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ABSTRACT  

 

 

Lack of Rhythmicity in the Honey Bee Queen:   

An Investigation of Temporal Behavioral Patterns in Apis mellifera ligustica  

 

by  

Jennifer N. Johnson 

 

Little is known about the behavioral patterns of honey bee queens.  To determine if mated honey 

bee queens possess diel rhythmicity in behavior, we observed them in glass-sided observation 

hives using three types of observation regimes:  focal studies consisting of 2-hour and 24-hour 

continuous observations as well as scan-sampling of multiple queens.  All behaviors (active:  

walking, inspecting, egg-laying, begging for food, feeding, and grooming self; inactive:  

standing) occurred at all times of day and night, but no queen showed consistent diel rhythmicity 

in any of the individual behaviors.  There were no consistent diel differences in active versus 

inactive behaviors or the number of bees in the queen‟s retinue.  This arrhythmicity was 

unchanged despite daily changes in both light and temperature levels.  The arrhythmic behavior 

observed by most of the honey bee queens inside the colony appears to be similar to that 

exhibited by worker bees before they initiate foraging behavior.  
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CHAPTER 1 

INTRODUCTION 

 

Honey bees (Apis mellifera) are eusocial insects co-existing in a colony and functioning 

as a single entity (organism).  The hive is made up of one queen, several haploid male drones, 

and up to 80,000 diploid female workers (Butler 1949).  The workers progress through different 

duties inside the hive such as hive maintenance (repair and buildup of comb, cleaning cells, etc.), 

brood care (tending eggs and feeding larvae), queen care (grooming and feeding the queen), 

receiving and storing nectar, and packing pollen before they leave the nest to perform outside 

duties such as foraging (collecting pollen, water, and nectar) (Seeley 1982, 1995; Robinson, 

1992).   

The queen and the drones function solely as reproductive entities.  Drones continue to 

develop after they emerge from the cell, reaching sexual maturity at approximately 12 days 

(Winston 1987).  After reaching sexual maturity, the drones begin flying to a drone congregation 

site, in hopes of mating with a queen from another hive.  The exact specifications for the drone 

congregation site are not well known, but the drones do base their flights on time of day and 

temperature (Rowell et al. 1986), suggesting an endogenous clock mechanism.  The queen‟s 

primary focus is to lay eggs.  She usually lays on average less than 1,500 eggs per day (Winston 

1987), but that depends on temperature (Dunham 1930), pollen stores (Schmickl et. al. 2003), 

and seasonal factors (Sasaki and Obara 2001).   

The most commonly studied caste of bee is the worker whose circadian rhythms have 

been studied extensively (Moore and Rankin 1985; Moore et al. 1989; Moritz and Sakofski 

1991; Moore et al. 1998; Moore 2001; Bloch and Robinson 2001).  It has also been shown that 
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the in-hive duties such as brood care lack a natural rhythm (arrhythmic) and happen 24 hours a 

day (Moore et al. 1998; Bloch and Robinson 2001).  The circadian rhythms of the queen have 

not been studied as extensively as the rest of the hive, and this will be the main focus of the 

study. 

Even though they potentially share the same parents, honeybee queens differ 

developmentally, morphologically, and sexually from their nest mates and have a very distinct 

role and importance to the hive.  It is known that their behavior differs from that of their female 

nest mates (drones will not be addressed further in this paper) in that they do not progress 

through several different behavioral stages with age but instead remain in one phase post-mating 

(reproduction).  Worker bees have been shown to develop a circadian rhythm as they age (Moore 

et al. 1998; Bloch and Robinson 2001) and move from in-hive duties to outside duties.  They do 

not have a circadian rhythm until the final stage in their development.  Because queen bees have 

a different developmental profile and develop with a different behavioral suite from their hive 

mates, we want to see if they acquire a circadian rhythm or stay arrhythmic.  In order to show 

rhythmicity in a queen (or lack thereof), her minute-by-minute activities, night and day activities, 

and seasonal activities have to be observed and documented. 

Questions of the Research 

 

Question 1:  How does the queen organize her time on a minute-by-minute basis? 

Hypothesis 1:  The queen‟s actions are random; therefore, no pattern will emerge in her behavior. 

The queen has been observed inspecting cells, laying eggs, begging for food, grooming 

self, feeding, and walking, all of which are classified as „activity‟; she has also been observed 

standing still, which is considered „inactive‟.  It is possible that she spends her time randomly 
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divided between activity and inactivity such that no pattern emerges, and no predictions can be 

made as to whether she will be active or inactive at any given time. 

 

Hypothesis 2:  The queen‟s actions are based on her location in the hive. 

The hive is usually composed of empty cells, cells containing eggs or larvae (brood 

cells), and cells containing honey, nectar, or pollen. The queen may travel over all of these cells, 

but do they play a role in her activities?  Does an inspection of an empty cell trigger the need to 

fill the empty cell with an egg?  If the queen discovers an area of unavailable cells, does she then 

take a break or keep searching until she discovers some more empty cells?  If substrate plays a 

role in her behavior, then she should continue to lay eggs nonstop as long as cells are available 

near her. 

 

Hypothesis 3:  The queen‟s actions are based solely on internal programming. 

It is also possible that the queen‟s actions are neither random nor substrate-based, but 

occur based on a preprogrammed internal mechanism.  She could be predisposed to a certain 

behavior for a certain period of time followed by another behavior for another length of time.  

For example, she could inspect cells and lay eggs for x minutes, then switch to resting for y 

minutes, and after that, resume cell inspection and egg laying for x minutes, etc.   

 

Question 2:  How does the queen partition her time from night to day? 

Hypothesis 1:  The queen‟s bouts of activity occur more frequently during daylight hours. 

Whether or not a minute-by-minute pattern exists, we may discover that she has a rhythm 

that coincides with day and night.  Most animals show some sort of rhythmic activity that occurs 
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daily (diurnal), nightly (nocturnal), or at dusk and dawn (crepuscular).  The queen‟s activities 

may be similar to those of the diurnal foragers who are more active during the day and rest at 

night (Moore 2001).   

 

Hypothesis 2:  The queen‟s activity will increase during certain phases of the day not 

corresponding to diurnal, nocturnal, or crepuscular, such as ultradian or infradian. 

The queen‟s activity in relation to her resting periods may increase during certain hours 

throughout the day that cannot be classified as diurnal, nocturnal, or crepuscular but does occur 

at approximately the same time each day.  For example, the queen may become more active mid 

afternoon, and her activity may continue until after sundown.  Her shift of activity would cover 

six hours that includes daylight, dusk, and night.  Therefore it could not be classified into just 

one category, but it would still be rhythmic because it occurs in the same time frame every day. 

 

Hypothesis 3:  The queen‟s activity is arrhythmic in relation to night and day. 

The queen‟s activity may not significantly increase as compared to resting at any point 

during the day or night.  Her bursts of rest and activity might be randomly disbursed throughout 

the 24-hour period.  This behavior would follow that of newly emerged arrhythmic bees.  Moore 

et al. (1998) found that young bees (less than 20 days old) have no circadian rhythm, but they do 

develop a circadian rhythm when they become foragers (approximately 20 days old) and venture 

outside the hive.  The queen only flies from the hive to mate, so her lack of rhythm may mimic 

that of pre-foragers. 

 

Question 3:  How does the queen‟s behavior change annually? 
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To our knowledge a colony (and more specifically, the queen) has not been observed for 

an entire 12-month period.  Free et al. (1992) observed colonies from October 1958 to March 

1959 for 30 minutes per day for 5 days per week (time of day not specified) and then again from 

October 1980 to February 1981 for approximately 65 minutes for an unknown number of days.  

They reported no diel periodicity seen in the queen, but they only looked at distance traveled 

during a 30-minute period of time.   

 

Hypothesis 1:  The queen‟s activity changes throughout the year based on photoperiod. 

The queen may have an internal circannual clock that helps regulate egg laying according 

to season.  Typically, a circannual clock is what helps an animal know when to hibernate based 

on photoperiod.  As winter approaches the daylight hours get shorter. This could be a cue to slow 

down egg laying.  The colony size shrinks in the winter because forage is limited, and the bees 

must live on the stored honey and pollen.  The queen would not need to produce many eggs 

because food resources are limited, and overproduction of eggs could lead to a colony‟s demise 

if it were allowed to continue. For the benefit of the colony, the queen should not stop laying 

eggs completely. If she were to perish, the workers would still have a constant supply of eggs 

available to them from which they could create a new queen.  In the spring, the photoperiod gets 

longer, which allows the bees more daylight hours to gather nectar and pollen.  The longer 

daylight hours may be a cue to let the queen know when to boost egg laying.  In the spring the 

colony needs to replenish itself and prepare for foraging; therefore, egg laying must increase. 

