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ABSTRACT  

Characterization of FhuA 104/149C: a Double Cysteine FhuA Mutant with Normal Binding and 

Diminished Transport 

by  

Ada Hagan 

Iron is an essential element for most bacteria and is commonly acquired by siderophores, 

molecules secreted under iron restricted environment to bind ferric iron. Gram negative cells 

actively uptake these complexes via outer membrane-transport proteins such as FhuA in 

Escherichia coli. Structural analysis of receptors revealed a conserved β-barrel occluded by an 

N-terminal plug domain. The cell membrane TonB/ExbB/ExbD complex presumably supplies 

energy via interaction between the FhuA N-terminal TonB box and the C-terminal domain of 

TonB. In order to better understand the mechanism of action the FhuA mutant 104/149C, 

tethering the central β-strands 4 and 6 of the plug domain, was studied and showed severely 

reduced transport of radio-labeled ferrichrome. In the course of this study, this protein was 

HPLC purified for structural studies by crystallization and X-ray diffraction. In addition, protein 

interaction studies were performed with purified TonB-C terminal revealing no impact of the 

mutation on FhuA-TonB interactions.  
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CHAPTER 1 

 

INTRODUCTION 

 

Iron Availability 

 Iron is an important element for the growth and metabolism of both eukaryotic and 

prokaryotic organisms; however, at higher concentrations it can cause the formation of damaging 

hydroxyl radicals (15). Concentrations of iron within the human body are controlled by high-

affinity iron-binding glycoproteins which bind free iron to store and transport it to cells for use. 

Two examples are lactoferrin in breast milk and transferrin which together serve to effectively 

reduce the concentration of free iron within the body to 10
-18

M. As a result, host cells are 

protected against hydroxyl radicals as well as infection by pathogens (2, 55). 

 Bacteria maintain internal iron concentrations of 0.4-4.0μM for many different cellular 

functions and must overcome iron limitation to survive and multiply in the human body (54). As 

such, bacteria have evolved several different methods for the purpose of iron acquisition, one of 

which is the secretion of iron chelators known as siderophores. Siderophores bind ferric iron and 

transport it back to the cell. Iron acquisition via siderophore production is often important for the 

prolonged infection and survival of a pathogen (1,12,38).  

Siderocalin is a molecule released by host neutrophils to bind ferric siderophores and 

prevent their return to the bacterial cell. In response, some pathogens produce siderophores that 

are able to avoid binding and hindrance by siderocalin such as Bacillus anthracis’ petrobactin 

(1). Mycobacterium tuberculosis mutants deficient in siderophore production showed impaired 

ability to survive in low iron conditions and within infected macrophages (12). Further evidence 

for the importance of bacterial iron acquisition systems is the fact that many virulence factors are 

regulated by the concentration of iron in the bacterial cell and only activated under low iron 
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conditions. These virulence factors can be found in pathogens such as Vibrio cholerae and 

include shiga toxin produced by Shigella dysenteriae, and diphtheria toxin secreted by 

Corynebacterium diphtheriae (38). One exception to this is the porcine pathogen Actinobacillus 

pleuropenumoniae where the fhuCDBA operon is constitutively expressed (48). 

Siderophores 

 In 1952, the fungus Ustilago sphaerogena was found to produce an organo-iron 

compound (41). The compound, ferrichrome, was later determined to belong to the iron-

chelating family termed siderophores. Siderophores are low molecular-weight, iron-chelating 

compounds synthesized within the cell and secreted into the environment. Siderophores are 

classified into 5 different categories according to the functional groups involved in the chelation 

of iron including hydroxamate, catechol, α-hydroxy-carboxylate, phenolate, and mixed 

siderophores. Hydroxamate type siderophores have carboxyl groups involved in iron chelation 

such as with schizokinen (Figure 1A) and rhizobactin (5, 40). Catechol groups chelate iron with 

the use of catecholate groups composed of a benzene ring plus 2 hydroxyl groups. Enterobactin 

(Figure 1B) is a catechol type siderophore produced by many enteric bacteria including 

Escherichia coli and Salmonella typhimurium (38, 42, 50). The third functional group is 

carboxylic acid, indicating carboxylate-type siderophores such as staphyloferrin A (Figure 1C) 

isolated from Staphyloccus hyicus (29) and rhizoferrin isolated from Rhizopus microsporus (14). 

Phenolate siderophores have a thiazoline ring as a part of functional groups that chelate ferric 

iron and include one produced by both E. coli and Yersinia enterocolitica, yersiniabactin (Figure 

1D) (20). Lastly, mixed type siderophores are those where 2 or more types of functional groups 

are involved in iron chelation such as the group of siderophores isolated from Pseudomonas 

cepacia known as ornibactins (Figure 1E). Ornibactins contain a carboxylate functional group 
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composed of β-hydroxyaspartic acid as well as hydroxamate groups located on the side chains of 

ornithine residues (36, 51).  

 

Figure 1. Examples of siderophore structures based on functional groups. (A) Schizokinen is an 

example of a hydroxamate type siderophore while enterobactin (B) is an example of catechol type. 

Staphyloferrin A (C) is carboxylate type siderophore, yersiniabactin (D) a phenolate and ornibactin (E) is 

a mixed type siderophore (20, 29, 36, 40, 50). 

Uptake of Siderophore-Iron Complex 

 

 Upon excretion into the environment, siderophores chelate available ferric iron and return 

the iron to the bacterial cell. After chelation there are 2 possibilities for the uptake of the iron 

into the cell. The first is the release of the iron at the cell surface via reduction followed by 

transport into the cell cytoplasm; a method appearing to be employed by Listeria monocytogenes 

which produces a ferric reductase that acts at the cell surface and in the environment (3). Second 

is the transport of the entire siderophore-iron complex into the cell cytoplasm where iron is 

released from the complex via reduction by siderophore reductases or disassembly of the 

molecule such as in the cases of enterobactin and salmochelin (20). Transport across the cell 
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membrane of Gram-positive bacteria is most often accomplished by ABC transporters composed 

of 3 components: 1) a cell wall anchored extracellular binding protein, 2) a transmembrane 

permease complex (often composed of 1 or more homo or heterodimers), and 3) a cytoplasmic 

ATPase to provide energy for transport (3, 30). While ligand specific, these functions are often 

redundant such as with petrobactin uptake by B. anthracis where 2 different permases (FpuB, 

FatCD) and 3 distinct ATPases (FpuC, FpuD and FatE) have been identified (13). Gram-negative 

bacteria have 2 membranes, an inner and an outer on either side of a peptidoglycan cell wall. 

Ferric siderophore complexes are too large to be transported by diffusion through the porins 

present in Gram-negative bacteria outer membranes and thus require specialized outer membrane 

transporters (OM) for access into the periplasm where the siderophore is transported into the cell 

in a similar manner as that used in Gram-positive bacteria with the exception of a non-anchored 

periplasmic binding protein (3).  

Ferric Siderophore Outer Membrane Transporters 

Transporter Homology 

 Structural studies of TonB-dependent OM transporters have shown a considerable degree 

of sequential and structural homology. Four TonB dependent transporters BtuB, FhuA, IutA, and 

FepA were found to have sequential homology between 4 distinct regions. The first and second 

regions are the N and C-termini, respectively, and have high homology within short sequences. 

Regions 3 and 4 are less highly conserved but homology occurs over a longer sequence at 

residues 50 to 70 and 100 to 140, respectively (34). The comparison of E. coli transporters FhuA 

(18, 33), FecA (19, 57), and FepA (4) crystal structures to P. aeruginosa transporters FpvA (9) 

and FptA (10) illustrates the structural similarities (Figure 2).  
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Figure 2. Comparison of the structural similarities of TonB dependent transporters. The 22 strand 

β-barrel (yellow) is occluded by a globular N-terminal domain (red). Contained in the N-terminus (blue) 

is the conserved TonB box, the extracellular loops (green) act as receptors for various types of 

siderophores (pdb files: FhuA, 1BY3; FepA, 1FEP; FecA, 1KMO; FptA, 1XKH; FptA, 1XKW).  

