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ABSTRACT 

 

Isolation of a Siderophore Produced by Methicillin-Resistant Staphylococcus aureus Strain H372 

by 

Rachel Presswood 

 

Iron is necessary for many cellular processes such as the electron transport chain and gene 

regulation.  However, most iron on earth is found in insoluble iron-hydroxide complexes. In 

addition, iron is tightly sequestered in the human body by proteins such as transferrin, making it 

unavailable for pathogens. In order to overcome these limitations bacteria have evolved 

siderophores. Siderophores are low molecular weight compounds that bind ferric iron with a high 

affinity. Staphylococcus aureus is an important human pathogen that is known to produce at least 

four siderophores, and these siderophores contribute to its virulence. S. aureus strain H372 was 

found to produce a siderophore that was a carboxylate type, hydrophilic, and contained ornithine. 

These properties were similar to the known siderophore staphyloferrin A. However, the probable 

molecular weight was 658, which is different from known staphylococcal siderophores. 
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CHAPTER 1 

INTRODUCTION 

Staphylococci 

Staphylococci are members of a genus of Gram positive spherical bacteria. There are 33 

species in this genus most of which are part of the normal flora of humans and animals. This 

genus is broken down into two broad groups, the coagulase-positive staphylococci and the 

coagulase-negative staphylococci (CoNS). Coagulase is an enzyme that causes blood clot 

formation and is a factor in virulence. The CoNS are far less virulent than coagulase-positive 

staphylococci and mainly cause opportunistic infections in the immune-compromised (24). The 

primary pathogen of this genus, and the only species that is coagulase-positive, is 

Staphylococcus aureus. 

 Staphylococcus aureus is an important human pathogen that causes many diseases 

including skin infections, septic shock, and pneumonia (21). It is facultatively anaerobic, catalase 

positive, and coagulase positive. Methicillin-resistant Staphylococcus aureus (MRSA) is a form 

of the bacteria that can be resistant to many antibiotics including methicillin, oxacillin, penicillin, 

amoxicillin, and others (16). Some MRSA strains show increased virulence as well as resistance 

to additional antibiotics. A majority of all staph infections are now due to MRSA instead of 

methicillin-susceptible S. aureus (MSSA) (15). There are two forms of MRSA: Healthcare-

Associated MRSA (HA-MRSA) and Community-Associated MRSA (CA-MRSA).  

HA-MRSA is associated with being hospitalized or having had a medical procedure 

within the last year (16). Nosocomial infections increase morbidity in an already immune-

compromised population, so preventing transmission is becoming a goal of all hospitals. These 

infections can manifest as surgical site infections, skin infections, and pneumonias. 
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Approximately 94,000 persons a year in the United States have serious, invasive MRSA 

infections, and 86% of these are HA-MRSA (16). About 19,000 people a year die of MRSA (15). 

HA-MRSA is also genetically distinct from CA-MRSA in its antibiotic resistance genes. Strains 

of HA-MRSA contain type I, II, or III of the staphylococcal chromosomal cassette mec 

(SCCmec). This mobile genetic element is capable of carrying multiple antibiotic resistance 

genes across strains of S. aureus. Type I contains the mecA gene for beta-lactam resistance. Type 

II and type III contain genes conferring tetracycline, erythromycin, and spectinomycin resistance 

(50) 

CA-MRSA occurs in persons who have not recently been hospitalized or had a medical 

procedure. CA-MRSA can be spread in gyms, schools, and other places where people have close 

contact. CA-MRSA often occurs in seemingly healthy people and not traditional immune-

compromised populations. CA-MRSA typically manifests as skin infections such as boils. 

Although CA-MRSA patients typically have a better prognosis than HA-MRSA patients, 14% of 

invasive cases involve CA-MRSA and deaths have occurred (15). CA-MRSA has a type IV mec 

element distinct from HA-MRSA isolates. This mec element is smaller than the ones present in 

HA-MRSA and confers only beta-lactam antibiotic resistance. (59) Regardless of the type of 

MRSA, antibiotic resistance is a growing public health problem, and new approaches to 

treatment are needed. One area of interest is targeting iron acquisition systems of bacteria 

(Torres, 2006). 