 

Hypothesis 2:  The queen‟s activity would change in relation to the photoperiod, and any pattern 

found in Question 1 or Question 2 would change also. 
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This hypothesis is based on the findings from Question 1 and/or Question 2, which are 

not yet known.  For example, if we find that her activity in spring follows a diurnal rhythm, this 

rhythmicity will be less pronounced in winter or may disappear completely.  

As stated earlier, workers develop a circadian rhythm over time in their natural 

environment.  Toma et. al. (2000) took pupae from a hive in the field and allowed them to 

emerge in the incubator in the lab.  The newly emerged bees were then transferred to an 

environmental chamber where locomotor activity was monitored constantly.  The bees had never 

been exposed to other bees and were kept in constant conditions (darkness, 26
o
C) throughout the 

experiment.  The experimental bees began life with no rhythm but developed a distinct circadian 

rhythm exactly like their counterparts in the wild. If the queen shows any sign of rhythmicity, we 

will be able to confirm our findings via this chamber in a similar experiment. 
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CHAPTER 2 

ABSENCE OF CONSISTENT DIEL RHYTHMICITY IN MATED HONEY BEE QUEEN 

BEHAVIOR 
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Abstract 
 

Relatively little is known about the temporal control of behavior of honey bee queens 

under natural conditions.  To determine if mated honey bee queens possess diel rhythmicity in 

behavior, we observed them in glass-sided observation hives employing two focal studies 

involving continuous observations of individual queens as well as a scan-sampling study of 

multiple queens.  In all cases all behaviors were observed at all times of the day and night.  In 

four of the five queens examined in focal studies, there were no consistent occurrences of diel 

periodicity for any of the individual behaviors.  A more encompassing measure for periodicity in 

which the behaviors were characterized as active (walking, inspecting, egg-laying, begging for 

food, feeding, and grooming self) or inactive (standing) also failed to reveal consistent diel 

rhythmicity.   Furthermore, there were no consistent diel differences in the number of workers in 

the queen‟s retinue.  Behavioral arrhythmicity persisted across seasons and despite daily changes 

in both light and temperature levels.  Both day and night levels of behavioral activity were 

correlated with daytime but not with nighttime, ambient temperatures.   The behavior of the one 

exceptional queen was not consistent:  diurnal activity patterns were present during two 24-h 

observation sessions but arrhythmicity during another.  Based on the behavior observed by all 

but one of the queens examined in this work, the arrhythmic behavior by the mated honey bee 

queen inside the colony appears to be similar to that exhibited by worker bees before they 

approach the age of onset of foraging behavior.  

  

Keywords:  Apis mellifera; Queen; Behavior; Circadian rhythm; Social insects  
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1.  Introduction 

One of the more remarkable features of the circadian system controlling behavior in 

European honey bees (Apis mellifera) is its plasticity.  Typically, honey bee workers perform an 

age-related sequence of in-hive tasks (an integral component of the division of labor) from 

emergence until they assume foraging duties at about 21 days of age (Lindauer, 1952; Sakagami, 

1953; Seeley, 1982; Robinson, 1992).  Newly emerged workers are arrhythmic whether 

individually isolated under constant conditions (Spangler, 1972; Toma et al., 2000) or housed in 

observation colonies under natural conditions (Moore et al., 1998).    In the colony young 

workers perform their age-associated in-hive tasks around-the-clock but develop rhythmicity in 

advance of becoming foragers (Moore et al., 1998).  This rhythmicity is diurnal:  workers exhibit 

higher levels of resting behavior at night relative to the day.  Behavioral rhythmicity is well 

developed by the time workers attain foraging status.  Although different foraging groups may be 

active at different times of day (Körner, 1939; von Frisch, 1940; Moore et al., 1989), foragers 

display strong diurnal rhythmicity by resting in the hive at night, even displaying sleep-like 

characteristics (Kaiser and Steiner-Kaiser, 1983; Kaiser, 1988; Sauer et al., 2003; Klein et al., 

2008).  The ontogeny of rhythmicity also is evident in individually isolated workers.  Initially 

arrhythmic (Spangler, 1972; Toma et al., 2000), young worker bees develop free-running activity 

cycles under constant dark and constant temperature conditions after several days.  Isolated 

foragers show strong circadian rhythms of locomotor activity under constant conditions 

(Spangler, 1972; Moore and Rankin, 1985; Toma et al., 2000; Bloch et al., 2006; Shemesh et al., 

2007) and exhibit diurnal entrainment patterns to a broad spectrum of different light-dark (LD) 

and temperature cycles (Moore and Rankin, 1993).  Similar patterns are seen in Japanese honey 

bee (Apis cerana japonica) foragers (Fuchikawa and Shimizu, 2007a,b). 
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The ontogeny of behavioral rhythmicity in honey bees appears to be adapted to the needs 

of the colony.  Most in-hive tasks are performed around-the-clock.  One example is brood care 

behavior, conducted primarily by “nurse bees” (approximately 5-15 days of age).  It is thought 

that the unremitting day and night attention received by the brood from nurses (Crailsheim et al., 

1996; Moore et al., 1998; Shemesh et al., 2007) may contribute to colony efficiency (Bloch, 

2009).   Honey bee foragers in contrast exhibit robust diurnal circadian rhythms.  Foragers rely 

on a continuously consulted circadian clock to navigate through the environment using a time-

compensated sun compass (von Frisch, 1967) and to schedule their foraging visits within optimal 

time-windows for collection of nectar and pollen from different species of flowers (reviewed in 

Moore, 2001).   

The expression of behavioral rhythmicity of both nurses and foragers is modifiable.  

When arrhythmic nurses are removed from a colony that is maintained under a LD cycle and 

transferred to individual chambers under constant laboratory conditions, they exhibit free-

running circadian rhythms of locomotor activity with the active phase during subjective day 

(Shemesh et al., 2007).  Forager honey bees can be induced by removing most of the nurses from 

the colony to revert to nursing behavior (Huang and Robinson, 1996).  Most reverted nurses lose 

their rhythmicity, performing brood care behavior around-the-clock (Bloch and Robinson, 2001; 

Bloch et al., 2001).  The age of onset of rhythmicity in locomotor activity is earlier for newly 

emerged workers that are housed with about 30 foragers than for those housed with the same 

number of young bees (Meshi and Bloch, 2007), thus revealing a social influence on the 

ontogeny of behavioral rhythmicity.  The circadian systems of worker bees also may be sensitive 

to seasonal effects:  free-running periods of locomotor activity in individual foragers and nurses 

increased from spring to summer (Bloch et al., 2006). 
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Compared to workers a relative paucity of information exists concerning the circadian 

system controlling behavior in honey bee queens.  Presumably, virgin queens possess a working 

circadian clock so that they can schedule their nuptial flights at the appropriate time of day 

(Koeniger and Koeniger, 2000) and navigate to and from drone congregation areas.  A number of 

physiological and behavioral changes are associated with the transition from virgin to egg-laying 

status.  For instance, virgin queens are initially photonegative but become phototactic in 

anticipation of their nuptial flights (Berthold and Benton, 1970).  Once egg-laying is initiated, 

however, honey bee queens once again become photonegative and refrain from further mating 

flights for the remainder of their lives (Berthold and Benton, 1970; Winston, 1987; Kocher et al., 

2008).  The recently mated queen also exhibits growth and maturation of the ovaries (Patricio 

and Cruz-Landim, 2002), radical changes in pheromone profile (Plettner et al., 1997; Keeling et 

al., 2003), an increase in neuropil volume and a decrease in the volume of Kenyon cell somata in 

the mushroom bodies (Fahrbach et al., 1995), and a decline in dopamine levels (Harano et al., 

2005) leading to a reduction in locomotor activity (Harano et al., 2008).  Genomic analyses are 

beginning to uncover the molecular mechanisms underlying these changes (Richard et al., 2007; 

Kocher et al., 2008).  In accord with worker honey bees exhibiting around-the-clock performance 

of in-hive tasks (Moore et al., 1998), it would be reasonable to expect the queen to show similar 

arrhythmicity once she assumes egg-laying status. 

With respect to behavior mated queens in observation colonies showed no evidence of 

diel periodicity in the number of eggs laid, distance traveled, or the number of attendants in her 

retinue (Free et al., 1992).   However, in a recent study of individually isolated honey bee queens 

(Harano et al., 2007), the locomotor activity of all virgin queens and most mated queens 

exhibited free-running circadian rhythms under constant conditions.  The apparent absence of 
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rhythmicity in mated queens under natural conditions and its presence under constant conditions 

in isolation is reminiscent of the behavioral plasticity seen in nurse bees (Shemesh et al., 2007).  

