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Uncertainty in contact angle measurements from the tangent 
method

C. W. Extrand

cPc, inc., st. Paul, Mn, usa

Introduction

Contact angle measurements are frequently used to assess cleanliness of surfaces and the 
potential for creating a high-quality adhesive bond.[1–3] The most common technique 
employs a sessile drop, where a small volume of liquid is deposited onto a horizontal solid 
surface and allowed to spread. Liquid may be added to or withdrawn from the drop to 
advance or retract its contact line, then an image of the drop is captured, as depicted in 
Figure 1. A base line (b) with a slope of mb ≈ 0 is drawn that passes through the triple point 
on each side of the drop where the liquid, solid and the surrounding fluid meet. Another 
line (t) is drawn tangent to the side of the drop with a slope of mt, which also originates from 
the triple point. Finally, the so-called contact angle (θ) between these two lines is measured.

The uncertainty in contact angle measurements is generally reported to be ±1–2°.[4] 
However, depending on the measurement method and the wettability of the solid, these 
values can vary significantly. A number of investigators have examined the Wilhelmy ten-
siometry method and have shown that uncertainty in contact angles grows asymptotically 
as θ → 0° or 180°.[5–8] Uncertainty in indirect estimates from the dimensions and/or vol-
umes of sessile drops also is higher at the limits of wettability.[9] Relative uncertainty of the 
height–diameter[10–12] and the volume–diameter methods[13] increases as θ approaches 
0°; whereas uncertainty in the height–diameter method grows as θ tends towards 180°.[9]

Even though the uncertainties of many techniques for measuring wettability have been 
well documented, surprisingly, error propagation of the tangent method has received little 
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attention. Therefore, in this work, the uncertainty in direct measurement of contact angles 
by the tangent method was analyzed for 0° < θ < 180°.

Analysis

We begin the analysis by defining several parameters. The absolute uncertainties in the 
measurement of the tangent and base line slopes (mt and mb) are δmt and δmb. Their cor-
responding relative uncertainties are defined as
 

and
 

If it is supposed that the uncertainties of mt and mb are independent of each other and 
random, then uncertainty in contact angle (δθ) can be estimated using standard error 
propagation techniques,[14]
 

where ∂θ/∂mt and ∂θ/∂mb are partial derivatives. Values of θ from the tangent method can 
be determined from the slopes of tangent line (mt) and base line (mb) using the following 
expression,[15]
 

Differentiating Equation (4) with respect to mt and mb, inserting those partial derivatives 
into Equation (3) and assuming that the solid surface is indeed horizontal (mb = 0) produces 
the following expression for δθ,
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Figure 1. a depiction of a sessile liquid drop and its contact angle (θ).
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Because the contact angle (θ) is related directly to the slope of the tangent line (mt) through 
the tangent function,
 

Equation (5) can be recast as,
 

To reduce the complexity of the analysis, it is assumed that the absolute uncertainties in the 
slopes of the base and tangent lines are equal,
 

and Equation (7) simplifies to an expression that allows for the estimation of the absolute 
uncertainty in contact angles from the tangent method in terms of absolute uncertainty in 
tangent and baseline slopes,
 

Often, it is easier to think in terms of relative uncertainty. Therefore, to further simplify, it 
is assumed that relative uncertainties of the slopes are also equal,
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Figure 2. absolute uncertainty of the contact angle (|δθ|) estimated from equation (11) as a function of 
the contact angle (θ) and the relative uncertainties in the slopes of the tangent line (Δt) and base line 
(Δb), where Δ = Δt = Δb.
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Substituting Equations (6) and (10) into Equation (9) yields the absolute uncertainty in 
contact angles in terms of relative uncertainty in the tangent and baseline slopes,
 

Results and discussion

Figure 2 shows the absolute uncertainty of the contact angle (|δθ |) estimated from Equation 
(11) as a function of the contact angle (θ), where the relative uncertainties in the slopes of 
the tangent line (Δt) and base line (Δb) are equal, Δ = Δt = Δb. Over most of the range of 
wettability, the uncertainty of the tangent method appears to be quite small. For θ < 60° or 
> 120°, |δθ| ≤ ± 2°, where Δ ≤ ±0.02. However, as θ approaches 90°, from either θ < 90° or > 
90°, |δθ| increases asymptotically. For contact angles in the vicinity of 90°, |δθ| can exceed 
±5°. Why? The slope of the tangent line (mt) and its absolute uncertainty (δmt) grow as θ → 
90°, causing a steep rise in |δθ|. These findings will likely resonate with anyone who has used 
the tangent method to manually measure contact angles – confidence in precise placement 
of the tangent line is generally greater for sessile drops that exhibit θ < 60° than drops where 
θ ~ 90°. Consequently, for surfaces with θ ~ 90°, measurement of contact angles by other 
methods, such as the height–width method with small sessile drops, may be more precise 
than by the tangent method.[9]

When considering uncertainty in contact angle measurements by the tangent method, 
error in the tangent and base line slope is only part of the story. Other experimental fac-
tors also may play a role and could further contribute to uncertainty. For example, precise 
measurements on super hydrophobic surfaces generally are more difficult than surfaces 
with moderate to low contact angles due to difficulties in locating the point of contact, 
positioning of the baseline, gravitational distortion of the drop and erroneous assumptions 
regarding the extent of spreading.[4,9,16–22]

The analysis done here focuses on an axisymmetric drop sitting on a horizontal surface. 
The tangent method is also used to assess contact angles of drops that are distorted by body 
forces, such as those that arise from gravitational (e.g. an inclined plane) or centrifugal 
(e.g. a rotating disk) acceleration.[23–26] This analysis also should be generally applicable 
to distorted drops.

Conclusions

Uncertainty in contact angles measured by the tangent method appears to be quite small 
over most of the range of wettability, but increases asymptotically near 90°.
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