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ABSTRACT 

An Agent-Based Model of Ant Colony Energy and Population Dynamics: 

Effects of Temperature and Food Fluctuation 

by 

Xiaohui Guo 

The ant colony, known as a self-organized system, can adapt to the environment by a series of 

negative and positive feedbacks. There is still a lack of mechanistic understanding of how the 

factors, such as temperature and food, coordinate the labor of ants. According to the Metabolic 

Theory of Ecology (MTE), the metabolic rate could control ecological process at all levels. To 

analyze self-organized process of ant colony, we constructed an agent-based model to simulate 

the energy and population dynamics of ant colony. After parameterizing the model, we ran 20 

parallel simulations for each experiment and parameter sweeps to find patterns and dependencies 

in the food and energy flow of the colony. Ultimately this model predicted that ant colonies can 

respond to changes of temperature and food availability and perform differently. We hope this 

study can improve our understanding on the self-organized process of ant colony. 
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CHAPTER 1 

INTRODUCTION 
 

Ant’s Sensitivity to the Ecological Event 

Insects make good indicators of ecological condition because they are highly diverse and 

functionally important, can integrate ecological processes, and are sensitive to environmental 

change (Brown 1997). As one of the famous terrestrial insect, ants have the critical ecological 

roles in soil turnover and structure (Humphreys 1981; Lobry de Bruyn and Conacher 1994), 

nutrient cycling (Levieux 1983; Lal 1988), plant protection, seed dispersal, and seed predation 

(Ashton 1979; Beattie 1985; Christian 2001). Ants have proven sensitive and rapid responders to 

environmental variables (Campbell and Tanton 1981; Majer 1983; Andersen 1990). In recent 

analysis of various insect groups as potential bioindicators, ants scored highest (Brown 1997). 

They have been used as bioindicators to manage mining site restoration because both their 

abundance and species richness will decline with increasing dry sulfur deposition from mining 

emissions (Hoffmann 2003). Forest management agencies in Australia also have incorporated 

ants in monitoring programs associated with fire and logging practices (Andersen 1997). The 

rapid replacement of the ecologically complex regrowth forest through wildfire and salvage 

logging caused a substantial increase in ant’s foraging activity (P. pallidus) during the first 

postfire autumn period, and activity remained high for up to 14 months (Neuman 1992). In the 

coffee agroecosystem in Central America, it was found that microclimate changes, high-light 

environment, and lack of leaf litter cover in the unshaded system are the determinants of the 

differences in ground foraging ant diversity (Perfecto and Vandermeer 1996). Monitoring a 

single species of ant is also recommended to detect trends among threatened and endangered or 

keystone species (Underwood and Fisher 2006). Ants are important seed dispersers. Their 
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abundance and diversity can also be used to monitor the ecosystem function performed (Majer 

1984; Grimbacher and Hughes 2002). Relying on the ant-seed interactions to bush regeneration, 

the varied proportion of ant species indicates the differences of zone types significantly 

(Grimbacher and Hughes 2002).  In the environment destroyed by grazing and trampling, ant 

species diversity can respond to these disturbances. For example, in the remnant Eucalyptus 

salubris woodland disturbed by sheep grazing, lower ant diversity was recorded (Abensperg-

Traun 1996), and in grasslands at Mount Piper, Victoria, Australia, the same relationship 

between grazing and ant species richness was detected as well (Miller 1997). The ant community 

could respond to the habitat fragmentation by declining population sizes as well. Comparing 

twig-dwelling ants between two 100 ha forest fragments with 2 continuous areas of forest in the 

Amazon, Carvalho and Vasconcelos (1999) found species richness and abundance to be higher in 

continuous forest sites than isolated fragment sites. Recently, researchers focused on the 

responses of ant communities to climate change. By analyzing several niches models, Argentine 

ants (Linepithema humile Mayr) was predicted to retract its range in tropical regions but to 

expand at higher latitude areas (Roura-Pascual et al. 2004). Retrospecting the adaptation history 

of ants on climate, Dunn et al. (2009) suggested that the hemispherical asymmetry of ant species 

distribution was  caused by greater climate change since the Eocene in the northern than in the 

southern hemisphere that made more extinctions in the northern hemisphere with consequent 

effects on local ant species richness.  Meanwhile, Kaspari (2005) also found the number and 

mass of workers influenced by NPP (net primary productivity, g of carbon per m
2
 per year), and 

temperature will determine the ant colony mass independently under climate change.  

Climate Change Effects on Animals 

Climate change is a significant and lasting change in the statistical distribution 
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of weather patterns over periods ranging from decades to millions of years. It is caused by 

factors such as biotic processes, variations in solar radiation received by Earth, plate tectonics, 

and volcanic eruptions. Certain human activities have also been identified as significant causes 

of recent climate change, often referred to as "global warming" (National Research 

Council 2010). Climate change does not only cause changes in the climate system ranging from 

annual precipitation and solar radiation to global land-ocean temperature increment but also 

affects the biodiversity in land-based ecosystem and ocean ecosystem. In recent major ice ages, 

the climate change caused distribution changes of most living organisms. As an example of 

Chorthippus parallelus, the common meadow grasshopper of Europe across all northern Europe, 

their haplotypes showed little diversity and were similar to those in the Balkans, clearly 

indicating a postglacial expansion from a Balkan refuge (Hewitt 2000). Although there are still 

debates about the impacts of current climate change on biodiversity, more and more research 

strongly suggest that significant impacts of climate changes are already discernible in animal and 

plant populations (Camille Parmesan 2003). Many observable evidences can prove the impacts 

of climate change and global warming on natural ecosystem and its biodiversity. For example, 39 

butterfly species in the North America and Europe have shifted their northward range up to 200 

km over 27 years, which related to increased temperatures (Parmesan 1999). As temperature 

increased Antarctic invertebrates changed their distribution (Kennedy 1995). Amphibians in UK 

breed earlier in past 25 years than ever before (Blaustein 2001). Based on the extinction risk 

assessment, it is predicted that, on the basis of mid-range climate-warming scenarios for 2050, 

that 15–37% of species in samples of regions and taxa will be ‘committed to extinction’ (Thomas 

2004). However, there are no effective observation and analysis to illustrate and predict 

relationships between warming world and ant biodiversity distribution and changes (Jenkins et al. 
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2011). 

Allometric Equation for Metabolism 

Huxley (1924) was the first one to construct a so-called allometric equation and to 

illuminate the quantitative relationship between rate of relative growth and body size by it. He 

pointed out that the rate of relative body growth of different organisms (y) was a power function 

to the size of body (x) and particular parameters (k and b), which is described below: 

y = b∙xk
 

b and k are constants. b is a normalized constant, and it has no particularly biological 

significance. However, k is significant one because it implies a constant ratio between rate of 

growth of organism and absolute body size (Huxley 1932). This equation disclosed potential 

allometric growth laws that absolute size of body could be teemed as an estimator of other 

parameters involving growth, such as rate of growth, life span, and so on. In most studies 

exploring values of k and b, Kleiber (1932) verified the metabolic rate scaled to the 3/4 power of 

body size, and mass was considered as a better parameter to be treated as index of body size than 

surface of body, although the surface law with 1/3 power seemed to be reasonable to explain 

how metabolic rate originated from heat dissipation scaling with body surface area. The 3/4 

power relationship is shown below: 

 I = I
0∙M3/4 

(equ. 1) 

I is the metabolic rate. I0 is the normalization of constant independent of body size. M is the mass 

of the animal. West et al. (1997) suggested that quarter-power law be validate by its general 

model in which the body size was depicted as a series of space-filling fractal networks of 

branching tubes, and materials were transferred to the part of body through this network system. 

The branching structure is a prevailed pattern to all of animals and even plant because natural 
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selection tends to maximize metabolic rate by maximizing exchanging surface and minimizing 

distance of fractal networks (West 1997, 1999). Gillooly et al. (2001) suggested some corrections 

on the allometric equation to display more details by adding temperature effects. In their 

opinions, animal metabolic rate depends on three factors: 1, intensity of reactant, 2, fluxes of 

reactants, and 3, kinetic energy of the system. The first two factors are determined by supply and 

removal of products. The last factor involves the effect of temperature, which could be quantified 

by equation, e
-Ei/kT

, being used to describes how temperature affects the rate of reactions by 

changing molecules’ movement with sufficient kinetic energy. E the activation energy is, 

measured in electron volts (1eV=23.06 kcal/mol=96.49 kJ/mol). The relationship between 

metabolic rate (B) and temperature (T) is: 

𝐵 = 𝐵0(𝑇) ∙ 𝑀3 4� = 𝐵0 ∙ 𝑀3 4� ∙ 𝑒−𝐸𝑖 𝑘𝑇� = 𝐵0(𝑇0) ∙ 𝑀3 4� ∙ 𝑒𝐸𝑖𝑇𝑐 𝑘𝑇𝑇0�
     (equ. 2) (Gillooly 2001) 

B0 is a basal metabolic rate; B is actual metabolic rate; T0 is standard temperature for B0 in k; and 

T is the absolute air temperature in K; Tc is difference between T and T0 in K; E is the activation 

energy; k is Boltzmann’s constant.  

The temperature and mass dependences are also shown in the allometric population 

growth model by Savage et al. (2004) in which the population grows under the population 

logistic growth law and individual metabolic rules. By applying the Euler integration, the way 

temperature, mass, and time scale play their influences was clarified into the equation: 

0 0
0

0 1

( , , ) [(1 ) ]pop

E B
B M T t r E

S r
= + +

 (equ. 3) (Savage et al. 2004) 

E0 is a normalization of activation energy; S0 is a constant of mortality rate; B0 is a basal 

metabolic rate; r1 is a taxon- and environment-dependent normalization constant. All of these 

variables are temperature and mass independent. The population growth rate was just controlled 
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by population metabolic rate regarding with total mass of population, temperature, and time. 

Models described above are also extended to predict the allometries of ontogenetic growth 

trajectories (West 2001) and other life-history attributes (Savage et al. 2004) that display the 

prevalence of allometric equation to explain biological processes in various hierarchies. 

The Significance of Ant Workers in Population and Energy Dynamics of Ant Colony 

Like the life cycle of the individual ant, the life cycle of an ant colony can be 

conveniently divided into three parts: founding stage, ergonomic stage, and reproductive stage 

(Hölldobler and Wilson 1990, 143 p). In ergonomic stage, over the weeks and months the 

population of workers grows, the average size of the workers increases, and new physical castes 

are sometimes added (Hölldobler and Wilson 1990, 143 p). Among the key life history traits of 

social insects, the nutritional storage of colonies in response to spatial and temporal variation has 

been of considerable interest (Kondoh 1968; Wilson 1974; Rissing 1984; Hasegawa 1993). In 

that colonies in the fall season store nutrients in the form of workers’ fats that can be used during 

overwinter periods of food scarcity  or seeds collected are stored by workers in the nest (Risch 

anf Carroll 1986), the size and population of the workers become significant index to estimate 

ant colony dynamic. In the seasonal dynamic change of colony size and population, there has 

been some evidence that incipient colonies are monomorphic and consist of small workers only, 

but as colonies grow, production of larger workers causes the size-frequency distributions to 

become strongly skewed. Kaspari (2005) found ants altered colony mass by independently 

changing worker mass and/or worker number. It was found that energetic efficiency in 

polymorphic colonies (multiple workers cast) was approximately 10% higher than in colonies 

composed of only small workers (Porter and Tschinkel 1985). And relying on worker’s 

metabolic rate parameters, it is feasible to monitor the colony energy dynamic status. For 
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example, the colony VO2 (oxygen consumption rate) could be accurately estimated from 

individual VO2 (Lighton 1989). In 3 species of Pogonomyrmex Harvester Ants, respiration of the 

workers was estimated to account for 84-92% of energy assimilated by colony nest (MacKay 

1985). Specially, the Damuth’s Rule shows that for large compilations of population densities, 

the relationship between the average mass of a species and its average density is generally well 

fit to a power function, which enforces the significance of worker size in ant colony (White 

2007). Therefore, it is meaningful to test ant colony energy and population dynamics based on 

individual worker’s metabolic process influenced by seasonal changes of temperature and food 

supply.  

