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ABSTRACT 

Inhibition of Escherichia coli ATP Synthase by Polyphenols and Their Derivatives 
by 

Prasanna Keerthi Dadi 

 

We have studied the inhibitory effect of natural and structurally modified polyphenols on Escherichia 

coli ATP synthase to test (I) if the beneficial dietary effects of polyphenols are related to their inhibitory 

actions on ATP synthase, (II) if inhibitory effects of polyphenolic compound could be augmented through 

structural modifications, and (III) if they can act as antimicrobial agent through their actions on ATP 

synthesis.  X-ray crystal structures of polyphenol binding sites suggested that polyphenols bind at a 

distinct polyphenol binding pocket, at the interface of α,β,γ-subunits.  We found that both natural and 

modified polyphenols inhibit E. coli ATP synthase to varying degrees and structural modifications 

resulted in augmented inhibition. Inhibition was reversible in all cases. Both natural and modulated 

compounds inhibited E. coli cell growth to varying degrees. We conclude that dietary benefits of 

polyphenols may be in part due to the inhibition of ATP synthase. 
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CHAPTER 1 

INTRODUCTION 

ATP synthase is the fundamental means of cellular energy production in animals, plants, 

and almost all microorganisms by oxidative or photo phosphorylation. The energy from ATP is 

used for various biochemical reactions like transport of nutrients, muscle contraction, nucleic 

acid synthesis, protein synthesis, active transport, etc. ATP synthase is a membrane bound 

enzyme that is found in the inner mitochondrial membrane and in the thylakoid membrane of 

chloroplasts of eukaryotic cells. In bacteria it is found embedded in the plasma membrane. ATP 

synthase has homology in amino acid sequence and is exceptionally conserved throughout 

evolution resulting in similar mechanism in ATP synthesis and hydrolysis in most of the 

organisms. The simplest of all is that of E. coli with 8 subunits in 2 main portions. A membrane 

embedded Fo and a catalytic F1. F1 consists of α3ß3γδε subunits and Fo has ab2c10 as shown in Fig. 

1. ATP hydrolysis and synthesis occur on three catalytic sites in the F1 sector, while proton 

transport occurs through the membrane embedded Fo (1,2).  

The γ subunit is part of the “rotor” which is composed of  γ, ε, and a ring of c subunits. 

The “stator” composed of b2δ, prevents co-rotation of catalytic sites and the a subunit with the 

rotor (3,4). Proton gradient-driven clockwise rotation of γ (as viewed from the membrane) leads 

to ATP synthesis while anticlockwise rotation of γ results from ATP hydrolysis. The mechanism 
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is essentially a rotary motor that is in fact the smallest known biological nanomotor. Detailed 

review of ATP synthase structure and function has been reviewed (5-11). 

                                                                              

 

 

 

 

 

 

 

 

 

Figure 1. The ATP Synthase of E. coli (Reproduced from (9) with permission; copyright 
Elsevier). The enzyme consists of two sectors catalytic F 1 and membrane bound F o.  F1 consists 
of α3 β3 γ δ ε and F0 consists of ab2c10. In mitochondria and chloroplasts additional subunits are 
present.  The rotor stalk indicates the helical coiled-coil extension of the γ subunit into the 
central cavity of the α3β3 hexagon. The rotor is composed of γ,ε , and a ring of c subunits. The 
“stator” is composed of b2δ. The proton pathway lies between a and c subunits.  
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ATP Synthase and its Role in Disease Conditions 

 ATP synthase malfunctioning has been documented as a basis for many human diseases 

such as, cancer, heart disease, mitochondrial diseases, immune deficiency, cystic fibrosis,   

diabetes, ulcers, and tuberculosis (5,12). Alteration of ATP synthase biogenesis may cause 2 

types of defects: qualitative, when the enzyme is structurally altered and does not function 

properly, and quantitative, when it is present in insufficient or adequate amounts (13). Most of 

these alterations are due to variation in the biosynthesis of the enzyme that can be due to 

mutations in subunit genes or in ancillary proteins essential for the enzyme assembly or in the 

areas responsible for gene regulation.  

 

Mutation in subunit a of ATP synthase causes severe impairment of ATP synthesis 

resulting in a neurodegenerative disease known as Leigh syndrome (14). A mutation in the same 

subunit causes a dysfunction of ATP synthase causing the neuropathy, ataxia, retinitis 

pigmentosa syndrome, and the familial bilateral striatal necrosis (15,16). In Alzheimer’s disease 

a deficiency of ATP synthase β subunit and the cytosolic accumulation of the α subunit has been 

observed (17,18). The intraneuronal cytosolic build up of the α subunit is suspected to be 

involved in the neurodegenerative process (16,18). Batten’s disease belonging to a group of 

disorders called neuronal ceroid lipofuscinosis is caused by buildup of lipofuscins in the body's 

tissues and subunit c of ATP synthase has been found as a predominant storage protein (15,16). 

Circulation of the ATP synthase F6 subunit in the blood has been identified to be involved in the 
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increase of blood pressure (19,20). It is also reported that the ATP synthase on the cell surface of 

endothelial cells are associated with the angiogenesis process required for tumor growth (21-23). 

As ATP synthase is implicated in many diseases it has been suggested and demonstrated 

as a good molecular target for drugs in the treatment of various diseases and the regulation of 

energy metabolism (24-28). One of the drugs developed for the treatment of tuberculosis, was 

shown to be active against a number of drug-resistant strains of Mycobacterium tuberculosis. 

Interestingly, it was found that 2 mutations in the mycobacterium ATP synthase Fo sector C-

subunit, namely D32A and A63P, are responsible for the bacterial resistance to diarylquinoline 

drugs and the new drug R207910, has been reported to block the synthesis of ATP by targeting 

subunit c of ATP synthase and thus treating the disease (24,29,30). Another drug, Bz-423, which 

was developed to treat the autoimmune disorder systemic lupus erythematosus, kills pathogenic 

lymphocytes selectively by inducing apoptosis in lymphoid cells (31). It was found that the 

apoptosis of lymphoid cells is due to the inhibition of the mitochondrial ATP synthase by Bz-423 

through binding to the subunit known as oligomycin sensitivity-conferring protein (OSCP) (26). 