Iron and Bacteria 

Iron is a necessary factor for growth in the vast majority of bacteria and it is used in 

numerous ways in the cell. The electron transport chain uses Fe (II)/Fe(III) redox pairs. Over 100 

enzymes require iron cofactors such as heme groups or iron-sulfur clusters, and iron plays a role 



12 
 

in gene regulation (63). Actively growing bacteria generally require an intracellular 

concentration of 10
-6

 Molar (M) iron to perform these functions (77). For bacteria iron is 

paradoxically both abundant and scarce. It is the fourth most common mineral in earth’s crust, 

but in aerobic conditions and physiological pH it is bound in insoluble iron-hydroxides, (21) 

causing the free iron concentration in the environment to be only 10
-18

 M. Pathogenic bacteria 

are also affected by the body’s sequestering of iron. Iron is under a strict homeostasis in the 

human body that drops the free iron concentration to an amazingly low 10
-24

 M (70). This low 

level is achieved by hemoglobin and other proteins that sequester approximately two-thirds of 

the iron and ferritin, which stores another 30% of the body’s iron inside cells. The remaining 

small percentage of iron is bound to transferrin and lactoferrin in blood and other fluids (63). 

This scarcity of usable iron has driven the evolution of numerous ways for bacteria to acquire 

iron such as using heme as an iron source, using transferrin as an iron source, and the use of 

siderophores to sequester ferric iron and transport it back into the bacterial cell. Siderophores are 

the focus of the work presented here. 

Siderophores 

Siderophores are low molecular weight compounds that bind ferric iron with high affinity 

and they are the most common method employed in iron acquisition by bacteria. The word 

siderophore is Greek for “iron carrier.” Siderophores are produced by a wide variety of 

organisms including bacteria, fungi, and even some plants (63). Siderophores produced by 

bacteria are the most widely studied and are the focus of my research. Siderophores undergo 

complex processes of regulation, production, export, and uptake before the iron can be used by 

the bacterial cell. 
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Siderophores can use different types of functional groups to bind the iron, and they are 

classified according to what kind of functional group is used. The most common types of 

siderophores are hydroxamate and catechol types. Hydroxamate siderophores use a carboxyl 

group attached to a nitrogen to chelate the iron, and catechol siderophores use hydroxyls of 

catechol rings (23). Other groups include the carboxylates of which S. aureus has at least two 

kinds (29). 

Iron Regulation of Siderophore Production 

Fur and DtxR. Iron homeostasis is a delicate balance. If iron happens to accumulate 

inside the cell, the Fenton reaction creates high levels of dangerous hydroxyl radicals known as 

oxidative stress. The free radicals can damage DNA and proteins ultimately killing the cell (48). 

So not only must bacteria have siderophores or similar systems, but they must repress them at 

times as well. Siderophores and their associated transport proteins are only produced by the 

bacteria under conditions of low iron availability. Abundant iron will repress the production of 

siderophores, as they are not needed, and very small amounts of iron will induce production. The 

primary regulation of siderophore production and iron homeostasis in bacteria is performed at 

the transcriptional level by Ferric uptake regulator (Fur) in Gram-negative and low GC-content 

Gram positive bacteria and DtxR (diphtheria toxin regulator) in high GC-content Gram positives 

(44). Fur is a classical repressor that uses iron(II) as a corepressor (4). It binds to the promoter 

region of a siderophore operon (such as aerobactin) and prevents transcription as long as iron is 

available. When iron concentration becomes low, the repression is stopped, and transcription of 

siderophore biosynthesis and transport genes is allowed (4). Fur and DtxR also seem to have a 

role in homeostasis of other metals including zinc and manganese (44). 
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Fur in S. aureus. Staphylococcus aureus has 3 Fur homologues (Fur, PerR, and Zur) and 

one DtxR homologue (MntR) contributing to its iron regulation (47). Fur is the main regulator of 

iron uptake in S. aureus and it represses the genes for the fhuD2 hydroxamate uptake system and 

the siderophore transport operons sirABC and sstABCD in iron-rich conditions. PerR regulates 

oxidative stress resistance and iron storage. Zur is involved in zinc homeostasis. MntR regulates 

manganese transport (48). 