Plasticity in behavioral rhythmicity has been well described for queens of several different ant 

species – virgin queens exhibit circadian locomotor activity but become arrhythmic when laying 

eggs (McCluskey, 1992; Sharma et al., 2004a).  Furthermore, in the ant Camponotus 

compressus, queens resumed rhythmicity after termination of the egg-laying phase (Sharma et 

al., 2004b). 

It is difficult to discern the presence or absence of diel behavioral rhythmicity without 

knowing the full range of behaviors possible within the organism‟s environment.  The situation 

is relatively simple for studies of locomotor activity under laboratory conditions:  the organism 

simply is active or it is not.   In contrast the situation may be much more complex under natural 

conditions in which the organism may exhibit an array of different overt behaviors, interact with 

other individuals, and respond to environmental changes.   One plausible scenario is that some 

behaviors are rhythmic while others are not.  Alternatively, rhythmicity may not appear at the 

level of individual behaviors (i.e., walking, mating, oviposition, etc.) but nevertheless emerge if 

the different identifiable behaviors are viewed in terms of „active‟ and „inactive‟ groups.  For 

instance, worker honey bees perform a variety of in-hive tasks as they progress through their 

age-polyethism schedule (Lindauer, 1952; Sakagami, 1953; Seeley, 1982; Robinson, 1992).  

None of these „active‟ behavioral tasks appear to be rhythmic (Moore et al., 1998).   However, as 

workers approach foraging status, they take more rest breaks (typically only a few minutes per 

occurrence) at night relative to the daytime hours, thus revealing a diurnal rhythmicity that does 

not sacrifice around-the-clock task performance (Moore et al., 1998).    
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In the present study we examine the entire repertoire of the queen‟s behavior within 

glass-sided observation colonies using two approaches – focal observations of individual queens 

and scan-sampled observations using multiple queens.  In both cases the queens are not isolated 

but observed within the milieu of working colonies.  Our primary goal is to determine the 

presence or absence of diel rhythmicity based on day and night measures of each of the queen‟s 

overt behaviors as well as the manner in which she integrates her presumptive resting behavior 

with her more obviously active tasks.  Our observations build upon those of Free et al. (1992) 

who studied a somewhat limited selection from the queen‟s behavioral repertoire.  

  

2.  Materials and methods 

 

2.1. General procedures 

Behavioral observations were made on naturally mated queens (Apis mellifera ligustica) 

within working colonies (i.e., unrestricted access to the natural environment) kept in glass-sided 

observation hives.  The observation hives were situated at five different sites, all within or near 

Johnson City, Tennessee.  Ambient temperature was measured with digital thermometers in the 

immediate vicinity of the colony at mid-hive level.  Natural day-night cycles were noted using 

civil twilight to determine sunrise and sunset times.  In all cases the colony was exposed to daily 

variations in light levels through the hive entrance.  The observation rooms were not illuminated.   

2.2. Behavioral observations 

Three different studies were performed.  The first involved a scan sampling strategy 

involving multiple queens designed to determine, in general, the presence or absence of different 

queen behaviors at all times of the day and night.  The second study, providing a higher temporal 
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resolution of behavioral performance than the scan-sampling approach, involved continuous 

monitoring of individual queen activity:  queen bees were monitored during four specific 

observation sessions (two during the day and two at night) each 120 minutes long for three 

consecutive days.  These three-day observation sets were conducted at monthly intervals, 

encompassing the transition from late summer to mid-winter for one queen and late winter to 

early summer for two other queens.  In the third study, serving to corroborate and extend the 

previous studies, three different queens were monitored during continuous 24-h observation 

sessions during the summer.  In all the studies the queens were free to move to either side of the 

colony. 

For the continuous monitoring (focal) studies, the queen‟s behaviors were recorded 

manually during each observation session.  Observers positioned themselves at eye-level with 

the queen.  Using quickly executed, hand-written symbols to record each behavior on data sheets 

previously set up in one-minute sections, the observers achieved real-time monitoring of the 

queen‟s activities.  Furthermore, queen behaviors proved to be highly stereotyped and easily 

distinguished from one another (Table 1).  One behavior (grooming self) was a complex of 

several different motor patterns including cleaning of the eyes, antennae, abdomen, legs, and 

proboscis.  Each instance of inspecting (inserting head in cell) and egg-laying (inserting 

abdomen in cell) was recorded as a separate occurrence.  It is important to note here that for 

focal study 1 three behaviors (begging for food, feeding, and grooming self) were treated 

separately from standing behavior despite the fact that all three occurred when the queen was 

stationary.  Standing behavior, therefore, was defined as being stationary but not also performing 

any other action.  For focal study 2 the recording process was streamlined:  begging for food, 

feeding, grooming self, and standing were all designated as „stationary‟ behaviors. 



21 

 

Table 1  Description of behaviors exhibited by queen honey bees. 

Behavior  Description 

Standing Motionless on comb, frame, or glass; not begging for food, feeding, or grooming self 

Walking Locomotion across comb, frame, or glass 

Inspecting Placing head inside a cell 

Egg-laying Placing abdomen deep inside a cell; usually results in egg deposition 

Feeding Using proboscis to retrieve food from worker bee‟s mouthparts 

Begging for food Extending proboscis toward another bee; no contact is made 

Grooming self Rubbing proboscis, eyes, antennae, legs, or abdomen with legs 

For the purposes of the focal queen studies it was required that every behavioral 

transition as well as the duration and time of day of occurrence of every behavior be recorded.  

To ensure that no behaviors were missed, but nevertheless maintaining reasonable temporal 

resolution, we estimated the durations of individual behaviors if more than one was performed in 

any given minute.  For example, if one instance of walking, two instances of inspecting, and two 

instances of egg-laying were all performed within the same minute, then each occurrence of 

behavior was estimated to have occupied one-fifth of that particular minute. 

In the scan sampling study each scan sample consisted of locating the queen and noting 

only the first behavior seen.  Walking, stationary, inspecting, and egg-laying behaviors were 

monitored.  Feeding, begging for food, and grooming self behaviors were relatively rare and, 

therefore, combined with standing behavior as „stationary,‟ as in focal study 2.    

2.3. Scan sampling:  multiple queen study   

Three trials were conducted:  August 25-September 2 (7 colonies); September 8-13 (6 

colonies); and October 3-7, 2008 (5 colonies).  Each trial consisted of scan sampling (Altmann, 

1974) queen behavior in four-frame observation hives kept at three different study sites.   All of 

the observations were made by two observers (JJ and CG) with JJ accounting for 50%, 60%, and 

70% of the observations in the three successive trials.  Discrimination among the four monitored 

behaviors (stationary, walking, inspecting, and egg-laying) proved to be quite simple for both 

observers.  Brief observation sessions prior to the study revealed no differences in interpretation 
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of these behaviors.  The queens at each study site were naturally mated and obtained from 

different commercial sources (Table 2).  Sites A, B, and C were in a garage, a large barn, and a 

small barn, respectively.  All colonies had free access to the environment but also were provided 

with 1M sucrose and pollen continuously at the hive entrance.  The same colonies were used in 

each trial but colony A1 was removed from trials 2 and 3 because of intense nectar robbing from 

stronger colonies.  Colony B2 was not included in trial 3 because a second queen emerged just 

prior to the onset of the trial.  The queen from colony A2 was removed from her original colony 

but re-established with workers from other, unrelated colonies and used in trial 3.  This particular 

colony, quite small in population size, was housed at study site C rather than site A to protect it 

from the influence of nectar robbing.  Colony size was estimated to the nearest 100 bees by 

counting the bees from 10 randomly chosen grid squares (drawn on the glass) on each side of the 

hive and making the appropriate extrapolations.  All of the queens were obtained from suppliers 

(Table 2:  Gardner‟s Apiaries, Baxley, GA; Rossman Apiaries, Moultrie, GA; Wilbanks 

Apiaries, Claxton, GA) and installed in the colonies during July 2008. 

Table 2  Study site, commercial source for queen, and estimated population (nearest 

100 bees) of each colony for all three trials in multiple queen study. 

Colony  Commercial Study site Estimated colony 

 source  population 

 Trial 1  Trial 2 Trial 3 

A1  Gardner‟s A 900      

A2  Rossman A (trials 1 and 2), 2600  2200  100  

  C (trial 3)       

B1  Rossman B 5600  2500  5300  

B2  Wilbanks B 2000  2600    

B3  Gardner‟s B 6800  6500  7600  

C1  Gardner‟s C 7700  6300  8000  

C2  Wilbanks C 5300  4500  2200  

Although the hives were sheltered from direct sunlight at each study site, they were 

otherwise exposed to natural day-night oscillations in temperature and light levels.    