 

For a long time, it was believed that ATP synthase was found only in mitochondria and 

chloroplasts of eukaryotes where most cellular ATP synthesis takes place. However, recent 

studies indicate that ATP synthase is even expressed on the extracellular surface of several 

animal cell types such as endothelial cells of cancer tissues, making it an ideal recognition 

molecule on cancer cells and could possibly be targeted therapeutically in the treatment of such 

diseases by inhibiting the enzyme. Thus, identification of potent ATP synthase inhibitors may 

allow the development of lead drugs for therapeutic treatments. 
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Inhibition of ATP Synthase 

Wide ranges of natural and synthetic compounds and molecules are known to bind and 

inhibit ATP synthase. The inhibitors can be characterized into different groups based on the type 

of bond formed with the enzyme, inhibitors can be grouped into either covalent or noncovalent 

inhibitors (32). Covalent inhibitors include NBD-Cl (4-chloro-7-nitrobenzofurazan), DCCD 

(dicyclohexylcarbodi-imide), and several reactive derivatives of ATP and ADP (33). The 

noncovalent inhibitors include non-hydrolysable substrate analogues, azide, the natural inhibitor 

protein IF1, the efrapeptins, the aurovertins, dietary phyto-polyphenols, nonpeptidyl lipophilic 

cations, and amphiphilic peptides (34).  

 

Another classification is based on the physical and chemical characteristics of the inhibitors 

(2,35-40). 

1) Peptide inhibitors: several types of peptide inhibitors have be identified and can be subdivided 

into Helical Basic Peptide Inhibitors, Angiostatin, Enterostatin,  Leucinostatins, Efrapeptins, 

Tentoxin and its Derivatives.  

2) Phytochemicals: are naturally occurring plant derivatives. They are known to posses 

chemotherapeutic properties and are known to bind to multiple molecular targets in the body. 

Phytochemicals are categorized into various groups, and among these are the polyphenols, 

steroids such as estradiols, estrogen and its metabolites. 

3) Polyketide inhibitors: are the polymers of 2-carbon ketide units synthesized 

by the enzyme polyketide synthases. eg. Macrolides: apoptolidin, cytovaricin, oligomycin,  
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ossamycin, and venturicidin. 

4) Organotin compounds and structural relatives: are Tin containing organic compounds. They 

are classified into R4Sn, R3SnX, R2SnX2, and RSnX3. 

5) Polyenic α-pyrone derivatives: α-Pyrone (or 2-pyrone) is a 6 membered cyclic unsaturated 

Ester and its derivatives are known to inhibit ATP synthase. Eg. aurovertin, citreoviridin, 

asteltoxin. 

Other inhibitors can be grouped into cationic inhibitors, substrates and substrate analogs, amino 

acid modifiers, and miscellaneous inhibitors (36).  

 

Polyphenols 

Polyphenolic compounds are a distant group of naturally occurring compounds 

containing multiple phenolic functionalities. These compounds are primarily synthesized by 

plants as secondary metabolites and are found in abundance in fruits and vegetables. Notable 

sources of polyphenols can be found in berries, grapes, tea, citrus fruits, cocoa, nuts, and fresh 

vegetables. Their dietary importance has been linked to their role as anti oxidants. They interact 

with metal ions such as Fe2+ and prevent free radical formation in biological systems that are 

responsible for the DNA damage (41).  

Polyphenols are the subject of interest to many scientists for their medicinal, synthetic, 

and industrial value. Plant derived polyphenols are known to have numerous biological activities. 

They are found to be potential candidates for use as drugs and for the treatment of many diseases 

like cancer, heart ailments, ulcer formation, bacterial infections, mutagenesis, neural disorders, 

etc. They also block the action of enzymes and other substances that promote the growth of 
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cancer cells (42-45). Polyphenols are also known to have antimicrobial activity. Streptococcus 

mutans is one of the examples where antimicrobial action has been demonstrated. S. mutans is a 

primary microbial agent in the pathogenesis of dental caries. It was shown that polyphenols can 

inhibit biofilm formation and acid production by S. mutans. One of the pathways through which 

polyphenols are active against S. mutans is by the inhibition of proton-translocating F1-ATPase 

activity (46,47). 

One important aspect of polyphenols is their ability to selective and unselective binding 

with biologically important molecules such as proteins. This is made possible by the presence of 

multiple polar functional groups that interact with proteins strongly and inhibit them (41,48).  

Earlier, polyphenols resveratrol, piceatannol, and quercetin were shown to prevent 

synthetic and hydrolytic activities of bovine mitochondrial ATP synthase by blocking clockwise 

or anti-clockwise rotation of the γ-subunit. Fig. 2 shows the recently solved F1-reseveratrol, F1-

piceatannol, and F1-quercetin complex structures from bovine ATP synthase by molecular 

replacement using data to 2.3, 2.4, and 2.7 Å, respectively. The distinct binding pocket for 

resveratrol, piceatannol, and quercetin lies between the βTP-subunit and the C-terminal region of 

γ-subunit (49). Polyphenols resveratrol, piceatannol, and quercetin were also shown to bind in a 

slightly distorted planar conformation through H-bonds and hydrophobic interactions. The 

hydrophobic interactions occur between the inhibitors and γLys-260, γIle-263, βTPVal-279, and 

βTPAla-278. Polyphenol inhibited mitochondrial ATP synthase (E. coli residue numbers used 

throughout). X-ray structures also show that residues γAla-256, γThr-259, γGlu-264, αTPGlu-

292, αTPGly-290, and αDPGlu-292 are within 4Å of the bound compounds thus providing 

additional non-polar interaction (49). 
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Figure 2. X-ray Structures of Mitochondrial ATP Synthase Showing Resveratrol, Piceatannol, or 
Quercetin. Rasmol software was used to generate these figures. PDB files used were 2jj1, 2jj2, 
and 2jjZ (50). (A) Reacted resveratrol in contact with α-, β-, and γ-subunits. (B) Reacted 
piceatannol in contact with α-, β-, and γ-subunits. (C) Reacted quercetin in contact with α-, β-, 
and γ-subunits. Green color represents α-subunit, cyan color is for β-subunit and blue color is for 
γ-subunits. Residues involved in the interaction with compounds are identified. γQ274K, γT277I 
in red is showing the difference between bovine and E. coli ATP synthase. In place of Q and T 
bovine has K and I residues. E. coli residue numbering is shown. At the bottom E. coli and 
bovine α-, β-, and γ-subunit binding pocket residue are aligned. 
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We studied the inhibitory effects of natural polyphenols resveratrol, piceatannol, 

quercetin, quercetrin, or quercetin-3-β-D glucoside (see Fig. 3), and their derivatives on E. coli 