The barrel domains vary in height and width between transporters. They are composed of 

a 22 strand β-barrel occluded by a globular N-terminal domain. Varying in length, size and 

number, extracellular loops extend above the lipid bilayer forming a binding pocket for specific 

ferric-siderophores and act as receptors with a high degree of binding specificity (44, 46). The 

plug domain of the transporter is composed of approximately 150 residues arranged in 4 α-

helices and 6 β-sheets stabilized within the barrel by over 50 hydrogen bonds and multiple salt 

bridges. Residues in the extracellular loops of the plug domain also participate in ligand binding 

along with the barrel extracellular loops (33). Almost 27% of the plug domain is composed of 

highly conserved residues accounting for 32% of conserved residues in the protein. Conservation 

has not been found in the extracellular loops leaving the β-barrel to account for the remaining 

68% of conserved residues (44).  

Effects of Ligand Binding 

 A FhuA protein is able to bind and transport the siderophore ferrichrome after 3 

hydroxamate groups bind ferric iron to result in a neutrally charged molecule. Aromatic residues 

line the FhuA binding site allowing it the ability to bind a variety of hydroxamate type 
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siderophores including the fungal siderophore ferrichrome. In contrast, the FepA protein binds 

and transports ferric enterobactin. Enterobactin is an aromatic molecule that binds ferric iron 

with 3 catecholate groups resulting in a net charge of negative 3. The FepA binding site is thus 

composed of positively charged residues and can bind other negatively charged ferric 

siderophores but restricts possible ligands based on size (26, 43).  

 Crystal structures comparing ligand-free and ligand-bound states of FhuA show that 

when ferrichrome enters the binding site it forms a total of 5 different hydrogen bonds: 3 with 

the plug residues Arg81, Tyr116, Gly99 and 2 with barrel residues Tyr244 and Tyr315. In 

addition, ferrichrome binding institutes a series of changes within the plug domain beginning 

with a shift of residues Thr80, Arg81, Gly99, and Gln100 towards the ligand. The alterations at 

residue 81 continue throughout the domain causing helix-1 to unfold towards the opposite side of 

the barrel and as a result, residue Trp22 is displaced by as much as 17Å. A similar motion has 

been observed in FecA as well and is believed to promote interaction of the N-terminal with the 

C-terminal of TonB (31, 33, 57). 

TonB Complex 

 TonB is hypothesized to supply the energy required for transport of the ligand through 

the plug domain via a complex composed of TonB, ExbB, and ExbD found in the ratio 1:7:2 

(22). TonB is anchored in the cytoplasmic membrane next to ExbB and ExbD and its C-terminal 

(residues 155 to 239) extends across the periplasm to interact with the N-terminus of the TonB 

dependent transport protein at a 5 amino acid long conserved sequence (Figure 3) known as the 

TonB-box (24, 34, 44, 47).  
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Transporter 

 

Consensus Sequence 

FhuA 7 Asp Thr Ile Thr Val 

BtuB 6 Asp Thr Leu Val Val 

IutA 6 Glu Thr Phe Val Val 

FepA 12 Asp Thr Ile Val Val 

       Figure 3. Consensus sequence of TonB dependent transporters. Numbers refer to the position of the 

first amino acid and the invariant residues are underlined (47). 

 This hypothesis further states that the energy “transduced” to transporters is provided to 

the TonB N-terminal via the proton motive force harnessed by ExbB and ExbD (22, 32, 38). X-

ray crystal structures of the TonB C-terminal in complex with FhuA showed that the interaction 

of C-terminal TonB with the TonB box results in the formation of a 3 stranded β-sheet between 

the 2 proteins. In addition to the TonB box, the interaction also involves residues from the FhuA 

plug (Ala26, Glu56) and barrel, (Asn594, Ala591). This interaction causes the C-terminal of 

TonB to occlude about half of the periplasm exposed surface of the OM protein and places FhuA 

in such a manner that TonB could create a force perpendicular to the β-strands of the plug 

domain to cause their movement (17, 44, 45).  

Mechanisms of Transport 

 As mentioned earlier, for the passage of the ligand through the barrel to occur, the plug 

domain must be either removed from the barrel or altered in such a way that it would no longer 

block the ligand’s passage. Two possibilities for the movement of the plug domain to allow 

ligand passage is that it either drops out of the bottom of the barrel on a “hinge” (ball and chain), 

or it undergoes conformational change within the barrel. Several studies have been conducted on 

various proteins in the family such as FhuA and FepA in order to determine the mechanism of 

action. In the past, evidence against the first theory was the amount of energy required to break 

the large number of hydrogen bonds holding the plug in the barrel. Because the barrel is water-

filled, however, the energy required would actually be much less than previously thought and is 



16 

 

estimated to be about 10 ATP (26).  

 Two of the salt bridges holding the plug domain within the barrel originate from 4 highly 

conserved residues termed the "lock region" (Figure 4). Two arginine residues within the plug 

domain (Arg93/133 in FhuA; Arg75/126 in FepA; Arg150/196 in FecA) and 2 glutamate 

residues within the barrel domain (Glu511/567 in FepA; Glu522/571 in FhuA; Glu541/587 in 

FecA) make up this region. Site-directed mutagenesis studies of FepA lock region residues 

showed that when altered to neutral residues, preventing salt bridges and hydrogen bonding, the 

transport capabilities of the protein were severely reduced. One possibility is that the results are 

due to the inability of the salt bridges to be reformed and help regain the proper conformation of 

the plug domain. The same results were observed when conserved glycine residues at positions 

127 and 134 were altered to alanine. Glycine allows for a greater degree of rotation within 

proteins and these particular glycine residues have angles far greater than those allowed for other 

residues. From these data, the conclusion was made that these residues may allow for rotation of 

β-strands 5 and 6 to help create the transient channel for the transport of ferric enterobactin (7). 

An explanation for these data that fits the ball and chain hypothesis is that perhaps the proton 

motive force associated with the TonB complex causes protons to enter the barrel and lower the 

pH thus neutralizing the salt bridges and resulting in charge repulsions that might expel the plug 

(26). 
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Figure 4. Comparison of lock region residues. Lock region residues are both spatially and structurally 

conserved across TonB dependent transporters such as FhuA (1BY3), FepA (1FEP), and FecA (1KMO). 

 The Coulton research group out of McGill University in Quebec, Canada is also 

responsible for several experiments performed on FhuA resulting in evidence for the 

conformational change hypothesis. The double cysteine mutants L109C/S356C and 

Q112C/M383C tether the plug domain to the barrel wall by the formation of disulfide bonds. 

Kinetics studies indicated that the ability of the protein to transport ferrichrome was not affected, 

thus the mechanism must not require complete removal of the plug domain from the barrel (16). 

A 1µM concentration of ferrichrome was used during these studies, however, making a 

concentration of iron available greater than that typically found in the bacterial cell. As a result, 

passive diffusion of the molecule into the cell may have occurred and resulted in inaccurate data. 

In addition, the disulfide tethers were created on a single side of the barrel, failing to take into 

account movement that may occur on the opposite side of the protein. 

 A 2007 study by Chakraborty et al. attempted to replicate Coulton’s results by creating 

the FhuA mutants Y72C/S615C and P74C/S587C, where the plug domain was tethered to the 

barrel via a disulfide bond (8). FhuA mutant N104C/L149C was also created to tether plug β-

strands 4 and 6 together (8). Kinetic studies showed that the N104C/L149C mutant had severely 

diminished transport with normal binding whereas the other 2 mutants had normal binding and 



18 

 

only slightly impaired transport. FhuA mutant protein G141A, where Gly141 is located between 

β-strands 5 and 6, also had severely diminished transport indicating a critical role in supporting 

the conformational change of these strands (8). 