The aim of the study reported herein was to investigate ant colonies’ energy and 

population dynamics in response to changes of temperature and food. These variables were 

simulated under different levels of temperature and food to determine ant colonies’ response to 

changes in the environment. Apart from energy and population dynamics, the study also focused 

on the effects of temperature on workers’ size, immature ants’ development, and queen’s 

reproduction. This study tested the following hypotheses:  

H0…there is no effects of temperature and food on ant colony’s energy and population 

dynamics.  

H1…temperature elevations will increase the risk of ant colonies for dying out because 

they need to consume more energy to sustain themselves.  

H2…Changes of food availability will affect energy and population dynamics of ant 

colonies. Rich food sources can protect ant colonies from decaying even in very high 

temperature.  
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CHAPTER 2 

MATERIALS AND METHODS 

The ant colony energy dynamic ABM model was constructed on the platform of Netlogo 

5.0.4.  

Purpose 

The goal of the model is to simulate the long-term dynamics of an ant colony, especially 

focusing on foraging and colony growth. The behavior of individual ants is based on simple rules, 

and their behavior is linked to a simple energy flow from the environment to the colony and 

metabolism (metabolic equations). The main idea of the model is to apply MTE (Metabolic 

Theory of Ecology) to the ant colony to quantify the effects of temperature on the dynamics of 

ant colony and to analyze possible scenarios of temperature fluctuations caused by climate 

change. 

State Variables and Scales  

This model is comprised of several parts: individuals, interaction networks, nest, and 

environment. The first 2 are modeled explicitly and the last 2 are modeled abstractly. Individual 

agents spend time behaving and interacting in the simulation environment. We assume that the 

growth of the ant colony is determined by the queen’s fecundity and workers’ efficiency. For 

simplification, all stages of offsprings are merged into one state of the “immature ant” agent. 

This model starts with a situation that the colony has been initiated by one queen with a varying 

number of immature ants, nurses, and foragers. In the model the “immature ants” are produced 

by queen at random locations in the nest. The immature ones can develop into nurses or foragers. 

The life spans of immature ants and adult workers are the functions of expected longevity, 
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temperature, mass, and energy. We assume that only 2 castes exist in the ant colony, foragers and 

nurses. Foragers work in searching for food outside the nest. They find food resources by 

random walking or following trail pheromone (Hölldobler and Wilson 1990, 228 p). Nurses feed 

immature ants and the queen inside the nest. There has been quantitative evidences that rate of 

the trophallaxis (number of workers/hour feeding a larva) varies with the individual larval size 

and hunger cues (Cassill 1995, 1999). These relationships strongly suggest that nurses orient 

toward queen’s or immature ants’ hunger pheromone. Although workers have different size and 

behavioral preferences, these 2 castes, foragers and nurses, can switch jobs depending on 

environment (Gordon 2010, 30 p). 

The individuals are characterized by state variables: identity number, task assignments, 

and internal state (velocity, mass, energy, metabolic rate, and longevity) (Table 1). Workers are 

represented by mobile agents: nurses feed immature ants and queen inside the nest; foragers 

forage outside the nest. Both of them move at a velocity, v. In the model tasks of workers emerge 

from interactions with others agents and environment. The queen is modeled as a motionless 

agent who monopolizes some space in the nest. Her tasks are designed to convert the food into 

energy and consume energy to live and produce immature ants. Immature ant agents are installed 

as immobile agents in the nest as well. They consume energy to support their growth until they 

develop into foragers or nurses. Both queen and immature ants release the hunger pheromone to 

inform nurses when they are hungry and where they are.  

In this model environmental variables are recorded on every step, including intensity of 

pheromones, diffusing/evaporating rate of pheromones, and amount of food, time, and 

temperature (Table 1). All of these variables are taken into account in workers’ decision-making. 

According to the MTE (metabolic theory of ecology), however, metabolic rate and speed will be 
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a function of temperature (described below). 

This agent-based model works in a discrete space consisting of 141 × 61 unit patches, 

one grid of a patch scales to 4 meters outside nest and 2 meters inside nest. The space, a 

rectangular area enclosed by reflecting boundaries, is large enough to capture large-scale 

spatiotemporal dynamics akin to ones in a real system.  The area is divided into 2 independent 

sections by an impassable border: inside the nest and outside the nest. An entry to the nest is 

installed on this border. Food is brought into the nest by workers through the entrance. In the 

nest queen monopolized 10 × 10 grids, and the rest were for rearing immature ants. Each 

position of the nest, except the borders and chamber of the queen, can be empty or randomly 

occupied by a single immature ant. Renewable food patches are arranged randomly outside the 

nest. One time tick is assumed to be consistent with 1 minute. The intention is to model the long 

term behavior of the colony. Therefore, the simulation lasts for about 12 months (≈600000 

steps). The basic speed of worker is 1 grid per minute to simulate the realistic velocity of ants, 

which is about 2 meters per minute (Hurlbert 2008).  

 

Table 1 (continued on the next page). Scale of variable and process. 

Agent and environment Variable Unit Process 

Environment Temperature 

Chemical diffusing rate 

Chemical evaporating rate 

°C  

0.04 grid/min 

0.05 drop-size/min  

Update temperature (scenario) 

Constant 

Constant 

Foragers Age 

Energy 

Metabolic rate 

Trail pheromone record 

min  

× 10 – 4J  

× 10 – 4J/min  

Drop-size 

Aging 

Update 

Update 

Update 
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Table 1 (continued). Scale of variable and process. 

Agent and environment Variable Unit Process 

Nurses Age 

Energy 

Metabolic rate 

Trail pheromone record 

min  

× 10 – 4J  

×  10 – 4J/min  

Drop-size 

Aging 

Update 

Update 

Update 

Queen Age 

Energy 

Metabolic rate 

Hunger pheromone record 

min  

×  10 – 4J  

×  10 – 4J/min  

Drop-size 

Aging 

Update 

Update 

Update 

Larva Age 

Energy 

Metabolic rate 

Hunger pheromone record 

min  

×  10 – 4J  

× 10 – 4J/min  

Drop-size 

Aging 

Update 

Update 

Update 

 

Process Overview and Scheduling  

At each discrete time step, various agents have series of behaviors to perform in a 

sequential order. Foragers patrol outside the nest, constantly detecting a gradient of trail 

pheromone; they stop at food sources to carry one mg food (Josens 1998) and return to the nest, 

depositing a trail pheromone in the way they passed. They put down food in the nest and repeat 

the process or switch to the role of nurse. Carrying 0.002 mg food (Appendix 4) nurses wander 

around randomly in the nest. When the nurse locates the hungry queen or immature ant by a 

gradient of hunger pheromones, it will move to the target grid cell, put down the food, and feed 

the hungry agent. After finishing, it returns to the food storage. This procedure is also repeated 

unless it switches to the role of forager. The queen releases the hunger pheromone when her 

energy is lower than the critical threshold. The immature ants also release hunger pheromone 

when their energy drops below the energy threshold. They develop into workers when their mass 

is higher than mass threshold. The behaviors of agents are shown below (Fig.1). 
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a (colony view): 

 

b (queen): 

 

 

 

 

 

 

Figure 1  (continued on the next pages). Process of overview of the model. Each task group has a working cycle. a is 

a colony view, b is a forager. 
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c (immature ant): 

 

  d (forager): 

 

Figure 1 (continued). Process of overview of the model. Each task group has a working cycle. c is a nurse, d is an 

immature ant. 
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e (nurse): 

 

e 

 

 

 

 

Figure 1 (continued). Process of overview of the model. Each task group has a working cycle. e is a queen. 
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f (mass & energy networks of agents): 

 

Figure 1 (continued). Process of overview of the model. Each task group has a working cycle. f is energy-mass 

conversion. 

 

Design Concepts  

Emergence 

The equilibriums of worker castes, worker’s population, energy, and mass dynamics 

emerge from the individuals’ behavior and metabolism, but the behavior and metabolism are 

entirely described by simple empirical and stochastic rules. The balance between foraging 

efficiency and feeding efficiency also emerge dynamically from colony needs and prey and food 

availability. Reproduction and development speed is the function of fulfilling the nutrition need 
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of the queen and immature ants.  

Adaptation and Fitness 

Adaptation and fitness are not explicitly included in this model. The only exception is in 

the workers’ decision whether the foraging strategy or feeding strategy will be taken. The 

decision is based on the amount of food stored in the nest.                                                                   

Sensing 

Individuals are assumed to know their own inner state (energy, mass, age, and 

assignments) and behave accordingly. Ants’ sensing mainly depends on smelling and tactile 

sensation. The use of visual signals in ants is very minor, and there is no a single example to be 

solidly documented (Hölldobler and Wilson 1990, 259 p). Therefore, we assumed ants can sense 

their neighbors by close antenna touching. Workers have 2 sensing antennas to perceive 

directional signals (Hölldobler and Wilson 1990, 271 p). We assume they wiggle and orient 

along varying-concentration odor trail by antennae detection (from right 35
o
to left 35

o
). In this 

model the workers can diagnose the gradients of pheromone diffused in patches. Cassill (1999) 

suggested the ant queen and immatures may release hunger pheromone to notify workers about 

their hunger status, akin to the behavior of the brood of honeybees (Fewell 2003). Workers can 

also recognize the saturation of food storage. ( Reyes-López 2002) and distinguish dead larvae 

from living ones (Robinson et al. 1974). 

Interactions 

Interactions between different agents are modeled with more details described in the 

submodel section. Individuals direct interactions happen when workers feed hungry queen or 

immature ants and when workers move dead immature ants to food storage. The saturations of 
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immature ants and queen could also influence the tasks’ switching decisions of workers, but 

those influences are not represented as explicit interactions between particular individuals. The 

state variables and behaviors of ant agents are also affected by environmental factors. The 

temperature is the primary environmental factor to regulate ants’ moving velocity and 

metabolism. Ants tend to move faster and consume more energy in high temperature than ants in 

low one. Accordingly, workers are designed to have daily rhythm of temperature preference. 

In this model workers can’t cross the reflecting walls and borders. When they reach the 

borders and walls, they will redirect randomly. The environment is also changed by ants. The 

amount of the pheromones deposited in the grid will decay unless ants lay new ones. The food 

will be reallocated from food sources to food storage by foraging and transporting of workers.  