ATP synthase. Resveratrol is an antimicrobial substance naturally produced by plants when they 

are under attack by pathogens. Piceatannol is a metabolite of resveratrol. Quercetin is a plant 

derived flavonoid known to shown anti-inflamatory and antioxidant properties. Quercitrin and 

quercetin-3-β-D glucoside are both derivatives of quercetin (see Table 1). In the present study 

our goal was to test (i) if polyphenols resveratrol, piceatannol, quercetin, quercetrin, or 

quercetin-3-β-D glucoside inhibit E.coli ATP synthase similar to bovine ATP synthase (ii) if the 

beneficial dietary effects of polyphenols are related to their inhibitory actions on ATP synthase, 

(iii) if inhibitory effects of polyphenolic compound could be augmented through structural 

modifications, and (iv) if they can act as antimicrobial agent through their actions on ATP 

synthesis                            

 Hypothesis                                                                                                                                 

We hypothesized that E. coli ATP synthase may follow the inhibitory pathway of bovine 

ATP synthase as the basic structure of both are the same.  
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Figure 3. Structures of Polyphenol Resveratrol, Piceatannol, Quercetin, Quercitrin, and 
Quercetin-3-β-D Glucoside. These structures were drawn using Chem Sketch free version. 
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Table 1. Polyphenols Their Molecular Formulas and Synonyms 

Name Molecular 

formula 

Synonyms 

Resveratrol C14H12O3 3,4′,5-Trihydroxy-trans-stilbene, 5-[(1E)-2-(4-

Hydroxyphenyl)ethenyl]-1,3-benzenediol 

Piceatannol C14H12O4 (E)-4-[2-(3,5Dihydroxyphenyl)ethenyl]1,2-

benzenediol, 3,3′,4,5′-tetrahydroxy-trans-stilbene, 3-

hydroxyresveratol 

Quercetin C15H10O7 · 2H2O 3,3′,4′,5,7-Pentahydroxyflavone dihydrate, 2-(3,4-

Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-

benzopyran-4-one dihydrate 

Quercetrin 

hydrate 

C21H20O11 · xH2O 3,3',4',5,7-Pentahydroxyflavone-, 3-(6-deoxy-D-

mannopyranoside) 

Quercetin-3-β-D 

glucoside 

C21H20O12 3,3′,4′,5,7-Pentahydroxyflavone 3-β-glucoside, 

Isoquercitrin 
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CHAPTER 2 

 MATERIALS AND METHODS  

Source of Polyphenols  

Resveratrol (R5100-50MG), piceatannol (P0453-25MG), quercetin dihydrate (Q0125-

100G), quercetrin hydrate (Q3001-50MG), and quercetin-3-β-D glucoside (17793) were 

purchased from Sigma Chemical Company. Polyphenols were suspended in DMSO to obtain the 

desired concentrations.  

Chemicals  

Adenosine 5̍-triphosphate disodium salt, ampicillin, glucose, succinic acid, uracil, TES, 

TRIZMA (Tris[Hydroxyethyl]aino ethane), 4-aminobenzamidine dihydrchloride (PAB), and 

SDS (Sodium dodecyl sulfate) were purchased from Sigma–Aldrich Chemical Company.  

Buffers and Reagents 

50 mM Tris-H2SO4(pH 8), ATPase assay buffer, T&S reagent (Tuskey and Shorr 

reagent), 10%SDS, TE(trace elements), 1M MgSO4, AET (Argenine Ent Thiamine), ILV 

(isoleucin-valine) STEM, TES 50, and TES5 +PAB were prepared as described in Appendix B. 
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Culture Media 

LB Medium (Luria-Bertani Medium), Minimal media, Limiting glucose, Succinate 

media. Preparation of culture media (liquid and plates) is as described in Appendix D. 

All other standard chemicals used in this study were ultra pure analytical grade purchased either 

from Sigma–Aldrich Chemical Company or Fisher Scientific Company. 

Equipment 

Stasar III Colorimeter (Gilford, Oberlin, OH)  Evolution-300 UV-Visible 

Spectrophotometer (Thermo Scientific, Pittsford, NY), French press, cell disrupter (Thermo 

Scientific, Asheville, NC), C76 Water Bath shaker (New Brunswick Scientific Co. inc, Edison, 

NJ ). Sorvall WX ultra-80, Ultra Centrifuge (Thermo Scientific, Asheville, NC), Sorvall RC-5B- 

super speed Centrifuge (Thermo Scientific, Asheville, NC), Series 25, incubator shaker (New 

Brunswick Scientific Co. inc, Edison, NJ ).      
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Experimental Methods 

Schematic Representation of Preparation of E. coli Membrane Bound ATP Synthase 

E. coli (pBWU 13.4/DK8) culture in MM (37oC, 250 rpm) 

 
Pellet at 9500 rpm x 15 min 

 
Resuspend pellet in STEM 
Spin at 9500 rpm x 25 min 

 
Resuspend pellet in 2 ml Stem/g wet cells 

Add DNAse 
French press 2 K psi 

 
Spin 

22 K rpm x 20 min 

 
Spin supernatant 

60 K rpm x 2 hrs at 2oC 

 
Resuspend pellet in TES 50 

Spin at 60K rpm x 2hrs at 2oC 

 
Resuspend pellet in TES 5 + PBA 

Spin at 60K rpm x 2hrs at 2oC 
Repeat this step / store at - 70oC  
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Membrane bound ATP synthase were purified from E. coli strain pBWU 13.4/DK8 (51,52) 

 

Starter Culture  

50 ml of Minimal Media was inoculated with a loop full of E. coli pBWU 13.4/DK8 

bacteria and is grown over night at 37°C, 250 rpm (revolutions per minute). 