 In contrast, similar studies on FepA by Klebba's group seem to provide evidence for the 

ball and chain hypothesis. They studied several cysteine mutants by fluorescent labeling 

techniques including the double cysteine mutant I14C/G300C. In their study, the formation of a 

disulfide bond between the plug domain and the barrel eliminated transport of enterobactin 

through FepA thus implying that the plug had to be dislodged from the barrel during transport 

(35). Residue 14, however, is a part of the FepA TonB box so the observed lack of transport 

might be attributed to the inability of FepA to interact with TonB.  

Project Goals 

 Mutant FhuA 104/149C was created to tether β-strands 4 and 6 of the plug domain 

preventing their movement. If conformational change of the plug domain is required for transport 

to occur, then ferrichrome transport by this mutant protein should be diminished or severely 

reduced. Kinetics studies performed by a previous graduate student indicated that this mutant is 

capable of binding ferrichrome normally but is severely retarded in terms of its ability to 

transport the ligand when compared to wild type FhuA (8). The goals of this project were to 

carry out further structural and biochemical studies on the FhuA mutant 104/149C to determine 

1) whether the diminished transport is due to unintended structural changes created by the 

mutation and 2) whether the mutation had a disruptive effect on the TonB binding interaction 

resulting in diminished transport. To achieve this, the FhuA mutant 104/149C protein was 

purified for structural studies by crystallization and X-ray diffraction and TonB binding 

interactions were studied using TonB-C terminal protein purified in the course of the study.  
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

Bacterial Strains and Growth Conditions 

 Escherichia coli strain BL21(DE3) was used to maintain and express  all proteins in 

pET17b vector for protein expression. The strains were grown at 37°C and maintained on 

modified Luria-Bertani (Appendix) plates with 50-100 µg/mL carbenicillin at 4°C. Glycerol 

stocks of each strain were prepared for long-term storage by growth in 50mL of LB brothCarb50 to 

an optical density (OD600nm) of 0.6 to 0.9 then 1mL of the culture was added to 200µL of sterile 

75% glycerol and stored at -80˚C. All materials and reagents, unless otherwise stated, were 

purchased from Fisher Scientific. 

Protein Detection 

 Protein expression was verified via SDS-PAGE analysis and Western Blotting.  

SDS-PAGE Analysis 

 A 10% separating gel (Table 1) was used to separate proteins by size to verify the 

presence of the target protein. The gel was made by mixing the first 5 ingredients of the 

separating and stacking gels according to Table 1. TEMED and 10% ammonium sulfate were 

added to begin polymerization after each solution was deaerated by vacuum pump for 5-20 

minutes. The separating gel was pipetted into to the gel caster and allowed to polymerize for 20-

30 minutes prior to deaeration and polymerization of the stacking gel. Samples were prepared by 

centrifugation and resuspension of cells in an equal volume of sample buffer prior to being 

boiled for 5 to 10 minutes. Fifteen to 40 µL of each sample was loaded into lanes, with the first 

lane containing 10µL of Bio-Rad Precision Plus® Dual Color protein standard. Each gel was run 

for 60 minutes at 200 volts or 60 mAmps (Bio-Rad). Gel visualization was accomplished by 
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placement in Coomassie blue stain for 30 minutes followed by destaining for 30 minutes to an 

hour in destaining solution. Gels were stored in 3% acetic acid until preserved by drying. The 

composition of SDS-PAGE buffers and solutions can be found in the Appendix. 

Table 1. SDS-PAGE gel mixtures 

 

Solution 

Volume 

Stacking Gel Separating Gel 

30% Bis-Acrylamide 1.33 mL 6.66mL 

Stacking Gel Buffer 2.50 mL Ø 

Running Gel Buffer Ø 5.0 mL 

10% SDS Solution (pH 7.2) 0.1 mL 0.2 mL 

Distilled Water 6.1 mL 8.0 mL 

TEMED 5μL 10μL 

10% Ammonium Persulfate 50μL 100μL 

 

Western Blot 

 Polyclonal rabbit antibodies against FhuA (ProSci) were used with the western blot 

technique to directly determine the presence of the transport protein in a sample (11). Primary 

antibody was preabsorbed overnight at 4˚C with empty BL21(DE3) cells resuspended in 1mL 

phosphate buffered saline and boiled for 10 minutes. In preparation, SDS-PAGE gels were 

acclimated in transfer buffer with fiber pads, and Whatman #2 filter paper for 5 to 20 minutes. A 

Millipore
®

 polyvinylidene floride (PVDF) membrane was rinsed first in methanol, followed by 

distilled water prior to acclimation in transfer buffer. An SDS-PAGE gel was placed against the 

membrane, avoiding bubbles, and then placed between 2 pieces of filter paper and fiber pads. 

The resulting “sandwich” was placed in the transfer apparatus with ice-cold transfer buffer and 

run at 25-30 volts overnight at 4˚C (Bio-Rad). Protein blotted membranes were equilibrated in 

blocking buffer for 1 hour to bind excess protein then left in a 1:100 primary (anti-FhuA) 

antibody/blocking buffer solution overnight at 4˚C. Membranes were subjected tosix 5 minute 

rinses in 50mL wash buffer to remove excess or loosely bound antibody then left in 1:5000 
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solution of horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (Jackson 

ImmunoResearch) antibody/blocking buffer overnight at 4˚C. Six 5 minute wash buffer rinses 

were performed prior to development in HRP substrate in the dark for 30 minutes to 2 hours. The 

composition of all solutions and buffers can be found in the Appendix. 

Estimation of Protein Concentration by Bicinchoninic Acid Assay 

 Protein concentrations were estimated using the Pierce
®
 Bicinchoninic Acid (BCA) 

Protein Assay kit. The working reagent was made by mixing BCA reagent A (sodium carbonate, 

sodium bicarbonate, bicinchoninic acid, and sodium tartrate in 0.1M sodium hydroxide) with 

BCA reagent B (4% cupric sulfate) in a 50:1 ratio to obtain a green solution. When mixed with 

protein, the alkaline environment allows reduction of Cu
2+

 to Cu
+
 by cysteine, tyrosine, and 

tryptophan residues. The cuprous ion forms a complex with the bicinchoninic acid, resulting in 

the formation of a purple color, the intensity correlating to the concentration of protein present 

(50, 53, 56). 

 An aliquot of the sample ranging from 1µL to 100µL was mixed with a specified diluent 

for a final volume of 100µL. To this, 2mL of the kit's working reagent was added and the 

solution incubated at 37°C for 30 minutes. The optical density was then measured at a 

wavelength of 562nm using 1mL of the diluent as a blank. The concentration of the sample was 

calculated using the equation of the line of best fit from the standard curve derived for the 

specific diluent. 

 Standard curves were determined by mixing a stock solution of BSA at 2mg/mL in 0.9% 

saline with the diluent according to Table 2. A 2mL aliquot of working reagent was added to 

100µL of each standard solution in triplicate and incubated at 37°C for 30 minutes. Using 

Microsoft
®

 Excel, resultant OD562 measurements were plotted against the concentration of BSA 
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in µg/mL to obtain the equation of the line of best fit. 

Table 2. BCA assay standard curve dilution table. For each diluent, the following table was used to 

create a 5-2000ug/mL standard curve (53). 