Stochasticity 

Random numbers were generated to simulate the realistic process by using the netlogo 

built in random generator. The following state and environment variables are stochastic: initial 

location, walking direction, developmental orientation of immature ants, and amount of food per 

patch. We assume the initial energy of ants, initial number of ants, initial mass of ants, initial age 

of workers, and initial amount of food in the food sources and storage distributed normally. In 

the model ants make decisions by possibility that could be quantified in a normal cumulative 

distribution functions (𝜇 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝜎 = 1). 

Collectives 

Collectives are represented in the model as task groups of workers, namely adult ants are 

either nurses or foragers. However, these collectives emerge in nature because in the model 

workers can switch their tasks freely by interacting with others and environment. 
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Observation 

In this model Netlogo offers a visual platform to monitor the behavior of the system. The 

monitor is used for inspecting and testing the model step by step. The following parameters are 

monitored and saved into a file for further analyzes: the population size of the ant colony, 

number of nurses, number of foragers, number of immature ants, total energy of the ant colony, 

total mass of the ant colony, amount of food stored, birth rate, growth rate of immature ants, 

death rate of immature and adult ants, foraging efficiency, feeding efficiency, developing time of 

immature ants, age structure of the ant colony, temperature of the nest, and temperature of the 

environment. To test our hypotheses and compare the predictions, Kruskal-Wallis test in SPSS 

Statistical Package (Version 19) was used.  

Initialization 

The initial parameters in the model are listed in the Table 2. The simulations were 

repeated 10 times so as to consider the variability between outputs for the same set of parameters 

and initial conditions. The variability came from the stochasticity in the processing of the model. 

The onset of the ant colony imitated the start of a natural colony after the workforce of the 

colony reached 200. In this stage the queen and Nimmature ant live in the nest and Nnurses work inside 

the nest to feed the queen and immature ants. Nforagers work outside the nest to forage. There is 

one cluster of food patches arranged randomly outside the nest. And 35 mg food is stored in the 

nest. Before the model starts running foragers and nurses are positioned in the environment 

randomly.  
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Parameters  

Table 2 (continued on the next pages). Initial parameters of the model. Each step related parameters one minute was 

converted into one tick step in the value “used” column.  

Description Acronym Estimated Used Reference 

Standard 
metabolic rate 

of worker 

𝑚𝑛𝑑𝑒𝑑𝑑(𝑑𝑒𝑒𝑒𝑓𝑑𝑒) 3.13×(10−4J/min) 3×(10−4J/min) Appendix A 

Metabolic rate 
of worker for 

synthesis of fat 
body  

𝑚𝑛𝑑𝑒𝑑𝑑(𝑑𝑒𝑒𝑒𝑓𝑑𝑒) 𝑑𝑦𝑛 0.87 ×(10−4J/min) 1×(10−4J/min) Appendix C 

Metabolic rate 
of worker for 
locomotion 

𝑚𝑛𝑑𝑒𝑑𝑑(𝑑𝑒𝑒𝑒𝑓𝑑𝑒) 𝑡𝑒𝑙 5.09(10−4J/min) 5(10−4J/min) Appendix B 

Standard 
metabolic rate 

of immature 
ant 

𝑚𝑑𝑙𝑙𝑒𝑒𝑑𝑒𝑑 𝑒𝑛𝑒 1.51×( 10−4 J/min) 1.5×(10−4J/min) Appendix A 

Metabolic rate 
of larva for 

growth 

𝑚 𝑑𝑙𝑙𝑒𝑒𝑑𝑒𝑑 𝑒𝑛𝑒 𝑓𝑒𝑒𝑔 3.95×(10−4J/min) 4×(10−4J/min) Appendix C 

Standard 
metabolic rate 

of queen 

𝑚𝑞𝑑𝑑𝑑𝑛 19.77×(10−4J/min)* 20×(10−4J/min) Appendix A 

Metabolic rate 
of queen for  

reproduction 

𝑚𝑞𝑑𝑑𝑑𝑛 𝑒𝑑𝑒 960×(10−4J/min)* 960×(10−4J/min) Appendix C 

Speed of 
worker 

𝑣𝑛𝑑𝑒𝑑𝑑(𝑑𝑒𝑒𝑒𝑓𝑑𝑒) 2 cm/s 120 cm/min (Schilman and Roces 
2005) 

Initial energy 
of queen 

𝐸𝑞𝑑𝑑𝑑𝑛 380000 𝑛(𝜇,𝜎2), ( 𝜇 = 380000,𝜎
= 1000)     (10−4𝐽) 

 

Initial energy 
of worker 

𝐸𝑛𝑑𝑒𝑑𝑑(𝑑𝑒𝑒𝑒𝑓𝑑𝑒) 38000 𝑛(𝜇,𝜎2), (𝜇 = 38000,𝜎
= 1000)      (10−4𝐽) 

- 

Initial energy 
of immature 

ants 

𝐸𝑑𝑙𝑙𝑒𝑒𝑑𝑒𝑑 𝑒𝑛𝑒𝑑 15200 𝑛(𝜇,𝜎2), (𝜇 = 15200,𝜎
= 1000)      (10−4𝐽) 

- 

Number of 
nurses 

𝑁𝑛𝑑𝑒𝑑𝑑   100  

Number of 
foragers 

𝑁𝑑𝑒𝑒𝑒𝑓𝑑𝑒   100  

Number of 
immature ants 

𝑁𝑑𝑙𝑙𝑒𝑒𝑑𝑒𝑑 𝑒𝑛𝑒   20  

Amount of food 
in food storage 

𝐹𝑑𝑒𝑒𝑒𝑒𝑓𝑑   20  
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Table 2 (continued). Initial parameters of the model. Each step related parameters one minute was converted into 

one tick step in the value “used” column. 

  

Description Acronym Estimated Used Reference 

Threshold of food 
storage saturation 

FStoreThreshold  𝑛(𝜇,𝜎2), (𝜇 = 30,𝜎
= 10)      (10−4𝐽) 

 

Initial mass of 
worker 

𝑀𝑛𝑑𝑒𝑑𝑑(𝑑𝑒𝑒𝑒𝑓𝑑𝑒) 2 mg 𝑛(𝜇,𝜎2), (𝜇 = 2,𝜎
= 0.05)      (𝑚𝑔) 

 (Jensen 
1978) 

Initial mass of 
immature ants 

𝑀𝑡𝑑𝑙𝑙𝑒𝑒𝑑𝑒𝑑 𝑒𝑛𝑒  0.8mg 𝑛(𝜇,𝜎2), (𝜇 = 0.8,𝜎
= 0.2)      (𝑚𝑔) 

(Brian 

1973) 

Initial mass of 
queen 

𝑀𝑞𝑑𝑑𝑑𝑛 2~80 mg 20 mg (Tschinkel 
1978; Keller 

1989)  

Initial age of 
worker 

Aage  𝑛(𝜇,𝜎2), (𝜇
= 10000,   𝜎
= 2000)    

 

Expected 
longevity of  

nurses (foragers) 

𝐴𝑒𝑓𝑑������ 190080 190080  

Diffusing rate of 
hunger 

pheromone 

𝑟 ℎ𝑑𝑛𝑓𝑑𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑   0.046  

Evaporation rate 
of hunger 

pheromone 

𝑟 ℎ𝑑𝑛𝑓𝑑𝑒 𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑   0.052  

Diffusing rate of 
trail pheromone 

𝑟𝑒𝑒𝑒𝑑𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑   0.04  

Evaporation rate 
of evaporate 
pheromone 

𝑟𝑒𝑒𝑒𝑑𝑡 𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑   0.05  

Amount of food at 
each food patch 

F  𝑛(𝜇,𝜎2), (𝜇 = 225,𝜎
= 50)      (𝑓𝑜𝑜𝑑 𝑢𝑛𝑖𝑡) 

 

Antenna sensing 
angle 

A 70 70  

Catabolism 
weight-energy 

conversion factor 

c’ 19.02J/mg 190000(10−4)𝐽/𝑚𝑔 (Cummins 
and 

Wuycheck 
1971; Hou et 

al. 2008) 

Anabolism weight-
energy conversion 

factor 

c >19.02J/mg 200000(10−4)𝐽/𝑚𝑔 (Perrin 
1995;Kaspari 

2005) 

Energy threshold 
of queen for 

hunger  

Equeen threshold  380000 (10−4)𝐽/𝑚𝑔 (Cummins 
and 

Wuycheck 
1971) 

Energy threshold 
of worker for 

hunger 

Eworker threshold  380000 (10−4)𝐽/𝑚𝑔  
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Table 2 (continued). Initial parameters of the model. Each step related parameters one minute was converted into 

one tick step in the value “used” column. 

  

Input 

In the model the environment was parameterized by daily air temperature of Johnson City, 

TN in 2010. The temperature dataset is from National Ocean and Atmosphere Administration 

(NOAA) (http://www.ncdc.noaa.gov/cdo-web/).  These temperature data was used to construct a 

smooth distribution with 1-minute steps to conform the resolution of the model. In the 

“experiment of temperature changes”, new temperature data were created by elevating 2, 4, 6, 8, 

10, 12, and 14 centigrade to the current temperature data of Johnson City. Because the advantage 

of nesting in the soil is the protection provided by the nest against high and low temperature 

Description Acronym Estimated Used Reference 

Energy threshold of 
immature ants for 

hunger 

Eimmature ant threshold  15200 (10−4)𝐽/𝑚𝑔  

a ( responding factor 

of hunger 

pheromone gland 

toward energy 

status) 

a  5  

Mass lower 

threshold of worker 

for dying 

MWorkLowerThreshold  1mg  

Mass upper 

threshold of worker 

for dying 

MWorkUpperThreshold  5mg  

Mass threshold of 

immature ants for 

dying 

Mimmature ant threshold  0.5mg  

Mass of threshold of 

queen for dying 
Mqueen threshold  15mg  

One bite of ant Bant 0.023mg  

4420(10−4)𝐽 0.02mg  

4400(10−4)𝐽 Appendix D 

Drop size of trail 

pheromone 
droptrail 180 180  

Width of food 

sources 
Wfood  3 patch wide  

http://www.ncdc.noaa.gov/cdo-web/
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extremes, rain, or wind (Moyano 2013), we assumed the ant colonies nest in the soil. In the 

model the colonies could not actively thermo-regulate nest temperature (𝑇𝑛𝑑𝑑𝑒) because of the 

small size population of colonies. The nest temperature equated to soil temperature in the 10cm 

depth that correlated well with air temperature because both are determined by the energy 

balance at the ground surface (Zheng et al. 1993). The soil temperature was regressed to air 

temperature (Tair) in equation 4:  𝑇𝑛𝑑𝑑𝑒 = 𝑇𝑑𝑒𝑑𝑡 = 0.89 ∙ 𝑇𝑒𝑑𝑒 + 2.31 euq.4 (Zheng et al. 1993) 

We implemented different levels of food with 1, 2, and 3 patch wide per food source patch in the 

model to simulate different richness of food sources.   

Submodels  

The Tasks of Agents 

In this model the stationary queen produces all the offsprings labeled “immature ants”. 

Immature ants are immobile agents as well, and they finally develop into the forager or nurse 

ants. The events of reproduction and development are controlled by mass and energy (in 

Reproducing and developing). Foragers leave nest to collect and carry food back to the nest (in 

Foraging). Nurses enter into the nest to feed hungry queen or immature ants under directions of 

hunger pheromone (in Feeding). 