 

Bacterial Growth 

50 ml of overnight starter cultures is inoculated in to 1 lt minimal media and grown at 

37oC, 250 rpm. Growth yield was measured at OD595 every hour till late log phase is obtained. 

Once the required growth is obtained we proceed to the next step i.e. harvesting cells. For all 

subsequent steps the cells are maintained as close to 0oC as possible. 

  

Harvesting Cells   

The cells are harvested by spinning the culture at 4oC in a Sorvall RC-5B refrigerated 

super speed centrifuge (Fisher Scientific) at 9500 rpm for 15 min. The harvested sample is 

resuspended in STEM and centrifuged at 9500 rpm for 25 min. The supernatant is discarded and 

the pellet is resuspended in 2 ml STEM/g wet cells and is stored at -80oC overnight.  

 

Cell Fractionation and Membrane Bound ATP Synthase Isolation 

Cells from overnight are thawed and mixed with DNAse to digest nucleic acids. The cells 

are then disrupted by 2 passages through chilled French press cell fractionator at 2000 psi. Cell 

debris was pelleted by centrifugation at 18K rpm for 20 min using Sorvall WX ultra-80, Ultra 

Centrifuge. Subsequently, the membranes were pelleted by spinning the supernatent at 60K rpm 
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for 120 min. The membrane is then resuspended in TES 50 and centrifuged at 60K rpm for 120 

min. The pellet is then washed with TES 5 + PAB by spinning twice at 60K rpm for 90 min. 

Finally the purified membrane is resuspended in 50mM Tris Sulfate (pH 8) and stored at -80oC. 

 

Membrane Bound ATP Synthase Concentration and ATPase Assay 

Membrane concentrations were found by plotting the absorbance at 595 nm using 

Bradford reagent against standard BSA curve.  ATPase activity was measured by adding 1 ml 

assay buffer containing 10 mM NaATP, 4 mM MgCl2, 50 mM TrisSO4  (pH 8)  to the purified F1 

or membranes at 37°C and stopped by addition of SDS to 3.3% final concentration. Pi released 

was assayed by adding 1 ml of T&S reagent containing 10 mM (NH4)6Mo7O24·4H2O , 250 mM 

Fe(NH4)2(SO4)2·6H2O and 1.176 N H2SO4 (53). The color thus developed was measured using 

Stasar III Colorimeter at 700 nm. A graph is plotted using Sigma plot software with activity on 

X-axis and OD700 on Y-axis. There is a straight line relationship between the calorimetric 

reading and the concentration of phosphorus. The reaction is as follows  

ATP + ATP synthase  ⇌ ADP + Pi 

Pi + T & S → blue color measured at OD700 

 

ATP synthase activity was calculated using the formula 

(Average Sample OD - Average Blank OD)   =_____ µmol/min/g protein 
    Amount of protein (mg) x Time (min) 
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Inhibition of ATPase Activity by Resveratrol, Piceatannol, Quercetin, Quercetrin, or Quercetin-

3-β-D Glucoside 

Membranes or purified F1 at a concentration of 0.2–1.0 mg/ml were preincubated with 

varied concentrations of resveratrol, piceatannol, quercetin, quercetrin, or quercetin-3-β-D 

glucoside for 60 min at room temperature, in 50 mM TrisSO4 pH 8.0. Then 1 ml ATPase assay 

buffer was added to measure the activity. The reaction is stopped by addition of SDS to 3.3% 

final concentration. Pi released was assayed by adding 1 ml of T&S reagent containing 10 mM 

(NH4)6Mo7O24·4H2O, 250 mM Fe(NH4)2(SO4)2·6H2O, and 1.176 N H2SO4 . The color thus 

developed was measured using Stasar III Colorimeter at OD700 nm. A graph is plotted using 

Sigma plot software with compound concentration on X-axis and relative ATPase % specific 

activity on Y-axis. This gives the enzyme activity with different concentrations of the compound 

in a linear decay fashion. It should be noted that prior to the experiments, F1 samples (100 µl) 

were passed twice through 1 ml centrifuge columns with Sephadex G-50 beads equilibrated in 

50 mM TrisSO4 pH 8.0, to remove catalytic site bound-nucleotide. 

 

% Specific activity was calculated using the formula 

 __                                         100                                                       =_____ µM 
 Specific activity of the blank X Specific activity of the test (min) 
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Confirmation of Extent of Inhibition by Extra Pulse Experiment  

To check if the inhibition is complete and there is no degradation of the compound and 

extra pulse experiment was performed. Membranes or purified F1 at a concentration of 0.2–

1.0 mg/ml were preincubated with inhibitory concentration of the compound for 60 min at room 

temperature, in 50 mM TrisSO4 pH 8.0. Then another pulse of the compound with inhibitory 

concentration was added to the tube and incubated for 60 more min at room temperature. 1 ml 

ATPase assay buffer was added to measure the activity. The reaction is stopped by addition of 

SDS to 3.3% final concentration. Pi released was assayed by adding 1 ml of T&S reagent. The 

color thus developed was measured at OD700 nm. Control tubes with single dose of compound 

incubated for 120 min were also performed. A graph is plotted using Sigma plot software with 

compound concentration on X-axis and relative % specific activity on Y-axis. 

 

Reversal of Purified F1 or Membrane Bound Enzyme ATPase Activity from Resveratrol, 

Piceatannol, Quercetin, Quercetrin, or Quercetin-3-β-D Glucoside Inhibition 

To check if the inhibition of ATPase activity is reversible or not, reversibility 

experiments were performed. Reversibility of inhibition was performed on both membrane 

bound enzyme and on purified F1 protein. It is assayed by dilution of the membrane enzyme and 

by passing the inhibited purified F1 through centrifuge columns. Membranes were first reacted 

with the highest inhibitory concentrations for 1 h at room temperature. These concentrations 

were used based on the maximal inhibition of the ATP synthase. Then 50 mM TrisSO4 pH 8.0 

buffer was added to decrease the concentrations to a minimal noninhibitory concentrations, and 

incubation continued for 1 additional hour at room temperature before ATPase assay. 