Standard Curve for Bicinchoninic Acid Protein Assay 

Vial 

Diluent 

(uL) 

Volume 

(uL) Source Final BSA Conc. (ug/mL) 

A 0 300 Stock 2000 

B 125 375 Stock 1500 

C 325 325 Stock 1000 

D 175 175 Vial B 750 

E 325 325 Vial C 500 

F 325 325 Vial E 250 

G 325 325 Vial F 125 

H 400 100 Vial G 25 

I 400 100 Vial H 5 

J 400 0   0 

 

Extraction and Purification of FhuA 104/149C 

Growth and Expression 

FhuA mutant 104/149C pET17b in BL21 (DE3) was grown in 1 liter LBCarb50 broth 

cultures to an OD600 of 0.4 to 0.6 (about 3 hours) then induced with 1mM IPTG, supplemented 

with 50µM of CuSO4 to prevent reduction of the engineered disulfide bonds, and allowed to 

incubate for 3 hours. Cells were harvested by centrifugation at 8,000 rpm for 5 minutes and 

stored at -80˚C until use. 

Extraction 

To isolate the outer membrane protein, cells were resuspended in 20mL of ice-cold 

Buffer A (Appendix) per liter of culture harvested and homogenized overnight at 4˚C. 

Resuspended cells were aliquoted into 3 50mL beakers, 30 mL apiece, placed in a sodium 

chloride ice-bath and sonicated for 1 minute at a relative output of 0.8. The process was repeated 
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for a total sonication time of 5 minutes. This process was repeated until all of the resuspended 

cells had been sonicated, replacing the melted ice as needed.  

 After sonication, the homogenate was centrifuged at 8,000 rpm for 10 minutes to remove 

cell debris and the resultant supernatant centrifuged at 30,000 rpm for 90 minutes. Upon 

completion, the supernatant was saved as fraction A and the pellet homogenized in Buffer B for 

30 minutes at room temperature prior a second round of centrifugation at 30,000 rpm for 90 

minutes. Resultant supernatant was saved as fraction B1 and the process was repeated to obtain 

fraction B2. Buffer D containing 2% β-D-octylglucoside was placed on the resultant pellet 

overnight at 4˚C followed by homogenization at room temperature for 30 minutes. Buffer D 

homogenate was then centrifuged at 30,000 rpm for 90 minutes. Solubilized FhuA mutant 

protein was found in the resultant supernatant and saved as fraction D for further purification. All 

fractions and the end pellet were analyzed via SDS-PAGE to verify the presence or absence of 

mutant FhuA protein in each. Composition of buffers can be found in the attached appendix. 

Purification 

 FhuA 104/149C was purified from fraction D via high performance liquid 

chromatography (HPLC, Bio-Rad Biologic DuoFlow). The anion exchange column (All Tech 

Hema IEC DEAE) was equilibrated with Mobile Phase (MP) A (Appendix) prior to injection of 

10mL of fraction D. A gradient from 100% MP A to MP B was used to elute the protein, 

resultant fractions were analyzed via SDS-PAGE for the presence of the FhuA protein. Fractions 

containing the protein were pooled and dialyzed overnight at 4˚C in MP A to reduce the 

concentration of salt prior to exchange of the Triton-X100 detergent with lauryldimethylamine-

oxide (LDAO) detergent via a DEAE Sepharose CL-6B anion exchange column. LDAO 

detergent forms smaller micelles and serves to facilitate solubilization of the protein as well as 
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the crystallization process. Dialyzed samples were loaded into the column and rinsed with 20mL 

of MP A with LDAO detergent. Elution of the protein was performed with 20mL of MP B with 

LDAO detergent where 2mL fractions were collected and analyzed via SDS-PAGE to identify 

protein containing fractions. These fractions were pooled and concentrated to 5mg/mL in a 

Corning
®
 Spin-X

®
 UF 6 spin filter. All buffers were supplemented with 50µM CuSO4 to prevent 

reduction of the engineered disulfide bonds during extraction and purification. 

Extraction and Purification of TonB C-Terminal 

Growth and Expression 

A 135 residue (109-244) fragment of TonB’s C-terminal was histidine tagged at the N-

terminal and amplified from TonB C-terminal/pET32 plasmid DNA via polymerase chain 

reaction (PCR) with the following primers at an annealing temperature of 48˚C: forward 5’-

CATATGCATCATCACCATCACCACAAAAAGGTACAGGAGCAG-3’, (NdeI restriction site is 

underlined and TonB residue 109 is in bold) and reverse 5’-AAGCTTTTACTGAATTTCGGTGGT-

3’ (HindIII restriction site underlined and TonB stop codon in bold). Enzymes were removed 

from the resultant PCR product using the GE® IllustraGFX® kit then digested for 3 hours at 

37˚C with NdeI and HindIII restriction enzymes prior to overnight ligation at 4˚C with restriction 

digested, gel-purified pET17b (see appendix for reaction mixtures). Subsequent heat-shock 

transformation of 1µL of the ligation into Novablue yielded plasmid DNA for transformation 

into the BL21 (DE3) host for expression. The culture was grown in 1 liter LBCarb50 broth cultures 

to an OD600 of 0.4 to 0.6, induced with 1mM IPTG and allowed to incubate for 3 hours. Cells 

were harvested by centrifugation at 8,000 rpm for 5 minutes and stored at -80˚C until use.  
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Extraction 

To isolate the protein, harvested cells were resuspended in 20mL of ice-cold Buffer T per 

liter and homogenized overnight at 4˚C. Resuspended cells were aliquoted into 30mL fractions in 

3 50mL beakers, and placed in a sodium chloride ice-bath. The cells were sonicated for 1 minute 

at a relative output of 0.8. The process was repeated 4 times for a total sonication time of 5 

minutes. After sonication, the homogenate was centrifuged at 8,000 rpm for 10 minutes to 

remove cell debris and the resultant supernatant diluted 1:1 with Ni-NTA Equilibration Buffer 

(23, 39). 

Purification 

 The histidine tagged TonB C-Terminal was purified from the extract/Equilibration Buffer 

via gravity filtration through 3mL HisPur™ Ni-NTA columns. Ni-NTA columns were first 

equilibrated to room temperature with 6mL of Ni-NTA Equilibration Buffer then loaded with the 

protein extract mixture and the flow through collected. The Ni-NTA column was next washed 

with 18mL of Ni-NTA Wash Buffer collected in three, 6mL fractions and the protein eluted with 

9mL of Ni-NTA Elution Buffer collected in three, 3mL fractions. Fractions containing TonB C-

terminal were pooled and dialyzed overnight at 4˚C against Ni-NTA Equilibration Buffer. The 

column was regenerated by the passage of 30 mL MES Buffer and 30mL deionized water prior 

to re-equilibration with Ni-NTA Equilibration Buffer. Columns were stored as 50% slurry in 

20% ethanol at 4˚C (52).  

 The affinity chromatography purified protein was further purified by high performance 

liquid chromatography (HPLC, Bio-Rad Biologic DuoFlow). The “All Tech Hema IEC DEAE” 

anion exchange column was used for further purification. Equilibration of the column with 

Buffer T (Appendix) occurred prior to injection of 2mL of concentrated TonB C-terminal and 
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eluted with Buffer U. The eluted fractions were analyzed via SDS-PAGE for the presence of 

pure protein. Fractions containing pure protein were pooled and concentrated using an Amicon
®
 

Centricon Plus-20 spin filter. 

TonB C-Terminal Binding Assays 

 In order to determine whether the generated mutations have had an effect on the ability of 

the protein to interact with the TonB C-terminal, TonB binding assays were conducted. FhuA 

proteins in the pET17b vector and BL21 (DE3) host were grown in 1 liter LBCarb50 broth cultures 

to an OD600 of 0.4 to 0.6, induced with 1mM IPTG, supplemented with 50µM of CuSO4 as 

necessary, and allowed to incubate for 3 hours. Cells were harvested by centrifugation at 8,000 

rpm for 5 minutes. Harvested cells were resuspended in 20mL of ice-cold Buffer A and stirred 

overnight at 4˚C. Resuspended cells were sonicated for 1 minute at a relative output of 0.8. The 

process was repeated for a total sonication time of 7 minutes. After sonication, the homogenate 

was centrifuged twice at 8,000 rpm for 10 minutes to remove cell debris and the resultant 

supernatant diluted 1:1 with Ni-NTA Equilibration Buffer.  

