosh at East 

Tennessee State University (Johnson City, TN). Eriodictyol, isosakuranetin, fisetin, gossypetin, 

diosmetin, scutellarein, umbelliferone, scopotelin, esculetin, sinapic acid, catechol, 

phloroacetophenone, and 2, 4-dihydroxybenzaldehyde were purchased from Indofine 
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(Hillsborough, NJ). Vanillin, 2-hydroxycinnamic acid, vanillic acid, 4-hydroxybenzoic acid, and 

gentisic acid were purchased from Sigma, (St.Louis, MO). Uridine-5’-diphospho-[U-
14

C]-

glucose (UDP-G; 261 mCi/ mMol) was obtained from ICN (Irvine, CA).  

Methods 

Heterologous Expression of Recombinant PGT3 in E.coli 

PGT3 clone was obtained through EST mining of a directionally cloned young grapefruit 

cDNA library (RoySarkar, 2004; Kiser, 2005) and had previously been cloned into pCD1 vector 

for expression (Mallampalli, 2009). Preliminary work done on the expression of PGT3 in E.coli 

(Mallampalli, 2009) resulted in the successful expression of the protein; however, the majority of 

the protein remained insoluble in inclusion bodies. Potential optimization strategies to overcome 

this challenge tested by varying expression conditions such as postinduction culture media (LB, 

M9) and temperature (25⁰C, 15⁰C, 11⁰C, or 4⁰C) did not increase production of soluble PGT3 

protein (Mallampalli, 2009). Therefore another optimization strategy, variation of media 

composition, was tested in this research. 

Optimizing the Expression of Recombinant PGT3 in pCD1 Vector in E.coli  

In order to overcome the challenge of inclusion bodies, variation of media composition 

such as the use of osmotic reagents, (betaine and sorbitol) and variation of the concentration of 

the inducer IPTG were tested. Frozen BL21 (DE3) RIL cells containing PGT3 expression 

construct in pCD1 were cultured overnight in 2 vials, both containing 10 mL LB medium 100 

μg/mL ampicillin, 34 μg/mL chloramphenicol with 1 of the vials containing betaine and sorbitol 

in final concentrations of 2.5 mM and 660 mM, respectively (Arakawa and Timasheff, 1985; 

Blackwell and Horgan, 1991; Picaud et al., 2007). The cultures were incubated at 37 
o
C and 250 
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rpm. The next day, 1 mL each of the overnight culture was diluted (100 fold) with fresh 100 mL 

medium. The cultures were incubated at 37 
o
C at 250 rpm and the OD600 of each culture was 

measured every half hour using a spectrophotometer until the OD600 reached the range of 0.5 - 

0.7. A 500 µL aliquot was taken from each vial to represent the preinduction samples and these 

were centrifuged at 10,000 × g for 10 minutes at 4 
o
C. The pellets were saved for future analysis. 

A 100 μl aliquot of IPTG (inducer) was added to each of the remaining cultures to a final 

concentration of 1.0 mM, and the cultures were incubated at 25 
o
C for 24 hours at 250 rpm. 

   Every 6 hours, a 1 mL and a 15 mL aliquot of postinduction sample were taken from 

each culture. The 1 mL postinduction samples were used for preparation of total protein and 

were microfuged at room temperature 10000 x g. The cell pellets were stored at -20 
o
C for 

subsequent analysis by SDS-PAGE. The 15 mL sample was used for preparation of soluble 

protein and was centrifuged at 4 
o
C in a Sorvall RC-5B refrigerated super speed centrifuge 

(Fisher Scientific) at 13000 x g for 10 minutes to collect the cells. The supernatants were 

discarded and pellets were stored at –80 
o
C for further analysis.   

Preparation of Total and Soluble Protein Fractions  

The 500 μL preinduction cell pellets and 1mL postinduction cell pellets for cultures with 

and without betaine and sorbitol each were resuspended in 250 μL of 2X SDS-PAGE sample 

buffer (described in appendix E). Microfuge tubes containing the resuspended pellets were 

vortexed vigorously, boiled for 15 minutes and microfuged for 10 minutes at 13000 x g at room 

temperature. A 200 μL aliquot was put into a fresh microfuge tube, microfuged for 10 minutes at 

13000 x g, and a 100 μL aliquot was carefully pipetted and stored at -20 
o
C for subsequent SDS-

PAGE and Western blot analysis. 
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The isolation of soluble protein was done as follows. The postinduction cell pellets were 

removed from -80⁰C freezer, thawed, and resuspended in 850 μL ice-cold 50 mM phosphate 

buffer (pH 7.5) containing 14 mM βME (β-mercaptoethanol). The resuspended cells were lysed 

by sonicating on ice with a dismembrator model 500 with microtip (Fisher Scientific), pulsing 10 

times for 5s each with a 60s recovery. The lysed samples were centrifuged at 4⁰C at 13000 x g 

for 10 minutes. The pellets were discarded and the supernatants were put in sterile 1.5 mL tubes 

and analyzed for expression of soluble recombinant PGT3 protein by SDS-PAGE and Western 

Blot. 

Analysis by SDS-PAGE 

The preinduction and postinduction samples, soluble and insoluble fractions from 

cultures induced with and without betaine and sorbitol were mixed with sample buffer in this 

manner. A 15 µL aliquot of each soluble fraction was mixed with 5 µL of 4 X SDS-PAGE 

sample buffer. A 6 µL aliquot of each insoluble fraction was mixed with 6 µL of 2X sample 

buffer. Also, a sample of broad range molecular weight protein marker diluted 20 fold in 2X 

sample dye was prepared. All samples, including the broad range molecular weight protein 

marker, were boiled for 5 minutes and microfuged for a minute at 13000 X g at room 

temperature. The samples were loaded onto 10% SDS-PAGE gels and electrophoresed in 1X 

tank buffer for 45 minutes at 200 Volts. After 45 minutes, the gel was removed from the 

electrophoresis tank. Prior to staining, the stacking gel was cut off and discarded. The separating 

gel was then stained with coomassie brilliant blue R250 and destained with gel destaining 

solution. Preparation of staining and destaining solutions used is described in Appendix C. 
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Western Blotting 

Before Western blotting, nitrocellulose membranes (0.45 µm pore size) were soaked in 

transfer buffer containing 20% methanol (appendix E) for at least 30 minutes to equilibrate the 

membrane. Immediately before assembling the cassette, sponges placed on both sides of the 

blotting cassette and soaked in transfer buffer carefully removing air bubbles. The SDS-PAGE 

gel was sandwiched between 2 sponges, Whatman paper (3 MM CHR), and the nitrocellulose 

membrane, all cut with the same dimension. The sandwich was clamped together and placed in 

the gel transfer box and electro blotted with cooling pack placed in a Mini Trans Blot system 

containing 1X transfer buffer (with 20% methanol) for 90 minutes at 100 Volts. After 90 

minutes, the nitrocellulose membrane was stained with ponceau s stain (see appendix C) for one 

minute to observe bands and the protein marker lane was cut off and saved. The protein marker 

was washed with several changes of water to remove the ponceau s stain, restained with amido 

black for a couple of minutes and the membrane was stored in the dark. The rest of the 

membrane was washed with several changes of water to remove the ponceau s stain. The 

destained nitrocellulose membrane was blocked with 30 mL of blocking solution (containing 

1.5gms fat free milk and 3 mL of TBS-T) for 30 minutes at room temperature with gentle 

shaking. Blocking prevents nonspecific binding of proteins to the nitrocellulose membrane. After 

that, the nitrocellulose membrane was washed 3 times, 5 minutes each with 20 mL of 1X-TBST. 

The membrane was then incubated in 10 mL Trx-tag monoclonal antibody that recognizes the 

protein of interest based on the presence of Trx-tag (2µL of  Trx-tag monoclonal antibody in 1X 

TBS-T) at room temperature for 30 minutes with gentle shaking. The membrane was 

subsequently washed 3 times with 20 mL of 1X TBS-T for 5 minute each. The primary antibody 

was detected by incubating in a secondary antibody solution (1µL of goat antimouse IgG HRP 
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conjugate in 10 mL of 1X TBS-T) for 30 minutes at room temperature with gentle shaking. The 

membrane was again washed 5 times each with 20 mL of 1X TBS-T for 5 minutes to remove 

loosely bound secondary antibody after which 15 mL of 1X alkaline phosphatase buffer (pH 9.5) 

substrate containing 60µL  of NBT and 60µL of BCIP was added to detect the presence of PGT3 

recombinant protein. The development reaction was terminated with deionized water after 

signals are seen (within a minute or two unless otherwise noted) and an image of the membrane 

was taken and recorded.  

Expression with Varying Concentrations of IPTG 

In order to test the effect of the concentration of IPTG on induction of soluble rPGT3 

protein, rPGT3 was expressed under varying concentrations of IPTG. The usual concentration of 

IPTG (1 mM) was used and concentration of 5 mM and 0.2 mM were tested. All culture 

inductions were done on cells growing in LBamp100mg/Lchloramphenicol34mg/L. Frozen BL21 

(DE3) RIL cells containing PGT3 expression construct in pCD1 were cultured overnight in 10 

mL LB medium 100 μg/mL ampicillin, 34 μg/ mL chloramphenicol. The next day, 3 mL of the 

overnight culture was diluted with 300 mL of fresh LBamp100mg/Lchloramphenicol34mg/L. The 

cultures were incubated at 37 
o
C at 250 rpm and the absorbance of the culture at OD600 was 

measured every half hour using a spectrophotometer until the OD600 reached the range of 0.5-0.7. 

A 500 µL aliquot was taken from the culture prior to induction to represent preinduction sample 

and microfuged at 10,000 × g for 10 minutes at 4
o
C and the pellets saved for future analysis. The 

remainder of the culture, approximately 300 mL,  was divided into 3 erlenmeyer flasks, labeled, 

and each culture induced with a final concentration of 0.2 mM, 1.0 mM, or 5 mM IPTG, 

respectively. The cultures were incubated at 25 
o
C, 250 rpm, at 24 hours, a 15 ul aliquot of 
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postinduction sample was taken from each culture. The cell pellets were lysed and analyzed by 

SDS-PAGE and Western blot as previously described. 

Culture Scale-Up 

 To scale up recombinant PGT3 production, induction of rPGT3 protein expression was 

done as previously described with the following changes:  1000 mL of culture was induced with 

a final concentration of 1 mM IPTG and incubated at 25 
o
C, 250 rpm for 24 hours. The cell 

pellets were harvested by centrifugation and stored as previously described. The cell pellet was 

resuspended in 35 mL of ice cold lysis buffer (50 mM phosphate buffer, 14 mM βME). The 

resuspended cells were then lysed with a French press at 4
o
C,  3 times at 2000 psi. The crude 

lysate was then centrifuged at 4
o
C for 20 minutes in a sorvall RC-5B refrigerated superspeed 

centrifuge at 13000 x g. The supernatant from this step was carefully transferred into a clean 50 

mL conical tube without disturbing the pellet and kept on ice for protein purification. 

Purification of Recombinant PGT3 Protein by IMAC  

Soluble recombinant PGT3 (crude) was purified by immobilized metal affinity 

chromatography (IMAC) using the TALON purification system (TALON Metal Affinity Users 

Manual) for purification by eluting polyhistidine tagged protein (PGT3) with increasing 

concentrations of imidazole in the elution buffer. Purification was done initially using a column 

with 1mL bed volume. The manufacturer’s instructions were followed with a few changes. All 

buffers used contained 5 mM βME. The column was washed with 10 bed volumes of 1X 

equilibration buffer (50mM sodium phosphate, 300mM sodium chloride and 5mM BME, pH. 

7.0). Soluble rPGT3 (crude) sample, (10 mL) was loaded onto the column and 2 mL flow 

through fractions of the sample was collected. After the sample had passed through the column, 
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the column was washed with 20 mL of equilibration/ wash buffer and 2 mL fractions were 

collected. After this, 10 mL of elution buffer containing 10 mM imidazole (pH 7) was used to 

remove weakly bound proteins and 2 mL fractions were collected. Subsequently, 10 mL of 

elution buffer containing 150 mM imidazole (pH 7) was used to elute tightly bound polyhistidine 

tagged proteins from the column and 2 mL fractions were collected. The column was then 

washed with 5 mL of MES buffer (pH 5) to regenerate the column by removing any remainder of 

imidazole that may be bound to the column. To prepare the column for another use, it was 

washed with 10 bed volumes of deionized distilled water allowing 2 mL to remain in the column 

and the column was capped. Fractions obtained from purification were analyzed by SDS-PAGE 

and Western Blot as previously described. 

Following purification of soluble recombinant rPGT3 by IMAC with a column of 1 mL 

bed volume, a column of 5 mL bed volume was used as a means to attempt further enrichment of 

rPGT3 protein. The previously described protocol was used with the following changes. Before 

loading the sample on the column, the column was equilibrated with 50 mL of equilibration wash 

buffer (as described in appendix E). The sample was passed through the column and 2 mL 

fractions of flow through were collected. Subsequently, 35 mL of wash buffer with the same 

composition as previously described was used and 5 mL fractions were collected. Weakly bound 

proteins were removed with elution buffer containing 10 mM imidazole and 5 mL fractions were 

collected. Tightly bound polyhistidine tagged proteins were eluted with elution buffer containing 

150 mM imidazole and 5 mL fractions were collected. The column was rinsed with 20 mL of 

MES buffer (pH 5) and subsequently washed with 50 mL of deionized water. Fractions were 

analyzed by SDS-PAGE and Western Blot to determine which fractions contained the most 

enriched rPGT3 protein. 
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Silver Staining 

Fractions obtained from the purification step were analyzed by SDS-PAGE and stained 

with Bio-Rad silver stain plus kit following manufacturer’s instructions. This was done to detect 

fractions that contained the most expressed PGT3 and also to assess purification. 

Cloning of PGT3 into Pichia pastoris Vectors 

Primer Design 

PGT3 cloned into TOPO vector and held in competent TOP10 cells (Kiser, 2005) was 

isolated by miniprep with the Qiagen miniprep kit by following the manufacturer’s instructions. 

To be able to clone PGT3 into pPICZ and pPICZα vectors, PGT3 had to be modified with 

primers to contain appropriate restriction sites. Cloning into the 2 different vectors, PGT3 was 

modified using 3 strategies termed construct 1, 2, and 3.  

In Construct 1 (Fig 10), PGT3 sequence was modified with the forward primer (CSP 

134F: 5’CATGGGTACCATGGAAGAAAAGCCTAAATCTC3’). The primer included a linker, 

colored in red, and Kpn1 restriction site, colored in blue. The underlined sequence represents the 

start codon of PGT3 sequence. The reverse primer (CSP 135R: 5’ CGCGGGCCCTGCTTGGG 

AGCTCATCATC 3’) also included the Apa1 restriction site (colored blue). These primers 

introduced the Kpn1 and Apa1 restriction sites on the 5’ and 3’ends of PGT3 sequence (Table 3). 

After PGT3 was modified with the primers using PCR amplification, it was digested with the 

Kpn1 and Apa1 restriction enzymes to create sticky ends (Fig. 10). The vector pPICZA, into 

which construct 1 was to be cloned, was also digested with Kpn1 and Apa1 restriction enzymes 

to create compatible sticky ends with which the modified PGT3 sequence was to be ligated. The 



53 

 

pPICZA vector results in intracellular expression of rPGT3 protein in the presence of an inducer 

(methanol) (Easy select Pichia manual, Invitrogen). 

 

Fig. 10.  Schematic Diagram Showing Cloning of Construct 1 (strategy used to clone PGT3 into 

pPICZA vector for intracellular expression of recombinant PGT3 protein). 

 

The Construct 2 strategy (Fig 11), was developed by modifying the 5’ and 3’ ends of 

PGT3 sequence with forward/sense primer, CSP 134F (5’CATGGGTACCATGGAAGAAA 

AGCCTAAATCTC 3’). This included a linker, colored in red, and the Kpn1 restriction site, 

colored in blue. The start codon of PGT3 sequence is underlined (Table 3). The reverse primer 

CSP 137R; 5’CGCTCTAGACGTGCTTG GGAGCTCATCATC 3’) included the Xba1 

restriction site, colored in blue (Table 2). The modified PGT3 sequence was cloned into pPICZα 

vector by digesting pPICZα vector with Kpn1 and Xba1 restriction enzymes to create sticky ends 

that would be compatible with the sticky ends of PGT3. The vector, also equipped with an alpha 

factor signal sequence, leads the expression through a secretory pathway resulting in protein 

being secreted into the culture media. This strategy referred to construct 2 was meant to drive 

expression of PGT3 protein through the secretory pathway in the presence of an inducer 

methanol ((Easy select Pichia manual, Invitrogen). However, during the expression of rPGT3 

through the secretory pathway, 14 extra amino acids are expressed along with PGT3 protein. A 

cleavage site (Kex 2) is cleaved upon expression of the recombinant protein. 
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Fig 11. Schematic Diagram Showing Cloning of Construct 2 (strategy used to clone PGT3 into 

pPICZα vector for extracellular expression of recombinant PGT3 protein). 

 

Table 2. PGT3 Clone Primer Sequences Designed For PCR Amplification. The underlined areas 

correspond to PGT3 5’ and 3’end sequences. Areas in red represent linker regions, areas in blue 

represent restriction sites. C represents construct. Annealing temperatures are in parenthesis. 

C Sense Primer/Forward Primer Antisense Primer/Reverse Primer 

1 CSP 134F (60
o
C) 

5’CATGGGTACCATGGAAGAAAAGCCTAAATCTC3’ 

 CSP 135R (58
o
C) 

5’ CGCGGGCCCTGCTTGGGAGCTCATCATC 3’ 

2 CSP 134F (60
 o
C) 

5’CATGGGTACCATGGAAGAAAAGCCTAAATCTC 3’ 

CSP 137R (58
o
C) 

5’CGCTCTAGACGTGCTTG GGAGCTCATCATC 3’ 

3 CSP136F (60
 o
C) 

5’CATGCTCGAGAAAAGAATGGAAGAAAAGC CTAAATCTC 3’ 

CSP 137R (58
o
C) 

5’CGCTCTAGACGTGCTTG GGAGCTCATCATC 3’ 

 

In the strategy used for construct 3 (Fig. 12), the ends of PGT3 sequence were modified 

with the forward primer (CSP 136F:5’CATGCTCGAGAAAAGAATGGAAGAAAAGC 

CTAAATCTC 3’). This included a linker, (colored in red) Xho1 restriction site (colored in blue), 

and the start codon of PGT3 sequence (underlined) as shown in Table 2. The reverse primer 

(CSP 137R: CGCTCTAGACGTGCTTG GGAGCTCATCATC 3’) included an Xba1 restriction 

site. These primers introduced the Xba1 and Xho1 restriction sites to the 5’ and 3’ends of the 

sequence. The modified PGT3 sequence was cloned into pPICZα vector by digesting pPICZα 

vector with Xba1 and Xho1 restriction enzymes to create sticky ends that would be compatible 

with the sticky ends of PGT3. This strategy, referred to construct 3, was also meant to drive 

expression of PGT3 protein through the secretory pathway in the presence of an inducer 
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methanol but this time, expression of PGT3 would be without extra amino acids (Fig. 12). To do 

this, clone-specific primers were designed to have the yeast consensus sequence for proper 

initiation of translation of expressed recombinant protein. The primers were each diluted to a 

stock concentration of 200 mM by mixing in an appropriate volume of sterilized deionized 

water. From the stock, a 20 µM working solution was prepared by diluting 5 µL of the stock with 

45 µL of sterilized deionized water to make a final volume of 50 µL and stored in -20
o
 C for later 

use. 