Reversibility was also tested by passing the polyphenol inhibited purified F1 enzyme twice 
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through 1 ml centrifuge columns before measuring the ATPase activity. Control samples without 

the compounds were also incubated for the same time periods as the samples as 2 consecutive 

passages through centrifuge columns were previously found to decrease the concentration of 

small molecules bound to ATP synthase and other proteins to non-detectable levels. Thus, after 

passage through centrifuge columns, reactivation is likely a first-order kinetic process that is a 

function of release of bound inhibitor. After the incubation time regular ATPase assay was 

performed to check the membrane activity. 

 

Effects of Polyphenols on E. coli Growth 

Inhibitory effects of polyphenols on E.coli cell growth were studied by growing the E. 

coli strain pBWU13.4 on succinate plates, limiting glucose, or LB media in presence of 

polyphenols. Growth in the liquid media was performed by inoculating LB or limiting glucose in 

a 16 well culture plate with ATP synthase inhibitory concentrations of polyphenols. The cultures 

were grown overnight at 37oC at 250 rpm. Growths were measured at OD595 nm and are 

compared with the control cultures without any inhibitors. Plates were prepared by mixing the 

inhibitory concentrations of polyphenols in the succinate agar and plated into petri dishes. 

Bacterial cultures are then streaked and incubated at 37oC and the growth was recorded by 

visually inspection of the number of colonies and size of colonies for 3 days along with the 

control.       
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CHAPTER 3 

RESULTS 

Inhibitory Effect of Resveratrol, Piceatannol, or Quercetin on the Purified F1 or Membrane 

Bound E. coli ATP Synthase Enzyme 

We studied the inhibitory effect of resveratrol, piceatannol, quercetin, quercetrin, or 

quercetin-3-β-D glucoside (Fig. 3) on the purified F1 and membrane bound ATP synthase of E. 

coli. Figure 4 shows the inhibition of ATPase activity of purified F1 or membrane bound enzyme 

in presence of varied concentrations of resveratrol, piceatannol, or quercetin. Complete, potent 

inhibition (~100% inhibited; IC50 ~14 µM) occurs in presence of piceatannol without any 

residual activity, the maximum amount of inhibition in presence of quercetin was slightly less 

(~80%; IC50 ~33 µM) with 20 % residual activity, and resveratrol appear to be the least potent 

inhibitor (~40% inhibited; IC50 ~94 µM) with 60% residual activity. We consistently found that 

the F1 data and the membrane data were the same for these inhibitors. Earlier studies established 

that inhibition of ATPase activity can be assayed using either membrane preparations or purified 

F1 with same results (54,55). 
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Figure 4. Inhibition of ATPase Activity in Purified F1 or Membrane Bound ATP Synthase by 
Resveratrol, Piceatannol, or Quercetin. Membranes or purified F1 were preincubated for 60 min 
at 23 °C with varied concentration of resveratrol, piceatannol, or quercetin, and then aliquots 
added to 1 ml of assay buffer and ATPase activity determined. Details are given in Section 2. 
Symbols used are: circles (● and ○), resveratrol; squares (■ and □), piceatannol; triangles (▲ and 
�), quercetin. Filled symbols are for membranes while open are for purified F1. Each data point 
represents average of at least 4 experiments done in duplicate tubes, using 2 independent 
membrane or F1 preparations. Results agreed within ±10%vv 
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Inhibitory Effect of Quercetrin or Quercetin-3-β-D Glucoside on the Purified F1 or Membrane 

Bound Enzyme 

Figure 5 shows the inhibitory effect of quercetrin or quercetin-3-β-D glucoside. 

Quercetrin shows 40% inhibition with 60% residual activity (IC50 ~120 µM) and quercetin-3-β-

D-glucoside till 50% with 50% residual activity (IC50 ~71 µM). Again the F1 data and the 

membrane data were alike for both the inhibitors. 

   

                      

Figure 5. Inhibition of ATPase Activity in Purified F1 or Membrane Bound ATP Synthase by 
Quercitrin or Quercetin-3-β-D Glucoside. Purified F1 or membranes were preincubated for 
60 min at 23 °C with varied concentration of quercetrin or quercetin-3-β-D glucoside and then 
aliquots added to 1 ml of assay buffer and ATPase activity determined. Symbols used are: (� 
and �), quercitrin; (� and ), quercetin-3-β-D glucoside. Filled symbols represent membrane 
data while open symbols represent data for purified F1. Each data point represents average of at 
least 4 experiments done in duplicate tubes, using 2 independent membrane or F1 preparations. 
Results agreed within ±10%. 
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Confirmation of Extent of Inhibition by Extra Pulse Experiment  

In previous studies (54-60), it has been noted in several instances where ATP synthase 

was incompletely inhibited by potent inhibitors like fluoroaluminate, fluoroscandium, sodium 

azide, or NBD-Cl. In recent studies also it was found that E. coli ATP synthase is partially 

inhibited by several polyphenols like hesperidin, chrysin, kaempferol, diosmin, apigenin, 

genistein, or rutin in the range of 40–60% (61). Even several peptides like aurein, carein, 

magainin, or magainin II-amide inhibited E. coli ATP synthase partially (62). Our polyphenols 

also showed some residual activities so to be sure that the maximal inhibition with resveratrol, 

piceatannol, quercetin, quercetrin, or quercetin-3-β-D glucoside had been reached we performed 

extra pulse experiment where we incubated each membrane preparation or purified F1 with the 

inhibitory concentrations of the compounds i.e. 376 µM resveratrol, 50 µM piceatannol, 100 µM 

quercetin, 400 µM quercetrin, or 376 µM quercetin-3-β-D glucoside for 1 h as in Figs. 4 and 5 

followed by an extra pulses of the compounds doubling the concentrations of the polyphenols in 

the reaction mixture and continued the incubation for an additional hour and assayed ATPase 

activity. As shown in Fig. 6A and B very little or no additional inhibition occurred consistent 

with Figs. 4 and 5 data. This shows that the inhibition by resveratrol, quercetin, quercetrin, or 

quercetin-3-β-D glucoside was maximal and fully inhibited F1 or membranes retained residual 

activity and the inhibition achieved is maximal. Although we used 1 h incubation time, it was 

observed that the maximal inhibition of purified F1 or membrane bound enzyme was achieved 

within 15 min.  
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Figure 6. Results of Extra Pulse of Resveratrol, Piceatannol, Quercetin, Quercitrin, or Quercetin-
3-β-D Glucoside on Purified F1 or Membrane Bound ATP Synthase. (A and B) Membrane bound 
ATP synthase (Mbr, gray background) or purified F1 (F1, white background) was inhibited with 
376 µM resveratrol, 50 µM piceatannol, or 100 µM quercetin, 400 µM quercetrin, or 376 µM 
quercetin-3-β-D glucoside for 60 min under conditions as described in Fig. 4 and Fig. 5. Then a 
further pulse of 376, 50, 100, 400, and 376 µM for resveratrol, piceatannol, quercetin, quercetrin, 
or quercetin-3-β-D glucoside, respectively, was added and incubation continued for 1 h before 
assay.  
 