 The cell extract was then passed through a 3mL HisPur™ Ni-NTA column as described 

in TonB C-terminal purification. The concentration of FhuA protein in the flow through was 

estimated and incubated with 10-fold molar excess of ferric ferrichrome, deferri-ferrichrome, or 

no ferrichrome for 30 minutes at room temperature. Purified C-terminal TonB was added in a 1:1 

molar ratio and the mixture incubated for 1 hour at room temperature. After incubation, the 

mixtures were passed through a 3mL HisPur™ Ni-NTA column washed and eluted as previously 

described; a different column was used for each FhuA protein. Flow through and all other 

fractions were analyzed by SDS-PAGE. If the ability of the protein to interact with TonB has not 

been affected then the transport protein and TonB C-terminal should be eluted together after 
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incubation with ferric-ferrichrome, whereas if it has been negatively affected, or if ferric-

ferrichrome is not present for binding, then only a single band matching the TonB C-terminal 

should be observed in elution fractions (23, 39). 

Protein Crystallization 

 The conditions described by Locher et al. for the hanging drop vapor-diffusion method of 

McPherson were used for crystallization of FhuA 104/149C and FhuA 104/149C in complex 

with ferrichrome (33, 37). Twenty-four well plates were used to grow crystals from 1µL of the 

concentrated protein at 10µg/µl, and 2µL of reservoir solution composed of: 33% polyethylene 

glycol (PEG) 2000, 0.45M NaCl, 0.15M sodium phosphate buffer pH 6.2, 0.5% n-octyl-2-

hydroxyethylsulfoxide (OES) detergent (BACHEM) and 50µM CuSO4 to maintain disulfide 

tethers. The drop was mixed by gentle pipetting on a glass coverslip, inverted and equilibrated 

against a 1 mL reservoir at room temperature (33). The coverslips were sealed with Corning ® 

silicon grease and the process was repeated for each well. Crystals were preserved by flash 

cooling in liquid nitrogen cooled liquid propane prior to using X-ray diffraction to determine the 

structure of the mutant FhuA protein at the University of Tennessee, Knoxville with the help of 

Dr. Fernandez (this work is still pending). All crystallization supplies were purchased through 

Hampton Research.  
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CHAPTER 3 

RESULTS 

Bicinchoninic Acid Protein Estimation Standards 

 BCA protein assay standard curves were prepared for 2 different diluents, Buffer A with 

LDAO, and Ni-NTA Equilibration Buffer. Each standard was prepared in triplicate according to 

the standard curve table above (Table 2). The standard curve using Buffer A with LDAO as a 

diluent was determined to have a best-fit line with the following equation: Y=0.0008X + 0.0633 

where Y is the optical density measured at 562nm and X the protein concentration in µg/mL 

(Figure 5). Similarly, the standard curve with Ni-NTA Equilibration Buffer as the diluent was 

found to have a best-fit line with the equation: Y=0.0008X+0.0311 (Figure 6). 

 
Figure 5. Results for BCA standard curve with Mobile Phase Buffer A with LDAO. 
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Figure 6. Results for BCA standard curve with Ni-NTA Equilibration Buffer 

 

Protein Extraction and Purification 

FhuA 104/149C 

 FhuA mutant protein 104/149C was created by genetically altering the non-conserved 

residues Asn104 and Leu149 to cysteine residues in order to engineer a disulfide bond tethering 

β strands 4 and 6, thus restricting their movement during transport. The Swiss pdb viewer 

theoretically confirmed the formation of a disulfide bond due to energetically favorable 

conditions (21). While these changes are not predicted to alter protein structure in any other 

form, it is still possible that unintended structural changes have occurred. Obtaining the crystal 

structure of the mutant would help determine what, if any, changes have been introduced.  

 Expression of FhuA 104/149C pET17b in BL21(DE3) was induced with 1mM IPTG and 

supplemented with 50µM CuSO4 at an O.D. 600 of 0.4 to 0.6 and allowed to continue for 3 hours 
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prior to harvesting by centrifugation and storage at -80˚C. A total of 30 liters of culture 

suspensions were used; cells were collected and sonicated, 10 liters at a time, in Buffer A for 

extraction of the mutant protein. Supernatant was treated as described to obtain Fractions A, B1, 

B2 and D. All fractions and the final pellet were analyzed by SDS-PAGE to verify the presence 

of FhuA 104/149C (78kDa) in the original sonicated supernatant and Fraction D (Figure 7, black 

arrow). 

 
Figure 7. SDS-PAGE analysis of FhuA 104/149C extraction. The lane to the far left is the Bio-Rad

®
 

Dual Color protein standard with molecular sizes in kiloDaltons. Lanes 1 through 6 contain sonicated 

supernatant, Fraction A, Fraction B1, Fraction B2, Fraction D and the final pellet, respectively. The arrow 

points to the 78kDa band corresponding to solubilized FhuA 104/149C in lane 5. 

 

 FhuA 104/149C  was initially purified using the HPLC program "Fraction D Initial Run" 

where 20mL of Mobile Phase A (MP A; Appendix) was followed by a gradient of MP A to 15% 

MP B over 8mL, then 15 to 30% MP B over 30mL run volume. A gradient to 100% MP B was 

performed over a 14mL run volume, followed by 10mL of 100% MP B. The column was 
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equilibrated between runs with 25mL of MP A. SDS-PAGE analysis revealed that FhuA 

104/149C was eluted between 16 and 19% MP B along with a 37 kDa porin (Figure 8).  

 

Figure 8. Chromatograph and SDS-PAGE analysis of "Fraction D Initial Run". HPLC fractions 15 

through 29 corresponded to the circled peak and were analyzed by SDS-PAGE revealing FhuA 104/149C 

elution between 16-19% Mobile Phase Buffer B. 

 FhuA 104/149C was found to be best separated from contaminating proteins via the  

“Revision T2” program with a gradient of MP A to 16% MP B over 8mL, then 16 to 19% MP B 

over 30mL run volume collected in 1 mL fractions (Figure 9). FhuA 104/149C containing 

fractions were separated based on the amount of contaminating porin: “pure”, presence of no 

contaminating porin; “FhuA with less porin”, presence of some contaminating porin; and “FhuA 

with more porin”, where there was the presence of a lot of contaminating porin. In order to 

reduce the concentration of sodium chloride in the sample in order to purify further via HPLC, 

similar fractions were pooled and dialyzed overnight at 4°C in 1 liter MP A with continuous 

stirring. Porin containing samples were loaded onto the HPLC and FhuA 104/149C eluted via the 
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“Revision T2” program. The process was repeated until SDS-PAGE analysis showed that all of 

the contaminating porin had been eliminated.  

 

Figure 9. Chromatograph and SDS-PAGE analysis of "Program T2". HPLC fractions 20 through 36 

correspond to the circled peak, every odd numbered fraction was analyzed by SDS-PAGE revealing FhuA 

104/149C eluted along with a 37kDa porin. Fractions 20-29 were considered "pure" and 30-37 as "FhuA 

with less porin". 

 HPLC fractions containing pure FhuA 104/149C were concentrated to a final volume of 

10mL per 10L of harvested cell culture via an Amicon
®
 Centricon Plus-20 spin filter with a 30 

kDa cut off. The filter was rinsed with 5mL of distilled, deionized water for 30 minutes at 

3,000xg then 5mL of MP A for 50 minutes at 3,000xg. FhuA 104/149C fractions were loaded on 

to the filter to a volume of 10mL then centrifuged for 60 minutes at 2,500xg until all fractions 

were processed.  