Reproducing and Developing: The mass of queen and immature ants change dynamically 

(in Energy and Mass). The event of reproduction or development occurs when queen or 

immature ants are heavier than their mass thresholds. The queen lays an egg in a random 

nonoccupied position of the nest and this immature ant stays there until it becomes an adult. 

When the immature ant becomes a mature one, it will emerge and start work next to the food 

storage as the nurse ant or will emerge and start to work next the nest entrance as the forager. 
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Initial decision on the first task is a random process. 

Foraging: The foraging task could be viewed as 2 alternating status: start from the nest 

and reach the food source, and start from the food source laden with food and reach the nest 

(Panait, 2004). In the first status foragers depart nest in search of food by walking forward with 

random sniffing angle between left 35
o
 and right 35

o
 or following gradient of trail pheromone 

they encountered. Their moving velocity v: 

𝑣 = 𝑣0 ∙ 𝑀1/4 ∙ 𝑒−𝐸𝑘 𝑇𝑐𝑖𝑟�
 (equ. 4) (Hurlbert 2008) 𝑣0 is standard velocity of foragers at 20 ℃; 𝑇𝑒𝑑𝑒 is environment temperature; 𝑀 is the mass of 

agent; 𝐸 is the activation energy; 𝑘 is Boltzmann’s constant. In the second status we assume that 

foragers are able to navigate to the nest by using the shortest distance after finding the food. 

Therefore, the pheromone trail between the food item and the nest is also formed on the shortest 

distance between the 2 positions. Foragers bring 1 mg food back to nest directly. When they 

come back, food will be stored in the food storage of the nest.  

Feeding: Each turn, the nurse keeps motionless and stays very close to queen or immature 

ants mouthparts to sweep antenna until larva terminates the feeding and worker move away as 

Cassill (1995) described it in fire ant, Solenopsis invicta. In the model feeding is also viewed as 2 

alternating status: start from the food storage laden with food and reach the hungry queen or 

immature ants, and start from the queen or immature ants and reach the food storage. At the first 

status nurses carrying 0.002 mg food (Appendix 4) look for hungry agents in the nest by the 

same random walking as forager until they encounter and follow the gradient of hunger 

pheromone. Feeding events only happen in hungry agents nurses encounter (Cassill 1995). The 

nurses move at velocity v’ described by equation 4 with exposed nest temperature, 𝑇𝑛𝑑𝑑𝑒. When 

they reach patches of hungry agents, 0.002 mg food is fed at 1 time-step. At the second status 
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assumedly, nurses can go back to food storage directly.  

Dying: Deaths of workers are age-controlled. The age of each individual is monitored. 

The expected longevity of worker is about 4.4 months (≈ 190080 steps) (Calabi and Porter 1989), 

but it is influenced by temperature and mass as follows: 𝐿 =
𝐿𝑒𝑐𝑝𝑒𝑐𝑡𝑒𝑑𝑀−1 4⁄ ∙𝑑−𝐸 𝑘𝑇⁄  (equ. 5)  (Savage et al. 2004)  

Where 𝐿 is real longevity; 𝐿𝑑𝑥𝑒𝑑𝑙𝑒𝑑𝑑is expected or average longevity; 𝑀 is the mass of agent; 𝐸 is 

the activation energy; 𝑘 is Boltzmann’s constant. We assume their death is the cumulative 

function of worker’s longevity probability distribution at 24℃, N(𝜇=190080,𝜎=20000)(min) 

( Calabi and Porter 1989). When workers are older than L, their death probability will increase 

considerably by death accumulative probability function: 𝐹𝑑𝑑𝑒𝑒ℎ(𝑒) = ∫𝑓𝑡𝑒𝑛𝑓𝑑𝑒𝑑𝑒𝑦(𝑒)𝑑𝑒, (𝜇 = 190080,𝜎 = 20000) (equ. 6) 

In another way, when agents starve for a long time, substances such as adipose, protein, and 

glycogen will be consumed and converted to the energy for basic energy demands. Therefore, the 

mass of agent can stimulate death event when it drops below mass threshold of agent (Table 2). 

When death event occurs, agent will be removed from the colony except the dead immature ant 

that will be transported into the food storage by workers and part of the dead immature ant (50%) 

is reused as food. 

Interactions 

In terms of hunger pheromone and trail pheromone, pheromone communication is the 

primary way to connect ants having no direct interactions. Pheromone chemicals share part of 

patch-pheromone concentration (𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑) to its 8 neighboring patches. The patch-pheromone 

chemicals will decay at an evaporating rate, 𝑟𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑 .  In the model foragers deposit trail 

pheromone (droptrail) per patch at the patches they passed through after they discover food and 
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get ready to return to nest. Hungry queen and immature ants release hunger pheromone based on 

their energy status: 

                             𝐷ℎ𝑑𝑛𝑓𝑑𝑒 𝑒ℎ𝑒𝑒𝑙𝑒𝑛𝑑 = 𝑎 ∙ (𝐸 − 𝐸 𝑒ℎ𝑒𝑑𝑑ℎ𝑒𝑡𝑑) (equ. 7) 𝐷ℎ𝑑𝑛𝑓𝑑𝑒 𝑒ℎ𝑒𝑒𝑙𝑒𝑛𝑑 is the concentration of hunger pheromone of queen or immature ant; 𝐸 is the 

energy of queen or immature ant; 𝐸𝑒ℎ𝑒𝑑𝑑ℎ𝑒𝑡𝑑 is the energy threshold of queen or immature ant; a 

is responding factor of hunger pheromone gland of queen or immature ant toward energy status. 

Outgoing foragers detect the trail pheromone at their neighboring patches within 1 grid distance, 

and nurses sense hunger pheromone within 0.5 grid distance (gridoutside nest : gridinside nest = 2:1). 

Both of workers can recognize the concentration of pheromone and move along the gradient to 

area of high concentration. Workers will change moving directions when they meet the borders 

of the environment and nest. The dead immature ants can be recognized and transported to food 

storage by workers. 

Changing of Tasks 

Workers have behavioral flexibility. There are 2 worker tasks in this model, foraging and 

nursing. Their tasks allocation depends on the environment and their inner states. Workers can’t 

change tasks unless they complete the previous one. In this model forager and nurses need to 

decide whether nursing or foraging at every time they finish previous task. Ant workers tend to 

change task when more ants are required for particular tasks (Gordon 1989). The harvester ant, 

Messor barbarus, was documented to recognize saturation of food storage and modified foraging 

strategy based on it (Reyes-López 2002). Therefore, we assume their decisions are based on the 

amount of the food stored in the nest. The nursing and foraging tendency are quantified as below: 

𝑃𝑛𝑑𝑒𝑑𝑑𝑛𝑓(𝑣; 𝜇,𝜎) = �𝑓(𝑣)𝑑𝑣 , (𝜇 = 20,𝜎 = 5) 

                                  𝑃𝑑𝑒𝑒𝑒𝑓𝑑𝑛𝑓 = 1 − 𝑃𝑛𝑑𝑒𝑑𝑑𝑛𝑓  (equ. 8)     
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𝑃𝑛𝑑𝑒𝑑𝑑𝑛𝑓 is the probability to nurse; 𝑃𝑑𝑒𝑒𝑒𝑓𝑑𝑛𝑓 is the probability to forage; 𝑣 is the amount of the 

food stored in the nest. 

Energy and Mass  

Energy, food, and mass are 3 most important variables to regulate agents’ behaviors. 

These 3 variables can be quantified and their relationships are described below (Fig.2). 

Metabolism includes the catabolic and anabolic processes:  

 

Figure 2. Partitioning of energy assimilated from food. 

 

Agents assimilate energy from food for energy storing (somatic growth and reproduction), 

restive maintaining, biosynthesis accumulation for fat body, and locomotion (Hou et al. 2008). 

When agents starve, the storage of fat will be consumed to maintain agents’ living (Griffiths 

1991). In this model we hypothesized the temperature has no impact on food size selections of 

ant, and the constant size of food could be eaten as feeding and eating events occur (Cummins 

1971). The constant energy converted from food will be allocated to 2 or 3 partitions for 

immature ants, worker, and queen (Fig. 2, 3). Metabolic rate influenced by temperature and mass 
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controls the process of energy-mass conversion. Energy allocation equations are shown below 

(equ. 9, 10, 11, 12): 

     𝑚𝑛𝑑𝑒𝑑𝑑 𝑒𝑒𝑒𝑒𝑡 =(𝑚𝑛𝑑𝑒𝑑𝑑 𝑡𝑒𝑙𝑒𝑙𝑒𝑒𝑑𝑒𝑛+ 𝑚𝑛𝑑𝑒𝑑𝑑 𝑒𝑑𝑑𝑒)∙ 𝑀3 4� ∙ 𝑒𝐸𝑖𝑇𝑐 𝑘𝑇0�
  (equ. 9) 

     𝑚𝑑𝑒𝑒𝑒𝑓𝑑𝑒 𝑒𝑒𝑒𝑒𝑡 =(𝑚𝑑𝑒𝑒𝑒𝑓𝑑𝑒 𝑡𝑒𝑙𝑒𝑙𝑒𝑒𝑑𝑒𝑛+ 𝑚𝑑𝑒𝑒𝑒𝑓𝑑𝑒 𝑒𝑑𝑑𝑒)∙ 𝑀3 4� ∙ 𝑒𝐸𝑖𝑇𝑐 𝑘𝑇0�
 (equ. 10) 

𝑚𝑑𝑙𝑙𝑒𝑒𝑒𝑑𝑒𝑑 𝑒𝑛𝑒 𝑒𝑒𝑒𝑒𝑡=(𝑚𝑑𝑙𝑙𝑒𝑒𝑒𝑑𝑒𝑑 𝑒𝑛𝑒 𝑒𝑑𝑑𝑒+𝑚𝑑𝑙𝑙𝑒𝑒𝑒𝑑𝑒𝑑 𝑒𝑛𝑒 𝑓𝑒𝑒𝑔) ∙ 𝑀3 4� ∙ 𝑒𝐸𝑖𝑇𝑐 𝑘𝑇0�
 (equ. 11) 

𝑚𝑞𝑑𝑑𝑑𝑛 𝑒𝑒𝑒𝑒𝑡=(𝑚𝑞𝑑𝑑𝑑𝑛 𝑒𝑑𝑑𝑒 + 𝑚𝑞𝑑𝑑𝑑𝑛 𝑒𝑑𝑒𝑒𝑒𝑑𝑑𝑙𝑒𝑑𝑒𝑛) ∙ 𝑀3 4� ∙ 𝑒𝐸𝑖𝑇𝑐 𝑘𝑇0�
 (equ. 12) 

Known as anabolism, energy is preserved for somatic growth per step by equation 13, 14 

(Gillooly et al. 2001; Hou et al. 2008): 

 𝑆 = 𝐸𝑙 ∙ 𝑑𝑙𝑑𝑒  (equ. 13) 

From these we derived: ∆𝑚 =
𝑑𝑙𝑑𝑒 =

𝑆𝐸𝑐 =
𝑙𝑠𝑦𝑛𝑙∙𝑀3 4� ∙𝑑𝐸𝑇 𝑘𝑇0�  (equ. 14) 

Where ∆𝑚 is a fact body accumulation rate; S is rate of energy stored; Ec is the energy content of 

biomass; 𝑚 𝑑𝑒𝑒𝑒𝑑𝑛𝑓 is the energy for storing fat body per step; c is anabolism factor; 𝑀 is the 

mass of agent; 𝐸 is the activation energy; 𝑘 is Boltzmann’s constant; T0 is standard temperature 

20℃. 