 

Fig 12. Schematic Diagram Showing Cloning of Construct 3 (strategy to get rPGT3 into pPICZα 
vector for expression through the secretory pathway without extra amino acids). 

 

Amplification of PGT3 

 PGT3 was modified by PCR amplification using an Eppendorf heated-lid gradient 

thermal cycler and a 1000 fold dilution of miniprepped PGT3 as template (0.001µg/µL). The 

PCR reaction consisted of the following; 2.5 µL of PGT3 template, 10 µL of 5X colorless Go-taq 

buffer, 2.5 µL of 20 µM  sense primer, 2.5 µL of  20 µM , antisense primer, 1 µL of Go-Taq 

enzyme and 31 µL of deionized still water to make a total of 50 µL reaction. The primers had 

similar annealing temperatures so they were all subjected to the same PCR conditions. The PCR 

cycles were as shown in Table 3. 
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Table 3. PCR Conditions Used for Amplification of PGT3 sequences. 

 

The PCR reactions were done with an initial denaturation step, 1 for 1 minute at 94
o
C 

followed by 30 cycles (94
o
C for 30 seconds, 56 

o
C for 30 seconds, 72

 o
C for 2 minutes), and a 

final extension step, 5, at 72
o
C for 3 minutes. After the final extension step, the samples were 

automatically kept at 4 
o
C by the Eppendorf heated-lid gradient thermal cycler. The amplified 

PCR products were analyzed using DNA agarose gel (0.8% agarose gel which contained 

ethidium bromide) electrophoresis. To do the analysis, a 5 μl aliquot of each of the PCR products 

was mixed with 1 μl of 6X loading dye. Also, to be able to determine the size of the PCR 

products, 5 μl of 1Kb DNA ladder (Promega;containing loading dye) was mixed with 1 μl of 

deionized distilled water and electrophoresed on the gel for 60 minutes at 100 volts. An image of 

the modified PGT3 was viewed using a Gel Documentation Imaging System from UVP (Upland, 

CA) and the images were recorded.  The PCR products of modified PGT3 were gel purified 

using the Wizard SV Gel and PCR clean-up kit.  

The pPICZA and pPICZAα vectors were isolated from frozen TOP10 cells, miniprepped, 

and digested with appropriate restriction enzymes to have compatible sticky ends with the 

modified PGT3 sequences. The digested vectors were analyzed by DNA agarose gel 
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electrophoresis and the image viewed using a gel documentation imaging system and the images 

recorded.  

Cloning of Modified PGT3 into TOPO VECTOR 

Modified PGT3 (mPGT3) PCR products for all 3 constructs were cloned into pCR
®
4-

TOPO vector using the TOPO TA Cloning Kit (Invitrogen) following manufacturer’s 

instructions. A 4 µL aliquot of modified PGT3 PCR product, 1 µL of TOPO
®
 Vector and 1 µL of 

TOPO
®
  salt solution were incubated for 5 minutes at room temperature. A 2 µL aliquot of each 

TOPO cloning reaction was transformed into 50 µL of one shot TOP 10 competent E.coli cells 

(Invitrogen) according to manufacturer’s instructions. For positive control of the transformation 

step, a 1 µL aliquot of PUC19 was incubated with 50 µL of one shot TOP 10 competent E.coli 

cells. After transformation, 250 µL of SOC medium (appendix B) was added to each transformed 

mix and shaken at 37
o
C, 225 rpm for an hour for the cells to recover. A 100 µL aliquot of each 

transformation mix was spread on a prewarmed LB amp (100mg/L) plate. For the positive control, a 

1:10 dilution of the transformed mix was done in LB amp (100mg/L) liquid and a 100 µL aliquot was 

spread on LB amp (100mg/L).  The plates were incubated overnight at 37
o
C. 

Analyzing Transformants 

Colonies obtained were analyzed by selecting 17 colonies from the PGT3-pCR4 TOPO 

transformed plates. Colonies were selected using sterile toothpicks and streaked onto LB amp 

(100mg/L) plates to make duplicates and for further T streaking to obtain single colonies. The 

toothpicks were each submerged in corresponding labeled 1.5 mL eppendorf tubes containing 

100 μL of sterile distilled water to be used as templates for amplification by PCR for screening. 

The samples for each construct were boiled for 5 minutes to lyse the cells. A PCR master mix 
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containing 4 μL of 10 mM dNTPs, 20 μL of 20 mM sense primer T3, 20 μL of 20 mM antisense 

primer T7, 40 μL of 5 X Go-Taq buffer (green), 94 μL of sterile dH20, and 2 μL of Taq 

polymerase was made. A 9 μL aliquot of PCR master mix added to 1 μL of the lysed cells. A 

negative PCR control was done by replacing cell lysate with sterile distilled water. The Tm for 

PCR reaction was 58 
o
C, all other conditions used for PCR reaction program were the same as 

previously described. Analyses of the PCR products were performed using DNA agarose gel 

electrophoresis as previously described. 

Selected Colonies for Constructs 1, 2, and 3 

Positively transformed colonies for constructs 1, 2, and 3 were selected as previously 

described. For each construct, four colonies were selected for isolation of plasmid DNA, 

purification, and digestion. The colonies selected for construct 1 were labeled A2, A6, A9, and 

A18. Those colonies selected for construct 2 were labeled B1, B3, and B15, and those selected 

for construct 3 were labeled C6, C13, C15, and C17. 

Isolation of Plasmid DNA by Minipreps 

Plasmid DNA of the selected colonies for the 3 constructs was miniprepped from 

overnight bacterial cell cultures. Single PCR screened colonies were inoculated into 10 mL LB 

amp (100mg/L) liquid media and incubated at 37⁰C at 250 rpm overnight. A 500 μL aliquot of the 

overnight culture was added to 500 μL glycerol to make a final concentration of 50 % glycerol 

and was stored at -80 
o
C.  The remainder of the culture was subjected to plasmid DNA 

purification using a QIA-prep Spin Miniprep Kit according to the manufacturer’s instructions. 

The following modifications were made. Upon final elution, the QIA-prep spin columns 

(Qiagen) were placed in clean 1.5 mL eppendorf tubes and 50 μL of sterile deionized water was 
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added to the center of each spin column, incubated for 1 minute at room temperature, and then 

centrifuged at 13000 x g for 60 seconds in a microfuge to elute the DNA. Plasmid DNA from 

pPICZA and pPICZAα were eluted just as described above. A 30 µL aliquot of miniprepped 

PGT3-pCR4 TOPO samples for all 3 constructs were sent for sequencing at the University of 

Tennessee sequencing facility (Knoxville) for verification of the presence of modified PGT3 

constructs in TOPO vector.  

Restriction Digests of Plasmid Constructs and Vectors 

After isolation of plasmid DNA for all 3 constructs and plasmids had been digested to 

confirm the presence of PGT3 inserts, larger digestion reactions were carried out to obtain 

enough DNA for gel purification. Construct 1 (colony A2) restriction digestion reaction 

consisted of the following components; 14 μL of miniprep plasmid DNA, 2 μL of Kpn1 

restriction enzyme, 2 μL of Apa1 restriction enzyme, and 2 μL of 10X buffer A. Construct 2 

(colony B15) restriction digestion reaction consisted of the following; 14 μL of miniprep plasmid 

DNA, 2 μL of Kpn1, 2 μL of Xba1, and 2 μL of 10 X multicore buffer. Construct 3 restriction 

digestion reaction was made up of 14 μL of miniprep plasmid DNA, 2 μL of Xho1, 2 μL of 

Xba1, and 2 μL of 10 X buffer D for a final volume of 20 µL.  

The corresponding vectors, pPICZA and pPICZAα prepared for ligation with constructs 2 

and 3 were also digested as follows: restriction digest reaction for pPICZA was composed of 23 

μL of miniprep pPICZA vector, 2 μL of Kpn1, 2 μL of Apa1 and 2 μL of 10X buffer A. 

Restriction digest reaction for pPICZAα (construct 2) was composed of 23 μL of miniprep 

plasmid DNA, 2 μL of Kpn1, 2 μL of Xba1 and 2 μL of 10X multicore buffer. Restriction 

digestion reaction for pPICZAα (construct 3) was composed of 23 μL of miniprep plasmid DNA, 



60 

 

2 μL of Xho1, 2 μL of Xba1, and 2 μL of 10X buffer D for a final volume of 30 µL. All 

reactions were incubated at 37 
o
C for 4 hours and the digestion reactions terminated at 65

 o
C for 

5 minutes. To each of the digested constructs, 4 µL of 6X sample dye was each added and to the 

digested vectors, 6 µL of 6X sample dye was added. The samples were electrophoresed on 0.8% 

agarose gel containing EtBr as previously described. 

Gel Purification of PGT3 Constructs and Vectors  

Digested constructs and corresponding vectors were gel purified using the Wizard SV 

Gel and PCR clean-up system (Promega) following the manufacturer’s instructions. The gel 

purified PGT3 constructs and accompanying vectors were analyzed by DNA gel electrophoresis 

using 0.8% agarose gel containing EtBr as previously described to confirm complete purification 

of the inserts and vectors and also to confirm that the sizes of the inserts and vectors were 

correct. 

Cloning PGT3 into Expression Vectors, pPICZA and pPICZAα 

 Two different volumes, 5 µL and 2 µL, of the gel purified inserts and corresponding 

vectors were loaded on agarose gel, electrophoresed as previously described. The bands were 

visualized using a Gel Documentation Imaging System (UVP Bioimaging Systems, Upland, CA) 

and an image was recorded, printed, and used for quantification of the concentration of DNA.  

To quantify the concentration of the bands of inserts and vectors, a comparison of the intensities 

of the bands with the intensity of the bands in the Exact Gene Low Range plus DNA ladder 

(quantitative DNA standard) was done.  
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Ligation of pPICZ Vectors and PGT3 Inserts  

 The concentrations of digested pPICZA vector (15.5 ng/μL) and the PGT3-A9 

insert (15.5 ng/μL), pPICZAα1 vector (28 ng/μL), PGT3-B15 insert (41 ng/μL), pPICZAα2 

vector (31 ng/μL), PGT3-C15 insert (41 ng/μL) were determined as previously described.  

Tables 4, 5, and 6 shows the ligation reaction ratios. The reactions were incubated at 15 
o
C for 4 

hours. Different ligation ratios were calculated by using the formula provided in (Promega 

catalog, Part# 9PIM180), as shown below. 

 

Table 4. Reaction Mixtures for Ligation of pPICZA Vector and PGT3-A9 Insert (Construct 1). 

 Molar ratio   volume volume     volume             volume          volume              total  

of insert to    of insert of vector     of T4 DNA     of ligase of sterile  volume 

vector       used (µL) used (µL)        ligase (µL)      buffer (µL) water (µL)    (µL) 

1:1    2.9    6.5      1      1.5       5.8               17.7 

2:1    5.8    6.5      1      1.5        2.9   17.7 

3:1    8.70    6.5       1      1.5        -  17.7   
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Table 5. Reaction mixtures for Ligation of pPICZAα1 Vector and PGT3-B15 Insert (Construct 

2).  

Molar ratio     volume volume       volume            volume       volume   total  

of insert to    of insert of vector     of T4 DNA     of ligase of sterile  volume 

vector       used (µL) used (µL)        ligase (µL)      buffer (µL) water (µL)    (µL) 

1:1    2.5    7.2      1      1.5      3.6               15.8 

2:1    4.1    7.2                 1      1.5      2  15.8 

3:1     6.1    7.2      1      1.5       -    15.8    

 

Table 6. Reaction mixtures for Ligation of pPICZAα2 Vector and  PGT3-C15 Insert (Construct 

3). Molar ratio of insert to vector. 

Molar ratio     volume volume       volume            volume       volume   total  

of insert to    of insert of vector     of T4 DNA     of ligase of sterile  volume 

vector       used (µL) used (µL)        ligase (µL)      buffer (µL) water (µL)    (µL) 

1:1    2.7    6.5      1      1.7       5.4               17.3 

2:1    5.4    6.5                 1      1.7       2.7   17.3 

3:1    8.1    6.5      1      1.7        -     17.3     

 In order to maintain the concentration of the insert and vector, the ligation reactions were 

done in a minimum total volume as possible. Therefore the total volumes for the ligation 

reactions were not the same for all constructs but consistent within each. After the ligation 

reaction, 2 µL of each reaction mixture was transformed into 16.67 µL of Top 10 competent cells 
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(holding cell line) using the heat shock method per the manufacturer’s instructions and incubated 

on ice for 30 minutes. After 30 minutes, the reactions were heat shocked for 30 seconds at 42 
o 
C 

and immediately incubated on ice for 2 minutes. An 83.3 µL aliquot of prewarmed plain low salt 

LB medium was added to each reaction mixture, capped tightly, and incubated with shaking at 

225 rpm, 37 
o
C in a vertical position for 1 hour to allow the cells to recover. For transformation 

control, 1 µL of PUC 19 was added to 16.67 µL of Top 10 competent yeast cells and heat 

shocked as previously described. After an hour of incubation of the transformed mixtures, a 100 

µL aliquot of each reaction was spread evenly on prewarmed low salt LBzeocin (50mg/L)  selective 

plates and incubated overnight at 37
o 
C.  The transformed PUC 19 mixture was diluted 10 fold 

with prewarmed plain low salt LB medium and a 100 µL aliquot was spread evenly on 

prewarmed plates, incubated as previously described.  

Selection of Positively Transformed Colonies 

 Zeocin containing LB plates incubated overnight at 37
o 
C and colonies that had grown 

were analyzed by PCR screening. The negative control PUC 19 served as a means to compare 

the effectiveness of the transformation procedure. For each ligation ratio used for transformation, 

34 colonies were randomly selected with sterile toothpicks and submerged into labeled 

microfuge tubes containing 100 µL of sterile water. The toothpicks were subsequently streaked 

on fresh selective low salt LBzeocin(50mg/L)  plates to make replicates. The samples were boiled for 

5 minutes to lyse the cells and a 1 µL aliquot used as a template for PCR amplification. The 

primers used for PCR amplification were clone specific primers designed to have the yeast 

consensus sequence for proper initiation of translation of the expressed recombinant protein. A 

PCR master mix containing 4 μL of 10 mM dNTPs, 20 μL of 20 mM sense primer, 20 μL of 20 

mM antisense primer, 40 μL of 5 X Go-Taq buffer (green), 94 μL of sterile dH20, and 2 μL of 
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Taq polymerase was made. A 9 μL aliquot of PCR master mix added to 1 μL of the lysed cells. 

A negative PCR control was done by replacing cell lysate with sterile distilled water. The Tm for 

PCR reaction was 58 
o
C, all other conditions used for PCR reaction program were the same as 

previously described (Table 3). To be able to save and continue research with the clones obtained 

from PCR screens, 50% glycerol stocks of 5 positively transformed colonies for each construct 

were made and stored at -80 
o
C.  

In order to confirm that these clones contained PGT3 inserts of expected size, 

recombinant plasmids for construct 1, 2, and 3 were miniprepped from an overnight culture of 

each clone in LB.  With construct 1, a 2 µL aliquot of the miniprep was digested with 1µL of 

Kpn1 (10µg/µL), 1 µL of Apa1 (10µg/ µL), 1 µL of 10X promega buffer A and 5µL of sterile 

water at 37
o
C for 4 hours. With construct 2, a 2 µL aliquot of miniprep was digested in 1 µL of 

Kpn1 (10µg/µL), 1 µL of Xba1 (10µg/µL) 1µL of 10X promega multicore buffer and 5µL of 

sterile water at 37
o
C for 4 hours. A 2 µL aliquot of construct 3 miniprep was digested with 1 µL 

of Xba1 (10µg/µL) and 1 µL of Xho1 (10µg/µL) in 1 µL of 10X promega buffer D and 5µL of 

sterile water at 37
o
C for 4 hours. At 2 hours into the digestion process, a 1 µL aliquot each 

respective restriction enzyme was added to the reaction to aid in complete digestion of the 

plasmids. The digestion reactions were terminated after 4 hours in a 65 
o
C water bath for 5 

minutes. Samples of digested plasmids were analyzed with DNA agarose gel electrophoresis 

(0.8%) containing EtBr as previously described to confirm the presence of PGT3 inserts.  

A 30 µL aliquot of each purified recombinant PGT3-pPICA, pPICZAα1 and pPICZAα2 

was sent for sequencing at University of Tennessee sequencing facility (Knoxville) for 

verification of the presence of PGT3 insert in frame with appropriate vectors and all fusion tags. 

Results from sequencing were analyzed with Bioedit Sequence Alignment Program to confirm 
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ligation of PGT3 in pPICZ vectors; all restriction sites were identified. Start codons of insert and 

all fusion tags were confirmed to be in reading frame. The following clones were selected out of 

the many positively transformed clones that were verified by sequencing to contain PGT3 insert 

for subsequent experiments: Construct 1, clone labeled, NL3, construct 2, clone labeled B23, 

construct 3, clone labeled, C54.   

Midiprep of Vectors and Designated Clones for Constructs 1, 2, and 3 

To transform Pichia pastoris, 5-10 µg of plasmid DNA is required (Easy select Pichia 

manual, Invitrogen).  In order to elute sufficient plasmid DNA for transformation of PGT3-

pPICZ into Pichia pastoris X33 strain for expression of recombinant PGT3, a plasmid midiprep 

was done using Quantum Prep Plasmid Midiprep Kit according to manufacturer’s instructions. 

However, elution of plasmid DNA was done with some modifications. The quantum spin column 

was put in a sterile 2 mL eppendorf tube and a 500 µL aliquot of sterile DNase free water was 

added to the column prior to elution. To determine the concentrations of the eluted plasmid DNA 

after midiprep, a 2 µL aliquot of each of the purified plasmid DNA electrophoresed on 0.8% 

agarose gel and the intensity of the bands were compared. To quantify the concentration of the 

bands of digested inserts, a comparison of the intensities of the bands with the intensity of the 

bands in the Exact Gene plus DNA ladder (quantitative DNA standard) was done (Table 7). . 
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Table 7. Amount of Plasmid DNA Quantified from Midipreps. The concentration of plasmid 

DNA was quantified. 

   Construct    Vector (µg/10 µL)  Insert (µg/10 µL) 

       1         17        11.50 

       2         11        17 

       3         10.5       12.5  

   A 300 µL aliquot of purified plasmid DNA of each of the constructs were linearized by 

restriction digestion prior to transformation into yeast. To obtain an enzyme that would cut one 

time in the 5’ AOX1 region to linearize the vectors within the 5’ AOX1 region, a restriction map 

of PGT3 was made and the only enzyme that did not cut within the PGT3 gene sequence was 

BstX1(Promega). The digestion reaction was incubated at 37
o
 C for 4 hours with 3 µL of BstX1 

enzyme and 30 µL of Buffer D. The digestion reaction was terminated by incubation at 65 
o
C for 

5 minutes and a 2 µL aliquot was analyzed along with a 5µL aliquot of 1Kb DNA ladder 

(Promega; containing loading dye) for marker control by DNA gel electrophoresis to confirm 

complete linearization. The gel was visualized as previously described.  