Observations (using a red LED headlamp during the night and a small flashlight during the day) 

were taken every 30 minutes during 3-hour sessions (for all of the colonies present at each 
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particular study site) over the course of 9, 6, and 5 days, respectively, for the three successive 

trials.   The observer was allotted 10 minutes per hive to find the queen and note her first 

behavior upon discovery.  If the queen was not located within 10 minutes, the observer moved on 

to the next colony.  All of the queens were located within the 30-min scan sample, with only 

three exceptions (twice in trial 2 and once in trial 3).  A minimum waiting period of 10 minutes 

was required between consecutive observations of the same queen.  Each queen was sampled 

around-the-clock, but with no more than two 3-hour sessions on any given day.  If two sampling 

sessions were scheduled on the same day at the same study site, they were separated by at least 9 

hours.  Emerging from this sampling scheme was a composite view of queen behavior over the 

entire day-night cycle, with a resolution of 0.5 h.    

2.4. Focal study 1:  four 2-h observation sessions per day 

Three different, unrelated queens (numbered 1, 2, and 3) and their colonies were 

monitored.  Two colonies (1 and 2) were housed within three-frame observation hives located 

within a walled-off section of a laboratory, three stories above ground level, and exposed to 

natural LD conditions (and therefore bright light during the day) at the hive entrance but not 

exposed to artificial light in the observation room (light levels were not at absolute darkness, but 

sensors pointed away from the glass sides of the hive always measured 0 lux).  The third queen 

was kept in a four-frame observation colony housed in an observation shed under similar lighting 

conditions.  Queen 1 was approximately one month of age and queens 2 and 3 approximately 10 

months of age at the beginning of their respective observations.   Each queen was monitored 

during four separate, 120-minute observation sessions each day for three consecutive days using 

dim red light, invisible to the bees (Menzel and Blakers, 1976).  Two sessions were scheduled at 

night and two during the day.  Based on local sunrise and sunset times, the early-day observation 
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session was centered between sunrise time and the midpoint time of the current natural 

photophase.  Similarly, the late-day session was centered between the midpoint of the 

photophase and time of sunset.  The early- and late-night observation sessions were scheduled at 

a 12-h phase difference from the early-day and late-day sessions, respectively.  This scheduling 

resulted in the early-night observation sessions beginning approximately 2 hours after sunset and 

the late night sessions 4 hours before sunrise.  The early day sessions began about 2 hours after 

sunrise and the late-day sessions 4 hours before sunset.  The 3-day observation sets were 

conducted once per month at monthly intervals (queen 1 from September 2007 through January 

2008 and queens 2 and 3 from March through June 2009).  Temperatures were recorded at the 

beginning of each 120-min observation session.  Because of diminished honey stores, queen 1‟s 

colony was provided occasionally with 1M sucrose, via pipettes inserted through air vents at the 

top of the observation hive, during the months of December 2007 and January 2008.  No sucrose 

was given during the 3-day observation sets.   One observer (JJ) performed all of the 

observations for queen 1; queens 2 and 3 were shared equally by EH and JJ.  To ensure 

subsequent uniformity of observations, the two observers worked together on 6 of the 12 

observation sessions during the first (March) observation set for queen 2.  

Because of the emphasis on tracking the behavior, we did not confirm that every 

occurrence of egg-laying behavior resulted in the production of an egg.  However, occasional 

inspections never revealed failures by the queen to deposit an egg after performing the behavior.  

Therefore, the number of eggs/h laid by the queen was estimated for each monthly observation 

set by averaging the number of egg-laying behaviors recorded each hour during the 2-h 

observation sessions.  
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With rare exceptions the queen was constantly antennated, licked, and groomed by her 

attendants.  For the purposes of this study these actions are not treated as queen behaviors 

because they apparently do not require active participation on the part of the queen.  Also 

monitored were the numbers of worker bees attending the queen and any times that she was not 

visible (such as when the queen switched to the opposite side of the comb).  The number of 

workers in the queen‟s retinue continually changed; therefore, only the first number noted during 

each successive 15 minutes of observation was used for subsequent analyses.  The means were 

calculated from all of the observations at each particular time of day for all 3 days of the monthly 

observation set.  Only workers that were facing the queen and antennating, licking, grooming, or 

feeding her were counted as members of her entourage.   

2.5. Focal study 2: 24-h observations 

 Three different queens were observed during continuous 24-h sessions.  All three 

colonies contained two full frames of bees (approximately 4000 workers).  The first was queen 2 

from focal study 1.  Queen 2 was kept in the same colony as before and was approximately 1 

year of age at the time of this study.  The remaining two (designated queens 4 and 5) were 

unrelated to queens from any of the previous studies.  Both were established in nucleus hives in 

April and transferred to observation hives during May; they were approximately 3 months of age 

at the beginning of this study.  Queen 2 was monitored on three separate 24-h observation 

sessions spanning 28-29 June, 7-8 July, and 17-18 July, 2009.  Queen 4 was observed during one 

24-h session on 2-3 July, 2009 and queen 5 during three 24-h sessions on 5-6, 15-16, and 22-23 

July, 2009.  Queen 2 was located in the same site as in focal study 1 and queens 4 and 5 were 

located at sites C and B, respectively (previously used in scan-sampling study; Table 2); 

therefore, queen 2 was much more insulated from daily light and temperature fluctuations than 
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were queens 4 and 5.  Temperatures were recorded hourly and weather conditions were noted 

continuously throughout the observation sessions.  All of the observations were made by two 

observers (JJ and EH) in alternating 4-h shifts.  The observations for queen 2 began at 20:00 h 

and ended at 19:59 h the next day for the first 24-h session and began at 06:00 h and finished at 

05:59 h for the second and third sessions.  For queens 4 and 5, all the sessions began at 18:00 h 

and finished at 17:59 h the following day.  For uniformity and visual clarity, graphs depicting the 

24 hours of each observation session were plotted from midnight to midnight. 

2.6. Analyses 

  For the scan-sampling (multiple queen) study a chi-square goodness of fit test was used 

to determine if the number of occurrences of each behavior (pooled for all queens in each trial) 

were (1) distributed with equiprobability across four 6-hour periods, beginning with 07:00 h 

(corresponding approximately to sunrise) and (2) distributed with equiprobability between day 

and night (corrected for differences in duration).  Differences between night and day in the 

relative frequencies of active and inactive behaviors were tested by a 2 × 2 chi-square 

contingency table analysis for each trial. 

For focal study 1 the total number of minutes occupied by each behavior was compiled 

for each monthly set of observations for each queen.  Each behavior was then assessed according 

to the proportion of time it occupied during the monthly observation sets.  Potential relationships 

among the various behaviors (using data from all three queens) were tested for trends that were 

common to all three queens by using the Spearman rank-order correlation on these proportions.  

We used three different assessments of behavior with respect to time of day.  First, each behavior 

(Table 1) was evaluated individually using data from all 3 days of each monthly observation set 

according to distribution among the four different observed times of day.  For this purpose the 
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numbers of minutes occupied by the particular behavior for each observation time of day were 

submitted to a Kruskal-Wallis test across all four times of day (df = 3 in all cases).  Second, each 

behavior was assessed for day vs. night differences in occurrence by comparing the minutes for 

all the daytime observation sessions with those for the nighttime sessions for all 3 days of the 

monthly observation set, using the Mann-Whitney test.  If a significant difference was detected 

(P < 0.05), the behavior was then characterized as diurnal or nocturnal (i.e., highest level of 

performance of the behavior occurred during the day or night, respectively).  Third, for an 

overall assessment of the presence or absence of diel rhythmicity, the numbers of minutes 

devoted to all the behaviors except standing were combined into a measure of „activity‟ and the 

number of minutes occupied by standing was characterized as „inactivity‟.  Potential differences 

between night and day were evaluated by comparing the minutes devoted to activity in all of the 

nighttime and daytime observation sessions using the Mann-Whitney test for each monthly 

observation set for each queen.  Significant differences (P < 0.05) were interpreted as indicating 

overall diurnal or nocturnal rhythmicity (depending on which phase contained the higher 

proportion of active behaviors).  Using the data from all three queens, Spearman rank-order 

correlation was used to test the relationships between the proportion of time engaged in active 

behaviors (1) during the day and the mean late-day ambient temperature, (2) during the night and 

the mean late-day ambient temperatures, and (3) during the night and the mean late-night 

ambient temperatures.  Finally, the Kruskal-Wallis test was used to determine if the numbers of 

workers in the queen‟s retinue were distributed with equiprobability across all four observation 

times of day and the Mann-Whitney U-test was used to discern if retinue numbers were 

distributed with equiprobability between night and day.  
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For focal study 2 the number of minutes devoted to each behavior was compiled for each 

hour of each 24-h observation session.  Then, each 24-h session was divided into four 6-h 

segments beginning with the hour closest to sunrise.  A mean number of minutes devoted to each 

behavior was calculated from the hourly values within each of the four 6-h segments.  For each 

behavior the Kruskal-Wallis test was used to check for differences among the four segments.  