When the agents starve, catabolism became larger and it elicits energy loss (Perrin 1995). 

The fat body will be consumed to maintain basic energy requirement (equ. 15), which causes 

weight loss: 

                                        ∆𝑚′ =
𝑑𝑙′𝑑𝑒 =

𝑙𝑟𝑒𝑠𝑡+𝑙𝑙𝑜𝑐𝑜𝑐𝑜𝑡𝑖𝑜𝑛𝑙′∙𝑀3 4� ∙𝑑𝐸𝑖𝑇𝑐 𝑘𝑇0�  (equ. 15) 

∆𝑚′ is a mass loss rate, c’ is catabolism factor. 
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Monitored Values 

The number of agents belonging to different groups, age structure, total energy, and mass 

of ant colony are followed and calculated. When forager or nurses finish their previous tasks, the 

working efficiency is calculated every step as follow (equ. 16): 

𝑟𝑑𝑒𝑒𝑒𝑓𝑑𝑛𝑓 =
∑ 𝐹𝑓𝑖𝑖0𝑛𝑓𝑜𝑟𝑐𝑔𝑒𝑟+𝑛𝑛𝑢𝑟𝑠𝑒, 𝑟𝑛𝑑𝑒𝑑𝑑𝑛𝑓 =

∑ 𝐹𝑑𝑖𝑖0𝑛𝑓𝑜𝑟𝑐𝑔𝑒𝑟+𝑛𝑛𝑢𝑟𝑠𝑒 
𝐹𝑔 = �   0    (𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑖𝑛𝑐𝑜𝑚𝑒𝑙𝑒𝑡𝑒 𝑒𝑒𝑟 𝑠𝑡𝑒𝑒)

1     (𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑐𝑜𝑚𝑒𝑙𝑒𝑡𝑒 𝑒𝑒𝑟 𝑠𝑡𝑒𝑒)
 

𝐹𝑑 = �   0    (𝑛𝑢𝑟𝑠𝑖𝑛𝑔 𝑖𝑛𝑐𝑜𝑚𝑒𝑙𝑒𝑡𝑒 𝑒𝑒𝑟 𝑠𝑡𝑒𝑒)

1     (𝑛𝑢𝑟𝑠𝑖𝑛𝑔 𝑐𝑜𝑚𝑒𝑙𝑒𝑡𝑒 𝑒𝑒𝑟 𝑠𝑡𝑒𝑒)
 (equ.16) 

i is index of workers. During each run the birth rate, death rate, and growth rate of population are 

calculated by equ. 17, 18, 9, 20: 

𝑟𝑓𝑒𝑒𝑔𝑒ℎ =
∑ 𝑛𝑡(𝑛𝑒𝑤 𝑤𝑜𝑟𝑘𝑒𝑟𝑠)
𝑡0 𝑒  (equ. 17) 

𝑟𝑏𝑑𝑒𝑒ℎ =
∑ 𝑛𝑡(𝑛𝑒𝑤 𝑖𝑐𝑐𝑐𝑡𝑢𝑟𝑒 𝑐𝑛𝑡𝑠)
𝑡0 𝑒  (equ. 18) 

𝑟𝑔𝑒𝑒𝑘𝑑𝑒 𝑑𝑑𝑒𝑒ℎ =
∑ 𝑛𝑡(𝑑𝑒𝑐𝑑 𝑤𝑜𝑟𝑘𝑒𝑟𝑠)
𝑡0 𝑒  (equ. 19) 

𝑟𝑑𝑙𝑙𝑒𝑒𝑑𝑒𝑑 𝑑𝑑𝑒𝑒ℎ =
∑ 𝑛𝑡(𝑑𝑒𝑐𝑑 𝑖𝑐𝑐𝑐𝑡𝑢𝑟𝑒 𝑐𝑛𝑡)
𝑡0 𝑒    (equ. 20) 

t is the number of steps, nt(new 𝑔𝑒𝑒𝑘𝑑𝑒𝑑)is the number of new workers at the t-th step, 

nt(𝑛𝑑𝑔 𝑑𝑙𝑙𝑒𝑒𝑑𝑒𝑑 𝑒𝑛𝑒𝑑)is the number of new immature ants at the t-th step, nt(new forager)is the 

number of forager at the t-th step, nt(𝑑𝑑𝑒𝑑 𝑔𝑒𝑒𝑘𝑑𝑒𝑑)is the number of dead workers at the t-th 

step, 𝑛𝑡(𝑑𝑒𝑎𝑑 𝑖𝑚𝑚𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑡) is the number of dead immature ants a the t-th step. The average 

developmental time of immature ants is recorded based on every individual that has developed. 

The average developmental time of immature ants is calculated by equ. 21: 

𝑡𝑑𝑑𝑒𝑑𝑡𝑒𝑒𝑙𝑑𝑛𝑒 =
∑ 𝑒 𝑖𝑖0𝑛𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑  (equ. 21) 

i is index of new adult worker. 𝑡𝑑𝑑𝑒𝑑𝑡𝑒𝑒𝑙𝑑𝑛𝑒 is an average developmental time of the new adult 
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worker, 𝑡 𝑑 is the developmental time of new adult worker i, 𝑛𝑑𝑑𝑒𝑑𝑡𝑒𝑒𝑑𝑑 is the number of new 

adult workers. In order to compare the energy consumption, the hungry rate was monitored by 

equ. 22: 

𝑅ℎ𝑑𝑛𝑓𝑑𝑒 =
∑ 𝑛𝑡(ℎ𝑢𝑛𝑔𝑟𝑦 𝑒𝑣𝑒𝑛𝑡𝑠)
𝑡0 𝑇⁄∑ 𝑛𝑡(𝑤𝑜𝑟𝑘𝑒𝑟)

𝑡0��������������������  (equ. 22) 

Where t is the number of steps, T is the time of simulation, nt(hungry events) is the total number of 

hungry events in workers at the t-th step, ∑ 𝑛𝑒(𝑔𝑒𝑒𝑘𝑑𝑒)
𝑒0���������������� is the average number of workers per 

step. 

Experiment 

We did 3 experiments to test temperature and food’s impacts on ant colonies. 

Experiment of Temperature Changes 

Constant Temperature vs. Dynamic Temperature: In the constant temperature treatment, 

the model started with the mean temperature in Johnson City 2010, 13.5
o
C, and the nest 

temperature was estimated to be 14.3
o
C (equ. 4). In the dynamic temperature treatment, the daily 

temperature of Johnson City, TN, in 2010 was parameterized into the model to manipulate 

dynamic air temperature (maximum 29.15
o
C, minimum -9.5

o
C, mean 13

o
C). Every simulation 

ran for 516 781 steps (≈ 359 days). In every treatment, 20 parallel simulations were run to 

estimate statistically. 

Different Elevated Temperature Regimes: Based on daily air temperature record in 

Johnson City TN in 2010, we set up 8 treatments to manipulate elevated temperature regimes: 

+0
o
C, +2

o
C, +4

o
C, +6

o
C, +8

o
C, +10

o
C, +12

o
C, and +14

o
C. Each simulation starts with 

parameters in Table 2 and ran for 516 781 steps (≈ 359 days). In every treatment, 20 parallel 

simulations were run to estimate statistically.  
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Experiment of Food Availability Changes 

In this experiment we estimated the food availability based on the width of food patches. Three 

levels of food richness were implemented into the model: 2 patch wide food sources, 3 patch wide food 

sources, and 5 patch wide food sources. Each simulation started with temperature of Johnson City in 2010, 

and ran for 516 781 steps (≈ 359 days). In every treatment 20 parallel simulations were run to estimate 

statistically. 

Experiment of Climate Changes 

In order to simulate climate changes in terms of high temperature and food richness, we 

inserted high food availability and temperature into the model together.  The model started with 

temperature elevated 14
o
C regime (maximum: 37

o
C; minimum: 15

o
C; mean: 27

o
C). Two levels 

of food availability were manipulated: 3-patch wide food sources as the control and 5-patch wide 

food as the treatment. Every simulation ran for 516 781 steps (≈ 359 days). In this treatment 20 

parallel simulations were run to estimate statistically.  
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CHAPTER 3 

RESULTS 

Effects of Seasonal Temperature Change on Population and Energy Dynamic of Ant Colony  

The colonies started with the daily temperature in Johnson City TN in 2010 as the 

dynamic temperature simulation (TJohnsonCity: maximum 23
o
C, minimum 1

o
C, mean 13

o
C) or with 

13
o
C as constant temperature simulation. In single simulation with dynamic temperature, the 

population size endured 4 stages during the whole year: it shrunk significantly during spring, 

increased in summer, stabilized in autumn, and declined again in winter (Fig. 3a). Comparing 

population size distribution to annual temperature (Fig. 3a), we can conclude that temperature-

dependent population size keeps growing during the summer until the size of colony arrives at a 

maximum in the middle of the autumn. Afterwards, the population of colony declines till middle 

of the spring. In addition, the colony size increases above about 12.5
o
C and decreases below 

about 12.5
o
C. The 𝑟𝑑𝑒𝑒𝑒𝑓𝑑𝑛𝑓 (number of times becoming hungry per worker per minute, equ. 22), 

the average foraging efficiency of worker (Times of a resource-laden ant returning to the nest per 

worker per min, equ. 16) and average mass of workers varies seasonally as well (Fig. 3c, d). 

Differently, the colonies simulated with the constant temperature (13
o
C) have no apparent 

declining stages, and its size grows in logistic manner (Fig.3b).  
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a: 

 
                                          b: 

 
              c:        

 
               

Figure 3 (continued on the next page). Population dynamics in single simulations: (a) Daily temperature in Johnson 

City TN 2010 (red line); modeled population size of colonies (blue line); (b) Constant temperature (red line); 

population size of colonies (blue line); (c) Foraging efficiency of workers in dynamic T. 
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            d: 

 
Figure 3 (continued). Population dynamics in single simulations: (d) Average mass of workers in dynamic 

temperature. 

 

We find the dynamic temperature tends to make more fluctuations in energy, population 

size of colonies, and foraging efficiency of workers than what constant temperature does (Fig. 4a, 

b, d). The food storage consumed more extensively in the dynamic temperature than in constant 

temperature during the summer (Fig.4c). 

 

   a:       b: 

 
 Figure 4 (continued on the next page). Average value of 20 parallel simulations with constant temperature (red line) 

and dynamic temperature (blue line): (a) energy of ant colony; (b) population size of ant colony. 
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  c:       d: 

  
Figure 4 (continued). Average value of 20 parallel simulations with constant temperature (red line) and dynamic 

temperature (blue line): (c) food storage in the nest; and (d) foraging efficiency of workers. 