PerR in S. aureus. While Fur is the global regulator for iron in S. aureus, it is PerR that 

performs most of the functions of iron homeostasis. PerR is self-regulated, manganese 

responsive, iron responsive, and can repress Fur. PerR controls a wide range of genes including 

the genes of catalase KatA, the alkyl hydroperoxide reductase ahpCF, the bacterioferritin 

comigratory protein Bcp, the thioredoxin reductase TrxB, the ferritin Ftn, and the ferritin-like 

MrgA (48). All of these genes are involved in reducing oxidative stress when iron is abundant 

and need to be repressed when iron is scarce. PerR has also been shown to be necessary for 

virulence in a mouse model, but its mechanism is unknown (48) 

Besides Fur and DtxR there are other transcriptional regulators that sense the presence of 

iron-bound siderophores. There are 4 types: alternative sigma factors, 2-component sensory 

transduction systems, AraC-type regulators, and further transcriptional regulator types (63). 

Alternative Sigma Factors. Sigma factors are involved in transcription of genes by 

assisting the binding of RNA Polymerase to promoter regions. Different sigma factors control 

different sets of genes. Bacteria often have a primary sigma factor for control of genes used for 

vegetative cells in normal conditions and alternative sigma factors to activate the genes 

necessary during specific situations such as heat shock, stationary phase, or starvation (40).  



15 
 

Some of these alternative sigma factors are used during low iron conditions that involve 

use of siderophore-mediated acquisition. Escherichia coli’s FecI sigma factor system is one of 

these. The outer membrane (OM) receptor FecA interacts with a ferric dicitrate siderophore and 

transmits a binding signal to FecR in the cytoplasmic membrane. FecR activates FecI. FecI then 

binds to the RNA polymerase core enzyme, directs it to the fecA promoter, and initiates 

transcription of the fecABCDE genes, which control transport of the ferric dicitrate siderophore 

(30). There are many homologues to this system in several species including PupI-PupR-PupB 

regulating pseudobactin in Pseudomonas putida and FpvI/PvdS-FpvR-FpvA regulating 

pyoverdin in P.aeruginosa (9). 

Two-Component Sensory Transduction Systems. Two-component signal transduction 

systems are the primary way that bacteria sense and respond to extracellular signals (82). These 

systems consist of a sensor histidine kinase and a response regulator substrate. After receiving 

the signal, the bacteria modifies its physiology in some way including gene expression, 

catalyzing reactions, and modifying protein-protein interactions (82). These systems have been 

found to regulate siderophore uptake in P. aeruginosa. When iron-bound enterobactin is detected 

in the periplasm, the PfeR-PfeS system induces the pfeA Fe-enterobactin receptor (28). 

AraC-type Regulators. The araC-type regulators are a class of positive transcriptional 

regulators in bacteria that are highly conserved and widely distributed across Gram positives, 

proteobacteria, and cyanobacteria. Their 3 main regulatory functions are carbon metabolism, 

stress response, and pathogenesis (36). AraC-type regulators can also function as intracellular 

siderophore sensors. These regulators can respond to the presence of siderophore before export 

or after uptake and this signal can help the cell “fine-tune” its siderophore synthesis (62). 
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Members of this class include PchR in P. aeruginosa regulating pyochelin, AlcR in Bordetella 

pertussis regulating alcaligin, and YbtA in Yersinia pestis regulating yersiniabactin (11, 31, 62). 