Reversal of ATPase Activity of Purified F1 or Membrane Enzyme from the Resveratrol, 

Piceatannol, Quercetin, Quercetrin, or Quercetin-3-β-D Glucoside Inhibition 

 
Here we examined whether the inhibition of ATP synthase by the polyphenols is 

reversible or not. This experiment was carried out in 2 ways (i) the purified F1 or membrane 

bound enzyme was inhibited with the higher concentration of resveratrol, piceatannol, quercetin, 

quercetrin, or quercetin-3-β-D glucoside. Then the samples were diluted to a noninhibitory 

concentration. It was found that the inhibition was totally reversible (Fig. 7A and B). (ii) 20 µg 

purified F1 samples were inhibited with 470 µM resveratrol, 50 µM piceatannol, 94 µM 

quercetin, 400 µM quercetrin, or 400 µM quercetin-3-β-D glucoside for 1 h. Again these 

inhibitory concentrations were determined based on data from Fig. 4 and 5. Then they were 

passed twice through 1ml centrifuge columns and ATPase activity was measured. It was found 
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that in all cases activity was restored back to the near normal level as seen in Fig. 6C and D as in 

absence of the compounds similar to Fig.7A and B. These data indicate that the observed 

inhibition is not the result of protein denaturation and that the enzyme retains the ability to 

reactivate upon release of the compound after dilution.  
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Figure 7. Reversibility of Inhibition. (A and B) Results of reversibility through dilution of 
membrane bound ATP synthase (Mbr, gray background) or purified F1 (F1, white background). 
Membrane/F1 was incubated with 470 µM resveratrol, 50 µM piceatannol, 94 µM quercetin, 400 
µM quercetrin, or 400 µM quercetin-3-β-D glucoside for 60 min under conditions as described in 
Figs. 2 and 3. Concentrations were lowered to 10-fold by adding TrisSO4 buffer and incubation 
continued for 1 h before assay. The first bars are purified F1 or membrane enzyme with no 
compound (F1/Mbr), followed by resveratrol (RT), piceatannol (PA), quercetin (QD), quercitrin 
(QH), or quercetin-3-β-D glucoside (Q3G) from left to right. The last digits represent the 
compound concentrations. (C and D) Reversibility through centrifuge columns. 20 µg purified F1 
samples were inhibited with 470 µM resveratrol, 50 µM piceatannol, 94 µM quercetin, 400 µM 
quercetrin, or 400 µM quercetin-3-β-D glucoside for 1 h and were passed twice through 1ml 
centrifuge columns and ATPase activity was measured. It was found that in all cases activity was 
restored back to the near normal level as in absence of the compounds similar to Fig.7A and B. 
The first bars are purified F1 with no compound (F1/Mbr), followed by resveratrol (RT), 
piceatannol (PA), quercetin (QD), quercitrin (QH), or quercetin-3-β-D glucoside (Q3G) from left 
to right. The last digits represent the compound concentrations and CC represents the reaction 
which is passed through the centrifuge column.  
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Growth Assays: Inhibition of Growth on LB, Limiting Glucose, and Succinate Medium in 

Presence of Resveratrol, Piceatannol, Quercetin, Quercitrin, or Quercetin-3-β-D Glucoside 

Inhibitory effects on ATP synthesis were studied by growing the E. coli strain 

pBWU13.4 on succinate plates, limiting glucose, or LB media in presence or absence of 

resveratrol, piceatannol, quercetin, quercitrin, or quercetin-3-β-D glucoside. We found that 

pBWU13.4 growth was inhibited in presence of resveratrol or piceatannol but was not affected in 

presence of quercetin, quercitrin, or quercetin- 3-β-D glucoside. Loss of growth on succinate 

plates and limiting glucose suggests the loss of oxidative phosphorylation (see Table 2). 
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Table 2. Effects of Polyphenols on the E. coli Cell Growth. 

Polyphenols 

 

Growth on succinate 

platesa 

 

Growth yield in 

limiting glucoseb (%) 

 

Growth on LB mediab 

(%) 

 

Controlc ++++ 100 100 

Nullc − 43 45 

Resveratrol − 42 43 

Piceatannol − 43 44 

Quercetin ++++ 96 98 

Quercitrin ++++ 96 97 

Quercetin-3-β-D 

glucoside 
++++ 97 98 

 

a Growth on succinate plates after 3 days was determined by visual inspection.  
(++++) High growth;  (−) no growth. 
b Growth yield on limiting glucose and LB was measured as OD595 after ~20 h growth at 37 °C. 
c Control, pBWU13.4/DK8; null, pUC118/DK8. Growth of positive and negative controls in    
absence of polyphenol compounds. Data are means of 4 to 6 experiments each at 37 °C. Each 
individual experimental point is itself the mean of duplicate assays. 
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CHAPTER 4 

DISCUSSION 

A variety of inhibitors are known to bind and inhibit ATP synthase enzyme. Recent 

finding showed that polyphenols: resveratrol, piceatannol, and quercetin inhibit bovine heart 

mitochondrial ATP synthase by blocking both clockwise and anti- clockwise rotation of the γ- 

subunit. X-ray crystallography at 2.3, 2.4, and 2.7-Å resolution showed that these polyphenol 

compounds bind between the C-terminal tip of the γ-subunit and the βTP subunit through 

hydrophobic interactions and H-bonds. The hydrophobic interaction between the inhibitor 

compounds and mitochondrial enzyme was shown to involve γK260, γI263, βTPV279, and 

βTPA278. Other residues, which are within 4 Å of the bound compounds and contribute to non-

polar interactions, are γAla-256, γThr-259, γGlu-264, αTPGlu-292, αTPGly-290, and αDPGlu-292. 