 

Effects of Temperature Elevations on Population and Energy Dynamic of the Ant Colony 

The resistance of the colonies to elevated temperature regimes is fairly robust. Only 12.5% 

colonies died out at the end of year. The rest of the experimental modeled colonies could 

stabilize their colony’s size and energy levels (Fig.5a-b). We used 270
th

 day as a time point for 

comparison, given that this time is the transition of summer to autumn. On the 270
th

 day, the 

differences of energy and population among 8 temperature elevation regimes were tested in 

pairwise test if the Kruskal-Wallis test showed that the groups in fact have not the same median  

(N=159, d.f. = 7). We detected the significant differences in the energy level of the colony 

between 0
o
C and 4

 o
C (p < 0.05), 4

 o
C and 8

 o
C (p < 0.001) and 8

 o
C and 12

 o
C (p < 0.05) to 

indicate that the energy of colonies tend to increase as temperature has small elevations (≤4
o
C), 

and decline in the higher elevated temperature regimes (≥6
o
C) (Fig. 5c-d). The dynamic of 

colonies’ size has the same pattern as we described for the energy. There are significant 

differences between 0
o
C and 4 

o
C (p < 0.05), 4

 o
C and 8

 o
C (p < 0.001), and 8

 o
C and 14

 o
C (p < 

0.001). 
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                       a:                           b: 

 
                           c:                            d: 

 
Figure 5. Effects of temperature elevation regime on (a) energy of colonies, (b) population size of colonies, (c) 

energy of colonies on the 270
th

 day, and (d) average population of colonies on the 270
th

 day. p-value based on 

pairwise test using the Kruskal-Wallis test (N=159, d.f.=7). 

 

 In the cases of extreme high temperatures, the colonies died out because of food shortage 

or/and low birth rate of immature ants (Figs.6, 7). The average birth rate of immature ants in 6
o
C 

elevations is significantly higher than in 0
o
C (Kruskal-Wallis pairwise test, p < 0.001, N=160, 

d.f.=7), and the rate in 12
o
C elevation is significantly lower than in 6

o
C elevation (Kruskal-

Wallis pairwise test, p < 0.001, N=160, d.f.=7). Furthermore, there are no significant differences 

of birth rate among 4
o
C, 6

o
C, 8

o
C, and 10

o
C elevations. Those results reveal that the birth rates 

of workers respond to temperature in the manner of a single-peak (Fig.7).   
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                 a:              b: 

 
                c:              d: 

 
Figure 6. Two cases of colony extinction at the 14

o
C elevated temperature regime: (a) and (c) energy of colony; 

(b) and (d) food storage in nest. 

  
Figure 7. Effects of temperature elevated regime on birth rate of immature ants. p-value based on pairwise test 

using the Kruskal-Wallis test (N=60, d.f.=7). 

 

As the temperature increases, the duration of immature ants’ stage decreases from 57 

days in 0
o
C elevation to 32 days in 14

o
C elevation. There are significant differences of 

developmental time between 0
o
C and 6

o
C elevation, and between 6

o
C and 12

o
C elevations 

(Kruskal-Wallis pairwise test, p < 0.001, N=160, d.f.=7) (Fig. 8). However, there are no 

significant differences among 10
o
C, 12

o
C, and 14

o
C elevations. Therefore, the developmental 
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time could be described by temperature elevations in the exponential decaying pattern (y = 

80469e
-0.041x

, R² = 0.9743, p < 0.0001).  

 

a: 

    
      b: 

 
Figure 8. Effects of temperature elevated regime on developmental time of immature ants: (a) significant differences 

among elevated temperature regimes, p-value based on pairwise test using the Kruskal-Wallis test (N=160, d.f.=7); 

(b) regression of developmental time on temperature elevations, p < 0.001. 

 

Under the high temperature, workers are more likely to become hungry. The 𝑅ℎ𝑑𝑛𝑓𝑑𝑒(hunger rate of workers) in 14
o
C elevation is the highest, and there are significantly 

differences between 0
o
C and 6

o
C elevations (Kruskal-Wallis pairwise test, p < 0.005, N=160, 

d.f.=7), and between 6
o
C and 12

o
C elevation group (Kruskal-Wallis pairwise test, p < 0.05, 
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N=160, d.f.=7). Under the exponential relationship between hunger rate and temperature 

elevation (y = 0.0005e
0.0425x 

, R² = 0.442, p < 0.001), a worker became hungry from 5.5E-04 

times to 11.3E-04 times per step as temperature increases. As results, we can say 𝑅ℎ𝑑𝑛𝑓𝑑𝑒 (hunger 

rate of workers) is highly temperature dependent (Fig.9).  

 

                                                                   a:   

 
 b:  

 
Figure 9. Effects of temperature elevated regimes on hunger rate of workers. (a) Significant differences among 

elevated temperature regimes. p-value based on pairwise test using the Kruskal-Wallis test (N=160, d.f.=7). (b) 

Regression of developmental time on temperature elevations, p < 0.001. 

 

To some extent the workers could increase their foraging efficiency significantly (equ.16) 
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to relieve hunger of colonies (Kruskal-Wallis pairwise test, p 0 
o
C vs 6 

o
C < 0.001, p 6 

o
C vs 10 

o
C < 0.05, 

N=160, d.f.=7) while temperature is elevated unless the high temperature is too extreme (>12
o
C 

elevation regime) to maintain the food and energy balance (Fig.10). The 200
th

 day, the hottest 

day during the year, might be the best time to test the relationship between temperature and mass 

of workers. On the 200
th

 day the average mass of workers have no significant differences among 

0
 o
C, 2

 o
C, 4

 o
C, and 6

 o
C elevations (Kruskal-Wallis pairwise test, p > 0.05, N=160, d.f.=7) (Fig 

11b). However, while temperature is elevated by 6
 o
C or higher, the workers’ masses drop 

steadily and significantly different between 0
 o
C and 8

o
C elevation and between 8

o
C and 14

 o
C 

elevation because more mass was converted to energy. The nursing efficiency (equ. 16) in the 

14
o
C elevation is significantly lower than in other groups except 0

o
C elevation (Kruskal-Wallis 

pairwise test, p < 0.001, N=160, d.f.=7), which might be the byproduct of low birth rate of 

immature ants (Fig.12). 

           

       
Figure 10. Effects of temperature elevated regime on foraging efficiency. p-value based on pairwise test using 

the Kruskal-Wallis test (N=160, d.f.=7). 
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a:                    

 
b: 

 
Figure 11. Effects of temperature elevation regime on (a) average mass of workers, (b) the average mass of 

workers on the 200
 th

 day. p-value based on pairwise test using the Kruskal-Wallis test (N=160, d.f.=7). 

 

        
Figure 12. Effects of temperature elevated regime on nursing efficiency. p-value based on pairwise test using 

the Kruskal-Wallis test (N=160, d.f.=7). 

 

Effects of Food Availabilities on Population and Energy Dynamic of Ant Colony 

The diameter of food sources is used to quantify food availability. If the food source is 

bigger, it could be richer and found more easily by ant workers. Comparing the energy and 
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population size of colonies under different food availability, we find there are no differences of 

energy and population at the beginning of simulations. After about 50 days colonies with 

different food availabilities branch into 3 levels respectively (Fig. 13a-b). On the 270
th

 day the 

energy and population size of colonies in 3 food levels are significantly different from each other 

(Kruskal-Wallis pairwise test, penergy < 0.001, ppopulation < 0.001, N=60, d.f.=2).  

 

             a:       b: 

 
 c:         d: 

 
Figure 13. Effects of food availability on (a) energy of colonies, (b) population size of colonies, (c) energy of 

colonies on the 270th day, and (d) population of colonies on the 270
th

 day. (blue line: 2 patch wide food source; 

red line: 3 patch wide food source; green line: 4 patch wide food source). p-value based on pairwise test using 

the Kruskal-Wallis test (N=60, d.f.=2). 

 

As the food availability increases, the nursing and foraging efficiency increase as well 

(Fig. 15), and the food storage in the nest tends to stabilize during the whole year, especially in 

the summer (Fig. 14). In the 4-patch wide food sources, the nursing and foraging efficiencies are 

significantly higher than in other food sources (Kruskal-Wallis pairwise test, pforaging < 0.05, 
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pnursing < 0.001, N=60, d.f.=2).  

 

 
Figure 14. Effects of food availability on food storage (blue line: 2 patch wide food source; red line: 3 patch 

wide food source; green line: 4 patch wide food source). 

                 a:            

 
b: 

 
 

Figure 15. Effects of food availability on (a) foraging efficiency and (b) nursing efficiency. p-value based on 

pairwise test using the Kruskal-Wallis test (N=60, d.f.=2). 

 

The birth rates of new workers in 3 food levels are significantly different from each other 
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(Kruskal-Wallis pairwise test, p < 0.001, N=60, d.f.=2) and tend to increase with rich food 

sources (Fig. 16). 

                   

 

 
Figure 16. Effects of food availability on birth rate of immature ants. p-value based on pairwise test using the 

Kruskal-Wallis test (N=60, d.f.=2). 

 

Effects of High Food Richness and Temperature on Population and Energy Dynamic of Ant 

Colony 

In the environment with high temperature (maximum: 37
o
C; minimum: 15

o
C; mean: 

27
o
C), the dynamic energy and population size of colonies could change based on their different 

food richness. In the 3-patch wide food source group, the population and energy of colonies 

decline to zero at the end of year. However, in 5-patch wide food sources group, colony size 

peaks at 512 and energy of colonies is accumulated to 2.15 KJ ultimately (Fig. 17a-b). On the 

270
th

 day, the energy and population of colonies are significantly different from each other 

(Kruskal-Wallis pairwise test, p < 0.001, N=39, d.f.=1 ) (Fig. 17c-d).  
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a: 

 
b: 

 
c: 

 
Figure 17 (continued on the next page). Effects of high temperature and food richness on (a) energy of colonies, 

(b) population size of colonies, (c) energy of colonies on the 270
th

 day (Red line: 3-patch wide food sources; 

blue line: 5-patch wide food sources). p-value based on pairwise test using the Kruskal-Wallis test (N=39, 

d.f.=2).  
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d: 

 
Figure 17 (continued). Effects of high temperature and food richness on (d) population of colonies on the 270

th
 

day. p-value based on pairwise test using the Kruskal-Wallis test (N=39, d.f.=2). 

 

 In the 3-patch wide food sources group, the declining population is determined by 

significant lower birth rate and higher hunger rate of workers (𝑅ℎ𝑑𝑛𝑓𝑑𝑒) than in 5-patch wide food 

richness group (Kruskal-Wallis pairwise test, p < 0.001, N=40, d.f.=1) (Fig. 18-19). In the 

environment with richer food supply, significantly higher foraging and nursing efficiency help 

colonies meet the energy demand than in lower food richness group (Kruskal-Wallis pairwise test, 

p < 0.001, N=40, d.f.=1) (Fig. 20-21). 

 
Figure 18. Effects of high temperature and food richness on birth rate of immature ants. p-value based on 

pairwise test using the Kruskal-Wallis test (N=40, d.f.=2). 
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Figure 19. Effects of high temperature and food richness on hunger rate of workers. p-value based on pairwise 

test using the Kruskal-Wallis test (N=40, d.f.=2). 

   

  
Figure 20. Effects of high temperature and food richness on foraging efficiency. p-value based on pairwise test 

using the Kruskal-Wallis test (N=40, d.f.=2). 