Phenol: Chloroform Extraction 

 Prior to transformation into Pichia, completely linearized plasmid DNAs (rPGT3 in 

pPICZA) were subjected to phenol: chloroform extraction and ethanol precipitation to remove 

proteins from nucleic acids and concentrate the sample. The phenol: chloroform solvent was 

prepared as described in appendix E. The procedure for extraction was as follows; first, an equal 

volume of phenol: chloroform (500µL phenol, 500µL chloroform) was added to 300 µL of 

plasmid DNA sample in 1.5 mL eppendorf microfuge tube; second, the contents of the tube were 
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mixed until an emulsion was formed; third, the mixture was centrifuged at 12000 X g for 1 

minute at room temperature; fourth, the aqueous phase was transferred to another clean 

microfuge tube without disturbing the organic phase, an equal volume of chloroform added, and 

steps 2 -4 were repeated. To recover the DNA by precipitation with ethanol, a quarter volume of 

7.5 M sodium acetate was added to the aqueous DNA sample and 2 volumes of ice cold 100% 

ethanol were added. The sample was mixed vigorously by shaking and placed in a -80 
o
C freezer 

for 15 minutes. Next, the sample was centrifuged for 15 minutes at 14000 x g, 4 
o
C. The 

supernatant was discarded and 250 µL of cold 80% ethanol was gently added to the pellet. This 

was microfuged for 10 minutes at 14000 X g at 4
 o
C.  The supernatant was carefully drawn off 

and the pellet dried in a speedvac. The dried pellet was resuspended in 10 µL of sterile deionized 

distilled water. For the purpose of determining the concentration of the DNA, a 0.5 µL aliquot of 

the eluted DNA and a 100 fold dilution of it were loaded on a 0.8% agarose gel and 

electrophoresed against a 10 µL aliquot of 1Kb Exact gene DNA ladder for verification of insert 

and vector sizes and for quantification.  

Transformation into Pichia pastoris 

 Transformation into Pichia required completely linearized plasmid DNA that had also 

been purified with phenol: chloroform extraction. Prior to transformation, competent yeast cells 

were prepared as follows; an overnight culture Pichia pastoris strain X33 was grown at 30 
0 

C , 

250 rpm in YPD (yeast peptone dextrose) medium. A flask with 500 mL freshly prepared YPD 

medium (appendix B) was inoculated with 0.5 mL of the overnight culture. The 500 mL cell 

culture was grown overnight at 30 
o
C, 250 rpm to reach an OD600 of 1.3-1.5. As soon as the 

required optimal density was reached, the cell culture was centrifuged at 4 
o
C for 5 minutes in a 

Sorvall RC-5B refrigerated super speed centrifuge (Fisher Scientific) at 1500 X g. The cell pellet 
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was resuspended in 500 mL aliquot of ice cold sterile water and centrifuged to wash the cells. 

The cells were again resuspended in 250 mL aliquot of ice cold sterile water and centrifuged. 

After this, the pellet was resuspended in 20 mL of ice cold 1M sorbitol, centrifuged as previously 

described, and the pellet was resuspended in 0.5 µL aliquot of ice-cold 1M sorbitol to obtain a 

final volume of 1.5 mL. The competent yeast cells were stored on ice and used same day (Easy 

select Pichia Manual, Invitrogen). 

Transformation by Electroporation 

 Prior to electroporation, 0.2 cm micro pulser cuvettes (Bio-rad) were incubated on ice 

and the protocol provided by the manufacturer was duly followed (Easy select
TM

 Pichia manual, 

Invitrogen). An 8µg sample of linearized DNA for constructs 1, 2, and 3 were each mixed with 

80 µL of freshly prepared competent yeast cells. Each mixture was transferred to a previously 

incubated ice-cold 0.2 cm micro pulser cuvette on ice for 5 minutes and the cells were pulsed at 

1.5 kV (Delorme, 1989). The same procedure was done with the vectors pPICZA and pPICZAα 

and these were transformed to serve as a negative control for expression of recombinant PGT3. 

A 1 mL aliquot of ice-cold sorbitol was quickly added to each cuvette and each sample 

transferred into a sterile 15 mL tube. The transformed samples in the 15 mL tubes were then 

incubated at 30 
o
C without shaking, for 2 hours. A 25 µL, 50 µL, 100 µL, and 200 µL aliquot of 

the transformed mix each were spread evenly on prewarmed labeled YPDS plates (as described 

in appendix B) containing zeocin 100µg /ml. For all transformations, a negative control reaction was 

done by replacing linearized plasmid DNA with sterile deionized water. All plates were 

incubated for 4 days at 28 
o
C until colonies were observed. The plates with colonies were stored 

at 4 
o
C . 
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Direct PCR Screens of Pichia Transformants 

 A PCR test of the Pichia clones for insertion of PGT3 gene was done by randomly 

selecting 17 colonies for PGT3-pPICZA/NL3 (construct 1), 17 colonies for PGT3-pPICZAα1/ 

B23 (construct 2), and 17colonies for PGT3-pPICZA α2/C54 (construct 3). The PCR screens 

were done as previously described with a few modifications. A sterile toothpick was used to 

select single colonies and the toothpick was resuspended in a 1.5 mL microcentrifuge tube 

containing 5 µL of sterile distilled water. In order to lyse the cells, a 1.5 µL aliquot of 6U / µL 

solution of lyticase was added to the cell culture and incubated at 30 
o
C for 10 minutes. The 

samples were then frozen in -80 C for 10 minutes. A PCR master mix was prepared as previously 

described with clone specific primers (Table 4), and a 9 µL aliquot of the PCR master mix was 

added to a 1 µL aliquot of the cell lysate. The PCR conditions were the same as previously 

mentioned (Table 3) with an annealing temperature of 58 
o
C. To select positively transformed 

Pichia clones, a 10 µL aliquot of each of the PCR products were analyzed by 0.8 % agarose gel 

electrophoresis. Stocks of positively transformed Pichia clones containing PGT3 insert were 

saved in 50% glycerol and stored at -80 
o
C for future use. 

Expression of Recombinant PGT3 Protein in Pichia pastoris 

Prior to the expression of Recombinant PGT3 protein, 5 positively transformed Pichia 

clones were cultured overnight in YPDS liquid media (appendix B). After visualization of 

cloudiness of the cell culture, a 500 µL aliquot of the culture was mixed in 500 µL of glycerol 

and stored in a -80 
o
C freezer. To test the expression of recombinant PGT3 protein, test 

inductions were performed. 
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Test Inductions for Expression of PGT3 Protein 

Recombinant PGT3 Pichia strains that had been confirmed to contain PGT3 insert were 

tested for expression of soluble protein at different post induction times. Using a single 

transformed colony, a 25 mL aliquot freshly prepared BMGY media was inoculated in a 250 mL 

baffled flask. The culture was incubated to generate biomass at 30 
o
C in a shaking incubator at 

250 rpm until the culture reached an OD600 of 2-6 (approximately 22 hours). (All media used 

were prepared as described in appendix B). After that, the cell culture was centrifuged in a 

Sorvall RC-5B refrigerated superspeed at 3000 X g for 5 minutes at room temperature to pellet 

the cells. The pelleted cells were resuspended in 150 mL of prewarmed BMMY to reach an 

OD600 of 1. The cell culture (150mL) was put in a 1000 mL baffled flask. Prior to induction, a 1 

mL aliquot of the cell culture was placed in a 1.5 eppendorf tube to represent preinduction 

sample. This was microcentrifuged at 13000 X g for 3 minutes at room temperature, the 

supernatant discarded, and the pellets were stored at -80 
o
C. To drive the expression of 

recombinant PGT3, the remaining 149 mL of cells were induced by adding 100 % methanol to a 

final concentration of 0.5 % and the flask was covered with 2 layers of cheesecloth for maximum 

aeration. The cell culture was then incubated at 30 
o
C, 250 rpm for 4 days. To maintain induction 

conditions, 100% methanol was added to the cell culture to make a final concentration of 0.5 % 

every 24 hours. In order to ascertain which timepoint of induction was best for the expression of 

recombinant PGT3, a 1 mL aliquot of cell culture was taken every 6 hours for the first day ( 6, 

12, 18, 24 hours), then every 12 hours for the second to the fourth day (36, 48, 60, 72, 84, 96 

hours). Each sample was microcentrifuged to pellet the cells and the supernatant discarded. The 

pellets were frozen at 80 
o
C after harvesting. Samples from vectors pPICZA and pPICZAα that 
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were transformed into yeast to serve as a negative control for expression of recombinant PGT3 

were collected in the same manner. 

Preparation of Samples for Analysis  

 The yeast cell samples transformed with rPGT3 in pPICZA collected at the various 

postinduction times indicated above were prepared for analysis of protein expression through the 

intracellular pathway by SDS-PAGE and Western Blot analysis. The yeast cells had to be lysed 

to get access to the protein. The cells were thawed on ice, a 1mL aliquot of breaking buffer      

(50 mM sodium Phosphate, 1 mM PMSF, 1 mM EDTA, 5% glycerol, pH 7.4) was added to each 

sample, and the cells resuspended. In order to break the cells, an equal volume of acid washed 

glass beads (size 0.5mm) was added and the samples were vortexed for 30 seconds, incubated on 

ice for 30 seconds, repeated for 8 cycles. The samples were then centrifuged at 4 
o
C for 10 

minutes at 14000 x g and the supernatant was transferred into a clean 1.5 mL eppendorf tube on 

ice. Samples to be run on SDS-PAGE gels and Western Blot were prepared in this manner:50 µL 

of supernatant was mixed with 50 µL of 2X sample buffer. The sample mixture was then boiled 

for 10 minutes and centrifuged for a minute at 13000 x g at room temperature. Preinduction 

samples were prepared the same way as postinduction samples. 

Analysis by SDS-PAGE and Western Blot  

Samples were run on SDS-PAGE as previously described with the following 

modifications: 20 µL aliquot of the prepared samples, 20 µL of pre-induced samples and 5ul 

broadrange molecular weight standards were loaded on gels. To test for negative control of 

expression, samples prepared from yeast cells transformed with pPICZA empty vector (induced 

using the same conditions for recombinant PGT3 constructs) were loaded on gels to show the 
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background of native Pichia proteins that may be present intracellularly and to differentiate 

recombinant PGT3 protein from background yeast proteins. 

To detect recombinant PGT3 expression by Western blot analysis, the procedure was 

carried out as previously described but with the following changes. A 20 µL aliquot of each 

sample prepared as mentioned above was run on SDS-PAGE and antimyc monoclonal antibody 

was used as a primary antibody and goat anti-mouse IgG-AP conjugate ( in 10 mL of 1X PBS-T) 

as secondary antibody. The preparation of blocking buffer was prepared as previously described 

using 1X PBS and blocking was done for 1 hour. Incubation with primary and secondary 

antibodies was done in PBS-T. Incubation with the primary antibody was for 2 hours at room 

temperature and 1 hour with secondary antibody. All washes were done in 1X PBS-T, 3 times for 

5 minutes. Development of the blot was done with 15 mL of alkaline phosphatase buffer 

containing 60 µL of Nitro-BT and 60 µL of NBT solution. The blot was developed for about 2 

minutes (unless noted otherwise) and the reaction stopped by immersion of the blot in sterile 

water. Analysis of SDS-PAGE and Western Blots was done as previously described. 

Scale-Up of Expression  

Results from methanol test inductions indicated the best postinduction time for 

expression of recombinant PGT3 to be 6 hours. With that in mind, a scale up of the expression 

culture was done by growing the same volume of culture for 6 hours and harvesting the entire 

150 mL culture. Prior to harvesting the cells, the cell culture was divided into 2 and placed in 

500 mL centrifuge tubes and centrifuged at 3000 x g for 5 minutes at room temperature. The cell 

pellet obtained was stored in a -80 
o 
C freezer. 
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Test Purification using Talon Resin   

 A 6-hour postinduction pellet of recombinant PGT3 was resuspended in 5 mL breaking 

buffer (50mM sodium phosphate, 1mM PMSF, 1mM EDTA, 5 % glycerol, 5mM BME, pH 7.4). 

The resuspended sample was then lysed with a French press at 2000 psi 3 times. The lysis was 

done with a French press because of the volume of cells used and also because the cells needed 

to be at 4 
o 
C to prevent degradation or denaturation of proteins. The cell lysate was then 

collected into a 50 mL centrifuge tube and centrifuged in a sorvall RC-5B superspeed centrifuge 

for 20 minutes, 4
0
C at 13000 x g. The pellet was discarded and the supernatant was saved on ice 

and desalted prior to purification to remove excess salts that may interfere with the IMAC 

column. To desalt the supernatant containing recombinant PGT3 protein, a prepacked PD-10 

column was washed with 25 mL of equilibration / wash buffer ((50mM sodium phosphate, 

300mM sodium chloride, 5mM BME, pH. 7.5). During the process, the column was never 

allowed to run dry. Afterwards, a 2.5 mL aliquot of protein sample was applied to the column 

and the first 2.5 mL flow-through sample collected and discarded. The protein was then eluted 

with 3.5 mL of equilibration/wash buffer (50mM sodium phosphate, 300mM sodium chloride, 

5mM BME, pH 7.5) and 3.5 mL of eluate sample collected and saved. The PD-10 column was 

then rinsed with 25 mL of equilibration/wash buffer (50mM sodium phosphate, 300mM sodium 

chloride, 5mM BME, pH. 7.5), leaving 1 mL of liquid on top.  This was done to prepare the 

column for future use. 

The 3.5 mL of desalted eluate sample obtained from the PD-10 column was purified further 

using immobilized metal affinity chromatography (Talon resin). A 4 mL IMAC column was 

washed with 40mL of equilibration wash buffer (50mM sodium phosphate, 300mM sodium 

chloride and 5mM BME, pH 7.5). The eluate sample from the desalting step was then run 
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through IMAC column adjusting the flow rate so that it took 15 minutes (minimum) for the 

sample to pass through the column. The rationale behind this was to allow the protein to bind 

well to the column. Then, 1 mL fractions of the flow- through sample (4 fractions) were 

collected. The column was washed with equilibration wash buffer (same composition as above) 

and 2 mL fractions collected. The absorbance of each wash fraction was checked using a 

spectrophotometer at OD280. An absorbance of almost zero indicated that sufficient washes had 

been done. The column was then eluted with 10 mM imidazole (10 mM imidazole, 0.3 M NaCl, 

and 5 mM BME in 50mM phosphate buffer, pH 7.5) to remove loosely bound proteins and 2mL 

fractions were collected, while monitoring the absorbance at OD280 as above. Afterwards, elution 

with 150 mM imidazole (150 mM imidazole, 0.3 M NaCl, and 5 mM BME in 50mM phosphate 

buffer, pH 7.5 was done and 2mL fractions were collected (10 fractions). All fractions obtained 

from the purification steps were analyzed by SDS-PAGE and Western Blot to determine 

fractions containing the most enriched rPGT3 protein. 

Screening rPGT3 Protein for GT Activity  

The optimal expression condition for PGT3 was used to express protein to be tested for 

activity with flavonoid substrates and phenolics. Prior to screening for GT activity, the expressed 

protein was purified by IMAC as described. Aliquots of samples obtained were analyzed by 

SDS-PAGE after enzyme assays had been done. 

Concentrating using Centricon-30 

The fractions obtained from purification of rPGT3 were pooled, desalted, and 

concentrated using a centricon -30 in a Sorvall RC-5B refrigerated superspeed centrifuge at   

4000 x g at 4
o
C until the sample was highly concentrated.  To the concentrated sample, 1500 µL 
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of 50 mM Phosphate buffer containing 14 mM BME (pH 7.5) was added and the samples 

centrifuged again. Another 1500 µL aliquot of 50 mM phosphate buffer containing                    

14 mM  BME (pH 7.5) was added and the sample centrifuged further to concentrate it          

(final volume approximately 1.5 mL). The sample was then transferred into a 2 mL microfuge 

tube on ice ready to be used for GT activity screening. A portion of the desalted and concentrated 

fractions and all fractions obtained from each purification step were kept for analysis by        

SDS-PAGE and Western blot. About 800 µL of the enzyme was saved in 40% glycerol at -20 
o 
C 

to test the stability of the enzyme. 

Preparation of Substrates and UDP -
14

C glucose 

The substrates to be tested (Table 8) were diluted to a concentration of 50 nmoles / 5 ul in 

100 % ethylene glycol monomethylether. Substrate samples were stored at -20 
O 

C, capped 

tightly and wrapped in paraffin in a non-self-defrosting freezer. A working solution of 
14

C-UDP-

glucose was prepared by mixing 0.45 µL of 
14

C stock and 9.55 µL of phosphate buffer (50 mM) 

per reaction to reach 20000 cpm/ 10 µL. 
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Table 8.  Flavonoid and Simple Phenolic Substrates Screened with rPGT3 for Activity.  

Flavonoid sub-class Substrate 

Chalcone 4,2’,4’6’- tetra-OH-chalcone 

Flavanones 

 

 

 

Glucoside 

Naringenin 

Hesperitin 

Eriodictyol 

Isosakuranetin 

Prunin 

Flavones 

 

 

 

Glucoside 

Apigenin 

Luteolin 

Diosmetin 

Scutallarein 

Luteolin-7-O glucoside 

Flavonols Kaempferol 

Quercetin 

Fisetin 

Gossypetin 

4’ methoxy flavonol 
Isoflavone 4’-acetoxy-7-hydroxy-6-methoxy isoflavone 

Phenolics Esculetin 

Umbelliferone 

Scopoletin 

 

Simple phenolics 2’4 -dihydrobenzaldehyde 

Catechol 

 

Screening of rPGT3 Protein for GT Activity using Flavonoids as Substrates 

A 10ul aliquot of the enriched enzyme and 50ul of phosphate buffer (50 mM phosphate, 

(pH 7.5) containing 14 mM βME) was incubated with 10µL of 
14

C-UDP-glucose and 5µL 

(50nmol) substrate dissolved in 100 % ethylene glycol monomethylether. The reaction was 

incubated at   37 
o
C for 15 minutes (n=2). After 15 minutes, the reaction was stopped by addition 

of 15µL of 6M HCL and vortexed for 10 seconds. To separate any radiolabelled flavonoid 

glycosides from the unincorporated UDP-
14

C glucose, 250 µL of ethyl acetate was added to the 

sample, vortexed for 10 seconds, and partitioned into organic and liquid phases. The organic 
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phase would contain the flavonoids and the aqueous phase the unincorporated UDP-
14

C- glucose. 

A 100-150 µL aliquot of the organic phase was then pipetted into a 2 mL CytoScint scintillation 

fluid. The amount of incorporated radiolabelled glucose was counted in a Beckman LS 6500 

scintillation counter and counted to determine cpm in 250 µL. For negative control assays, 60 ul 

of phosphate buffer was used in place of the enzyme. This was incubated with 10ul of UDP-
14 

C 

glucose and 5ul of aglycone dissolved in 100 % ethylene glycol monomethyether. Positive 

control reactions consisted of 60 µL grapefruit leaf extract, 5 µL substrate and 10 µL of UDP-
14

 

C-glucose. Another control reaction was done where grapefruit leaf extract and rPGT3 was 

incubated to see if any inhibitors were present in the PGT3 sample. The reaction was incubated 

as above.      