Two H-bonds are also formed between βTPV279 and αTPGlu-292 and the bound polyphenol 

compounds Figure. 2. (49). The equivalent residues in the E. coli enzyme are γQ274 (γK260), 

γT277 (γI263), βTPV265 (βTPV279), and βTP264 (βTPA278) (63). Parentheses show the bovine 

numbers. The focus of our study is to examine the inhibitory role of polyphenols resveratrol, 

piceatannol, quercetin along with quercitrin, and quercetin-3-β-D glucoside on the E. coli ATP 

synthase. The aim of our study is to test (i) if the beneficial effects of polyphenols are related to 

their inhibitory actions on ATP synthase, (ii) if inhibitory effects of polyphenolic compound 

could be augmented through structural modifications, and (iii) if they can act as antimicrobial 

agent through their actions on ATP synthesis.   

 

By using E. coli membrane preparations, we have tested polyphenols resveratrol, 

piceatannol, quercetin, quercitrin, or quercetin-3-β-D glucoside on the activity of F0F1-
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ATPase/ATP synthase. We also screened the effect of these polyphenols on purified F1 protein 

that is similar to that of the membranes. We found out that polyphenols resveratrol, piceatannol, 

quercetin, quercetrin, or quercetin-3-β-D glucoside inhibited E. coli ATP synthase to varying 

degrees ( Fig. 4 and 5). Piceatannol causes maximal inhibition with 0% residual activity with 

IC50 values of ~14 µM. Other inhibitors, resveratrol has a residual activity of 25% with IC50 

values of ~94 µM, quercetin has a residual activity of 25% with IC50 values of ~33 µM, 

quercetrin has a residual activity of 40% with IC50 values of ~20 µM, and quercetin-3-β-D 

glucoside has a residual activity of 50% with IC50 values of ~71 µM.  These results are not 

consistent with earlier findings of bovine ATP synthase whose inhibitory concentrations for 

resveratrol, piceatannol, and quercetin were 19 µM, 8 µM, and 65 µM, respectively (49). The 

reason for this might be due to the differences in the amino acids at the binding sites of 

polyphenols in bovine and E. coli ATP synthase. 

 

Though resveratrol and quercetin like piceatannol are composed of 2 phenolic rings did 

not significantly inhibit the ATP synthase even at higher concentrations. The reason for this 

might be because of differential numbering / positioning of OH groups on the phenol rings. Like 

quercetin its derivatives quercetrin and quercetin-3-β-D glucoside did not inhibit the enzyme to 

the extent as quercetin did. It may be due to the presence of the third phenol ring that might have 

caused steric hindrance resulting in low inhibition rates. The difference in the rate of inhibition 

clearly indicates the importance of hydroxyl groups in particular positions and the number of 

phenolic rings.  

Additional dose of compounds to the previously inhibited purified F1 or membranes did 

not change the degree of inhibition significantly (6A and B). This suggests that the inhibition of 
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purified F1 or membrane by the phenolic compounds was the true and maximum achievable. The 

process of inhibition was also found to be completely reversible. A completely inhibited F1 

regained its activity when it was passed through the centrifuge columns that resulted in removal 

of the bound compound with the enzyme. Similarly, purified F1 or membrane regained complete 

activity once it was brought back to lower concentrations of compound after exposing it to 

higher concentrations by dilution with buffer and by passing it through centrifuge columns (Fig. 

7A,B,C and D) This shows that the compound and the enzyme share a non-covalent interaction.  

Another important aspect observed is the bacterial growth patterns in presence of the 

phenolic compounds. Resveratrol and piceatannol restricted the growth of E. coli suggesting that 

both ATP hydrolysis and ATP synthesis are inhibited. This finding is consistent with the effect 

of resveratrol and quercetin observed on bovine ATP synthase (49). Quercetin, quercetrin, or 

quercetin-3-β-D glucoside prevents only ATP hydrolysis and not the ATP synthesis suggested by 

the growth of the bacteria in the presence of the compound. The reason for this performance is 

unknown but can be speculated by the following reasons (a) as observed the inhibition of the 

enzyme by these compounds is not complete because of which the bacterial are able to survive 

(b) the inhibitors could not pass the cell wall to react with the membrane (c) inhibitors got 

pumped out by an export pump, (d) the inhibitors were metabolized by the bacterial cells. More 

inhibitory studies by new functionally modified polyphenol compounds should help in 

understanding this difference. 

Our studies show that the inhibition of ATP synthase could be a potential mechanism 

contributing to the many effects of dietary polyphenols. Mitochondrial dysfunction is the cause 

of a number of degenerative diseases such as cancer, neurological disorders, and cardiovascular 
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disease (64,65). Therefore, it is acceptable that the inhibition of the ATP synthase by piceatannol 

and other related compounds might play a significant role in the pathophysiology of such 

conditions (49).  For example, inhibition of mitochondrial F1Fo-ATPase by dietary polyphenols 

might be beneficial is by induction of apoptosis selectively in tumor cells. Resveratrol is known 

to induces cell death in tumor cells via pathways that depend on mitochondria (44,66), and  

another  inhibitor, oligomycin, has similar effects  on mitochondrial F1Fo-ATPase (49), possibly 

by specifically marking tumor cells for cell death by CD14, while assuring differentiation to 

occur in the surviving population (49). Alteration of cellular bioenergetics is another vital way of 

triggering the cell death.  The benzodiazepine Bz-423 inhibits the mitochondrial F1Fo-ATPase by 

binding to the oligomycin sensitivity-conferral protein, a component of the peripheral stalk 

resulting in apoptosis.  Nontumor cells are not affected by the drug, but the autoimmune 

lymphocytes with altered mitochondrial bioenergetics, are sensitized to Bz-423-mediated 

inhibition of ATP synthase (49).  