The Mann-Whitney test was used to assess day vs. night differences in occurrence of each 

behavior:  means for daytime (approximately 15 hours) and nighttime (approximately 9 hours) 

were calculated from the hourly values.   To evaluate the presence or absence of overall diel 

rhythmicity the numbers of minutes devoted to walking, inspecting, and egg-laying were 

combined into an „activity‟ measure and the number of minutes occupied by stationary behavior 

was characterized as „inactivity.‟    Night and day activity levels were compared using the Mann-

Whitney test for each 24-h observation session for each queen.  Significant differences (P < 

0.05) were interpreted as indicating overall diurnal or nocturnal rhythmicity (depending on 

which phase contained the higher proportion of active behaviors). 

 

3.  Results 

3.1. Scan-sampling study 

Scan-sampled observations of multiple queens indicated that all of the monitored 

behaviors (walking, stationary, inspecting, and egg-laying) occurred at all times of the day and 

night (Fig. 1).  Using pooled data from all of the colonies, none of the behaviors showed 

variation in frequency of occurrence over four 6-h segments of the day-night cycle (χ
2
 goodness 

of fit, df = 3, P > 0.05 in all cases) for any of the three trials.  Similarly, none of the behaviors 

exhibited a significant difference in frequency between night and day (χ
2
 goodness of fit, df = 1, 
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P > 0.2 in all cases).  Furthermore, there were no significant differences in the frequency of 

active (combination of walking, inspecting, and egg-laying) and inactive (stationary) behaviors 

between night and day for any of the three trials (trial 1:  χ
2
 = 0.01, P = 0.920; trial 2:  χ

2 
= 0.29, 

P = 0.590; trial 3:  χ
2 

= 0.69, P = 0.406; df = 1 in all cases).   Although the queens were not 

analyzed as individuals in this particular study, it is apparent that stationary behavior and 

episodic interludes of active behaviors were distributed throughout both the day and night for 

every queen in all three trials (Fig. 1).  This pattern was observed for a variety of colony sizes 

(Table 2) including exceptionally small ones (e.g., A1 in trial 1 and A2 in trial 3). 

3.2. Focal study 1 

In this study three queens were monitored individually.  Each exhibited a rather limited 

behavioral repertoire consisting primarily of standing, walking, inspecting cells, and egg-laying, 

in order of prevalence.  A relatively small proportion of the queens‟ behavior was occupied by 

feeding (between 1.0% and 11.8% of the time observed), begging for food (between 0% and 

1.8%), and grooming self (between 1.6% and 3.4%).  Common to all three queens was a high 

proportion of time engaged in standing.   Furthermore, this proportion showed a substantial 

seasonal variation.  For example, queen 1 was observed during the transition from late summer 

(September) activity to winter (January) inactivity:  standing accounted for 44% of the observed 

behavior in September and 81% in January.  In contrast, queens 2 and 3 were observed during 

the transition from late winter (March) to early summer (June):  both showed a decrease in the 

proportion of time occupied by standing.  For queen 2 standing declined from 72% of the 

observed behavior in March to 48% in June.  Similarly, for queen 3 standing behavior occupied 

42% of the observation time in March but only 21% in May and 30% in June.   
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Figure 1 Absence of diel rhythmicity in queen behavior persists despite exposure to natural light-dark and temperature cycles.  

Graphs are composite representations of temporal behavioral performance in all three trials of the multiple queen study.  Graphs 

depict scan sampled observations of first behavior observed; entire 24-h day was sampled (over a period of several days:  25 

Aug.–2 Sept. for trial 1, 8-13 Sept. for trial 2, and 3-7 Oct. for trial 3) with a resolution of 30 min.  Each horizontal line depicts 

performance of a particular behavior (within the panels for walking, inspecting, egg-laying, or standing) by one queen (labeled 

A1, A2, B1, etc.).  Queens were obtained from three different sources and observed at three different sites (see text).  Queen A1 

was absent in trials 2 and 3; queen B2 was absent in trial 3.  Natural day-night cycle for each trial is depicted above top panel.  

Vertical bars indicate presence of the behavior; blank spaces indicate its absence.  All behaviors are performed at all times of the 

day and night. 
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With respect to the minute-to-minute temporal patterning of behaviors (Fig. 2), the 

queens typically showed short bouts of activity (primarily walking, inspecting, and egg-laying) 

that were separated by periods of standing behavior.  Begging for food, feeding, and grooming 

self behaviors often took place within the 

standing bouts.   Similar patterns of 

standing alternating with bouts of activity 

were observed by Seeley (1979).   

 

There were a limited number of 

consistent seasonal trends shared by all 

three queens with respect to relationships 

between behaviors.  The proportion of 

time engaged in standing behavior was 

negatively correlated with the 

proportions for walking, inspecting, 

and egg-laying (Spearman rank-order 

correlation: rs = -0.707, -0.962, and -

0.901, respectively; n = 13, P<0.01 

in all cases).  Thus, as the proportion of time occupied by standing behavior increased with the 

approach of winter or decreased with the approach of summer, three of the remaining six 

behaviors exhibited a significant change in frequency of occurrence in the opposite direction.  

Using queen 1 as an example, over three consecutive monthly observations (September, October, 

and November), standing behavior occupied about 44%, 63%, and 80% of the observed time 

Figure 2  One hour in the life of a queen:  time-line showing minute-by-

minute patterning of behavior.  Observations were taken from 04:45-05:45 

on 18 March, 2009 for queen 3.  Numbers indicate time, in minutes.  

Behaviors are as follows:  S-standing, B-begging for food, F-feeding, G-

grooming self, W-walking, I-inspecting cells, E-egg-laying.  Only the first 

occurrence of S (black, lowest height), W (white, lowest height), I (gray, 

middle height), and E (gray, tallest height) are labeled with letters; all other 

behavioral occurrences are labeled throughout the time-line.  Note that short 

bouts of activity alternate with somewhat longer bouts of inactivity 

(standing) and also that the occurrences of begging for food, feeding, and 

grooming self are embedded within the standing bouts. 
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while egg-laying behavior accounted for 13.4%, 5.5%, and 0%, respectively. As might be 

expected, inspecting and egg-laying behaviors showed a significant positive correlation 

(Spearman rank-order correlation:  n = 13, rs = 0.962, P<0.0001).  Among all the remaining 

pairwise comparisons of behaviors, none showed a significant correlation.   

A remarkable feature exhibited by all three individually monitored queens was the 

continuous occurrence of each behavior at all four observed times of day (early and late day, 

early and late night).  This around-the-clock performance of all behaviors persisted despite 

seasonal changes in the frequencies of occurrence of the behaviors relative to each other (Fig. 3).  

A significant difference in the minutes apportioned to a particular behavior across the four 

sampled times of day occurred in only 4 out of 89 possible instances (Table 3; two cases 

showing total absence of a behavior were excluded).  A significant difference between night and 

day in the amount of time allotted to the performance of a particular behavior occurred in only 7 

out of 89 possible cases (Table 3):  there were no apparent consistencies in these relatively rare 

occurrences with respect to queen, season, or behavior.  

Table 3  Consistency of behavioral performance (tabulated in minutes) with respect to time of day for all three individually 

monitored queens in focal study 1 over all monthly observation sessions. Top of each panel: individual behaviors were examined 

for differences in performance across all four observation times of day by Kruskal–Wallis test; P values are reported here. 

Significant deviations from equiprobability (P<0.05) are indicated in bold. Bottom of each panel: individual behaviors examined 

for day vs. night differences by Mann–Whitney test [NS: no significant difference (P>0.05) between night and day, D: P<0.05 

with highest activity during the day, N: P<0.05 with highest activity at night] (– no occurrence of the behavior during the 

observation session).  