 Concentrated fractions of FhuA 104/149C were loaded 10mL at a time on to a DEAE 

Sepharose CL-6B anion exchange column and rinsed with 20mL of MP A with LDAO detergent. 

Elution of FhuA 104/149C was accomplished with 20mL of MP B with LDAO detergent and 
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collected in 2 mL fractions. Analysis of LDAO detergent exchange elution fractions by SDS-

PAGE showed FhuA 104/149C primarily in fraction 2 (Figure 10), though fractions 1 through 5 

were pooled. Corning
®
 Spin-X

®
 UF 6 spin filters with a 30 kDa cutoff were used to concentrate 

the pooled fractions to approximately 5mg/mL at 7,000xg using protein concentrations estimated 

via BCA protein assays. 

 

Figure 10. SDS-PAGE analysis of LDAO detergent exchange fractions. SDS-PAGE analysis of 

LDAO detergent exchange flow through (Lane 1), and elution fractions 2, 4, and 5 (Lanes 3, 4, and 5, 

respectively). FhuA 104/149C was observed primarily in fraction 2 (Lane 3). 

TonB C-Terminal 

Five, 1 liter cultures of hisidine tagged TonB C-Terminal in the pET17b vector and BL21 

(DE3) host were grown to an OD600 of 0.4 to 0.6, induced with 1mM IPTG and incubated for 

another 3 hours. Cells were harvested by centrifugation at 8,000 rpm for 5 minutes and stored at 

-80˚C until use. To isolate the protein, harvested cells were resuspended in 100mL of ice-cold 

Buffer T and homogenized overnight at 4˚C. After sonication as described, the homogenate was 

centrifuged at 8,000 rpm for 10 minutes to remove cell debris and the resultant supernatant 
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diluted 1:1 with Ni-NTA Equilibration Buffer for a final volume of 200mL (Figure 11A). 

 Histidine tagged TonB C-terminal was purified from the extract/Equilibration Buffer via 

gravity filtration through 3mL HisPur™ Ni-NTA columns. Purification was performed with 

50mL aliquots of protein extract mixture at a time until all protein extract had been processed. 

SDS-PAGE analysis revealed the presence of TonB C-terminal (15kDa) in elution fractions 2 

and 3, with fraction 3 appearing to contain pure protein (Figure 11B). Elution fractions number 2 

contained most of the desired protein along with a contaminating protein at 75 kDa. These 

fractions were pooled and dialyzed overnight at 4°C against 1 liter of Ni-NTA Equilibration 

Buffer. The protein mixture was then loaded on to the Ni-NTA column a second time and eluted 

in 11, 1mL fractions in an attempt to separate the TonB C-terminal from the contaminating 

protein. SDS-PAGE analysis revealed that the attempt was unsuccessful and both proteins were 

found in all elution fractions (Figure 11C).  

 Because the desired protein is only about 15 kDa in size and the contaminating protein 

was 75 kDa, the Ni-NTA elution fractions were passed through an Amicon
®
 Centricon Plus-20 

spin filter with a 30 kDa cut off in an attempt to separate the 2 proteins. After being rinsed with 

5mL of distilled, deionized water and 5mL of Ni-NTA Equilibration Buffer, the elution fractions 

were centrifuged at 2,500xg. SDS-PAGE analysis revealed that this was also ineffective, the 

smaller protein (TonB C-terminal) had been retained and concentrated along with the 

contaminating proteins, possibly due to aggregation as a result of the large amount of protein 

present. 

 A 1 to 2 mL volume of concentrated TonB C-terminal was loaded onto the "All Tech 

Hema IEC DEAE” anion exchange column and run with the HPLC program "TonB Initial Run" 

where 20mL of Buffer T was followed by a gradient of Buffer T to 100% Buffer U over 50 mL, 
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then followed by 10mL of 100% Buffer U. The column was equilibrated between runs with 

25mL of Buffer T. SDS-PAGE analysis verified pure TonB C-terminal in fractions 3 through 24 

(Figure 11D). These fractions were pooled and concentrated to 95mg/mL, as determined by BCA 

analysis, with an Amicon
®
 Centricon Plus-20 spin filter at 2,000xg.  
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Figure 11. SDS-PAGE analysis of TonB C-terminal extraction and purification. (A) Lanes 1 through 

6: TonB C-terminal pET17b BL21(DE3) not induced, TonB C-terminal pET17b BL21(DE3) 3 hour 

induced sample, cell suspension in Buffer T, sonicated cell suspension, sonicated supernatant, and Ni-

NTA flow-through. (B) Lanes 1 through 6: Ni-NTA flow-through, Wash fraction 1, Wash fraction 2, 

Wash fraction 3, Elution fraction 1, Elution fraction 2, Elution fraction 3, and MES regeneration flow-

through. (C) Ni-NTA elution fractions 1 through 11 from pooled and dialyzed TonB C-terminal 

containing fractions. (D) HPLC fractions obtained from "TonB Initial Run", fractions 3 through 24 were 

saved as "pure". 
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TonB-C Terminal Binding Assays 

Wild Type FhuA 

 A 1L broth culture of FhuA pET17b in BL21 (DE3) was grown to an OD600 of 0.4 to 0.6 

induced with 1mM IPTG and allowed to incubate for 3 hours. Harvested cells were resuspended 

in 20mL of ice-cold Buffer A and stirred overnight at 4˚C prior to sonication. Afterwards, the 

homogenate was centrifuged twice to remove all cell debris and the resultant supernatant was 

diluted 1:1 with Ni-NTA Equilibration Buffer.  

 Analysis by SDS-PAGE of the cell extract after passage through a Ni-NTA column 

showed that FhuA was present in the column flow through indicating that it passed through 

unhindered (Figure 12A). The concentration of protein in the flow through was determined by 

BCA to be 61 µg/µL and it was further estimated that the FhuA protein comprised 10% of the 

total protein giving it a concentration of about 78.2µM. A 10mL aliquot was incubated with 

123µL of 95 mg/mL purified C-terminal TonB for 1 hour at room temperature then passed 

through a Ni-NTA column. All flow through, wash and elution fractions were analyzed by SDS-

PAGE (Figure 12B). FhuA was not observed to be present in the elution fractions containing 

TonB C-terminal indicating that there was little to no binding interaction.  

 Next, 10-fold molar excess of deferri-ferrichrome (78.2µL of 100mM stock) and ferric 

ferrichrome (97.75µL of 80mM stock) were added to 10mL aliquots of FhuA Ni-NTA flow-

through and incubated for 30 minutes at room temperature then for another hour after the 

addition of 123µL of purified TonB C-terminal. The resulting mixtures were also passed through 

Ni-NTA columns immediately after incubation. Flow-through and all other fractions were again 

analyzed by SDS-PAGE (Figures 12C and 12D). In both cases, protein bands corresponding to 

FhuA were found in elution fractions containing TonB C-terminal (Figure 12, black arrows). 
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Figure 12. SDS-PAGE analysis of wild type FhuA/TonB C-terminal binding assays. (A) FhuA cell 

extract. (B) FhuA and TonB C-terminal. (C) FhuA, deferri-ferrichrome and TonB C-terminal. (D) FhuA, 

ferrichrome, and TonB C-terminal. For all figures: Lane 1 is the mixture prior to passage through Ni-NTA 

column, lane 2 is Ni-NTA flow through, lanes 3 through 5 are Wash fractions 1, 2 and 3(respectively), 

and lanes 6 through 8 are Elution fractions 1, 2 and 3 (respectively). Black arrows point to wild type 

FhuA in elution fraction 2. 