A number of phenolic aldehydes and phenolic acids have been shown to be present in 

grapefruit (Fieldman and Hanks 1965; Ahmad and Hopkins 1993). Most of these compounds, 

according to the Merck Index, are highly water soluble. Thus, their glucosides will also be water 

soluble. Knowing this, activity screens using ethyl acetate to separate the glucosides from the 

unincorporated UDP-glucose will not be feasible. To test the activity of rPGT3 with simple 

phenolic substrates, reverse phase high performance liquid chromatography (HPLC) was used to 

separate and identify glucosides from aglycones. The reaction mixture was made up of 35 µL of 

enriched PGT3 enzyme, 5 µL of substrate (50 nmol) and10 µL (100 nmol) UDP-glucose in 50 

mM phosphate buffer (pH 7.5) containing 14 mM BME (pH 7.5). The reaction was then 

incubated at 37
o
C for 30 minutes. The reaction was stopped after 15 minutes by the addition of 

200 µL methanol to precipitate the proteins. The precipitated protein was removed by 

centrifuging at 10000 x g, for 15 minutes at 4 
o
C. The supernatant was dried by use of a speedvac 

concentrator from Thermo Electron Corporation (Waltham, MA). The dried extracts were 
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resusupended in milliQ water and run through a C18 RP-HPLC with isocratic elution using 

Waters 1525 Binary HPLC Pump ,Waters 2487 Dual λ Absorbance Detector, and Waters 

Symmentry® C18 column (5μm, 4.6 × 150 mm) from Waters (Milford, MA). The Solvents used 

are shown in Table. 9. The experiment was duplicated for each substrate tested and also negative 

control reactions were performed. The enzyme for the negative control reaction was denatured 

by boiling prior to the addition of substrate and UDP-glucose. Table 9 shows the conditions used 

for RP-HPLC. 

Table 9. RP-HPLC Conditions used for Testing rPGT3 Activity with Phenolic Compounds 

(Adpted from Ahmad and Hopkins 1993) 

           Mobile phase  Detection wavelength 

(nm)  

Gensitic Acid      

Catechol 

       10% ACN  

       15% ACN 

330  

280 

p-Hydroxybenzoic 

acid 

Caffeic acid 

Scopoletin 

       15% MeOH  

 

        30%MeOH 

        30%MeOH                      

255 

 

322 

340  

p-

Hydroxyphenylacetic 

acid  

        15% MeOH  215  

p-

Hydroxyphenylpyruvi

c  acid  

        15% MeOH  215  

o-Coumaric acid    30% MeOH  325  

p-Coumaric acid          30% MeOH  308  

Ferulic acid          30% MeOH  324  

Vanillic acid          10% ACN  260  

Vanillin          10% ACN  273  

 

Note : ACN: Acetonitrile; MeOH: Methanol. The wavelength of detection is λmax of the 

substrates. Mobile phase was diluted with 0.1M phosphate buffer (pH 3). 
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 Expression of PGT8 in Pichia pastoris 

Cloning of PGT8 into Pichia pastoris Vectors 

Primer Design 

PGT8 (see appendix F) was previously cloned into TOPO vector and held in competent 

TOP10 cells by D. Owens and was isolated by miniprep with the Qiagen miniprep kit by 

following the manufacturer’s instructions. To be able to clone PGT8 into pPICZA vector, PGT8 

had to be modified with primers to contain appropriate restriction sites on the 5’ and 3’ ends. 

PGT8 sequence was modified with the forward primer (CSPF: 142 5' CATGGGTACC 

ATGGGAACTGAATCTCTTGT 3’), the primer included a linker, colored in red, and Kpn1 

restriction site, colored in blue. The underlined sequence represents the start codon of PGT3 

sequence. The reverse primer (CSP 143R: 5' CGCGGGCCCATACTGTACACGTGTCCGTC 

3'). These primers introduced the Kpn1 and Apa1 restriction sites on the 5’ and 3’ends of PGT8 

sequence (Table 10). After PGT8 was modified with the primers using PCR amplification, it was 

digested with the Kpn1 and Apa1 restriction enzymes to create sticky ends. The vector, pPICZA 

was also digested with Kpn1 and Apa1 restriction enzymes to create compatible sticky ends with 

which the modified PGT8 sequence was to be ligated. Use of the pPICZA vector results in 

intracellular expression of rPGT8 protein in the presence of an inducer (methanol).  

Table 10.  PGT8 Clone Primer Sequences Designed For PCR Amplification. The underlined 

areas correspond to PGT8 5’ and 3’end sequences. Areas in red represent linker regions, areas in 

blue represent restriction sites. Annealing temperatures are in parenthesis.  
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Amplification of PGT8 

 PGT8 was modified by PCR amplification using an Eppendorf heated-lid gradient 

thermal cycler and a 1000 fold dilution of miniprepped PGT8 as template (0.001µg/µL). The 

PCR reaction consisted of the following; 2.5 µL of PGT8 template (PGT8 in TOPO vector), 10 

µL of 5X colorless Go-taq buffer, 2.5 µL of 20 µM  sense primer, 2.5 µL of  20 µM , antisense 

primer, 1 µL of Go-Taq enzyme and 31 µL of deionized still water to make a total of 50 µL 

reaction. The primers had similar annealing temperatures so they were all subjected to the same 

PCR conditions. The PCR cycles were as shown in Table 11. 

Table 11. PCR Conditions Used for Amplification of PGT8 sequence.  

 

Cloning of Modified PGT8 into TOPO Vector 

Modified PGT8 (mPGT8) PCR product was cloned into pCR
®
4-TOPO vector as a 

holding vector for amplification using the TOPO TA Cloning Kit (Invitrogen) following 

manufacturer’s instructions. A 4 µL aliquot of modified PGT8 PCR product, 1 µL of TOPO
®
 

Vector and 1 µL of TOPO
®
 salt solution were incubated for 5 minutes at room temperature.       

A   2 µL aliquot of each TOPO cloning reaction was transformed into 50 µL of One Shot TOP 
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10 competent E.coli cells (Invitrogen) according to manufacturer’s instructions. Transformation 

reaction was done as previously described for PGT3. A 100 µL aliquot of the transformation mix 

was spread on a prewarmed LB amp (100mg/L) plate. For the positive control, a 1:10 dilution of the 

transformed mix was done in LB amp (100mg/L) liquid and a 100 µL aliquot was spread on LB amp 

(100mg/L).  The plates were incubated overnight at 37
o
C. 

Analyzing Transformants 

Colonies obtained were analyzed by selecting 17 colonies from the PGT8-pCR4 TOPO 

transformed plates. Colonies were selected using sterile toothpicks and streaked onto LB amp 

(100mg/L) plates to make duplicates and for further T streaking to obtain single colonies as 

previously described.  The samples for each construct were boiled for 5 minutes to lyse the cells. 

A PCR master mix containing 4 μL of 10 mM dNTPs, 20 μL of 20 mM sense primer T3, 20 μL 

of 20 mM antisense primer T7, 40 μL of 5 X Go-Taq buffer (green), 94 μL of sterile dH20, and 2 

μL of Taq polymerase was made. A 9 μL aliquot of PCR master mix added to 1 μL of the lysed 

cells. A negative PCR control was done by replacing cell lysate with sterile distilled water. The 

Tm for PCR reaction was 56 
o
C, all other conditions used for PCR reaction program were the 

same as previously described (Table 11). Analyses of the PCR products were performed using 

DNA agarose gel electrophoresis as previously described. 

Isolation of Plasmid DNA by Minipreps 

Plasmid DNA of the 2 positve colonies was miniprepped from overnight bacterial cell 

cultures. Single colonies were inoculated into 10 mL LB amp (100mg/L) liquid media and incubated 

at 37⁰C at 250 rpm overnight. A 500 μL aliquot of the overnight culture was added to 500 μL 

glycerol to make a final concentration of 50 % glycerol and was stored at -80 
o
C.  The remainder 
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of the culture was subjected to plasmid DNA purification using a QIA prep Spin Miniprep Kit as 

previously described. The pPICZA plasmid DNA was isolated as previously described. A 30 µL 

aliquot of miniprepped PGT8-pCR4 TOPO samples was sent for sequencing at the University of 

Tennessee sequencing facility (Knoxville) for verification of the presence of modified PGT8 

constructs in TOPO vector.  

Restriction Digests of PGT8 Plasmid and pPICZA Vector 

Several samples of PGT8-TOPO were sent for sequencing to confirm presence of PGT8 

in TOPO vector. One sample confirmed to have PGT8 in frame with TOPO vector was 

minipreped and digested with Kpn1 and Apa1 restriction enzymes to confirm the presence of 

PGT8 insert. Larger digestion reactions were carried out to obtain enough DNA for gel 

purification. Restriction digestion reaction consisted of the following components; 14 μL of 

miniprep plasmid DNA, 2 μL of Kpn1 restriction enzyme, 2 μL of Apa1 restriction enzyme, and 

2 μL of 10X buffer A.  

Gel Purification of PGT8 Construct and pPICZA Vector 

Digested PGT8 construct and pPICZA vector were gel purified using the Wizard SV Gel 

and PCR clean-up system (Promega) following the manufacturer’s instructions. The gel purified 

PGT8 construct and pPICZA vector were analyzed by DNA gel electrophoresis using 0.8% 

agarose gel containing EtBr as previously described to confirm complete purification of the 

insert and vector and also to confirm that the size of the insert and vector was correct. 
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Cloning PGT8 into Expression Vector, pPICZA 

Ligation of pPICZA Vector and PGT8  

The concentration of digested pPICZA vector and PGT8 insert was determined as 

previously described. Table 12 shows the ligation reaction ratios. The reactions were incubated 

at 15
o
C for 4 hours. The ligation ratios were calculated using the formula provided in Promega 

catalog (part #9PIM180), as previously described. 

Table 12.  Reaction Mixtures for Ligation of pPICZA Vector and PGT8 insert. 

Molar ratio     volume volume       volume            volume         total  

of insert to    of insert of vector     of T4 DNA     of ligase  volume 

vector       used (µL) used (µL)        ligase (µL)      buffer (µL    (µL) 

1:1  21  18  4  2  49 

2:1  42  18  3  6.5  69.5 

The total volume of the ligation mixture was unusually large because, the yield obtained 

after purification of the pPICZA vector and PGT8 insert was very low, thus the concentration 

was low. A large volume was needed to get the required concentration after quantification of the 

band intensity. After the ligation reaction, 2µL of the reaction mixture was transformed into 50 

µL of top 10 competent cells (holding cell line) using the heat shock method per the 

manufacturer’s instructions as previously described. After transformation, a 100 µL aliquot of 

the transformed mixture was spread evenly on prewarmed LBzeocin (100mg/l)  plates and incubated at 

37 
o
C overnight.  
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Selection of Positively Transformed Colonies 

 Single colonies from zeocin resistance LB plates that were incubated overnight were 

selected and cultured overnight in LBzeocin liquid media incubated at 37 
o
C, 250 rpm. Plasmid 

DNA was isolated from the cultures by miniprep as previously described. A 2µL aliquot of the 

miniprep was digested with 1 µL of Kpn1 (10 µg/µL), 1 µL of Apa1 (10 µg/µL), 1 µL of 10X 

promega buffer A and 5 µL of sterile water at 37
o
C for 4 hours as previously described. Samples 

of digested plasmids were analyzed with DNA agarose gel electrophoresis as previously 

described to confirm the presence of PGT8 insert. A 30 µL aliquot of purified rPGT8 was sent 

for sequencing at University of Tennessee sequencing facility (Knoxville) for verification of the 

presence of PGT8 insert in frame with pPICZA vector and fusion tags. Results from sequencing 

were analyzed with Bioedit Sequence Alignment Program to confirm ligation of PGT8 in 

pPICZA vector as previously described.                        
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CHAPTER 3 

RESULTS 

Optimizing the Expression of Recombinant PGT3 in pCD1 Vector in E.coli  

Expression With and Without Betaine and Sorbitol 

In order to overcome the challenge of inclusion bodies, several strategies were employed 

to optimize the expression of soluble recombinant PGT3. One of strategies was variation of 

media composition. With regards to variation of media composition, recombinant PGT3 was 

expressed in the presence and absence of betaine and sorbitol. Betaine and sorbitol are osmotic 

reagents that have been shown to increase the expression of some soluble proteins by increasing 

osmotic stress (Blackwell and Horgan 1991). This tends to prevent the packing of soluble 

proteins into insoluble inclusion bodies. The postinduction cell pellets containing recombinant 

PGT3 protein was resusupended in lysis buffer, lysed by sonicating and analyzed by SDS-PAGE 

and Western blotting. Figures 13 and 14 shows the expression levels of rPGT3 in LB media with 

and without betaine and sorbitol. The optimal expression of rPGT3 at 25
o
C in LB media 

containing betaine and sorbitol was 6 and 18 hours postinduction. Several attempts were made to 

reproduce the results however this was not consistent with subsequent experiments. Expression 

of rPGT3 in LB media without betaine and sorbitol resulted in maximum expression of rPGT3 at 

25
o
C, 24 hours postinduction. A comparison of the expression of rPGT3 in the media with and 

without betaine and sorbitol showed that the optimum media for expression of rPGT3 was 

without betaine and sorbitol. All subsequent inductions were done for 24 hours without betaine 

and sorbitol in the culture media. 
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Fig 13. Expression Levels of PGT3 in LB Media Containing Betaine and Sorbitol. Western blots 

showing levels of soluble and total rPGT3 protein using LB media containing betaine and 

sorbitol. PGT3 protein was detected using antibodies directed against the thioredoxin fusion 

partner. Lane 1 is protein molecular weight marker, lanes 2 – 5 are soluble protein sample, and 

lanes 6-9 show total proteins expressed. Hours postinductions are noted at the top of each lane.  

 

Fig 14. Expression Levels of rPGT3 in LB Media without Betaine and Sorbitol. Western blots 

showing levels of soluble and total rPGT3 protein using LB media without the addition of 

betaine and sorbitol. PGT3 protein was detected using antibodies directed against the thioredoxin 

fusion partner. Lane 1 shows protein molecular weight marker; lanes 2 – 5 are soluble protein 

samples; and lanes 6-9 shows total rPGT3 proteins expressed. 

 

Expression with Varying Concentrations of IPTG 

In this strategy, different concentrations of the inducer IPTG were used for expression of 

recombinant PGT3. The inducer IPTG has been used in varying concentrations (0.005-5) mM 

per liter for expression of foreign genes in E.coli (Donovan et al. 1996 and ref. therein). The use 

of higher concentrations is sometimes done in an attempt to fully induce the lac promoter 

(Donovan et al. and ref. therein). To test the effect of varying concentrations of IPTG in this 

Lane       1         2          3          4           5            6           7            8             9 

Lane       1            2              3            4           5         6            7             8           9 
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experiment, a lower concentration of 0.2 mM, the usual 1mM concentration, and a higher 

concentration, 5 mM, were tested.  Postinduction cell pellets were resuspended in lysis buffer 

and lysed using a dismembrator model 500 with microtip (Fisher Scientific). Preinduction, total 

protein, and soluble protein fractions were analyzed by SDS-PAGE and Western blotting. Figure 

15 shows the levels of expression of recombinant PGT3 under the varying concentrations of 

IPTG. Results show that varying the concentration of IPTG did not increase production of 

soluble rPGT3. 

 

  

Fig 15.  Expression Levels of Recombinant PGT3 under Varying Concentrations of IPTG. A. 

Coomasie stained SDS-PAGE showing the expression levels of PGT3 protein. Lane 1, molecular 

weight marker; lane 2, preinduced sample; lane 3, total recombinant PGT3 protein; and lane 4, 

soluble recombinant PGT3 proteins expressed with a final IPTG concentration of 0.2 mM; lanes 

5-7, pre induction sample, total and soluble recombinant PGT3 respectively from cultures 

induced with 1mM IPTG. Lanes 8-10, preinduction, total and soluble recombinant PGT3 

expressed with a final IPTG concentration of 5 mM. B. Western blot detecting the expression of 

recombinant PGT3 protein. PGT3 protein was detected using antibodies directed against the 

thioredoxin fusion partner. Lane 1 shows protein molecular weight marker; lanes 2-4 indicates 

preinduction, total and soluble recombinant protein expressed under 0.2 mM final concentration 

of IPTG; lanes 5-7 indicates preinduction, total and soluble recombinant PGT3 expressed under 

1 mM final concentration of IPTG; lanes 8-10 indicates preinduction, total and soluble 

recombinant PGT3 expressed under 5 mM final concentration of IPTG. 

  

 

A            B 

            lane       1   2     3    4     5     6     7     8    9     10                            1    2   3   4  5   6    7   8     9     10 
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Enrichment/Purification of Soluble Recombinant PGT3 Protein using IMAC 

In an attempt to enrich the trace soluble recombinant PGT3 protein, 24 hour 

postinduction cell pellets were resuspended in lysis buffer and lysed. The cell lysate was 

centrifuged and 10 mL of the supernatant were run through a 1 mL IMAC column. Fractions 

were analyzed by SDS-PAGE and Western blot to test for enrichment of rPGT3 and to identify 

the fractions that contained the most purified rPGT3 protein. Figure 16 shows fractions obtained 

via IMAC. Results show that most of the rPGT3 was found in the flow-through (data not shown) 

and the   10 mM imidazole fractions (Fig 16 A, lanes 3-7) and was not binding to the column 

hence the majority of rPGT3 was lost. This may have been due to an overload of rPGT3 on the 1 

mL IMAC column. To test this, a 5 mL IMAC column was used to enrich rPGT3 (Fig. 17). 

Results confirm enrichment of rPGT3. However yields of enriched rPGT3 were insufficient to 

permit screening for GT activity. 

 

                           
Lane    1   2  3  4   5   6  7    8   9  10          1   2   3   4   5   6  7  8  9  10                                   

Fig 16. Enrichment of rPGT3 using 1 mL Metal Affinity Chromatography Column (IMAC). A. 

Representative Silver stained SDS PAGE of proteins eluted with 10 and 150 mM imidazole after 

metal affinity chromatography. Lane 1, Broad range molecular weight marker; lane 2, crude 

PGT3 lysate; lanes 3-7, washes with 10mM Imidazole; lanes 8-10, proteins eluted with 150 mM 

imidazole buffer. B. Representative Western blot. Lane 1, broad range marker; lane 2, crude 

PGT3 lysate; lanes 3-7, washes with 10 mM imidazole; lanes 8-10, rPGT3 proteins eluted with 

150 mM imidazole buffer. Lane 8, marked with red arrow indicates the fraction with the most 

enriched PGT3. 

A          B 
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Fig 17. Enrichment of rPGT3 using 5 mL Imobilized Metal Affinity Column (IMAC).  A. 

Representative silver stained SDS PAGE of proteins eluted with 150 mM imidazole after metal 

affinity chromatography. Lane 1, Broad range marker, lane 2-10, proteins eluted with a buffer 

containing 150mM Imidazole. B. Representative Western blot of PGT3 proteins eluted with 150 

mM imidazole after metal affinity chromatography. 