Behavior Queen 1  Queen 2  Queen 3 

 Sept  Oct Nov Dec Jan  Mar  Apr May June  Mar  Apr May June 

Standing  0.933 0.826 0.033 0.988 0.644  0.789  0.668 0.347 0.090  0.066  0.092 0.433 0.147 

 NS NS NS NS NS  NS NS NS NS  N NS NS NS 

Walking 0.218  0.432 0.161 0.578 0.392  0.863  0.013 0.789 0.442  0.319 0.376 0.758 0.863 

 NS NS NS NS NS  NS NS NS NS  NS NS NS NS 

Inspecting  0.953 0.200 0.408 0.951 0.392  0.589  0.147 0.863 0.022  0.057 0.121 0.983 0.129 

 NS NS NS NS NS  NS NS NS D  D NS NS NS 

Egg-laying  0.319 0.340 – 0.313 0.679  0.985 0.392 0.392 0.108  0.223 0.118 0.203 0.063 

 NS NS – NS NS  NS NS NS D  NS NS NS NS 

Feeding  0.400 0.157 0.218 0.414 0.282  0.668 0.814 0.192 0.057  0.516 0.516 0.147 0.157 

 NS NS NS NS NS  NS NS NS NS  NS NS NS NS 

Begging for food  0.913 – 0.382 0.875 0.863  0.863 0.044 0.123 0.319  0.304 0.972 0.144 0.150 

 NS – NS NS NS  NS N NS NS  NS NS NS N 

Grooming self  0.147 0.835 0.034 0.223 0.218  0.259 0.092 0.058 0.622  0.183 0.706 0.218 0.183 

 NS NS NS NS NS  NS NS D NS  NS NS NS NS 
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Figure 3  Performance of individual behaviors by honey bee queens is distributed across all four observed times of day, during 

different times of the year.  The mean number of minutes devoted to individual, overt behaviors is indicated, left to right, for 

early and late day (white bars) and for early and late night (dark bars) observation sessions (monitored over three consecutive 

days, once per month) for queen 1 (queens 2 and 3 are not shown but demonstrate similar levels of variability).  Five behaviors 

are depicted (rows:  standing, walking, inspecting, egg-laying, and feeding) over five consecutive months (columns).  * denotes 

significant (P < 0.05) deviation from equiprobability of performance of a particular behavior among the four observed times of 

day.  There were no diurnal or nocturnal patterns associated with any observed behavior. 

To determine if honey bee queens show diel (day vs. night) rhythmicity in activity, 

standing behavior was used as an indicator for inactivity and the combination of all other 

behaviors was treated as the assay for activity (Moore et al., 1998).   As demonstrated with the 

individual behaviors, the predominant pattern was no significant difference between night and 
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day with respect to minutes devoted to activity:  the only significant occurrence was in March for 

queen 3 (diurnal:  Mann-Whitney test, U= 4.0, P = 0.025).   

Egg-laying rates, simply estimated from the occurrences of egg-laying behavior, varied 

by queen and by season.  The rates for queen 1 for the months of September through January 

were 28, 12, 0, 1, and 7 eggs/h, respectively.  For the months of March through June the rates 

were 2, 13, 13, and 21 eggs/h for queen 2 and 16, 32, 31, and 21 eggs/h for queen 3.  These rates 

compare favorably to the 34-36 eggs/h observed by Schmickl et al. (2003) during the summer for 

a 2-year-old queen housed in an observation colony containing 13,000 workers.  

There was an inconsistent relationship between day-night differences in ambient 

temperature and the presence of day-night differences in queen activity levels (Fig. 4).  The 

absence of a significant difference in activity between day and night occurred in all three queens 

despite large differences in daytime and nighttime ambient temperatures (e.g., all monthly 

observations for queen 1; March observations for queen 2; and April through June observations 

for queen 3).    On the other hand, an apparent relationship did exist between ambient 

temperature and overall activity levels.  For example, the proportion of time occupied by active 

behaviors during the day was significantly correlated with daytime temperature (Spearman rank-

order correlation, n = 13, rs = 0.923, P < 0.0001).  Interestingly, the proportion of time occupied 

by active behaviors during the night was also significantly correlated with daytime temperature 

(rs = 0.857, P < 0.001) but not with nighttime temperature (rs = -0.253, P = 0.404).  

In parallel with the lack of consistent diel rhythmicity in behavioral performance, there 

were no consistent differences in the number of workers in the queen‟s retinue with respect to 

time of day (Fig. 5).  In the case of queen 1, for example, there were no significant differences 
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among the four sampled times of day except for January (Kruskal-Wallis; H = 16.01, df = 3, P = 

0.001).   Significant differences in retinue size with time of day occurred only during the March 

observations for queen 2 (Kruskal-Wallis; H = 16.7, df = 3, P < 0.001) and the June observations 

for queen 3 (Kruskal-Wallis; H = 9.51, df = 3, P = 0.023).   Of these three cases diurnal 

rhythmicity in retinue number was detected in the January observations for queen 1 (Mann-

Whitney test, U = 579.5, P = 0.0001) and the March observations for queen 2 (Mann-Whitney 

test, U = 583.5, P < 0.0001) but not for the June observations for queen 3 (Mann-Whitney test, U 

= 1056, P = 0.717).  Neither of the two cases of diurnal rhythmicity in retinue size coincided 

with diurnal rhythmicity in queen activity. 

 
Figure 4  Day/night differences in activity are infrequent and show inconsistent relationships with day/night temperature 

oscillations.  Bottom:  proportion of time devoted to active behaviors during the daytime (white bars) and nighttime (black bars) 

observations for each monthly observation session for each queen.  Active behaviors is defined as the performance of all 

behaviors except standing; * denotes significant difference (P < 0.05) between day and night in the amount of time devoted to 

active behaviors. Top:  mean late day (white circles) and late night (black circles) ambient temperatures (± SEM) present during 

the corresponding monthly behavioral observations. 
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Figure 5  The size of the queen‟s retinue shows little variation with time of day.  Mean number of workers (± SEM) are shown, 

from left to right, for early day and late day (white circles) and early night and late night (black circles) observation times of day. 

3.3. Focal study 2 

Three queens were monitored continuously during 24-h observation sessions.  The first of 

these, queen 2 from focal study 1, was observed on three separate occasions over a span of 20 

days:  the queen‟s behaviors showed remarkably little variation with respect to time of day (Fig. 

6).  During the first two 24-h observation sessions, none of the observed behaviors (stationary, 

walking, inspecting, and egg-laying) showed significant deviation from equiprobability of 

occurrence among four 6-h segments of the day beginning with sunrise (Kruskal-Wallis, df = 3, 

P > 0.05 in all cases).  During the third observation session only egg-laying behavior showed 

significant variation with respect to time of day (Kruskal-Wallis, H = 9.165, df = 3, P = 0.027).   

No behavior exhibited a significant difference between day and night performance during any of 

the three observation sessions (Mann-Whitney, P > 0.10 in all cases), nor were there any 

significant differences between day and night in overall activity levels (Mann-Whitney, P > 0.2 

in all cases).  The mean temperatures and the minimum-to-maximum temperature ranges (in 
o
C) 

were 28.7 (27.8 to 29.4), 27.4 (25.6 to 28.9), and 26.6 (25.0 to 27.8) for the first, second, and 
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third sessions, respectively.  Local weather conditions were similar (mostly cloudy) for all three 

sessions. 

 

Figure 6  Minutes devoted to different behaviors by queen 2, compiled hourly during three different 24-h observation sessions.  

Each column portrays one session (dates are indicated above each column).  Top panel:  ambient temperatures recorded adjacent 

to the observation hive throughout the observation session.  Natural photoperiod is indicated by bars immediately below 

temperature profiles.  Middle panel:  minutes occupied by stationary (white circles) and walking (black circles) behaviors.  

Bottom panel:  minutes occupied by inspecting (black squares) and egg-laying (white squares) behaviors.  Time of day for each 

column is indicated below the bottom panel.   No diurnal or nocturnal patterns were detected. 

 

A second queen (queen 4) was monitored during one 24-h observation session (not 

shown).  Only walking behavior showed significant variation with respect to time of day 

(Kruskal-Wallis, H = 9.167, df = 3, P = 0.027) and only egg-laying behavior exhibited a 

significant difference between day and night (Mann-Whitney, U = 25.0, P = 0.011).  However, 

there was no significant difference in overall activity level between the daytime and nighttime 
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hours (Mann-Whitney, U = 64.0, P = 0.835).  The mean temperature was 19.7 
o
C and the 

minimum-to-maximum range was 15.0 to 25.0 
o
C over the observation session.  Weather 

conditions varied from scattered clouds to mostly cloudy. 