Mutant FhuA 104/149C 

 A 1L broth culture of FhuA 104/149C pET17b in BL21 (DE3) was grown to an OD600 of 

0.4 to 0.6 induced with 1mM IPTG, supplemented with 50µM CuSO4, and allowed to incubate 

for another 3 hours. Cells were harvested by centrifugation at 8,000 rpm for 5 minutes then 

resuspended in 20mL of ice-cold Buffer A and stirred overnight at 4˚C. Resuspended cells were 

sonicated for 7 minutes and the homogenate centrifuged twice to remove all cell debris. The 

resultant supernatant was diluted 1:1 with Ni-NTA Equilibration Buffer.  
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 After cell extract was passed through a Ni-NTA column as previously described SDS-

PAGE analysis showed that FhuA 104/149C was present in the column flow through but not the 

elution fractions (Figure 13A). The concentration of protein in the flow through was determined 

by BCA to be 54 µg/µL and it was estimated that FhuA 104/149C protein comprised 10% of the 

total protein giving it a concentration of about 68.4µM. A 10mL aliquot was incubated with 

108µL of 95 mg/mL purified C-terminal TonB for 1 hour at room temperature then passed 

through a 3mL Ni-NTA column. All flow-through, wash, and elution fractions were analyzed by 

SDS-PAGE. FhuA 104/149C was not observed to be present in the elution fractions containing 

TonB C-terminal, indicating little to no binding interaction (Figure 13B).   

 Next, 10-fold molar excess of deferri-ferrichrome (68.4µL of 100mM stock) and ferric 

ferrichrome (85.5µL of 80mM stock) were added to 10mL aliquots of FhuA 104/149C Ni-NTA 

flow through and incubated for 30 minutes at room temperature and for an hour after the addition 

of 108µL of purified TonB C-terminal. Immediately after incubation, the resulting mixtures were 

passed through Ni-NTA columns. Flow-through and all other fractions were analyzed by SDS-

PAGE revealing in both cases protein bands corresponding to FhuA104/149C in elution fractions 

containing TonB C-terminal (Figures 13C and 13D, black arrows). 
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Figure 13. SDS-PAGE analysis of FhuA 104/149C/TonB C-terminal binding assays. (A) FhuA 

104/149C cell extract. (B) FhuA 104/149C and TonB C-terminal. (C) FhuA 104/149C, deferri-

ferrichrome and TonB C-terminal. (D) FhuA 104/149C, ferrichrome, and TonB C-terminal. For all 

figures: Lane 1 is the mixture prior to passage through Ni-NTA column, lane 2 is Ni-NTA flow through, 

lanes 3 through 5 are Wash fractions 1, 2 and 3(respectively), and lanes 6 through 8 are Elution fractions 

1, 2 and 3 (respectively). Black arrows point to FhuA 104/149C in elution fraction 2. 

Comparing Wild Type and Mutant FhuA  

 In order to confirm the presence and/or absence of FhuA proteins in elution fractions 

containing the TonB C-terminal, elution fraction number 2 from each experiment were analyzed 

side-by-side by SDS-PAGE and western blotting. Results showed that neither FhuA protein was 

present in the elution fractions from the initial cell extract. Neither were they present in elution 

fractions when incubated with TonB C-terminal alone. Conversely, both FhuA proteins were 

confirmed as being present in elution fractions after incubation with deferri-ferrichrome or ferric 

ferrichrome plus TonB C-terminal (Figure 14A and 14B).  
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Figure 14. Side-by-side comparison of TonB C-terminal binding assays. Lanes 1 through 8 are the 

second elution fractions from FhuA cell extract, FhuA 104/149C cell extract, FhuA and TonB C-terminal, 

FhuA 104/149C and TonB C-terminal, FhuA, deferri-ferrichrome, and TonB C-terminal, FhuA 

104/149C, deferri-ferrichrome and TonB C-terminal, FhuA, ferrichrome and TonB C-terminal and FhuA 

104/149C, ferrichrome, and TonB C-terminal, respectively. (A) Western blot confirming presence of 

FhuA proteins in TonB C-terminal binding assays. (B) SDS-PAGE side-by-side comparison of TonB C-

terminal binding assays. Black arrows point to where FhuA wild type and mutant proteins were detected. 

Crystallization of FhuA 104/149C 

 Two 24 well crystallization plates were set up for crystallization of FhuA 104/149C and 1 

for crystallization of FhuA 104/149C with ferric ferrichrome in a 1:1 molar ratio. Crystals were 
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observed within 3 days and monitored every 7 days. Crystals 100µm or larger were selected for 

flash cooling and x-ray diffraction (Figure 15). 

 
Figure 15. Images of FhuA 104/149C crystals. (A and B) Crystals of FhuA 104/149C, measurements 

for B6 crystals are 273.48µm x 313.21µm and 147.61µm x 369.66µm. (C) Crystals of FhuA 104/149C 

and ferrichrome complexes. 
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CHAPTER 4 

DISCUSSION 

 The goal of this project was to further characterize the FhuA 104/149C mutant which is 

capable of binding ferric ferrichrome but is deficient in transport as compared to the wild type. 

This mutant contains 1 engineered disulfide bond tethering plug domain β-strands 4 and 6 

together restricting movement. The observed decrease in this mutant’s ability to transport 

ferrichrome supports the hypothesis that the plug domain undergoes conformational change 

during transport as opposed to dropping out of the barrel. It is possible, however, that the 

disparity in ferrichrome transport between the wild type and the mutant is an artifact of the 

mutagenesis. Perhaps the mutation of residues 104 and 149 to cysteine caused unintended 

changes in the structure which negatively affected the mechanism of transport or prevented 

interaction with the C-terminal of TonB inhibiting energy transduction. 

 HPLC purified FhuA 104/149C was crystallized both alone and with a 1:1 molar ratio of 

ferric ferrichrome. The crystal structure of FhuA 104/149C in free and ligand-bound states will 

be determined and compared to the structure of wild type FhuA. To determine if the interaction 

with TonB C-terminal has been compromised, TonB binding assays of cell extracts containing 

wild type FhuA and FhuA 104/149C were conducted using appropriate controls. Passage of the 

extracts through Ni-NTA columns confirmed that neither FhuA protein interacted with the 

column while passage of wild type FhuA after incubation with the 135 residue TonB C-terminal 

indicated that little to no binding occurred between FhuA protein and TonB C-terminal. When 

FhuA was incubated with either deferri-ferrichrome or ferric ferrichrome prior to exposure to 

TonB C-terminal, FhuA was found in elution fractions containing TonB C-terminal. This 

indicates that an interaction with enough affinity to pull FhuA from the cell extract occurred. In 
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all instances, the FhuA 104/149C mutant behaved similarly to the wild type protein. Incubation 

of both FhuA proteins with deferri-ferrichrome should have yielded results similar to that of 

FhuA and TonB C-terminal alone because deferri-ferrichrome does not bind to FhuA and thus 

would not signal the conformational changes required for FhuA to interact with TonB. The 

results obtained, however, can be explained by the fact that a complex cell extract was used in 

this experiment containing iron. The iron present was chelated by the supplied deferri-

ferrichrome forming ferrichrome, which subsequently bound to FhuA/FhuA 104/149C protein 

and induced conformational changes resulting in an interaction with TonB. While these results 

were unexpected, they do not detract from the conclusion that both wild type FhuA and FhuA 

104/149C were capable of, and underwent, ferrichrome-dependent interaction with pure TonB C-

terminal. 