 
Figure 21. Effects of high temperature and food richness on nursing efficiency. p-value based on pairwise test 

using the Kruskal-Wallis test (N=40, d.f.=2). 
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CHAPTER 4 

DISCUSSION 

Seasonal Dynamics of Ant Colonies 

 

Our model predicted that the size of a colony varies seasonally under dynamic 

temperature conditions (Fig. 3a). As in our study, Tschinkel (1999) reported that worker density 

of the Florida Harvester ant (Hymenoptera: Formicidae) in the Apalachicola National Forest 

clearly varied with the seasons, reaching a high point in the autumn and winter and a low at the 

end of spring or beginning of summer. In the simulations the growth patterns of colonies in 

constant and dynamic temperature conditions demonstrates that they grow logistically and may 

be food dependent. Tschinkel (1987) also indicated that the colony size is food determined, as in 

the seasonal cycles of in fire ants, Solenopsis invicta, in Tallahassee Florida. We also found that 

mass of workers increases steadily through the beginning of summer to middle of autumn and 

declines over the winter (Fig. 3). The mass content of workers in the model was accumulated and 

consumed in body fat. Tschinkel (1993) observed the dynamics of fat content in workers fire ants, 

Solenopsis invicta, and found patterns similar to that predicted in the model. Seasonal variation 

in the foraging efficiency of workers comes from seasonal temperature change that was 

considered as one of the considerably significant factor (Fig. 4d) affecting a worker’s foraging 

behavior (Porter and Tschinkel 1987). They suggested that the foraging rate of workers might be 

determined by an underground tunnel system of colonies independent of external relative 

humidity, saturation deficits, soil moisture, and wind. The colonies in the model do not have 

underground tunnel systems, but the workers still perform at different foraging rates in different 

seasons, probably because of different movement rates, the workforce size, and trail pheromone 

networks. High temperature tends to promote foraging efficiency by accelerating workers’ 
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movement directly. Hurlbert et al. (2008) estimated the positive relationship between 

temperature and workers speed from 19 ant species from 22 different studies in which the fast 

movement of workers could facilitate foragers in finding and carrying food back to the nest. 

Indirectly, Bruce and Burd (2012) found an exponential relationship between the size of workers 

and foraging rate (number of resource-laden ants returning to the nest per unit time) that scaled at 

the 0.93 power of worker numbers. Apart from that, foraging rate was also determined by 

pheromone trail networks scaling at the –1.02 power of total trail length and the 0.65 power of 

trail width. The authors suggested that the number of foragers recruited by trail pheromones 

would determine how many workers could carry food back to the nest successfully. If more 

workers forage outside the nest, then pheromone trail could be maintained and strengthened 

faster to recruit more workers.  

Effects of Temperature on Population and Energy Dynamic of Ant Colony 

Pimm and Bartell (1980) used the number of cold and hot days to calculate fire ant 

propagation rate. They successfully predicted the northern limits of the fire ant range. Stoker et al. 

(1994) developed a model to find the “reproductive” border, which describes queen fecundity, 

mating flights, and the dependence of developmental rates and mortality on air temperature. The 

model ran with daily air temperature normally distributed around monthly means. Killion and 

Grant (1995) applied the temperature to find a “growth” border in space where a fire ant colony 

ceases to grow. Other temperature-dependent models were also built later relying on soil 

temperature (Korzukhin et al. 2001). When considering the predictive model for ant colony 

spatial distribution, temperature is a primary parameter. 

The results we obtained reveal that temperature has a significant impact on dynamics of 

ant colony populations and energy through birth rate, developmental time, hunger of workers, 
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and foraging and nursing efficiency. First of all, increased temperature has positive impacts on 

ant colonies by shortening developmental time (Figs. 8, 10). Poter (1988) found the 

developmental time of the fire ant to decrease with temperature. The total developmental time of 

fire ant was estimated under different temperature ranging from 23 days at 35
o
C to 55 days at 

24.5
o
C. In the model we compressed 3 developmental stages (egg, larvae, and pupa) into one 

under the name of immature ant. However, the developmental time of immature ants in the 

model still decreased exponentially, ranging from 32 days at 14
o
C elevation (T� = 27oC) to 57 

days at 0
o
C elevation (𝑇� = 13𝑒𝐶). Theoretically, the decaying pattern of developmental time 

results from the basic energetic processes. The developmental time is determined by the 

reciprocal of development metabolic rate scaling to temperature by 𝑒−1/𝑇 (equ. 2, 23). 𝑡𝑑𝑑𝑒𝑑𝑡𝑒𝑒𝑙𝑑𝑛𝑒 ∝  1 (𝑒−1/𝑇)⁄  (equ. 23) 

In other words, as temperature increases, more energy will be consumed for development and 

basic maintenance per unit time. When energy consumption is larger than energy intake, the 

energy intake would be used for basic maintenance primarily so that no more energy could be 

allocated to development. The exponential regression relationship over temperature in the model 

(Fig. 8) is different from the theoretical one probably because the temperature variable in the 

model is identified as the temperature elevation but not absolute temperature.    

Elevated temperature plays a double role by affecting birth rate and foraging efficiency of 

workers.  Abril et al. (2008) found the Argentine ant queen (Linepithema humile Mayr) at the 

southern edge of the Gavarres massif near the village of Castell d’Aro (Northeast Iberian 

peninsula) had a temperature preference for egg laying at 28
o
C and was subjected to the upper 

and lower temperature limits on oviposition rate. The upper and lower temperature limits of 

oviposition rate were caused by the amount of the food the queen ingested. The oviposition rate 
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of the queen in the model had the same performances (Fig.7). The birth rate of immature ants 

peaked at a mean temperature 17
 o
C ~19

o
C and the population and energy state of colonies on the 

270th day peaked at the maximum mean temperature as well. (Fig. 5) The results of birth rate of 

immature ants suggest that the energetic effects of temperature on the egg-laying behavior of 

queens because moderate temperature elevations promote follicle and ovarian development 

(Phoofolo et al. 1995). In contrast, the high temperature will cut down the energy allocations for 

follicle and ovarian development. As regards workers’ foraging behaviors, high temperature 

tends to promote foraging efficiency by speeding workers’ movement directly and strengthening 

pheromone trail networks indirectly depicted above. In the 14
o
C elevation the declination of 

foraging efficiency was caused by decaying size of workforce probably to offset speeding 

impacts of high temperature (Fig. 10). 

Temperature elevations have negative impacts on population size and energy of colonies 

in the energetic way:  more energy intake would be needed to meet basic metabolic demands in 

terms of maintaining, moving, growing, and producing. Kaspari (2005) estimated that average 

worker mass across 49 ant communities. It decreased (partial r
2
 = 0.36) with ambient 

temperature T, which supported the hypothesis that higher mean monthly temperatures, T, 

reduced worker mass by increasing metabolic costs. In the model the highest temperature occurs 

on the 200
th

 day, and we predicted the average mass of workers on the 200
th

 day decreased 

typically at the high level of temperature elevations (Fig. 11b). On the other hand, the average 

hunger rate of workers (𝑅ℎ𝑑𝑛𝑓𝑑𝑒) we monitored increased exponentially with levels of temperature 

elevations (y = 0.0005e
0.0425x

, R² = 0.442, p < 0.0001) (Fig. 10). However, workers’ mass 

appears to be insensitive to the moderate temperature elevations because there are no significant 

differences among 0
o
C, 2

 o
C, 4

 o
C, and 6

 o
C elevation groups on the 200

th
 day. Workers might 



  

62 

 

have some special behaviors to resist losing mass, for example, speeding movement to increase 

foraging efficiency.  

In the model for simplicity we set our ant as a monomorphic species: workers have the 

same size and physiology and they show only 2 behavioral profiles: foraging and nursing. In 

both cases workers only respond to saturation of food storage in the nest by switching tasks. In 

fact, in some ant species, such as harvester ants, Pogonomyrmex barbatus, were found to engage 

in 4 activities outside the nest: foraging, patrolling, nest maintenance, and upkeep of colony 

refuse pile (Gordon 1984). Different groups of workers could change their preferring behavior 

based on information of event from other groups of workers (Gordon 1989). In those groups of 

labors they can offset energy cost by efficient performing the specialized tasks (Wilson 1976; 

Lighton et al. 1987; Kay and Rissing 2005; Powell and Franks 2005; Powell 2009). For example, 

within nests workers (especially specialized castes) typically remain idle, becoming active only 

when exposed to a specific stimulus of sufficient strength (Wilson 1968, 1976; Robinson and 

Page 1989; Detrain and Pasteels 1991; Gordon 2002; Beshers and Fewell 2001; Fewell et al. 

2009). In red harvester ant, Pogonomyrmex barbatus, it was found that the return of the 

patrollers stimulates the onset of foraging, and later the rate at which foragers return affects the 

rate at which foragers continue to leave the nest (Gordon 2002). It was the effective strategy to 

avoid foraging outside at high temperature and to economize the energy consumption. Apart 

from keeping idle inside nest, some ant species, such as Leptothorax albipennis, have particular 

worker group to store lipid during winter as a secondary energy resource (Blanchard et al. 2000). 

Albeit no matter how many energetic saving strategies exists in nature, the ant colonies still can’t 

escape from impacts of the air temperature once workers forage outside nest. The evidences from 

those results support our hypothesis that a large elevation of temperature will increase the energy 
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cost to maintain energetic balance for surviving, although the impacts of temperature elevations 

depend on the temperature baseline. 

Effects of Food Richness on Population and Energy Dynamic of Ant Colony 

In the model the diameter of food source is used to estimate food availability. The food 

distributes evenly at the same density in the food source. Therefore, when food source is larger, 

there would be more food. The significant differences of energy and population at 3 levels of 

food availability support the hypothesis that ant colonies respond to the food availability (Fig. 

13). Our observation that food availability affected the population size and energy intake of the 

colonies is similar to Macomi and Poter’s (1995) findings on fire ant workers. In their fire ant 

colonies, doubling the cricket biomass caused an approximate doubling in colony biomass for 

colonies receiving only crickets, and colonies receiving sugar and crickets grew 65 and 40% 

larger with doubling of crickets from 1 to 2 and 2 to 4, respectively. Our model predicts that the 

foraging efficiency increases with food quantity (Fig.15). Schafer et al. (2006) found that the rate 

at which foragers return to the nest is linked to food availability: when food is easy to find, 

foragers return more quickly.  

Under the predation pressure caused by food shortage and starvation, some ant species 

evolved several strategies to offset detrimental impacts of scattering and rare food sources. For 

example, granivorous ants select nest positions based on food availability (Sudd and Franks 1987, 

206 p). Fire ants workers have different preferred diet depending on their status of starvation 

( Howard and Tschinkel 1981). Foraging ants regulate their activity rhythms on time of food 

availability (Hunt 1974; Hansen 1978). However, no matter what strategies the ant workers 

select, the colonies need basic energy to sustain themselves under the strong correlation between 

energy intake and colonies’ biomass  (Macomi and Porter 1995). 
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Effects of Both Food and Temperature on Population and Energy Dynamic of Ant Colony 

In the model we have predicted how ant colonies responded to food and temperature. 

However, those results also suggest that temperature associate with food availability to determine 

colonies’ dynamic. Firstly, when we considered the effects of temperature caused by climate 

change on ant colonies, symbolized by rising global CO2 concentration and temperature, plant 

growth accounting for photosynthesis rate also exhibits temperature and CO2 dependency. 