A third queen (queen 5) displayed evidence for diel rhythmicity during two out of three 

24-h observation sessions (Fig. 7).  During the first session, none of the behaviors showed 

significant variation among the four 6-h segments across the day (Kruskal-Wallis, df = 3, P > 

0.10 in all cases) nor between day and night (Mann-Whitney, P > 0.10 in all cases).  

Furthermore, there were no significant differences in overall activity levels between day and 

night (Mann-Whitney, U = 48.0, P = 0.245).    In contrast, during the second 24-h observation 

session (10 days later), both stationary and walking behaviors (Kruskal-Wallis, df = 3:  H = 14.5, 

P = 0.002 and H = 11.7, P = 0.008, respectively) showed significant variation among the four 

different times of day.   Stationary, walking, and inspecting behaviors exhibited significant 

variation between day and night (Mann-Whitney:  U = 24, P = 0.009; U = 18, P = 0.003; and U 

= 19, P = 0.004) as did the overall activity levels (Mann-Whitney:  U = 24, P = 0.009; diurnal).   

Similar to the second session, during the third 24-h observation session (7 days after the second 

session), stationary, walking, and inspecting behaviors varied significantly across the four 

different times of day (Kruskal-Wallis, df  = 3:  H = 13.02, P = 0.005; H = 8.99, P = 0.029; H = 

9.42, P = 0.024).  Stationary and walking behaviors varied significantly between day and night 

(Mann-Whitney:  U = 3.0, P < 0.001; U = 8.0, P < 0.001) as did the overall activity levels 

(Mann-Whitney:  U = 9.5, P < 0.001; diurnal).   Interestingly, the temperature profiles showed 

minimal differences among the three observation sessions.  The mean temperatures and the 

minimum-to-maximum temperature ranges (in 
o
C) were 22.4 (20.5 to 26.1), 24.3 (22.2 to 27.8), 

and 23.1(21.1 to 27.2) for the first, second, and third sessions, respectively.  Because the sessions 
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all occurred within a span of 17 days, the natural photoperiods were virtually identical.  Local 

weather conditions were remarkably similar across all three sessions, showing little variation 

from overcast to mostly cloudy. 

 

Figure 7  Minutes devoted to different behaviors by queen 5 compiled hourly during three different 24-h observation sessions.  

Each column portrays one session (dates are indicated above each column).  Top panel:  ambient temperatures recorded adjacent 

to the observation hive throughout the observation session.  Natural photoperiod is indicated by bars immediately below 

temperature profiles.  Middle panel:  minutes occupied by stationary (white circles) and walking (black circles) behaviors.  

Bottom panel:  minutes occupied by inspecting (black squares) and egg-laying (white squares) behaviors.  Time of day for each 

column is indicated below the bottom panel.   Diurnal activity patterns were detected during the second and third sessions, but 

not the first. 

 

4.  Discussion 

 Most of the evidence gathered in this report suggests that within the social confines of 

the colony the behavior of mated honey bee queens is arrhythmic with respect to time of day.  

The evidence for arrhythmicity is as follows:  (a) Every behavior in the queen‟s repertoire, 
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notably including egg-laying, was observed at all hours of the day and night (Figs. 1, 3, 6, and 7).  

(b)  In focal study 1 the vast majority of cases (85 of 89 tests) revealed no significant differences 

in minutes committed to any type of behavior among the four observed times of day (Table 3).  

Also, none of the behaviors examined in the scan-sampling study (Fig. 1) showed a significant 

deviation from equiprobability of occurrence across different times of day. (c)  Testing for the 

presence of day-night differences in the performance of individual behaviors revealed relatively 

few such instances (7 of 89 tests) in focal study 1 (Table 3) and none in the scan-sampling study.  

It is important to note that in focal study 1 there were no cases in which an individual behavior 

performed by a queen maintained a diel periodicity for more than one monthly observation 

session.  Egg-laying, for example, exhibited a significant day-night difference in only one 

observation session (June) for queen 2 only.  Walking and feeding behaviors failed to show any 

significant day-night difference in any observation session (Table 3).  (d)  To provide a more 

encompassing measure of behavioral rhythmicity, the amount of time devoted to standing 

behavior was taken as an indication of inactivity (i.e., rest) and the amount of time committed to 

all other behaviors was considered to be an indication of activity.  In focal study 1 only one out 

of 13 monthly observation sets showed a significant difference in activity between night and day 

-- the  March observation session for queen 3 (Fig. 4).  In the scan-sampling study none of the 

trials demonstrated a significant day-night difference in the relative amounts of activity and rest.  

(e)  The predominant absence of day-night differences in activity levels often occurred despite 

relatively large differences in temperature between night and day (Fig. 4).  Interestingly, the 

proportion of time engaged in active behaviors during both day and night was correlated with the 

mean daytime but not nighttime ambient temperatures.  (f)  The scan-sampling study revealed an 

apparent absence of diel rhythmicity in all of the behavioral measures in all three trials despite 
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the fact that all of the observation colonies were exposed to natural, ambient changes in both 

temperature and light levels and thus were confronted with two potential daily entraining cycles 

(Aschoff, 1981).  (g)  In the vast majority of cases the number of workers in the queen‟s retinue 

failed to deviate significantly from equiprobability with respect to time of day (Fig. 5), 

suggesting that the attractiveness of the queen to workers is also arrhythmic. (h)  Two out of 

three queens monitored in 24-h sessions (focal study 2) exhibited arrhythmic activity patterns. 

In contrast to the evidence for behavioral arrhythmicity outlined above, one queen in 

focal study 2 displayed obvious diel rhythmicity during two out of three 24-h observation 

sessions (Fig. 7).   The underlying reason for arrhythmicity in the first session but diurnal 

rhythmicity in the other two sessions is not apparent:  all were conducted at the same location 

within a span of 17 days.  As shown in Fig. 7, the temperature changes encountered by the 

colony were similar in temporal profile for all three sessions.  The amplitudes were slightly 

lower in the first session relative to the second (by about 2
o 
C) and the third (by about 1

o 
C).   

Because the weather conditions were similar for all three sessions (overcast or mostly cloudy), 

the light levels also were comparable.  In both the second and third observation sessions walking 

behavior showed an increase (and stationary behavior a decrease) in minutes/h that anticipated 

both the sunrise as well as the morning elevation in temperature. Inspecting behavior was 

significantly diurnal during the second observation session but not the first or third.  Only egg-

laying behavior was arrhythmic for all three 24-h observation sessions. 

The diurnal activity pattern during the second and third observation sessions for queen 5 

stand in contrast to the arrhythmic patterns produced by queens 2 (Fig. 6) and 4 (not shown).   

The factors responsible for the differences are not clear.  Although queen 5 experienced larger 

amplitude (about 6
o
 C) day-night temperature fluctuations than those encountered by queen 2 
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(about 3
o
 C), the ambient temperature variation experienced by queen 4 was even greater (10

o
 

C).   While the arrhythmic queen 2‟s colony was exposed to natural light only through the hive 

entrance, the colonies for the arrhythmic queen 4 and the sometimes rhythmic queen 5 both 

received some daytime indirect light in addition to illumination through the entrance.  

Furthermore, there were no easily discriminable differences among the weather conditions 

present during any of the 24-h observation sessions:  all were characterized by cloudiness 

throughout the day and night. 

In most studies of circadian rhythms in animals the isolated individual partitions its time 

into active and inactive (resting) phases.  For diurnal organisms, including honey bee foragers 

(Moore and Rankin, 1985; Frisch and Aschoff, 1987), this usually entails a more-or-less 

continuous active phase positioned primarily during photophase of LD cycles (or subjective day 

under constant conditions) as well as a more-or-less continuous inactive phase positioned 

primarily during the scotophase (or subjective night under constant conditions).  Our 

observations indicate that within the colony the mated honey bee queen does not segregate its 

behavior into separate, daily active and resting phases.  Instead, its rest is scheduled throughout 

all hours of the day and night; in fact, activity and rest are thoroughly intertwined (Fig. 2).  This 

arrhythmic temporal pattern is similar to that exhibited by young worker honey bees in the 

colony (Crailsheim et al., 1996; Moore et al., 1998; Shemesh et al., 2007):  before they become 

foragers, workers perform their age-specific tasks including brood care around-the-clock.  

However, as the worker approaches the onset of foraging, at about 3 weeks of age, it increases its 

frequency of resting behaviors during the night while continuing to perform its tasks at all times 

of the day and night (Moore et al., 1998).  Once foraging status is reached, the worker is 

unequivocally diurnal, scouting or collecting resources during the daylight hours and resting at 
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night (Kaiser and Steiner-Kaiser, 1983; Kaiser, 1988; Sauer et al., 2003; Klein et al., 2008).  Our 

observations, with one exception, suggest that the behavior of the mated honey bee queen may 

be driven by a temporal program similar to that of young workers – rest and activity are both 

arrhythmic.  Although the relative proportions of activity and rest change with the seasons (Figs. 