 Previous studies by Klebba’s group have indicated that TonB C-terminal binds non-

specifically to a variety of proteins including the TonB dependent transporter FepA, porin 

OmpA, and lysozyme (23). These experiments, however, were performed with a 69 residue 

fragment (170-239) which is significantly smaller than the 135 residue fragment used during this 

study. It is possible that the smaller TonB C-terminal fragment used by Klebba’s group was 

unable to achieve its native folding allowing it to bind non-specifically. In addition, 

crystallographic data have shown that TonB C-terminal fragments less than 100 residues in 

length form dimers with a poor binding interaction between TonB C-terminal and FhuA. Larger 

C-terminal TonB fragments are observed as monomers that have an efficient interaction with the 

FhuA TonB box (27, 28). The results of this study are consistent with these observations and 

particularly show that the 135 residue TonB fragment binds to the ligand-bound receptor and 

requires the presence of ferrichrome for its interaction with FhuA. 
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 Other studies have shown that the C-terminal of TonB interacts not only with the 

conserved TonB box but also with barrel residues exposed to the periplasm (6, 25, 39). That 

interaction alone, however, does not appear to occur with enough affinity for FhuA to be eluted 

along with the TonB C-terminal in this study and may also be dependent on the presence of iron-

bound ferrichrome. 

 This study sought to further characterize the FhuA 104/149C mutant and its ability to 

interact with the TonB C-terminal and concluded that this interaction was not inhibited as 

compared to the wild type. This indicates that the disparity in active transport between the wild 

type and the mutant does not appear to be due to a lack of supplied energy from TonB. Further 

studies of this mutant would help confirm the results previously obtained. Specifically transport 

studies of this mutant in the presence of 0.5mM dithiothreitol would confirm the structural and 

functional integrity of the mutant by reducing the engineered disulfide bonds and restoring the 

protein to wild type functionality. Study of a FhuA mutant such as the tetra-cysteine FhuA 

72/615/109/356C is also needed to observe the results of tethering the plug domain to the barrel 

at 2 different locations. In conclusion this study further characterized the FhuA 104/149C mutant 

and provided evidence of ferrichrome dependent binding between TonB dependent receptors and 

the TonB C-terminal. 
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APPENDIX 

Description of Media and Buffers 

 

Modified Luria-Bertani Broth 

   500mL  1L 

Tryptone  5.0 g  10 g 

Yeast Extract  2.5 g    5 g 

NaCl   2.5 g    5 g  

Agar   7.5 g for plates 

Dilute to the appropriate volume with ddH2O and pH to 7.5, autoclave 

 

SDS-PAGE Solutions and Buffers 

30% Bis-Acrylamide: Purchased from Bio-Rad 

Running Gel Buffer: Tris 36.3 g 

   ddH2O to 200mL, pH to 8.8 with HCl 

Stacking Gel Buffer: Tris 3.0 g  

   ddH2O to 50mL, pH to 6.8 with HCl 

2x Loading Buffer: Stacking Gel Buffer 2.5 mL 

   10% SDS  4.0 mL 

   Glycerol  2.0 mL 

   2-mercaptoethanol 1.0 mL 

   Bromophenol blue 2.0 mg 

   ddH2O   10.0 mL 

Tank Buffer (4X): Tris  12 g 

   Glycine 57.6 g 

   SDS  4 g  

   ddH2O to  1L  

Stain Stock:  Coomassie blue R-250 2.0 g 

   ddH2O    200 mL, stir and filter 

Stain:   Coomassie blue R-250 12.5 mL 

   Methanol   50 mL 

   Glacial acetic acid  10 mL 

   ddH2O to    100 mL    

Destaining Solution:  Methanol  500 mL 

    Glacial acetic acid 100 mL 

    ddH2O   400 mL 

 

Western Blot Transfer Solutions 

Transfer Buffer: 20mM Tris  2.4 g, pH 8.3 

   150mM Glycine 11.26 g 

   ddH2O to   1 L 

Tris-Buffered Saline (TBS, 2X): 20mM Tris 9.7 g, pH 7.5 

                 500mM NaCl 117 g 

                 ddH2O to  2 L 

Wash Buffer:  Tween – 20 0.5 mL 

   TBS (1X) 1 L 
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Blocking Buffer: Bovine Serum Albumin (BSA) 6.0 g 

   TBS (1X) to   200 mL 

Substrate Buffer: 0.1M Tris 1.2g, pH 9.5 

   0.1M NaCl 0.58 g 

   5mM MgCl2 0.2 g 

   ddH2O to 100 mL 

Substrate:  a) 4-chloronapthol 60 mg 

    Methanol, ice-cold 20 mL 

   b) 30% H2O2  60 μL 

    Substrate buffer 100 mL 

   Mix immediately before immersion of membrane 

 

FhuA Extraction/Purification Buffers 

Buffer A: 50mM Tris, pH 7.5 6.06 g 

  5mM Benzamidine 0.783 g 

  ddH2O to  1 L 

Buffer B: 50mM Tris, pH 7.5 6.06 g 

  5mM Benzamidine  0.783 g 

2% Triton-X100 20 mL 

ddH2O to  1 L 

Buffer D: 50mM Tris, pH 7.5 6.06 g 

  5mM Benzamidine  0.783 g 

2% Triton-X100 20 mL 

  5mM EDTA  0.1901 g 

  2% β-D-octylglucoside 2.0 g 

  ddH2O to  1 L 

Mobile Phase A: 50mM Tris, pH 7.5 6.06 g 

   3mM Sodium Azide 0.195 g 

   2mM EDTA  0.760 g 

   10mM Benzamidine 1.566 g 

   2% Triton-X100 20 mL 

   ddH2O to  1 L 

Mobile Phase B: 50mM Tris, pH 7.5 6.06 g 

   3mM Sodium Azide 0.195 g 

   2mM EDTA  0.760 g 

   10mM Benzamidine 1.566 g 

   2% Triton-X100 20 mL 

   500mM NaCl  29.22 g 

   ddH2O to  1 L 

 

TonB C-Terminal Extraction/Purification Buffers 

Buffer T: 100mM Na2HPO4·7H2O, pH 7.9 26.8 g 

  5mM Benzamidine   0.783 g 

  ddH2O to    1 L 

Buffer U: 100mM Na2HPO4·7H2O, pH 7.9 26.8 g 

  5mM Benzamidine   0.783 g 
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  500mM NaCl    29.22 g 

  ddH2O to    1 L 

10x Phosphate Buffered Saline (PBS), pH 7.2: Na2HPO4 10.9 g 

       NaH2PO4 3.2 g 

       NaCl  90 g 

       ddH2O  to  1 L 

Ni-NTA Equilibration Buffer: 10x PBS   20 mL 

     2M Imidazole (supplied)  1 mL 

ddH2O to   200mL 

Ni-NTA Wash Buffer: 10x PBS   10 mL 

    2M Imidazole (supplied)  1.25 mL 

ddH2O to   100mL 

Ni-NTA Elution Buffer: 10x PBS   2 mL 

     2M Imidazole (supplied)  2.5 mL 

ddH2O to   20mL 

MES Buffer:  20mM MES  2.172 g 

   100mM NaCl  2.922 g 

   pH 5.0 

   ddH2O to  500 mL 

 

TonB C-Terminal Cloning Mixtures 

PCR:  DMSO    0.6µL 

5x Reaction Buffer  5µL 

10mM dNTP   0.5µL 

20µM Primer   0.6µL (x2) 

100ng Template  1µL 

ddH2O    16.35µL 

High fidelity polymerase 0.25µL 

 

PCR Digest: PCR Reaction  20µL 

NdeI Enzyme  1µL 

HindIII Enzyme 1µL 

NEB Buffer  2.5µL 

ddH2O   0.25µL 

100X BSA  0.25µL 

 

Ligation: pET17b Vector 3µL 

TonB Insert  5µL 

Ligation Buffer 1µL 

T4 DNA Ligase 0.5µL 

ddH2O   0.5µL 
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