Further transcriptional Regulators. While the majority of non-Fur iron regulators can be 

placed into the above categories, there are a few unique systems that have been discovered. IrgB 

is the only LysR-type regulator that has been found to have a role in iron regulation. It activates 

the enterobactin receptor IrgA in Vibrio cholerae but does not interact with enterobactin itself or 

other known siderophores (39). AngR is a non-ribosomal peptide synthase found in Vibrio 

anguillarum that can activate the genes for anguibactin synthesis, transport, and uptake. It is 

encoded in a virulence plasmid and mutations can cause hyperproduction of the anguibactin (87). 

Post transcriptional Regulation. There are 2 general mechanisms of posttranscriptional 

regulation of iron homeostasis in bacteria: one involving RNAs and one involving proteins 

similar to those used in mammalian iron homeostasis. In some bacteria Fur-regulated antisense 

RNAs cause mRNA degradation of iron-related genes. Examples include RhyB in enteric 

bacteria and PrrFr1/PrrFr2 in P. aeruginosa (88). In Bacillus subtilis, however, the aconitase 

CitB loses its iron cluster during oxidative stress or iron depletion and subsequently interacts 

with operons that have structures similar to mammalian iron-responsive elements. This function 

corresponds to the mammalian protein IRP1 (2, 74). 

Siderophore Biosynthesis  

Non-Ribosomal Peptide Synthases. Non-ribosomal peptide synthases (NSPS) are large 

multienzyme complexes that assemble a large variety of products in the cell including many 

siderophores (41). NSPS are responsible for the synthesis of aryl-capped siderophores and many 

non-hydroxamate and non-catechol siderophores. The NSPS synthesis pathways of many 
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siderophores have been characterized in detail including enterobactin, yersiniabactin, pyoverdin, 

vibriobactin, and mycobactin (63).  

Independent of NSPS. The majority of hydroxamate and catecholate siderophores are 

assembled by NSPS-independent mechanisms (63). These siderophores are often virulence 

factors. There are 2 steps in the typical hydroxamate synthesis: N-hydroxylation and formylation 

or acylation of the hydroxylated amine. The N-hydroxylation is catalyzed by flavin adenine 

dinucleotide (FAD)-dependent monooxygenases. One oxygen atom may be transferred to lysine, 

ornithine, cadaverine, putrescine, or other similar amino acids (19, 89). The acylation step (more 

common than formylation) is catalyzed by acyl coenzyme A transferases. Substrates are carboxy 

acids such as acetate, succinate, B-hydroxybutyrate, or decenoate. The final step in NSPS-

independent siderophore synthesis is catalyzed by IucA and/or IucC-type siderophore synthases. 

These enzymes were discovered in the synthesis of aerobactin, and all known NSPS-independent 

pathways use at least one enzyme that is very similar to these (19). 

Siderophore Export 

Few siderophore export systems are known in bacteria; however, the known types fall 

into the categories of types of efflux pumps: the major facilitator superfamily (MFS), resistance, 

nodulation, cell division superfamily (RND), and the ATP-binding cassette superfamily (ABC) 

(63). 

MFS. The MFS superfamily is a group of transporters that carry out uniport, symport, 

and antiport transport of many compounds including drugs, primary metabolites, 

neurotransmitters, and anions. They also perform both siderophore efflux and uptake (76). One 

of the best studied of these MFS proteins is EntS in E. coli, which is involved in enterobactin 
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export. EntS has 12 trans-membrane segments and is regulated by Fur. EntS is responsible for 

export across the cytoplasmic membrane (CM), but another protein, TolC, is required for 

transport across the OM (7, 35). EntS mutants do not export enterobactin but do release its 

byproducts. Because of this it is hypothesized that many other unknown proteins must be 

involved in export. Besides E coli, many other bacteria have transporters with high similarity to 

EntS including LbtB in Legionella pneumophila (3). 

RND. The RND superfamily is a group of transporters that use proton antiport 

mechanisms to perform efflux of heavy metals, drugs, lipids, and siderophores (66). The MexA-

MexB-OprM system in Pseudomonas aeruginosa is thought to be an RND-type transporter 

involved in the export of the siderophore pyoverdin (69). The Mex operon is iron-regulated and 

pyoverdin has a similar structure to other molecules exported by this system, but mutant data are 

not available to fully elucidate its role in export (54). RND transporter systems as well as MFS 

systems are ubiquitous across all three kingdoms of life, so it is likely that siderophore export 

will be found to involve many of these types of systems (63). 