 

After several attempts to optimize the expression of rPGT3 in E.coli results obtained for 

yield of soluble protein were not reproducible. Thus, expression in yeast was tested.  

Cloning PGT3 into pPICZ Vectors for Expression in Pichia pastoris 

Isolation of PGT3 and pPICZ vectors 

In order to subclone PGT3 into pPICZA vectors, the PGT3 sequence and the multiple 

cloning site of pPICZA and pPICZAα vectors were studied to identify appropriate cloning sites. 

Cultures of PGT3 in pCR4-TOPO/TOP10, pPICZA vector, and pPICZAα vector in E.coli were 

miniprepped to isolate the plasmids. Results confirm plasmid isolation was successful (Fig.18). 

 

 

Lane  1       2      3      4    5    6   7    8    9     10                                 1     2   3    4    5     6    7    8    9  10 
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A        B       

                                                 

Fig. 18. Miniprep of PGT3 Plasmid, pPICZA and pPICZAα Vectors from pCR4-TOPO/TOP10.  

A. DNA agarose gel (0.8%) electrophoresis showing the mimiprep yields of PGT3/TOPO. Lane 

1, kb DNA ladder; lane 2 and 3, PGT3/pCR4-TOPO/TOP10 clones. B. Miniprep of pPICZA and 

pPICZAα vectors. Lane 1, 1 kb DNA ladder; lane 2 and 3 pPICZA and pPICZAα vectors, 

respectively.   

 

Modification of the Ends of PGT3 from pCR®4-TOPO Vector 

The 5’ and 3’ ends of PGT3 sequence were then modified with primers (Table 2; chapter 

2) and the PCR products were analyzed with DNA agarose gel electrophoresis (Fig 19). The 

sizes of the bands in lanes 2, 3, and 4 were calculated as 1493bp, 1490bp, and 1500 bp, 

respectively. This was compared with the estimated size of PGT3 (1495 bp) to confirm that the 

PCR product was the size of full length PGT3. See appendix F nucleotide sequence of PGT3.  

 

Lane   1    2      3                             lane        1        2       3 
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Fig. 19. Modified and Amplified PGT3. DNA agarose gel (0.8%) showing the PCR products 

obtained after modifying PGT3 with appropriate primers (Table 2) to get PGT3 cloned into 

Pichia pastoris using 3 cloning strategies. Lane 1: 5 ul of lambda Hind III marker; lane 2, 2 ul of 

construct 1 PCR product; lane 3, 2ul of construct 2 PCR product; and lane 4, 2ul of construct 3 

PCR product. Arrow indicates the PCR products.   

 

Cloning Modified PGT3 into TOPO 

 The PCR products obtained for constructs 1, 2, and 3 were subcloned into pCR
®
4-TOPO 

vector and transformed into TOP 10 competent cells as described in the material and methods 

section. Single colonies were selected from LB amp (100mg/L) plates and screened using clone 

specific primers to confirm the transformation of TOPO vector containing PGT3 into TOP 10 

cells (Fig. 20). Results showed a 1500 bp (Fig. 20) amplification product that corresponded to 

the estimated size of PGT3 in some colonies. These colonies were 2, 6, and 9 for construct 1; 

colonies 1, 2, 3, 4, 5, 6, 11, 14, 15, and 16 for construct 2; and, colonies 6, 10, 13, 15, and 17 for 

construct 3.   

Lane 1     2       3      4 
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Fig. 20. Confirmation of Modifed  PGT3-TOPO Transformed Colonies by PCR Screens.  A, B, 

and C are all representative DNA agarose gels (0.8%) showing PCR products for colonies 

obtained for constructs 1, 2, and 3, respectively corresponding to the the size of PGT3 (1495 bp). 

Lane marked M indicates Lambda Hind III marker; lane marked C indicates a negative control 

(PCR reaction run without a template). 

Representative colonies were selected for plasmid isolation and digestion.  With regards 

to construct 1, clonies 2, 6, and 9 were selected. Colonies 1, 3, and 15 were selected for construct 

2. Colonies 13, 15, and 17 were selected for construct 3. The plasmid DNA from each selected 

colony was isolated by miniprep as described in the materials and methods section.  

Restriction Digests of Plasmid Constructs  

 After isolation of the plasmid DNA for all 3 constructs, each isolate was digested with 

appropriate restriction enzymes to confirm the presence of PGT3 insert in TOPO vector. 

Digested and undigested samples were run on 0.8% agarose gel for analysis (Fig. 21). Upon 

analysis, the digested colonies had a band that corresponded to the size of TOPO vector (3596 

bp) and another band that corresponded to the size of PGT3 (1495 bp) (Fig. 21).  Aliquots of the 

plasmid DNA for all 3 constructs were sent for sequencing. Results confirmed the presence of 

PGT3 insert in TOPO vector (Fig. 22, 23, and 24).  

PGT3 
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Fig. 21. Restriction Digests of PGT3-TOPO Plasmid DNA.  Plasmid DNA was isolated from 

positive colonies that contained modified PGT3-TOPO and plasmids were digested with 

restriction enzymes to verify presence of insert in vector A.  Representative DNA agarose gel 

electrophoresis showing plasmid DNA isolation and restriction digestion of PGT3 construct 1 

clone 2, 6, 9, and 18 using Kpn1 and Apa1 restriction enzymes B. Representative DNA agarose 

gel electrophoresis showing plasmid DNA isolation and restriction digestion of PGT3 construct 2 

clones, 1, 3, and 15 using Kpn1 and Xba1 C. Shows isolation and digests of PGT3 construct 3 

clones, 13, 15, 17, and 20 using Xba1 and Xho1.  Note; UD= undigested plasmid D= digested 

plasmid. 
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A.

 

 

B. 

 

 

 

Fig. 22. Alignment of PGT3 Sequence with PGT3-TOPO (construct1) Sequence using Bioedit. 

A. 5’ Alignment; region in red represent restriction enzyme site. Region in green represents 

TOPO vector sequence. B. 3’Alignment of PGT3 Sequence with PGT3-TOPO (construct1) 

Sequence using Bioedit. The regions in red represent restriction enzyme site.  



95 

 

A. 

 

 

B. 

 

 

Fig. 23. Alignment of PGT3 Sequence with PGT3-TOPO (construct2) Sequence using Bioedit. 

A. 5’ Alignment; region in red represent restriction enzyme site. Region in green represents 

TOPO vector sequence. B.3’ Alignment of PGT3 Sequence with PGT3-TOPO (construct2) 

Sequence using Bioedit. The regions in red represent restriction enzyme site.  
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A.

 

B.  

 

 

 

Fig. 24. Alignment of PGT3 Sequence with PGT3-TOPO (construct3) Sequence using Bioedit. 

A. 5’ Region: The area in red represent restriction enzyme site. Region in green represents 

TOPO vector sequence. B. 3’ Region: The regions in red represent restriction enzyme site. 
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Gel Purification of PGT3 Constructs and Vectors  

After confirmation of the presence of PGT3 insert in TOPO. Larger volumes (14 µL) of 

restriction digests of clones 2, 15, and 13 (representing constructs 1, 2, and 3) were performed 

and the bands were gel purified (Fig. 25). The corresponding vectors, pPICZA, pPICZAα 1, and 

pPICZAα 2 with which construct 1, 2 and 3 were to be ligated with respectively were also 

digested. Prior to ligation of the purified PGT3 and pPICZ vectors, the  gel purified PGT3 

constructs and accompanying vectors were each analyzed by DNA gel electrophoresis using 

0.8% agarose gel containing EtBr as previously described, to confirm complete purification of 

the inserts and vectors and also to confirm that the sizes of the inserts and vectors were correct 

(Fig. 26). Results (Fig. 26 A) confirmed that plasmid DNA from respective colonies selected for 

constructs 1, 2, and 3 contained an insert of expected size for PGT3. Figure 26 B confirmed 

purification of pPICZ vectors. 

 

Fig. 25. Restriction Digests of PGT3-TOPO Constructs and pPICZ Vectors for DNA Plasmid 

Purification. A. Representative DNA agarose gel electrophoresis showing restriction digestion of 

clones representing construct 1, 2, and 3 PGT3 inserts. Digestion with restriction enzymes Kpn1 

and Apa1 for construct 1; Kpn1 and Xba1 for construct 2, Xba1 and Xho1 for construct 3. Note 

separation of bands PGT3 (1495 bp), from TOPO vector (3596 bp). B. Representative DNA 

agarose gel electrophoresis showing restriction digestion of pPICZA, pPICZAα1, and pPICZAα2 
vectors. The vectors were digested with restriction enzymes to make them compatible for 

ligation with their corresponding PGT3 inserts.  
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Ligation of pPICZ Vectors and PGT3 Inserts for Constructs 1, 2, and 3 

 Prior to ligation, aliquots of digested PGT3 inserts and corresponding pPICZ vectors 

were run on DNA agarose gel to aid in the quantification of the concentration of DNA. A 2 ul 

and 5 ul aliquot of representative purified plasmids of PGT3 inserts and pPICZ vectors were run 

together with Lambda Hind III marker and 1 kb DNA Plus marker (Fig. 26). The concentration 

of DNA of the inserts and vectors were estimated by comparing the intensity of each band with 

the intensity of the Lambda Hind III markers (Fig. 26, M2). The concentration of purified 

pPICZA vector was 15.5 ng/μL and the PGT3-A9 insert concentration 15.5 ng/μL. Also, 

pPICZAα1 vector had a concentration of 28 ng/μL and PGT3-B15 insert was 41 ng/μL. With 

regard to pPICZAα2 vector, its concentration was 31ng/μL and PGT3-C15 insert was 41 ng/μL.  

Fig. 26. Gel Purified PGT3 Inserts and pPICZ Vectors Prior to Ligation. A. Representative DNA 

agarose gel electrophoresis showing purified PGT3 inserts ready for ligation with pPICZ vectors. 

Constructs annotated as C1, C2, and C3, respectively with different volumes run on agarose for 

quantification of DNA concentration. B. Representative DNA agarose gel electrophoresis of 

purified pPICZ vectors.  M1 represents 1 kb DNA ladder, M2 represents lambda Hind III 

marker. 
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 After ligation of PGT3 inserts with corresponding pPICZ vectors, the ligation reactions 

were transformed into TOP 10 competent cells and resulting colonies were screened by PCR 

with clone specific primers to confirm transformation. Results of the PCR screens are shown in 

figure 27. Note that the positive colonies showed a band corresponding to the estimated size of 

PGT3 (1495 bp). Gel A, B, and C are representations of construct 1, 2, and 3, respectively     

(Fig. 27).  

 

 Fig. 27. DNA Agarose Gel Electrophoresis for Verification of Transformed pPICZ Vectors 

Containing PGT3 Inserts using PCR Screening. A, B, and C are representatives of construct 1, 2 

and 3 respectively. M represents Lambda Hind III marker, C, represents negative control (no 

template) for PCR reaction. Lane numbers correspond to different colonies for each construct. 

 

Plasmid DNA of positive clones were isolated and digested for further verification of 

correct sized insert (Fig. 28).  Results of sequencing analysis confirmed the ligation of PGT3 and 

pPICZ in frame with the C terminal fusion tags (Figs. 29-31). 
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Fig. 28. Verification of Presence of PGT3 Insert in pPICZ Vectors using Restriction Digestions.  

Representative DNA agarose gel electrophoresis showing plasmids selected for restriction 

digestion. Plasmids that contained the insert showed a separation of insert (1495 bp) and vector 

(3329 bp). A, B, and C are representatives of construct 1, 2 and 3 respectively. Digestion with 

restriction enzymes Kpn1 and Apa1 for construct 1; Kpn1 and Xba1 for construct 2, Xba1 and 

Xho1 for construct 3. M indicates Lambda Hind III marker. U indicates undigested plasmid, UD 

indicated digested plasmid, col represents colony. 
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A. 

 

 

   B. 

 

 

 

Fig 29. Alignment of PGT3 Sequence with PGT3-pPIPCZA (construct1) Sequence using 

Bioedit. A. 5’ alignment; region in red represent restriction enzyme site. B. 3’ Alignment of 
PGT3 sequence with PGT3-pPICZA (construct1) sequence using Bioedit. The regions in red 

represent restriction enzyme site. Region in blue represents the c-myc epitope tag, and yellow 

represents polyhistidine tag sequences in the pPICZA vector. 
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A. 

 

B. 

 

Fig 30. Alignment of PGT3 Sequence with PGT3-pPICZAα (construct2) Sequence using 

Bioedit. A. 5’ Alignment; regions in red represent restriction enzyme site; region in purple 

represents the alpha factor signal sequence. B. 3’ Alignment of PGT3 sequence with PGT3-

pPICZAα (construct2) sequence using Bioedit. The regions in red represent restriction enzyme 

site; region in blue represents the c-myc epitope tag. 
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A. 

 

B. 

 

Fig 31. Alignment of PGT3 Sequence with PGT3-pPIPCZAα (construct 3) Sequence using 

Bioedit. A. 5’ Alignment: regions in red represent restriction enzyme site; region in purple 

represents the alpha factor signal sequence. B. 3’ Alignment of PGT3 sequence with PGT3-

pPIPCZAα (construct3) sequence using Bioedit. The regions in red represent restriction enzyme 

priming site; region in blue represents the c-myc epitope tag. 



104 

 

 

Midiprep of Vectors and Designated Clones for Constructs 1, 2, and 3 

Sequencing analysis confirmed successful ligation of PGT3 inserts with corresponding 

pPICZ vectors (Fig.29-31). The recombinant plasmids PGT3-pPICZA, PGT3-pPICZAα1, and 

PGT3-pPICZAα2 were labeled NL3, B23, and C54. These represented construct 1, 2, and 3 and 

were used for further experiments. In order to transform Pichia pastoris, 5-10 µg of linearized 

DNA is required (Invitrogen Pichia manual, 25-0172).  To obtain sufficient amount of plasmid 

DNA for this process, a plasmid midiprep was performed as described in the materials and 

methods section. To determine the concentrations of the eluted plasmid DNA after midiprep, an 

aliquot of each of the purified plasmid DNA of rPGT3 and vectors were run on DNA agarose gel 

(0.8%). The concentration of plasmid DNA for construct 1 insert was estimated to be 11.25 µg 

and 16.89 µg for pPICZA vector. The concentration of plasmid DNA for construct 2 insert was 

estimated to be 16.8µg and 10.45 µg for pPICZAα1 vector. The concentration of plasmid DNA 

for   construct 3 insert was 12.49 µg and 10.45 µg for pPICZAα2 vector. 

 A 300 µL aliquot of each of the purified plasmid midiprep DNA for the constructs and 

corresponding vectors was subjected to restriction digestion with BstX1 enzyme to linearize the 

plasmids. A DNA gel (0.8%) electrophoresis was run to confirm complete linearization (Fig. 32).  

Results show completely linearized rPGT3 inserts and vectors. Sizes of bands correspond to 

pPICZA (3.3 kb), pPIZAα (3.6 kb), and rPGT3 (≈ 4.8 kb). Note C1, C2, and C3 represent 

construct 1, 2, and 3, respectively. 
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Fig. 32 Completely Linearized Empty Vectors and Vectors containing rPGT3. A.  Represents 

DNA agarose gel electrophoresis of construct 1 containing rPGT3 and empty pPICZA vector. B. 

Represents DNA agarose gel electrophoresis of construct 2 and 3 containing rPGT3. Size of 

linearized bands corresponds to size of PGT3 plus empty vector. M1 indicates Lambda Hind III 

marker, M2 indicates 1 kb DNA ladder. C1 represents constructs 1, C2 represents construct 2, 

and C3 represents construct 3. 

Before transformation into the Pichia pastoris genome, the linearized plasmids were 

subjected to phenol: chloroform extraction and ethanol precipitation procedure to remove 

proteins from nucleic acid and to concentrate the sample. To quantify the concentration of 

plasmid DNA, a 1 ul aliquot of the plasmid DNA extracted by phenol chloroform was run on a 

DNA agarose gel and image recorded (Fig. 33). The results from purification by phenol: 

chloroform showed a highly concentrated DNA bands.   
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Fig. 33. DNA Agarose Gel Electrophoresis Showing Purification of Plasmid DNA by Phenol: 

Chloroform Extraction. A. Lane 1 and 2 are 0.5 ul and 100 fold dilution of plasmid DNA of 

pPICZA vector, respectively. Lane 3 and 4 are plasmid DNA of construct 1 (containing rPGT3). 

Lane marked 3 indicates a 0.5 ul of plasmid DNA, lane 4 is a 100 fold dilution of plasmid DNA. 

B. Represents Plasmid DNA of pPICZAα plasmid and plasmid DNA of construct 2 and 3, 

respectively. M1 indicates Lambda DNA Hind III marker, M2 indicates 1 kb DNA ladder, C2 

and C3 represent constructs 2 and 3, respectively.  

Transformation into Pichia pastoris 

 Linearized recombinant plasmids were transformed into competent yeast cells using 

electroporation. Empty vectors of pPICZA and pPICZAα vectors were also transformed into 

freshly made competent yeast cells to serve as a negative control for the expression of rPGT3. 

Selection of transformed Pichia clones was done using PCR screens. Colonies selected for PCR 

screens were used as templates to amplify the region of PGT3 sequence present (Fig.34). Results 

show Pichia cells that were transformed showed a 1495 bp band corresponding with estimated 

size of PGT3. Note bands in gel A, B, and C is a representative of constructs 1, 2, and 3 

respectively. For further study, colonies A2, B3, and C12 were used. 
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Fig. 34.  DNA Gel Electrophoresis of Transformed Pichia pastoris Strain X33 Containing 

pPICZ/PGT3 Constructs. PCR screens were done using clone specific primers. A, B, and C 

represent colonies selected for screening of constructs 1, 2, and 3, respectively. Lane M 

represents 1 kb DNA ladder; C represents negative control for PCR reaction. Note: arrow points 

to bands corresponding to PGT3 size 1495 bp. 

 

Expression of Recombinant PGT3 Protein in Yeast 

In order to test the conditions for expression of recombinant PGT3 protein, test 

inductions were carried out. Recombinant PGT3 Pichia strains that had been confirmed to 

contain PGT3 insert were tested for expression of soluble protein at different postinduction times 

(0-96 hours) under control of the AOX1 gene promoter. In the presence of methanol, the AOX1 

promoter is activated and this drives the expression of rPGT3 (Invitrogen Pichia manual). For a 

negative control, yeast transformed with empty pPICZA vector was treated with methanol to 

show the background expression of native Pichia proteins. Expression of rPGT3 was confirmed 

by Western blot analysis of samples taken at the various postinduction times for construct 1(Fig. 

35). The results show expression of rPGT3 in Pichia at 6-60 hours postinduction. The expressed 

protein was detected with c-myc antibody. The band sizes correspond with rPGT3 including tags 

(58.5 kD). 
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Fig. 35. Expression of rPGT3 (using Construct1) in Pichia pastoris. Test inductions of PGT3 in 

Pichia pastoris at 30⁰C. Samples were collected at different post induction times. A. 