The resistance of mycobacterium against the anti-tuberculosis drug diarylquinoline is due 

to two C-subunit mutations D32V and A63P. This commends a need for more potent natural or 

synthetic inhibitors that can specifically target bacterial ATP synthase enzymes (24). The 

inhibition of biofilm formation and acid production by S. mutans through the inhibition of 

proton-translocating F1-ATPase activity in presence of a variety of polyphenols (46,47) along 

with the knowledge of inhibitory effects of polyphenols on E. coli ATP synthase could provide 

starting point to develop inhibitors against bacterial pathogens such as Mycobacterium 

tuberculosis and S. mutans.  
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Thus, by identifying and modeling potent polyphenol inhibitors that can selectively 

induce apoptosis through inhibition of the F1Fo-ATPase, we can treat diseases caused by 

mitochondrial dysfunction and can even design anti microbial drugs. 
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APPENDICES 

APPENDIX A: Abbreviations 

ATP - Adenosine triphosphate 

ADP- Adenosine diphosphate 

F1- F1 protein 

Gln – Glutamine 

IC50- half maximal inhibitory concentration  

Ile – Isoleucine 

Lys - Lysine 

Mbr- Membrane 

PA - Piceatannol 

Pi- Inorganic phosphate 

Q3G - Quercetin-3-β-D glucoside 

QH - Quercetrin hydrate 

QD - Quercetin dihydrate 

RT - Resveratrol 

Thr - Threonine 
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APPENDIX B: Buffers and Reagents 

50 mM Tris-SO4 buffer 

To 90 ml H2O add 

0.61 g Tris 

Adjust pH to 8.0 with H2SO4 

Bring to a final volume of 100 ml with H2O  

ATPase cocktail 

In 150 ml H2O add 

10 ml 1 M Tris 

0.8 ml 1M MgCl2 

5 ml 0.4 Na ATP (Adenosine 5̍-triphosphate disodium salt) 

Adjust pH to 8.5 with H2SO4 

Bring to a final volume of 200 ml with H2O  

Freeze in plastic bottles at -20oC 

10 % SDS 

100 gm Sodium dodecyl sulfate 

Bring to a final volume of 1000 ml with H2O  
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T & S reagent / Tuskey and Short reagent 

Sol A: 1.2 g Ammonium molybdate ((NH4)6Mo7O24·4H2O in 9.8 ml 12 N H2SO4) 

Sol B: 10 g Ferrous ammonium sulfate (Fe(NH4)2(SO4)2·6H2O in 70 ml H2O) 

Add sol A to sol B while stirring 

Bring to a final volume of 100 ml with H2O  

Store at 4oC 

STEM 

To 700 ml H2O add 

100 ml 1 M TES 

4.29 g Mg(CH3CO2)2·4H2O 

85.5 g sucrose 

0.0951 g EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N,N-tetraacetic acid) 

5 g EACA (6-Ainocaproic acid6-Ainocaproic acid) 

Adjust pH to 6.5 with NaOH 

Bring to a final volume of 1000 ml with H2O  

Freeze in plastic bottles at -20oC 
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TES 50 

To 700 ml H2O add 

50 ml 1 M TES 

150 ml glycerol 

5 g EACA (6-Ainocaproic acid6-Ainocaproic acid) 

1 g PAB (4-Aminobenzamidine dihydrochloride) 

Adjust pH to6.5 with NaOH 

Bring to a final volume of 1000 ml with H2O  

Freeze in plastic bottles at -20oC 

TES 5 + PAB 

To 700 ml H2O add 

5 ml 1 M TES 

150 ml glycerol 

1 ml 0.5 M DTT (Dithiothreitol) 

5 g EACA (6-Ainocaproic acid6-Ainocaproic acid) 

1 g PAB (4-Aminobenzamidine dihydrochloride) 

2.5 ml 0.2 M EDTA (Ethylenediaminetetraacetic acid disodium salt dihydrate) 
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Adjust pH to 6.5 with NaOH 

Freeze in plastic bottles at -20oC 

AET (Argenine Ent Thimine) 

To 60 ml H2O add 

0.617 g 2,3 Dihydroxy Benzoic acid 

16.86 g L-Arginine HcL 

1 ml 20 mM Thiamine 

Add just enough amount of NaOH to dissolve everything 

Make final volume to 100 ml with H2O 

Filter sterile 

TE (Trace Elements) 

To 80 ml H2O 

0.251 g Zinc Sulfate (ZnSO4.7H2O) 

0.017 g Manganese Sulfate (MnSO4.H2O) 

0.029 g Boric acid (H3BO3) 

0.012 g Calcium Sulfate (CaSO4.2H2O) 

0.037 g Calcium Chloride (CaCl2.2H2O) 
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0.049 g Ferric Chloride (FeCl3.6H2O) 

Make final volume to 100 ml with H2O. 

Filter sterile 

ILV (Isoleucin-Valine) 

To 95 ml H2O add 

0.394 g Isoleucine 

0.352 g Valine   

Make final volume to 100 ml with H2O 

 Filter sterile 
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APPENDIX C: Culture Media and Plates 

LB liquid medium 

12.5 g of LB broth powder  

Add H2O to bring to 500 ml  

Autoclave for 30 minutes  

Cool the media to ~50oC  

Add 500 µl of 100 mg/ml Ampicillin 

Minimal Glucose 

To 400 ml H2O add 

5.225 g Potassium Phosphate Dibasic Trihydrate (K2HPO4) 

2.40 g Sodium Phosphate Monobasic (NaH2PO4) 

0.99 g Ammonium Sulfate ((NH4)2SO4) 

Autoclave for 30 min, cool it and add the following additions 

10 ml Uracil 

10 ml 27 % Glucose 

5 ml ILV (isoleucin-valine) 

0.5 ml TE (trace elements) 
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0.5 ml 1 M Magnesium Sulfate (MgSO4) 

0.5 ml AET (Argenine Ent Thimine) 

0.5 ml 100 mg/ml Ampicillin   

0.312 ml 4X LB 

LB-Agar plate with Ampicillin 

12.5g of LB broth powder  

7.5g of agar  

Bring to a final volume of 500 mL  

Autoclave for 30 minutes  

Cool the media to ~50oC  

Add 500 µl of 100 mg/ml Ampicillin 

Pour into sterile plates 
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