3 and 4), the fundamental temporal pattern of behavioral arrhythmicity persists.  

Free et al. (1992) reported an absence of diel periodicity for three different factors 

relevant to queen honey bee behavior – the number of workers in the queen‟s retinue, the 

distance traveled per unit time, and the numbers of eggs laid.  Our results are similar. We report 

that there is no consistent diel periodicity in (1) the number of workers attending to the queen, 

(2) the amount of time committed by the queen to walking behavior, and (3) the amount of time 

devoted to egg-laying behavior.  By examining the potential for periodicity in all of the 

behaviors in the queen‟s repertoire, we have extended the findings of Free et al. (1992) and 

eliminated the possibility that some individual behaviors are consistently rhythmic while others 

are not.   Furthermore, by using standing behavior as an indicator for rest and all other behaviors 

as indicators for activity, we have a metric for detection of putative sleep-wake cycles (Moore et 

al., 1998).  Again, with one exception, our results indicate an absence of diel periodicity.  

Our results provide an interesting contrast to the findings from two other studies of 

circadian rhythms in queen honey bees.  Moritz and Sakofski (1991) examined the free-running 

circadian rhythm of oxygen consumption in groups of 150 worker honey bees.  In response to 

introduction of individual queens that were kept in colonies 8 hours out of phase with the test 

groups, the worker rhythms showed an average phase shift of 1.4 hours in the direction of the 

queens‟ activity rhythm on the first day after the transfer.   There were no phase-shifts on 

subsequent days.   Introduction of individual worker bees failed to generate significant phase-
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shifts.  While it appears certain that the introduced queen is capable of eliciting a transient phase-

shift, it is difficult to discern its root cause. Attributing the phase shift to the influence of the 

queen‟s activity rhythm is problematic:  first, the queen‟s rhythm was not directly measured but 

rather inferred from the peak activity (i.e., foraging) of the host colony and second, as shown in 

the present study, the queen may or may not exhibit overt rhythmicity.  On the other hand, 

locomotor activity in individually isolated honey bee queens (both virgin and mated) has been 

shown to entrain to LD cycles and to free-run under constant conditions (Harano et al., 2007).  

One parsimonious explanation that encompasses all of these findings, including those of the 

current study, is that unmated and mated queens possess the capacity for expressing behavioral 

rhythmicity, but that capability is masked or inhibited in mated queens within the social setting 

of the colony.  Presumably, once the queen is removed from colonial influences (as yet 

undetermined), the rhythmicity may once again be expressed.  Perhaps, in the case of queen 5 

(which showed rhythmicity on two occasions and arrhythmicity on another), the unknown 

factors inhibiting rhythmicity or the queen‟s sensitivity to those factors were relatively weak.  

According to this scenario honey bee queens may show the same rhythmic plasticity 

demonstrated by nurse bees; these workers are arrhythmic within the colony but demonstrate 

free-running circadian rhythms of locomotor activity when removed from the colony and isolated 

under constant conditions (Shemesh et al., 2007).  A direct test of this hypothesis would seem to 

be a logical next-step in understanding the queen circadian system.     

It has yet to be determined if virgin honey bee queens show diel rhythmicity within the 

colony.  Certainly, virgin queens must consult a working circadian clock in order to navigate to 

and from drone congregation areas.  However, does this clock mechanism also contribute to the 

patterning of behavior inside the hive at this stage in the queen‟s development?  The prototype of 
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displaying rhythmicity early but becoming arrhythmic after mating has been observed in the 

queens of several ant species (McCluskey, 1992; Sharma et al., 2004a).  The predominant 

absence of diel rhythmicity in egg-laying behavior by honey bee queens observed in this study 

fits well with the previous finding of around-the-clock performance of brood care by worker bees 

(Moore et al., 1998).  The findings of the present study will help set the stage for future 

investigations into the ontogeny and plasticity of circadian rhythms in honey bee queens as well 

as the control mechanisms underlying the dynamic interplay between queen and worker 

behaviors.   
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CHAPTER 3 

DISCUSSION 

 

 By examining her activities using three types of experimental conditions, we can 

conclude that the mated queens in these studies show consistently inconsistent behavior patterns, 

supporting our initial hypothesis that the queen‟s actions are random.  None of the 13 queens 

used in our experiments showed consistent diel behavior patterns.  Although one queen in the 24-

h study showed 2 instances of diel behaviors (inspecting cells and being stationary), this pattern 

was only repeated in one or 2 of the observation days, respectively.   In the 2-h observations, the 

queens did not show a consistent diel pattern with respect to month, queen, or behavior. 

 Under our experimental conditions, it was difficult to determine the substrate that the 

queen was on at all times, so we were unable to determine if substrate plays a role in activity.  

Based on her activity patterns, she spends most of her time standing with smaller bouts of 

inspecting, laying, grooming, and feeding (Figure 2).  We have observed the queen performing 

most behaviors on all types of substrate, and it appears that she does not continuously lay eggs as 

long as cells are available, but instead often stops or walks away when clear cells remain.  It is 

unclear how she is able to determine if a cell is suitable for egg-laying, as she sometimes inspects 

a cell, passes by it, and then moments later inspects it again, this time, finding it suitable enough 

for egg-deposition.  The focus of our experiments was the queen and her behavior, so it would 

have been impossible to watch every cell she inspected to determine if workers cleaned them 

between her inspections.  Throughout all the hours of observation, we never observed the queen 

laying eggs in cells containing pollen, nectar, or honey, though occassionally she laid eggs 

repeatedly in the same cells.   
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 These experiments did not fully address the internal programming hypothesis.  Instead, 

we lumped her activities together and looked at the total time spent doing each thing.  More 

experiments would be needed to confirm or deny this. 

 We did not find results for a consistent diel or nocturnal pattern in her behavior (Figures 

1, 3, 4, 6, 7, Table 3).  Of the queens that did show either a diurnal or nocturnal rhythm, they 

were not consistent.  In focal study 1 the queen‟s behavior differed from equiprobability across 

all 4 observation time periods for only 1 behavior and 1 month but showed no diurnal or 

nocturnal behavior pattern (Figure 3).  Queens 2 and 3 showed inconsistent differences with 

respect to behavior and month (Figure 4).  In focal study 2 queen 2 had no diurnal or nocturnal 

differences (Figure 6), while queen 5 had 2 instances of diurnal walking behavior and 1 instance 

of diurnal inspecting behavior.  Even when there were differences, they were not consistent 

among months, queens, or behaviors. 

 Although the scan-sampling study only shows a resolution of 30 minutes, we do not see 

any patterns in the behaviors noted for each queen.  The more in-depth 24 hour focal study does 

not show any consistent patterns at all.  Only 1 of 3 queens showed any behavioral pattern, but it 

was inconsistent among the 3 observation time periods. 

 Based on our experiments, the most plausible explanation is that the queen is arrhythmic 

with respect to night and day.  The queens perform each behavior both day and night (Figure 1) 

and, although they show longer bouts of standing, still intermingle standing with each of the 

other behaviors (Figure 2). 

 Although we were not able to perform 24-hour continuous observations all year round, 

we were able to have 2-hour continuous observations for all months except three (February, July, 

and August), so this gives us a general idea of what the queen does all year long.  We do see that 
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the colony slows down egg production during the winter and increases it during spring (Figures 

1, 3, and Figure 8, Appendix 1) as we would expect.  During winter months, the colony is less 

active, not flying out of the hive to forage and huddling together to stay warm.  Interestingly, we 

see that the queen continues to inspect cells and lay eggs throughout the winter months.  For an 

unknown reason, the queen in our study did not lay eggs during the month of November, but 

because she resumed egg-laying in December and January, both of which had lower daytime and 

nighttime ambient temperatures (Figure 4), we have no reason to believe this lack of egg-laying 

is temperature or season-dependent. 
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APPENDIX  

Percentage of Time Spent in Each Behavior for Focal Study 1 

 

 
Figure 8  Percentage of time spent in each behavior for 

focal study 1.  S:  standing, W:  walking,  M:  

maintenance (combined behaviors of grooming self, 

feeding, and begging), E:  egg-laying, I:  inspecting 

cells.  The majority of each queen‟s time is spent 

standing, although all behaviors occur in each month 

except November.  The queen spends more time 

standing with the approaching winter, and more time 

inspecting and egg-laying as spring approaches. 
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