Representative Western Blot showing detection of expressed rPGT3 from 6-18 hours post 

induction using C-myc antibody against the C-myc epitope tag. B. Western blot showing 

detection of expressed rPGT3 at 24-60 hours post induction. Lane marked PRE indicates 

preinduction sample; lane marked control represents expression of yeast transformed with an 

empty vector. A total volume of 5ul of protein was loaded in each well. The blot was developed 

for about 2 minutes.  

After test inductions were done, microassay of the amount of protein in samples collected 

at the various postinduction time points was determined (Table 13). The concentration of protein 

was shown to increase steadily from the 6
th

 hour up to the 24
th

 hour after which the protein 

concentration started to decline up to the 96
th

 hour.  The intensity of the bands on the Western 

blot (Fig. 35) showed the 6
th

 hour to have the most rPGT3 when compared with the other bands 

indicating that rPGT3 yield was most enriched at that time. Subsequent inductions were done for 

6 hours at 30
o
C.  
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Table 13. Protein Microassay of Expressed rPGT3 at 0-96 hr PostInduction 

Post induction time/hr Protein Concentration µg/ 

µL 

Amount of Protein 

Loaded on Gel 

µg 

6 2.6 13 

12 2.8 14 

18 4.6 23 

24 5.2 26 

36 3.3 16.5 

48 2.6 13 

60 2.2 11 

72 1.6 8 

84 1.4 7 

96 1.2 6 

 

Purification of rPGT3 using Immobilized Metal Affinity Chromatography (IMAC) 

 Due to the fact that rPGT3 was equipped with C-terminal 6 His tags, purification could 

be done using an ion metal affinity chromatography technique. To enrich rPGT3, a 6 hour 

postinduction yeast cell pellet was resusupended in breaking buffer containing BME to prevent 

the formation of disulfide bridges. The breaking buffer also contained PMSF to prevent the 

action of proteases if present in the protein sample. The buffer also had a pH of 7.5 which has 

been shown to be an optimum pH for activity of glucosyltransferases. After resuspension of the 

cell pellet, it was lysed by French press at 4
o
C. The crude lysate was centrifuged, and a 2.5 mL 

aliquot desalted to remove excess salts that may interfere with the binding of the protein to the 

IMAC column. The desalted eluate was immediately used for purification via IMAC.  Fractions 
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were analyzed by SDS-PAGE (Fig. 36) and Western blot (Fig.37). Results show an enrichment 

of rPGT3 from crude fraction (CR, Fig 36A.) Most contaminating bands observed in crude 

rPGT3 and flow-through samples (Fig.36 A, F1-F4) were sufficiently removed by several 

washes as seen in fractions W1-W9 (Fig. 36.A and B). Enriched rPGT3 was achieved in 

fractions F2-F4 on SDS-PAGE (Fig.36B) and detected by Western blot (Fig. 37B).  

A.                                                                     B. 

 

 

Fig. 36. Silver Stained SDS-PAGE Analysis Showing Purification of rPGT3 Expressed in Pichia 

pastoris. A. Representative fractions obtained. Lane 1, broad range protein molecular weight 

marker, lane 2, preinduced sample, lane 3, crude rPGT3, lane 4-8 rPGT3 flow throughs , lane 9-

15, washes with equilibration wash buffer to remove contaminating proteins B. Representative of 

fractions obtained. Lane 1, protein low range molecular weight marker, lane 2-5, washes. Lane 

6-15, fractions eluted with 150 mM imidazole. Gels were silver stained. 

 

Fig. 37.Western Blot Analysis Showing Detection of rPGT3 Expressed in Pichia pastoris. A. 

Representative fractions obtained. Lane 1, low range protein molecular weight marker, lane 2, 

preinduced sample, lane 3, crude rPGT3, lane 4-8 rPGT3 flow throughs , lane 9-15, washes with 

equilibration wash buffer to remove contaminating proteins. B. Representative of fractions 

obtained. Lane 1, protein low range molecular weight marker, lane 2-5, washes with 

equilibration buffer. Lane 6-15, fractions eluted with 150 mM imidazole.  

Lane 1      2    3  4  5  6  7  8   9 10 11 12 13 14 15                1    2   3   4  5  6   7  8  9  10 11 12 13 14 15 

Lane 1   2    3  4  5  6  7  8   9 10 11 12 13 14 15             1    2   3   4  5  6   7  8  9  10 11 12 13 14 15 
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Screening rPGT3 Protein for GT Activity 

In order to test activity of rPGT3 protein, rPGT3 protein purified by IMAC was used; 

however, the preparation was scaled up to increase yield. Bearing in mind the trend observed 

with the test purification, 12 washes of 2ml fractions were used to wash the column prior to 

eluting rPGT3 with 150 mM imidazole.  Aliquots of samples obtained were saved and analyzed 

by SDS-PAGE and Western Blot after enzyme screening assays had been done. The fractions 

observed from previous purification of PGT3 under the same conditions of expression to contain 

the most enriched PGT3 were pooled, desalted and concentrated. 

  A portion of the desalted and concentrated fractions and all fractions obtained from the 

purification step was kept for analysis by SDS-PAGE (Fig. 38) and Western blot (Fig. 39). 

Results show that rPGT3 was enriched and fractions F1-F4 were pooled, desalted, concentrated, 

and used for activity screens. The enriched rPGT3 fractions were detected using antibodies 

directed againt the c-myc epitope tag (Fig. 39).   

A       B                                                                                 

FIG. 38. Purification of rPGT3 Expressed in Pichia pastoris and Fractions. A. Lane 1, low range 

protein molecular weight marker, lane 2, preinduced sample, lane 3, crude rPGT3, lane 4-8 

rPGT3 flow throughs , lane 9-15, washes with equilibration wash buffer to remove 

contaminating proteins. B. Lane 1, protein low molecular weight marker, lane 2-5, washes with 

equilibration buffer to remove contaminating and unbound proteins. Lane 6-9, rPGT3 protein 

eluted with 150 mM imidazole. Lane 10 (CF), pooled, desalted, and concentrated fractions (6-9) 

for enzyme assay of rPGT3. Lane 11- 15 subsequent fractions eluted with 150 mM imidazole. 

Gels were silver-stained. 
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A.                                                                            B. 

 

Lane       1     2   3   4   5   6   7   8   9   10  11  12    13   14    15                                       1      2      3    4    5    6      7     8    9   10  11  12 13 

FIG. 39. Representative Western Blot of Enriched rPGT3 Expressed in Pichia pastoris. A. Lane 

1, low range protein molecular weight marker, lane 2, preinduced sample, lane 3, crude rPGT3, 

lane 4-8 rPGT3 flow throughs , lane 9-15, washes with equilibration wash buffer to remove 

contaminating proteins. B. Lane 1, protein low molecular weight marker, lane 2-5, washes with 

equilibration buffer to remove contaminating and unbound proteins. Lane 6-9, rPGT3 protein 

eluted with 150 mM imidazole. Lane 10 (CF), pooled, desalted, and concentrated fractions (6-9) 

for enzyme assay of rPGT3. Lane 11- 13 subsequent fractions eluted with 150 mM imidazole.  

 

Screening rPGT3 Protein Using Flavonoid and Simple Phenolic Substrates  

  A total of 18 compounds representing flavonoid substrates and 3 compounds representing 

phenolics were used as initial substrates for screening GT activity of rPGT3. The reactions were 

run along with 2 sets of negative controls. In one negative control reaction, no rPGT3 was added 

to the reaction, and in the other, rPGT3 was added after addition of HCL to denature and 

inactivate the enzyme. Two sets of positive control reactions were tested. In one, grapefruit leaf 

extract was used as the source of GT enzyme. And in the other, grapefruit leaf extract and rPGT3 

were both used. The second positive control was done to see if there would be a decrease in the 

glucose incorporation when compared with that obtained in the reaction with only grapefruit leaf 

extract. This would test for an inhibiting factor in the rPGT3 sample. The incorporation of 

radiolabelled UDP- C
14

 glucose onto flavonoid subtrates was analyzed using a scintillation 

counter. Results show average cpm incorporation of the substrates tested against rPGT3, the 
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incorporation measured in the negative control reactions (Table 14). Results with positive 

controls showed an incorporation of radiolabelled glucose unto kaempferol by 

glucosyltransferases present in the crude grapefruit leaf extract. The positive control reaction that 

contained rPGT3 did not show much difference in the amount of radiolabelled glucose 

incorporated. Results from testing flavonoid substrates with rPGT3 gave insignificant counts of 

activity (Table 14). 
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Table 14. Screening Activity of rPGT3 using Flavonoid and Simple Phenolic Substrates. (Note: 

20000 cpm of C
14  

 labeled UDP-glucose was used per reaction) 

Group 

 

Subclass Structure Compound Substitutions Average cpm 

(n=2) 

Incorporation

250µL ethyl 

acetate). 

Flavonoid Chalcone  

 

2’4,4’,6’ 
Tetrahydroxy-

chalcone  

 

 22 

Flavanone  

 

 

 

 

Naringenin 4’=5=7=OH  
 

20 

Hesperetin 3’=5=7=OH,  
4’= OCH3 

 

25 

Eriodictyol 3’=4’=5=7=O
H  

 

45 

Isosakuranetin 5=7=OH,4’=
OCH3 

 

20 

Prunin 4’=5=OH, 7= 
-O-glucose 

40 

Flavone  

 

 

Apigenin 4’=5=7=OH  9 

Luteolin 3’=4’=5=7=O
H 

35 

Diosmetin 3’=5=7= OH, 
4’=OCH3 

12 

Scutallarein 4’=5=6=7=O
H  

 

30 

Luteolin-7-O-

glucoside 

3’=4’=OH, 
7=-O-glucose 

 

26 

Isoflavone  

 

4’-acetoxy-7-

hydroxy-6-

methoxy- 

isoflavone 

 

 23 

Dihydrofla-

vonol 
 

Dihydroquercetin  12 
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Table 14 Continued. Screening Activity of rPGT3 using Flavonoid and Simple Phenolic 

Substrates. (Note: 20000 cpm of C
14  

 labeled UDP-glucose was used per reaction). 

Group 

 

Subclass Structure Compound Substitutions Average 

cpm (n=2) 

Incorporatio

n (250µL 

ethyl 

acetate). 

Flavonoid Flavonol  

 
 

Kaempferol 5=7=4’=OH  
 

30 

Quercetin 3’=4’=5=7=OH  
 

28 

Fisetin 4’=5’=7=OH  
 

14 

Gossypetin 3’=4’=5=7=8=
OH  

 

35 

4’methoxy-

flavonol 

4’=OCH3  
 

20 

Phenolics Coumarin 

 

Umbelliferone R1=R3=H, 

R2=OH  

 

66 

Esculetin  R1=R2=OH, 

R3=H  

 

53 

Simple 

phenolics 

 

 

2’4’ dihydro-

benzaldehyde 

 34 

Controls Positive 

control 

Grapefruit leaf extract+ rPGT3+kaempferol 1058 

Grapefruit leaf extract+kaempferol 1188 

 

Negative 

control 

 

Denatured rPGT3+kaempferol 

52 

 

No rPGT3+kaempferol 

42 

 

 After initial screens of activity or rPGT3 using flavonoid substrates, the preferred 

flavonoid substrate of rPGT3 was not found. Subsequent screens using 12 compounds 

representing simple phenolic substrates were tested. Substrate standard samples were each run 

and experimental groups were run twice through the HPLC column. Two sets of positive control 
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reactions were tested. In one, grapefruit leaf extract was used as the source of GT enzyme. And 

in another grapefruit leaf extract and rPGT3 were both used. The second positive control was 

done to see if there would be an inhibiting factor in the rPGT3 sample. One negative control 

reaction was run through the column along with the control, experimental, and standard groups. 

The elution time between each standard and each duplicate of the experimental group was noted 

and compared. Results show a shift in substrate retention time thus a conversion of some of the 

substrate to form glucosides in experimental groups of p-hydroxybenzoic, catchol, gentisic acid, 

vanillin, vanillic acid, and p-phenylpyruvic acid. The difference between the retention times of 

the aglycones and glucosides is shown in table 15 (Ahmad and Hopkins 1993). In order to 

confirm that rPGT3 is using these substrates as preferred substrates, a repeat of these 

experimental groups was run alongside negative control reactions.  
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Table15. Summary of Difference between Retention Times of Aglycones and Glucosides 

(Adapted from Ahmad and Hopkins, 1993).   
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I. o-Coumaric standard. Retention time is 27.5 minutes. λ = 325 

 

II. o-Coumaric acid experimental. Retention time of major peak is 27.6 minutes. λ = 325 

 

III. p-Coumaric acid standard. Retention time of major peak is 12.216.  λ = 308 

       

 

IV.  p-Coumaric acid negative control. Retention time of major peak is 12.241. λ = 308 
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V. p-Coumaric acid experimental. Retention time of major peak is 12.302. λ = 308 

 

 

VI. Ferulic acid standard. Retention time is 13.466. λ = 324 

 

VII. Ferulic acid experimental. Retention time is 16.390. λ = 324 

 

VIII. Caffeic acid standard. Retention time is 7.375. λ = 322 
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IX. Caffeic acid experimental. Retention time is 7.641. λ = 322 

 

X. Scopoletin standard. Retention time is 12.477. λ = 340 

 

 

 

XI. Scopoletin expermental. Retention time is 12.040. λ = 340 

 

 

XII. p-Hydroxyphenylacetic standard. Retention time is 1.9. λ = 215 
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XIII  . p-Hydroxyphenylacetic acid experimental. λ = 215  

 

XIV. p-hydroxyphenylpyruvic acid standard. Retention time of major peak is 6.940. λ = 215 

 

 

 

XV. p-hydroxyphenylpyruvic acid experimental. Retention time of major peak is 1.688. λ = 215 

 

 

    XVI. p-hydroxybenzoic acid standard. Retention time is 19.094. λ = 255 
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XVII. p-hydroxybenzoic acid experimental. Retention time of major peak is 1.799 and retention 

time of second peak is 16.229. λ = 255 

 

 

XVIII. Retention time of quercetin standard is 25.139.  

 

 

XIX.   Positive control reaction using quercetin and crude grapefruit leaf extract as the source of 

enzyme. Note disappearance of quercetin peak.  

 

XX. Positive control reaction 2 (quercetin, crude grapefruit leaf extract, and rPGT3). Note 

disappearance of quercetin peak 
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XXI. Vanillin standard. Retention time is 14.664. λ = 273 

 

XXII. Vanillin experimental. Retention time of major peak is 1.740 and the peak height of 

substrate has reduced. λ = 273 

 

 

XXIII. Vanillic acid standard. Retention time is 8.079.  λ = 260   

 

XXIV. Vanillic acid experimental. Retention time of major peak is 1.9 and retention time of 

second peak is 8.331. λ = 260 
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XXV. Gentisic acid standard. Retention time is 13.172. λ = 330 

 

XXVI. Gentisic acid experimental. Retention time of major peak is 2.0 and peak height of 

substrate has reduced. λ = 330 

 

XXVII. Catechol standard. Retention time is 2.799. λ = 280 

 

XXVIII. Catechol experimental. Retention time of major peak is 1.409 and peak height of 

standard has reduced. λ = 280 

 

Fig. 40. HPLC Chromatograms for rPGT3 Enzyme Assays with 12 Phenolic Compounds. Note 

the production of glucosylated phenolics were identified through the comparison with phenolic 

standards. 
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Cloning PGT8 into pPICZA Vector 

Isolation of PGT8 and pPICZA Vector 

Prior to sub-cloning PGT8 into pPICZA vector, PGT8 in pCR4-TOPO/TOP10 and 

pPICZA vector were miniprepped to isolate the plasmids (Fig.41). Results show miniprep of 

pPICZ vector from TOPO vector and PGT3 insert from TOPO (3000 bp bands in lane 2 and 3) 

and pCD1 vector (4000 bp bands in lane 4 and 5) respectively.  

 

Fig. 41. Miniprep of PGT8 from pCR4-TOPO/TOP10 and pCD1/TOP10. DNA agarose gel 

(0.8%) electrophoresis showing the miniprep of PGT8. Lane M represents 1 kb DNA ladder, 

used as a marker. Lane 1; positive control for the miniprep reaction (PGT11). Lane 2 and 3 are 

PGT8/pCR4-TOPO/TOP10 clones. Lane 4 and 5 are PGT8/pCD1-TOP10 clones, respectively.   
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Modification of the Ends of PGT8 from pCR®4-TOPO Vector 

The 5’ and 3’ends of PGT8 sequence were then modified with primers (Table 10) and the 

PCR products were analyzed with DNA agarose gel electrophoresis (Fig 42). The sizes of the 

bands in lanes 1, 2, 3, and 4 were calculated as 1530, 1535, 1535, and 1540 bp, respectively. This 

was compared with the estimated size of PGT8 (1536bp) to confirm that the PCR product was 

full length. 

 

Fig. 42. Modified and Amplified PGT8. DNA agarose gel (0.8%) showing the PCR products 

obtained after modifying PGT8 with appropriate primers to get PGT8 cloned into Pichia 

pastoris. Lane M: 5 ul 1 kb DNA plus marker, lane 1-4 are PCR products of PGT8 samples. 

Arrow indicates the calculated band size of one of the PCR products.   

 

Cloning Modified PGT8 into TOPO 

 The mPGT8 PCR products were subcloned into pCR
®
4-TOPO vector and transformed 

into TOP 10 competent cells as described in the material and methods section. Single colonies 

were selected from LB amp (100mg/L) plates and screened using clone specific primers to confirm the 
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transformation of mPGT8-TOPO vector into TOP 10 cells. The colonies shown by PCR screens 

to contain PGT8 showed an approximately 1500 bp (Fig.43) amplification product that 

corresponded to the expected size of PGT8. Results show all colonies contained PGT8 with the 

exception of colonies 4 and 5 (Fig.43).   

 

Fig. 43. Confirmation of Modifed  PGT8-TOPO Transformed Colonies by PCR Screens. Lane M 

marked M is 1kb molecular weight marker; lane C is a negative control (PCR reaction run 

without a template). Lanes 1-17 are colonies selected for screening.  

The plasmid DNA from colonies 7,  9, and 13 were isolated by miniprep as described in 

the materials and methods section. Also a miniprep of pPICZA vector was performed. 

Restriction digestion of pPICZA and PGT8 were carried out to confirm the presence of PGT8 in 

TOPO vector. Results verified the presence of PGT8 vector in TOPO vector ( Fig. 44 and also 

the digested PGT8-TOPO plasmid contained PGT8 insert of expected size. The digested sample 

(labelled D in Fig. 44) showed a separation of 2 bands,  one corresponding to the size of TOPO 
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and the other the size of PGT8. Plasmid DNA of PGT8-TOPO was isolated and sent for 

sequencing. Results of sequencing confirmed presence of PGT8 in the TOPO vector (Fig.45). 

 

 

Fig. 44. Verification of Presence of mPGT8 Insert in TOPO Vector. Representative DNA 

agarose gel electrophoresis showing restriction digestion of PGT8 in TOPO. Plasmid DNA was 

eluted and digested for primary verification of correct sized insert and vector. Lane marked D, is 

digested PGT8-TOPO. Note the separation of insert (1536 bp) and vector (3956 bp). Lane M 

indicates Lambda Hind III marker. U indicates undigested plasmid. 
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A. 