Photosynthetic rates increase with a short-term increase in CO2 concentration and are related 

parabolically to leaf temperature (Von Caemmerer 2000). Based on the photosynthesis equations 

(Appendix 5) and the daily temperature in Johnson City the photosynthetic rate fluctuates 

(Fig.22a). As the temperature increases the photosynthetic rate increases as well (Fig.22b). In the 

light of temperature and food impacts on ant colony, temperature elevations increasing 

photosynthetic rate will facilitate plants to grow more food. If rich food patch could compensate 

starvation of colonies caused by the increased metabolism due to high temperature, then it could 

stabilize the population and energy dynamics of colonies that otherwise would die out. As  

expected, in the “experiment of climate change”, the ant colonies died out in the 3-patch wide 

food source group because high temperature caused significantly higher hunger rate of workers, 

lower foraging and nursing efficiency and birth rate of immature ants. However, the population 

size and energy of colonies in 5-patch wide food source group peaked at almost 600 and 2.5KJ 

under the high ambient temperature (Fig. 17). 
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      a: 

 
        b: 

 
Figure 22. Relationship between photosynthetic rate and temperature. (a) the distribution of photosynthetic rate 

based on temperature in Johnson City: red line: photosynthetic rate; blue line: air temperature; (b) 

photosynthetic rate as the function of temperature. 

 

 

Apart from interactions between food availability and temperature, Lienart et al. (2014) 

suggested that individuals in low physiological condition because of limited food availability are 

more susceptible to increased temperature. And the thermo-regulatory behavior of workers 

indicate that the growth curve for well-fed colonies was strongly skewed toward warmer 

temperature, and food limited colonies apparently grew larger at cooler temperatures because 

metabolic costs of workers were reduced (Porter and Tschinkel 1993). In the energetic 
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explanation, with temperature elevations, individual metabolic rate increases exponentially so 

that more and more food and energy are consumed for basic energy maintenance. Ultimately, the 

well-feeding colonies might transfer to food limited colonies that are very susceptible to high 

temperature. In this process the food availability and temperature work under the networks (Fig. 

23). 

 

 

Figure 23. Feedbacks’ networks of ant colony (+, positive feedback; -, negative feedback). 
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CHAPTER 5 

CONCLUSIONS 

By changing temperature and food availability, our model revealed the significant 

impacts of temperature and food on ant colonies’ population and energy dynamics. Moderate 

temperature elevation could boost colony growth by speeding workers’ foraging speed and 

increasing the energy allocations for reproduction of queen and development speed of immature 

ants. However, very high temperature elevation would cause the degeneration of energy and 

population of colonies because high temperature elevation increases ants’ metabolic rate. And 

ants may consume more energy to sustain themselves comparing with ants in moderate air 

temperature. In the environment with same air temperature, ant colonies could respond to the 

changes of food availability by adjusting their biomass to the food intake. The scarce food 

sources would increase colonies’ risk for dying out. Nevertheless, the rich food sources could 

protect ant colonies from food shortage and starvation. The equilibriums between food intake 

and consumption broken in low food richness could be saved in case of more available food. 

Temperature associates food availability has important impacts on ant colonies. Under the high 

temperature, a colony is more likely to change from the food-well one to food-limited one. The 

complicated feedback networks of the ant colony tell us that it is a very complex network of 

processes involved to estimate the effect of climate change on dynamics of population and 

energy of ant colonies. 
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APPENDICES 
 

APENDIX A 

Standard Metabolic Rate 

 The standard metabolic rates of several ants species were estimated and the relationship 

between mass and metabolic rate was regressed in equation 1(Vogt and Appel 1999). 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 𝑅𝑎𝑡𝑒 = 753(±1.39)𝑀𝑎𝑠𝑠0.799(±0.077)   (𝜇𝑤) equ. 1 

In the model, the standard metabolic rate of ants could be calculated based on their mass (equ. 1). 

            Table 3. Standard metabolic rate of ants. 

Agent Mass Metabolic 

Queen 20mg 19.77(10−4J/min) 

Immature ant 0.8mg 1.51(10−4J/min) 

Forager(Nurse) 2mg 3.13(10−4J/min) 
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APENDIX B 

Metabolic Rate for Locomotion 

Schilman (Schilman and Roces 2005) measured the net cost of transport (NCOT) for 

unladen locomotion in nectar-feeding ant, Camponotus rufipes.  

NCOTbody mass=212.3±34.5 (J kg 
-1

m
-1

) 

We assume the NCOT is the universal parameter for calculating the metabolic rate of locomotion 

(Mlocomotion) based on mass (equ.2). 𝑀𝑡𝑒𝑙𝑒𝑙𝑒𝑒𝑑𝑒𝑛 = 𝑁𝐶𝑂𝑇𝑏𝑒𝑑𝑦 𝑙𝑒𝑑𝑑 ∙ 𝑚𝑎𝑠𝑠 ∙ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 equ. 2 

      Table 4.  Initial metabolic rate of ant worker for locomotion. 𝑁𝐶𝑂𝑇𝑏𝑒𝑑𝑦 𝑙𝑒𝑑𝑑 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑡𝑒𝑙𝑒𝑙𝑒𝑒𝑑𝑒𝑛 

212.3 (J kg -1m-1) 2mg 120cm/min 5.09(10−4J/min) 
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APENDIX C 

Metabolic Rate for Growth, Reproduction, and Biosynthesis 

Chen (Hou et al. 2008)estimated energy allocation to storage for somatic growth during 

ontogeny in equation 3 and energy for biosynthesis in equation 4. 𝑆 = 𝛾 ∙ (𝐵0𝑚3 4⁄ − 𝐵0𝑀−1 4⁄ 𝑚) equ. 3 

Here, S is the rate of energy stored for development; 𝛾 is the storage coefficiency; B0 is the 

standard metabolic rate; m is the mass at larvae size; M is the mass at adult size. We assume this 

equation is valid for ant development (Table 5):  

Table 5. Immature ants’ metabolic rate for somatic growth and biosynthesis. 

Parameters Estimate References 𝐵0 451.8(10−4J/min) (Vogt 1999) 

m 0.8mg (Brian 1973) 

M 2mg (Jensen 1978) 𝛾 9 (Hou et al. 2008) 𝑆 3.95(10−4J/min) Equ. 3 

      

In the model, queen is designed to consume energy and store it for laying eggs. We assume the 

“immature ant” (0.8mg) develops from vitellogenic follicles (10ug). The energy for development 

of per follicle stored by queen could be calculated in equ. 3. In a medium sized colony , about 

2,000 vitellogenic follicles were found in ovaries of the queen(Porter 1985). The total energy for 

development of follicles stored by queen and energy for queen’s biosynthesis are listed in table 6. 

 

 

 



  

82 

 

    Table 6. The rate of energy storage for reproduction. 

Parameters Estimate References 𝐵0 451.8(10−4J/min) (Vogt 1999) 

m 0.01mg (Meer 1992) 

M 0.8mg (Reyes-López 2002) 𝛾 9 (Hou et al. 2008) 𝑛 2000 (Porter 1985) 𝑆per follicle 0.48(10−4J/min) Equ. 3 

Stotal follicles 960(10−4J/min) n ∙ Sper follicle 

 

A worker consumes energy to synthesize and accumulate the fat body, which was described in 

equation 4(Hou et al. 2008). Here,  𝐵𝑑𝑦𝑛 is energy consumed for biosynthesis; m is the mass of a 

worker; M is the mass’ upper threshold of worker.  

              𝐵𝑑𝑦𝑛 = �𝐵0𝑚3 4⁄ − 𝐵0𝑀−1 4⁄ 𝑚� equ. 4 

    Table 7. The rate of energy for workers’ biosynthesis. 

Parameters Estimate References 𝐵0 451.8(10−4J/min) (Vogt 1999) 

m 2mg (Jensen 1978) 

M 5mg  𝐵𝑑𝑦𝑛 0.874 (10−4J/min) Equ. 4 
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APENDIX D 

Amount of the Food per One Bite 

In the infrabuccal pellets of larvae, 1435-1760 food particles were counted, and the 

maximum size of food particles swallowed by larvae was 45.8 um, which is approximately 

corresponds to the diameter of the esophagus (Glancey 1981). We assume the food particle is a 

protein sphere with diameter 45.8 um and density 1.35 g/cm
3 
(Cummins 1971), and ants have the 

same volume of infrabuccal pellets. Every bite, the weight and energy of food in pellets of ants, 

could be calculated in equation 5, 6 (Table 8). 𝑊𝑑𝑒𝑒𝑑 = 𝑁𝑑𝑒𝑒𝑑 ∙ �4∙𝜋∙(𝐷 2⁄ )33 � ∙ 𝐷𝑑𝑒𝑒𝑑 (mg) equ. 5 𝐸𝑑𝑒𝑒𝑑 = 𝑊𝑑𝑒𝑒𝑑 ∙ 𝑐 (10−4J) equ. 6 𝑊𝑑𝑒𝑒𝑑 is the weight of food in one bite; 𝑁𝑑𝑒𝑒𝑑 is the number of food particles in the pellets; 𝐷 is 

the diameter of food particle that is approximately corresponds to diameter of the larvae 

esophagus; 𝐷𝑑𝑒𝑒𝑑 is the density of food particles; 𝐸𝑑𝑒𝑒𝑑 is the equivalent energy of the food in 

one bite;  𝑐 is the weight-energy conversion factor. 

                      Table 8. The amount of food per feeding event. 𝑁𝑑𝑒𝑒𝑑 𝑅(um) 𝐷𝑑𝑒𝑒𝑑 

(10−9𝑚𝑔/𝑢𝑚3) 

𝑐 

(10−4J/mg) 

𝑊𝑑𝑒𝑒𝑑 

(mg) 

𝐸𝑑𝑒𝑒𝑑 

(10−4J) 

1435 45.8 1.35 190000 0.023 4420 
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APENDIX E 

Relationship among Photosynthesis, Temperature, and CO2 

The relationships among photosynthesis, temperature and CO2 concentration could be 

quantified in equ. 26, 27, 28 (Borjigidai et al. 2006): 𝑃𝑙 =
𝑉𝑐𝑐𝑐𝑐(𝐶𝑖−𝜏∗)𝐶𝑖+𝐾𝑐(1+𝑂 𝐾𝑜� )

− 𝑅𝑑 equ.26 

𝑃𝑒 =
𝐽𝑐𝑐𝑐(𝐶𝑖−𝜏∗)4𝐶𝑖+8𝜏∗ − 𝑅𝑑  equ.27 

𝑓(𝑇𝑘) = 𝑓(25)𝑒𝑒𝑒 �𝐸𝑐(𝑇𝑘−298)298𝑅𝑇𝑘 � equ.28 

Where Vcmax is maximum rate of ribulose-1,5-bisphosphate (RuBP) carboxylation; Jmax is 

maximum rate of electron transport; Pc is the photosynthetic rate limited by the RuBP Activity; 

Pr is the photosynthetic rate limited by RuBP regeneration; Ci is the concentration of CO2 at 

intercellular space, 𝜏∗ is the CO2 compensation point in the absence of day respiration (Rd); Kc 

and Ko are Michaelis constants of RuBP carboxylase for CO2 and O2, respectively, and O is the 

O2 concentration; f is the value of a parameter; f(25) is f at 25
o
C; Ea is the activation energy, R is 

the gas constant; Tk is leaf temperature in K; The photosynthetic rate is the minimum of Pc and Pr. 
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