 

B. 

 

 

Fig. 45. Alignment of PGT8 sequence with PGT8-TOPO Sequence using Bioedit. A. 5’ region. 
The regions in red represent restriction enzyme priming site, green represent TOPO vector 3’ 
sequence and orange represents stop codon. B. 3’ region. The area in red represent restriction 
enzyme site and green represents the 5’ region of TOPO vector. 
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Gel Purification of PGT8 Construct and pPICZA Vector  

After confirmation of the presence of PGT8 insert in TOPO (Fig. 45). Larger volumes 

(14 µL) of restriction digests of PGT8-TOPO and pPICZA vector were performed as described 

in the materials and methods  in order to isolate the mPGT8 band.The mPGT8 band and the 

linearized pPICZA plasmid were gel purified. Prior to ligation of the purified PGT8 and pPICZA 

vector, the  gel purified PGT8 construct and vector were each analyzed by DNA gel 

electrophoresis using a 0.8% agarose gel containing EtBr as previously described (Fig.46). The 

digested PGT8 (1536bp) in lanes 2 and 3, separated from TOPO (3956 bp). Also, digested 

pPICZA plasmid approximately 3600 bp separated from the undigested pPICZA. This was cut 

and purified. 

 

 Fig.46. Restriction Digests of PGT8-TOPO Construct and pPICZA Vector for DNA 

Purification. Lane M is lambda hind III marker; lane 1 is digested pPICZA vector; lane 2 and 3 

are digested PGT8-TOPO plasmids. Digestions were done with restriction enzymes Kpn1 and 

Apa1.  The vector was digested with restriction enzymes to make it compatible for ligation with 

PGT8 insert.  
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Ligation of pPICZA with PGT8 Construct 

 

Prior to ligation, aliquots of digested PGT8 inserts and pPICZA vector were run on DNA 

agarose gel to aid in the quantification of the concentration of DNA. A 2 ul and 5 µL aliquot of 

representative purified plasmids of PGT3 inserts and pPICZ vectors were run together with 

Lambda Hind III marker and 1 kb DNA plus marker on a DNA agarose gel (Fig. 47). After 

ligation of PGT8 insert with pPICZA vector, the ligation reactions were transformed into TOP 

10 competent cells. The transformed cells were plated on LBzeocin (100mg/l). Single colony cells 

were miniprepped and plasmid DNA isolated. The plasmid DNA was sent for sequencing. 

Results of sequencing (Fig.48) showed the presence of PGT8 in-frame in the pPICZA vector. 

 

 

Fig. 47. Representative DNA Agarose Gel Showing Purified PGT8 Insert for Ligation with 

pPICZA Vector. Different volumes run on agarose for quantification of DNA concentration are 

noted. M1 represents represents lambda Hind III marker and M2 represents 1 kb DNA plus 

molecular weight ladder. 
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A. 

 B.  

 

Fig. 48 Alignment of PGT8 sequence with PGT8-pPICZA sequence using Bioedit. A. 5’ region. 
The area in red represent restriction enzyme priming site, green represent pPICZA vector 3’ 
sequence.B. 3’ Alignment of PGT8 sequence with PGT8-pPICZA sequence using Bioedit. The 

regions in red represent restriction enzyme priming site, blue represents c-myc epitope tag, area 

marked yellow represents plyshistidine tag, and orange represents the stop codon of PGT8. 
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CHAPTER 4 

DISCUSSION 

 Plant secondary metabolites play crucial roles in the development and survival of plants 

(Kutchan 2001 and ref. therein; Fall et al. 2011 and ref. therein). Plant secondary metabolites are 

classified under several major large families such as the phenolics, alkaloids, and terpenoids 

(Bougard et al. 2001; Martens 2010 and ref. therein). Flavonoids are phenolic secondary 

metabolites with a wide diversity of compounds distributed throughout the plant kingdom (Koes 

et al. and ref. therein; Schijlen et al. 2004 and ref. therein). 

 Most naturally occurring flavonoids exist in glycosylated forms; this suggests that 

glycosylation is a key plant biochemical process (McIntosh and Mansell 1990; Kramer et al. 

2003; Owens and McIntosh, 2011 and ref. therein). Glucosylation is a modification reaction in 

plants that leads to the formation of glucosides. Glucosyltransferases (GTs) are the enzymes that 

add sugars to aglycones to form glucosides (McIntosh 1990; Owens and McIntosh 2009; Owens 

and McIntosh 2011 and ref. therein). Glucosylation increases solubility and hence transport of 

compounds to parts of plants for biochemical processes (Asen and Jurd 1967; Shao et al. 2005 

and ref. therein; Owens and McIntosh 2011 and ref. therein).  

 Grapefruit tends to accumulate high levels of glycosylated flavonoids (McIntosh 1990; 

McIntosh et al. 1990; Berhow et al 1998; Owens and McIntosh 2009; Owens and McIntosh 2011 

and ref. therein). A flavanone-specific 7-O-GT noted to catalyse the glucosylation of the   7-OH 

group of naringenin to form prunin was isolated and characterized from Citrus paradisi seedlings 

(McIntosh and Mansell 1990). From this work several GTs from Citrus paradisi were shown to 

have the ability of attaching sugars to flavones, flavonols, flavanones, and chalcones (McIntosh 
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et al 1990). Also a flavonol specific 3-O-glucosyltransferase from Citrus paradisi was cloned 

and biochemically characterized (Owens and McIntosh 2009). This makes grapefruit Citrus 

paradisi a model plant to study flavonoid GTs and their characterization. 

 Purification and characterization of flavonoid GTs directly from tissues of grapefruit has 

resulted in the elucidation of active enzymes (McIntosh and Mansell 1990; McIntosh et al. 

1990). However due to the labile nature of the enzyme and the minute levels of the enzyme 

present in the tissues, enough enzyme could not be accrued for purification and subsequent direct 

amino acid sequencing of the enzyme (McIntosh et al. 1990; McIntosh and Mansell 1990; 

Tanner 2000 and ref. therein). In order to overcome this, several plant putative GT sequences can 

be identified from plant genomic databases using the PSPG box as a motif for similarity (Knisley 

et al. 2009; Vogt and Jones 2000 and ref. therein). Although there is some degree of sequence 

identity within the PSPG box of plant GTs involved in natural product formation, the overall 

sequence similarity among flavonoid GTs is low (Owens and McIntosh 2009 and ref. therein; 

Sarker et al. 2007). The use of amino acid sequences alone cannot be used to predict specific 

functions and biochemical assays remain the only way to conclusively establish function. A 

combination of bioinformatics and biochemical assays remains the only way to conclusively 

establish function to these enzymes (Owens and McIntosh 2009 and ref. therein). 

 This research was designed to test the hypotheses that grapefruit plant glucosyltransferase 

clone 3 is a flavonoid glucosyltransferase and is subject to biochemical regulation (if activity is 

found, biochemical characterization such as kinetics, pH, cofactors, inhibitors, and temperature 

will be studied). It was also designed to test that the expression of grapefruit plant 

glucosyltransferase clone 8 in yeast, Pichia pastoris will be more soluble than in E.coli. 
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Expression and Characterization of PGT3 

 A directionally cloned EST library created from young grapefruit leaves and mined for 

putative clones resulted in the isolation of PGT3, a full-length clone (Sarker 2004). The presence 

of a PSPG box made PGT3 a possible candidate for plant secondary metabolite 

glucosyltransferase. 

 The use of prokaryotic expression systems such as the E.coli expression system may 

perhaps be the most common of all for protein expression due to its many advantages (Waugh 

2005 and ref. therein). Some of advantages are the fact that the genetics of E.coli is well known, 

it is relatively cheap and simple to work with, it has the ability to produce high densities and also 

allows for purification strategies due to the production of tagged recombinant fusion proteins that 

can be purified using metal affinity columns (Sorensen and Mortensen 2004 and ref. therein, 

Sahdev et al. 2008). Another added advantage of expressing protein in E.coli using the pCD1 

vector is the thireodoxin fusion tag could be cleaved off the expressed protein before testing for 

activity. It is possible that the size and structure of the tag could affect the activity of the protein 

(Owens and McIntosh 2009). These advantages make E.coli expression system a reasonable first 

choice for expression of target proteins.  

With this in mind, PGT3 was cloned into pCD1 vector and expressed as a recombinant 

fusion protein with thireodoxin and 6xHis tags. The expressed PGT3 protein was confirmed with 

SDS-PAGE and Western blot; however, the majority of the recombinant protein expressed was 

packed in insoluble inclusion bodies (Fig. 14). Although the E.coli expression system is endowed 

with many advantages, it is not a perfect system. One notable disadvantage of expressing target 

proteins in E.coli is that, overproduction of target proteins induces a stress response in E.coli 
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which tends to pack majority of the recombinant target protein insoluble inclusion aggregates 

(Waugh D 2005, Sorensen and Mortensen 2004 and ref. therein). Many eukaryotic proteins do 

not express in a useful form (inclusion bodies) when expressed in E.coli perhaps due to the 

absence of a proper folding mechanism (Oganesyan et al. 2007). The production of target 

proteins as insoluble inclusion bodies poses a major setback in protein expression. To enhance 

the solubility of recombinant proteins, various optimization strategies such as variation of media 

composition, variation of the concentration of inducing agents, lowering of temperature at which 

the target protein is expressed, and variation of media composition (Waugh 2005 and ref. 

therein).  

In this research, attempts were made to vary media composition by expressing PGT3 in 

the presence and absence of betaine and sorbitol (Figs.13 and 14) and variation of inducer IPTG 

(Fig.15). The rationale behind this was to increase the expression of soluble PGT3 protein to test 

for flavonoid GT activity. Betaine and sorbitol are osmotic reagents that have been shown to 

increase the expression of some soluble proteins by increasing osmotic stress (Blackwell and 

Horgan 1991).  This tends to prevent the packing of soluble proteins into insoluble inclusion 

bodies. The amount of soluble PGT3 protein expressed in the absence of betaine and sorbitol was 

more than when expressed in the presence of betaine and sorbitol. Variation of inducer IPTG 

affected the expression of total protein but had no significant effect on the expression of soluble 

recombinant PGT3. Overall, the optimization strategies employed to enhance the solubility of 

rPGT3 in E.coli did not yield enough protein to be tested for GT activity.  

 To be able continue with this research, it was imperative to find a way of producing 

enough soluble rPGT3 protein to test for flavonoid GT activity. Therefore, PGT3 was expressed 

in Pichia a eukaryotic expression system. The Pichia expression system was used because, as a 
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eukaryotic expression system, it had a better protein folding and processing mechanism thus do 

not produce insoluble inclusion bodies, it is relatively simple to use and inexpensive as E.coli (it 

uses methanol for induction which is inexpensive), and it had an advantage of 10-100 fold higher 

heterologous protein expression levels (Cereghino and Cregg 1999). Although GTs are not 

known to undergo post-translational modification, if proteins that need to undergo                  

post-translational modifications are expressed in Pichia, this is taken care of by using the 

pPICZα.  The above features made Pichia expression system the next choice for expressing 

rPGT3 protein. 

 Expression of recombinant proteins in Pichia is under the control of the AOX1 gene 

promoter and the expression of the AOX1 gene is induced by methanol (Invitrogen Pichia 

manual, 25-0172). In the presence of methanol, the AOX1 promoter is activated and this drives 

the expression of rPGT3. Recombinant proteins expressed using Pichia are secreted into the 

media or intracellularly expressed, depending on different vectors and cloning strategies. Two 

vectors, pPICZ and pPICZα, expresses recombinant protein in the intracellular and secretory 

pathway, respectively (Invitrogen Pichia manual, 25-0172). In this research, PGT3 was cloned 

into both pPICZA and pPICZAα. The expression of PGT3 using both vectors was tested. Test 

inductions were done where samples were taken from the 6
th

 hr to 96
th

 hour. The rationale behind 

this was to determine the time post induction when the optimal soluble rPGT3 was expressed. 

Confirmation of expression was done by analyzing samples from the various time points       

(Fig. 35). Based on the Western blot analysis the optimum time for expression of rPGT3 was the 

6
th

 hour postinduction in construct 1 (PGT3 cloned in pPICZA). Expression levels of constructs 

2 and 3 (PGT3 in pPICZAα) was minimal and insufficient to be detected by Western blot 

analysis. Due to this, expression of rPGT3 using pPICZA was chosen for further experiments. 
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 Soluble rPGT3 protein was enriched by immobilized metal affinity chromatography. The 

rationale for enrichment of soluble proteins was to remove contaminating proteins which might 

affect enzyme activity. Enrichment of PGT3 was possible as a result of the selective binding of 

the poly-his tagged PGT3 with the cobalt metal ion in the IMAC column. Loosely bound 

proteins were removed with equilibration wash buffers, signifying removal of all contaminants. 

Tightly bound poly histidine tagged PGT3 protein was eluted with high concentration of 

imidazole (Figs. 36 and 37). Prior to enrichment by immobilized metal affinity chromatpgraphy, 

cell lysate was desalted to get rid of the salts from the breaking buffer which could potentially 

affect the binding of the poly histidine tagged proteins to the IMAC coluum. Also, fractions 

obtained from the enrichment process were analyzed by SDS-PAGE and Western blot analysis. 

The goal was to identify which fractions contained the most enriched rPGT3 (Figs. 36 and 37). 

The most enriched fractions were pooled, desalted (to get rid of the salts such as imidazole and 

sodium chloride which is known to affect enzyme activity), and concentrated prior to enzyme 

activity assays. 

 The hypothesis of this research was to test that clone 3 is a putative flavonoid 

glucosyltransferase. Thus, the enriched pooled, desalted, and concentrated fraction of rPGT3 was 

screened for flavonoid GT activity. The rPGT3 was first tested with compounds representing 

various subclasses of flavonoids (Table 14). Because flavanone glycosides tend to be 

accumulated in grapefruit, naringenin and hesperetin representing flavonones were selected for 

screens. The glycosides of naringenin and hesperetin had been shown to accumulate in grapefruit 

(McIntosh and Mansell 1990 and ref. therein; Owens and McIntosh 2011 and ref. therein). 

Luteolin and apigenin, 2 compounds from the flavone group, were tested knowing that 

glycosides of these 2 compounds have been shown to accumulate in grapefruit (McIntosh and 
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Mansell 1990). The rationale behind this was that, if activity was found with any of one of the 

compounds within a flavonoid subclass, the possiblility of the preferred substrate of the enzyme 

being in that flavovonid group was greater. With this in mind, several substrates from each 

flavonoid subclass were tested.  A total of 18 flavonoid substrates representing all the flavonoid 

subclasses were tested. However, no significant activity was detected with any of the 

compounds. Results with positive controls showed an incorporation of radiolabelled glucose onto 

kaempferol by glucosyltransferases present in the crude grapefruit leaf extract. This was 

observed with an average incorporation of radiolabelled glucose (1058 cpm in 250 µL of ethy 

acetate) in a reaction that contained 20000 cpm of radiolabelled glucose. Comparing this to the 

average cpm incorporation of the flavonoid substrates (Table 14), there was a significant activity 

in the positive controls but no significant activity with rPGT3. This suggests that rPGT3 does not 

use any of the flavonoid compounds tested as a preferred substrate. 

Although this research was designed to test the hypothesis that rPGT3 was a flavonoid 

GT, it is likely that PGT3 might be able to glucosylate other secondary metabolites such as 

phenolic compounds and phenolic glucosides that have been shown to be present in citrus 

species (Fieldman and Hanks 1965). In order to test this, rPGT3 protein was screened for GT 

activity with a few phenolic compounds (coumarins and simple phenolics) however no 

significant activity was found (Table 14). At this stage the compounds that had been tested ruled 

out the possibility of them being substrates for PGT3. Thus, the way forward was to screen even 

more phenolic compounds that have been found to be present in grapefruit.  

 Additional candidate substrates were found in the literature reporting other glucosides 

found in grapefruit (Fieldman and Hanks 1965; Ahmad and Hopkins 1993; Gardana et al. 2008). 

These compounds (12 substrates) were tested with rPGT3 for activity. Due to the high water 
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solubility of these compounds, glucosides formed would be equally water soluble so separation 

of glucosides from aglycones could not be done with ethyl acetate extraction.  

A reverse phase high performance liquid chromatography (HPLC) using a C-18 column 

and Isocratic elution was used for the separation of glucosides and aglycones (Ahmad and 

Hopkins 1993) (See Table 16, and Fig. 40). Out of the 12 substrates tested, there were 

indications of activity with 6 (p-hydroxybenzoic acid, vanillin, vanillic acid, p-

hydroxyphenylpyruvate, catechol, and gentisic acid). The chromatograms of the reactions with 

these substrates showed a reduction in the peak height of the standard and/ or formation of new 

peaks. A newer peak with a shorter retention time is indicative of a more polar compound that 

may be a glucoside. These compounds and other related compounds have been shown to 

influence growth, dormancy, and/ or shown to be increased in response to pathogens (Fieldman 

and Hanks 1965; Fraissinet-Tachet et al. 1998 and ref. therein). Thus the presence of these 

glucosides implies they may perform these physiological functions in Citrus paradisi. 

Cloning PGT8 into pPICZA Vector 

Putative flavonoid glucosyltransferase clone 8, previously expressed in E.coli, was 

subcloned into pPICZA vector for expression in Pichia. The expression of PGT8 in E.coli 

resulted in majority of the expressed protein as insoluble inclusion bodies; however, some trace 

activity with liminoids and quercetin was found (Owens and McIntosh personal communication). 

Results confirm that PGT8 has been successfully cloned into pPICZA vector.  

Directions for Future Research 

 If confirmation of GT activity is found with any of the 6 phenolic substrates, 

identification of products will be done and characterization of the enzyme will be conducted. 
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Biochemical characterization including enzyme kinetics, optimal reaction conditions (such as 

pH, buffer, and temperature) and testing for cofactors and inhibitors will be done.  

On the other hand, if the result is not reproducible, the following suggestions can be 

done. First and foremost, more work on screening additional candidate substrates for PGT3 

should be done. Some simple phenolic substrates that could be tested include m-coumaric acid, 

salicylic acid, and sinapic acid. The rationale behind testing these substrates is that glucosides of 

these compounds were shown to be present in roots and leaves of Citrus sp (Fieldman and Hanks 

1965). More candidate substrates from each of the flavonoid subclasses could also be tested 

because rPGT3 was not tested with all flavonoids.  Hence, testing a couple of substrates within a 

particular subclass may not reveal the best substrate for PGT3. The preferred substrate of PGT3 

may only be shown after testing a lot more substrates from each class of flavonoid group.  For 

example, phloretin (related to chalcone) has been shown to be present in leaves and roots of 

citrus species and could also be tested.  

 Again, if no activity is found with any of the 6 simple phenolic substrates, removal of 

fusion tags prior to screening for activity can be considered. The characterization of rPGT3 was 

done with fusion tags (c-myc and polyhistidine) attached to the protein at the C-terminus. The 

total size of the myc epitope and polyhistidine tag is only about 2.5 kDa (Invitrogen Pichia 

manual, 25-0172). The presence of tags, independent of size, could interfere with the biological 

activity or influence the behavior of a protein (Waugh 2005 and ref. therein; Owens and 

McIntosh 2009). The removal of tags prior to screening for activity would serve as a basis for 

testing the hypothesis that the presence of a tag could interfere with the biological activity of a 

protein. This can only be done if the vector being used has advantage of being modified to 

remove encoded tags, for example the pCD1 vector (Owens et al. 2008). Perhaps Pichia 
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expression vectors could be modified to include a thrombin cleavage site in order to remove 

fusion tags. 

 The third option to try if there is no activity found with any of the 6 simple phenolic 

substrates would be to consider the type of UDP sugar. The sugar donor used in this research was 

UDP-glucose. If the preferred sugar for PGT3 is UDP-galactose, activity with any of the 

substrates would not be found until we use the preferred sugar. Thus, other sugar donors such as 

UDP-galactose, UDP-mannose, UDP-xylose, and UDP-rhamnose could be tested (Offen et al. 

2006; Osmani et al. 2009). Of these potential sugars mentioned, UDP-rhamnose may be first 

choice because its glycosides containing rhamnosyl residues were found in grapefruit tissues 

(Owen and McIntosh 2011 and ref. therein). However, the lack of commercial availability of 

UDP-rhamnose means that in order to test this substrate, the sugar would have to be synthesized 

in the laboratory if possible.  

With regards to PGT8, the next step would be to transform PGT8-pPICZA into Pichia 

genome for expression of rPGT8 protein. After transformation, test inductions for expression 

could be done to determine the optimum conditions for production of rPGT8 protein. Successful 

expression of PGT8 will then lead to the next step which will be to enrich rPGT8 by 

immobilized metal affinity chromatography making use of the polyhistidine tag as a means of 

purification. Once enrichment is achieved, rPGT8 should be tested first against limonin 

monolactone subtrates as well as with flavonoid substrates. The rationale for testing limonin 

monolactones are because limonoate glucosides have been shown to be widely distributed in 

citrus (Hasegawa et al. 1989; Hasegawa et al. 1991 and ref. therein). Also some activity with 

quercetin was found with rPGT8 expressed in E.coli (McIntosh and Owens personal 

communication).  
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APPENDICES 

APPENDIX A: Abreviations 

BME              - β-mercaptoethanol 

bp                   - base pairs 

BMGY           - buffered glycerol complex-medium 

BMMY           - buffered methanol-complex medium 

cDNA             - complementary deoxyribonucleotide acid 

CHI                - chalcone isomerase 

CHS               - chalcone synthase 

cpm                - counts per minute 

CSP                - clone specific primer 

DFR               - dihydroflavonol reductase 

DNA              - deoxyribonucleic acid 

dNTPs           - deoxyribnucleoside triphosphate 

EDTA            - ethylenediaminetetraacetic acid  

EtBR              - ethidium bromide  

EST               - expressed sequence tag 
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F3GT             - flavonoid 3-O-glucosyltransferase 

F3H               - flavanone 3β-hydroxylase 

FLS               - flavonol synthase 

FSI                - flavone synthase I  

GT                 - glucosyltransferase  

IFS                 - isoflavone synthase 

LB                 - luria-bertani 

PAL               - phenylalanine ammonia lyase 

PBS               - phosphate buffered saline 

PCR               - polymerase chain reaction 

rpm                - revolutions per minute 

SDS-PAGE   - sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

YPD              - yeast extract peptone dextrose 

YPDS            - yeast extract peptone dextrose  
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APPENDIX B: Stock Solutions and Media Recipes 

10X YNB: 

134 grams of yeast nitrogen base (YNB)  

Add 1000 mL of distilled water 

Heat solution to dissolve completely 

Filter sterilize the solution and store at 4
o
C 

 

500X B (0.02% Biotin): 

20 milligrams biotin 

Add 100 mL ddH2O 

Filter sterilize the solution and store at 4
 o
C 

 

10X D (20% Dextrose): 

200 grams D-glucose  

Add 1000 mL ddH2O 

Filter sterilize and store at room temperature 

 

10X M (5 % Methanol): 

5 mL methanol 

Add 95 mL ddH2O 

Filter sterilize and store at 4
o
C 

 

10X GY (10 % Glycerol): 

100 mL glycerol 

Add 900 mL ddH2O 

Filter sterilize and store at room temperature 
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Plain liquid LB medium: 

25 grams LB broth powder 

Add sterile ddH2O to 1000 mL 

Adjust pH to 7.5  

Autaclave and store at 4
o
C 

 

Liquid LB medium with antibiotics 

25 grams LB broth powder 

Add sterile ddH2O to 1000 mL  

Adjust pH to 7.5 

Autaclave and add 0.1 gram of Amplicillin and/ or 0.034 Chloramphenicol 

Store at 4
o
C 

 

LB-Agar plate with antibiotics:  

12.5 grams of LB broth powder  

7.5grams of agar  

Add sterile ddH2O to 1000 mL  

Adjust pH to 7.5 

Autoclave and add 0.1 gram Ampicillin and/ or 0.034 gram Chloramphenicol  

Store at 4 
O
C 

 

 

Plain liquid low salt LB medium: 

10 grams tryptone 

5 grams yeast extract 

5 grams NaCl 
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Adjust pH to 7.5 

Add sterile ddH2O to 1000 mL 

  

Autoclave for 20 minutes 

  

Store at 4
o
C 

 

 

Liquid low salt LB medium with antibiotics: 

10 grams tryptone 

5 grams yeast extract 

5 grams NaCl 

Adjust pH to 7.5 

Add sterile ddH2O to 1000 mL  

Autoclave for 20 minutes  

Allow to cool to about 55 
o
C 

For low salt LB with Zeocin, add 25 µg/ ml final concentration 

Store at 4 
o
C.  If media contains Zeocin store in the dark 

 

Low Salt LB Agar Plates: 

To plain low salt liquid LB media, add 15 grams agar per liter of medium 

Add sterile ddH2O to 900 mL 

  

Autoclave for 20 minutes 

Allow medium to cool to about 55 
o
C  

Pour into plates, allow medium to harden  

Invert plates and store 4 
o
C. 

If Zeocin is added, store in the dark. 
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Plain liquid YPD medium: 

10 grams yeast extract  

20 grams peptone 

Add sterile ddH2O to 900 mL 

 

Autoclave for 20 minutes  

Add 100 mL 10X D 

 

Liquid YPD medium with Zeocin  

10 grams yeast extract  

20 grams peptone 

Add sterile ddH2O to 900 mL 

  

Autoclave for 20 minutes  

Allow medium to cool to about 60 
o
C 

Add 100 mL 10X D 

Add 25 mg of Zeocin 

Store medium at 4
o
C in the dark 

YPD-Agar plate with Zeocin  

To a liter of plain YPD liquid medium 

Add 15 grams of agar 

Autoclave for 20 minutes 

Allow medium to cool to about 55
o
C 

Add 25 mg of Zeocin 

Pour medium in plates and allow to harden 

Store plates containing Zeocin in the dark at 4
o
C  

 



163 

 

 Liquid YPDS medium with Zeocin: 

10 grams yeast extract 

182.2 grams sorbitol 

20 grams peptone 

Add sterile ddH2O to 900 mL 

  

Autoclave for 20 minutes  

Add 100 mL 10X D 

Cool solution to ≈ 60o
C 

Add 100 mg of Zeocin and store medium at 4
o
C in the dark 

 

YPDS-Agar plates with Zeocin: 

10 grams yeast extract 

182.2 grams sorbitol 

20 grams peptone  

15 grams of agar 

Add sterile ddH2O to 900 mL  

 

Autoclave for 20 minutes  

Add 100 mL 10X D 

Cool solution to ≈ 60o
C 

Add 100 mg of Zeocin and pour into plates. 

Store plates in the dark at 4
o
C 

 

BMGY medium: 

10 grams yeast extract 

20 grams peptone 

Dissolve above in 700 mL distilled water 
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Autoclave 20 minutes  

Cool to room temperature and add the following: 

100 mL sterile 1M potassium phosphate buffer, pH 6 

 

100 mL sterile 10X YNB 

 

2 mL sterile 500X B 

 

100 mL sterile 10X GY 

Store media at 4
o
C 

 

BMMY medium: 

10 grams yeast extract 

20 grams peptone 

Dissolve above in 700 mL distilled water 

Autoclave 20 minutes  

Cool to room temperature and add the following: 

100 mL sterile 1M potassium phosphate buffer, pH 6 

100 mLsterile 10X YNB 

2 mL sterile 500X B 

100 mL sterile 10X M 

Store media at 4
o
C  
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APPENDIX C: Staining Solution Recipes 

Ponceau S staining solution:  

0.5 grams Ponseau S  

10 mL acetic acid  

Add ddH2O to 100 mL  

 

Amido Black stain B:  

0.1 gram Amido Black 10B  

10 mL acetic acid  

Add ddH2O to 100 mL 

Coomassie Blue staining solution: 

0.006 grams Coomassie Brilliant Blue G250  

10 mL acetic acid  

40 mL methanol  

Add ddH2O to 100 mL 

Destaining solution 

300 mL methanol (30%) 

100 mL acetic acid (10%) 

Add 600 mL ddH2O  to make a liter 
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APPENDIX D: Gel Recipes 

SDS-PAGE Gel (10 %) 

Running/ Separating Gel Composition: 

1.25 mL 40% Acrylamide (acrylamide: bis-acrylamide, 19:1) 

 1.25 mL 4X running buffer (pH 8.8) 

 2.33 mL distilled water 

 50 µL 10% SDS 

 50µL APS  

 10µL TEMED (add last) 

 

Stacking Gel composition: 

200 µL 40% Acrylamide (acrylamide: bis-acrylamide, 19:1) 

 500 µL 4X stacking gel buffer (pH 6.8) 

 1.84 mL distilled water 

 20 µL 10% SDS  

 20 µL APS 

 5 µL TEMED (add last) 

 

0.8/% Agarose Gel 

0.24 grams Agarose powder 

Add 30 mL of 1X TAE buffer 

Heat until agarose melts 
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APPENDIX E: Buffer Recipes 

 

4X SDS-PAGE Running Buffer: 

36.5 grams (1.5 M) Tris-base 

  

Adjust pH to 8.8  

 

Add ddH2O to 200 mL 

 

4X SDS-PAGE Stacking Gel Buffer: 

3 grams (1.5 M) Tris-base 

 

Adjust pH to 6.8  

 

Add ddH2O to 200 mL 

 

SDS-PAGE Running/ Tank Buffer: 

30 gramsTris Base 

144 grams Glycine 

10 grams SDS 

Add ddH2O to 1000 mL 

Adjust pH to 8.3 

 

10% SDS Solution: 

10 grams SDS 

Add ddH2O to 100 mL 
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2X SDS-PAGE Sample Buffer:  

 

25 mL 1M Tris-base Buffer (pH 6.9) 

  

4 grams SDS 

  

20 mL glycerol  

 

Add ddH2O to 100 mL 

  

To every 1mL of above mixture, add 20 μl βME before use 

 

 

4X SDS-PAGE Sample Buffer:  

 

2 mL 1M Tris-base Buffer (pH 6.9)  

2 mM 20% SDS Solution  

4 mL 50% glycerol  

0.2 mg Bromophenol Blue  

To every 1 mL of above mixture, add 50 μl βME before use  

 

10X TBS-T Buffer:  

8.76 grams sodium chloride  

10 mL of 1M Tris-base solution (pH 8) 

500 μl of tween 20 

Add ddH2O to 1000 mL 

 

 

10X PBS Buffer: 

76 grams NaCl (1.3M) 

10 grams Na2HPO4 (70 mM) 

4.1 grams NaH2PO4 (30 mM) 
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Add ddH2O to 1000 mL and adjust pH to 7.2 

 

1X PBS-T Buffer: 

100 mL 10X PBS 

Add ddH2O to 1000 mL  

Add 0.05 % of tween 20 and stir to mix completely 

 

10X Western blot Transfer Buffer: 

30 grams Tris base 

144 grams glycine 

Add ddH2O to 1000 mL 

 

Alkaline Phosphatase Buffer: 

5.8 grams of NaCl 

1.02 grams of MgCl2 

100 mL 1M Tris base solution 

Adjust pH to 9.5 

Add ddH2O to 1000 mL 

 

50 mM Phosphate Buffer (pH 7.0): 

0.2918 grams of Monosodium Phosphate 

0.7733 grams of Disodium Phosphate 

Add ddH2O to 1000 mL 

 

IMAC Equilibration/ Wash Buffer (pH 7.5): 

0.2918 grams of Monosodium Phosphate 

0.7733 grams of Disodium Phosphate 
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17.532 grams of NaCl 

Adjust pH to 7.5 

Add ddH2O to 1000 mL 

 

IMAC Elution Buffer (pH 7.5): 

0.2918 grams Monosodium Phosphate 

0.7733 grams Disodium Phosphate 

17.532 grams NaCl 

10.21g Imidazole 

Adjust pH to 7.5 

Add ddH2O to 1000 mL 

 

IMAC MES Buffer (pH 5.0): 

3.9046 grams 2-(N-morpholine)-methanesulfonic acid (MES) 

Adjust pH to 5.0 

Add ddH2O to 1000 mL 

 

50X TAE Buffer: 

50 mL EDTA (pH 8.0) 

28.6 mL Glacial Acetic Acid 

121 grams Tris Base 

Add ddH2O to 1000 mL 

 

Breaking Buffer: 

6 grams sodium phosphate (monobasic) 

372 mg EDTA  

50 mL glycerol 
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Adjust pH to 7.4  

Add ddH2O to 1000 mL 

Store at 4 
o
C 

To each 57 mL of the above mixture, add 10 mg of PMSF right before use. 

 

1 M Potassium Phosphate Buffer, pH 6: 

132 mL 1 M K2HPO4 

868 mL 1M KHPO4 

Adjust pH to 6.0 

Autoclave for 20 minutes and store at room temperature 

 

Phenol: Chloroform: 

Combine equal parts of phenol and 0.5M Tris-HCL pH 8.0 

Add 0.1 % 8-hydroxyquinoline 2- carboxylic acid 

Stir above mixture for 15 minutes 

Remove the upper-most layer of the mixture 

Add an equal volume of 0.1M Tris-HCl to the mixture 

Stir for 15 minutes, repeat above steps until pH of phenol: chloroform is above 7.8 
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APPENDIX F: Sequences 

PGT3 Nucleotide Sequence (1495 bp) : 

atggaagaaaagcctaaatctcctcatatcctgatctttcctctcccatgccaaagccatgtgaattccatgctcaagcttgccgagatttttggc

ttagctggcctaaaagtgaccttcctaaactccaagcacaaccacgaacgcctcatccggtacacggatatccatgaccgttttctgcagtatt

ctgaattccaatttaagaccatctcagatggtcttccagcggatcacccacgagcaggtgaccgattgatggagatattcgattctttgagtttg

aataccaggccacttctcaaacagatgctgattgacactagcccgccagtgagctgcatcattggagatgcatgtatggaatttgtggtagac

gttgctactgaacttgaaatccctgtaatccattttcgtgctataagtgcttgtagcttctgggcatatttctctatccctgaaatgatccaagcagg

cgagcttcctatgaaagcctacgatgaagacatggatcgtctgataacaaaagttccaggcatggaaacttttctgagattccgagatctccc

cagcttttgccgagtgagtgacgtaaccgaccgagatttgcaagttcttaagaacgtgacccaacagtcccctcgaacccatgctttgatact

caacacgtttgaagacctagaagaaccaattctgtcacatatacgcaccaaatgccccaaagtgtacacaataggacctcttcacttgcagct

caagacaagactcgcctcaaacgtgatctcatcgtcatcccaaaagtctctaaacagtctctgggaagtggacagaagttgcattgaatggtt

tggtaaacagcctgtgcggtctgtactgtacgtaagctttggtagcattacactgttgaaaagggaacagctgattgagttttggcacggtcttg

tagacagtaagcagcggttcttgtgggtcattaggccagattctgtgattggcgaaggtgacgccccggcagagcttgtggagggcacgaa

ggagagaggtcatttggttagttgggtcccacaggaggaggtactggctcaccaggctgtggctggattcttgacacacagcggctggaac

tcaacattggagagtatagtagccggggtgccaatgatttgctggccttactttgctgatcaacagatcaatagtaggtttgtgagtgaagtgtg

gaatcttggattggatatgaaggatgtgtgcgatagaaatgttgttgagaaaatggtgaatgatctcatggtggagaggaaggaggagtttat

gagagcagctgatcggatggctacaatggctagaaccactgctaatgaaggtggaccatcttattgtaatttggaccgtctgattgatgatatt

aagatgatgagctcccaagcatgaaaacatatagctaaggttagtgcaagatgttactgctagattaaataaattttaaagtctcgag 

 

PGT8 Nucleotide Sequence (1536 bp): 

atgggaactgaatctcttgttcatgtcttactagtttcattccccggccatggccacgtaaacccgctcctgaggctcggccgactccttgcttc

aaagggtttctttctcaccttgaccacacctgaaagctttggcaaacaaatgagaaaagcgggtaacttcacctacgagcctactccagttgg

cgacggcttcattcgcttcgaattcttcgaggatggatgggacgaagacgatccaagacgcggagatcttgaccaatacatggctcaacttg

agcttattggcaaacaagtgattccaaaaataatcaagaaaagcgctgaagaatatcgccccgtttcctgcctgatcaataacccatttatccct

tgggtctctgatgttgctgaatccctagggcttccgtctgctatgctttgggttcaatcttgtgcttgttttgctgcttattaccattactttcacggttt

ggttccatttcctagtgaaaaagaacccgaaattgatgttcagttgccgtgcatgccactactgaagcatgatgaagtgcctagcttcttgcatc

cgtcaactccttatcctttcttgagaagagctattttggggcagtacgagaatcttggcaagccgttttgcatattgttggacactttctatgagctt

gagaaagagattatcgattacatggcaaaaatttgccctattaaacccgtcggccctctgttcaaaaaccctaaagctccaaccttaaccgtcc

gcgatgactgcatgaaacccgatgaatgcatagactggctcgacaaaaagccaccatcatccgttgtgtacatctctttcggcacggttgtct

acttgaagcaagaacaagttgaagaaattggctatgcattgttgaactcggggatttcgttcttgtgggtgatgaagccgccgcctgaagact

ctggcgttaaaattgttgacctgccagatgggttcttggagaaagttggagataagggcaaagttgtgcaatggagtccacaagaaaaggtg

ttggctcaccctagtgttgcttgctttgtgactcactgcggctggaactcaaccatggagtcgttggcatcgggggtgccggtgatcaccttcc

cgcaatggggtgatcaagtaactgatgccatgtatttgtgtgatgtgttcaagaccggtttaagattgtgccgtggagaggcagagaacagg

ataatttcaagggatgaagtggagaagtgcttgctcgaggccacggccggacctaaggcggcggagctgaaggagaacgcgctgaagt

ggaagaaggaggcggaggaagctgtggccgatggtggctcgtcggataggaacattcaggctttcgttgatgaagtaagaaggagaagt

gtcgagatcataaccagcagcaagtcgaagtcaatccacagagttaaggaattagtggagaagacggcaacggcaactgcaaatgacaa

ggtagaattggtggagtcacgacggacacgtgtacagtattga 
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