ABC. ABC-type transporters are involved in both uptake and efflux of siderophores and 

numerous other substrates. These transporters have 2 integral membrane domains and 2 

cytoplasmic membrane domains for ATP binding and hydrolysis (8). The models proposed for 

the transport of the substrate include movement of the subunit halves (71), domain swapping 

(27), and a conformational change in the trans-membrane segments to allow the substrate to pass 

through (49, 57, 63). Some mutants of these transporters do not accumulate siderophore 

intracellularly, indicating that the processes of synthesis and export are linked in some way. This 

appears to be the case only when NRPS synthesis is employed (35, 91). 



19 
 

Examples of siderophores with ABC transport systems include exochelin in mycobacteria 

and salmochelins in Salmonella (55).  

Siderophore Uptake 

After siderophores have been synthesized, secreted, and have bound with iron, the 

bacteria must then bring that iron back into the cell to use it. Some bacteria have membrane-

bound reductases that reduce the iron, which is then taken up as an ion, but most bacteria 

internalize the entire siderophore complex. The transport systems for iron-bound siderophores 

are well studied and diverse. Many bacteria produce more than one type of siderophore 

transporter because they have evolved uptake mechanisms for xenosiderophores, siderophores 

that are produced by other species and strains of bacteria (63). 

Gram Negative. Siderophores of Gram negative bacteria have complex transport 

mechanisms involving an outer membrane receptor, periplasmic proteins, and an ABC 

transporter in the cytoplasmic membrane. Many of the Gram negative transport systems show 

marked similarities. FecA, FhuA, FepA, FpvA, and FptA are OM receptors found in E. coli or P. 

aeruginosa. All have a beta barrel structure at the C-terminus and N-terminal residues that form 

a plug (18). When a siderophore binds, the plug residues presumably undergo a conformational 

change and create a channel (17). The process of transport is mediated by the TonB complex, 

which presumably supplies energy. TonB is anchored in the CM, spans the periplasm, interacts 

with the OM receptor, and contacts 2 CM-embedded proteins, ExbB and ExbD (45). It is thought 

that the TonB complex tranduces proton motive force energy to the OM receptor to allow 

transport of the siderophore complex (45). 
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After transport into the periplasm, the siderophore must be further transported into the 

cytoplasm. In Gram negative bacteria this is accomplished with the use of periplasmic binding 

proteins. These proteins bind the Fe-siderophore complex and interact with transmembrane 

permeases to allow the complex to be channeled through the CM. Energy is supplied by ABC 

subunits in the cytoplasm that dimerize and undergo conformational changes when ATP binds 

(51). 

Gram Positive. While Gram negative siderophore systems are well-studied, much less 

data are available concerning all aspects of Gram positive siderophores including those of S. 

aureus, the focus of this research (13). However, because transport is so tied to the OM and 

periplasm in Gram negatives, differences in transport have been studied and a few things are 

known about Gram positives. Because Gram positives lack an OM and a periplasm, siderophore 

complexes only need to cross the CM. Lipoproteins on the outside surface of the CM take the 

place of periplasmic binding proteins and OM receptors (85). Because of the lack of a periplasm, 

the functions of extracellular binding, transmembrane channeling, and cytoplasmic ATP 

hydrolysis are often fused into a single ABC transporter such as IrtA in M. tuberculosis (72). 

Release of Iron 

As mentioned previously, iron may be reduced extracellularly by ferric-chelate 

reductases and taken up by the cell or the iron-siderophore complex may be transported across 

the membrane. If the entire siderophore complex is taken up, intracellular ferric-siderophore 

reductases or ferric-siderophore hydrolases are used to free the iron (68). The use of reductases 

appears to be more common and is a non-specific adaptation of established reductase activities 

(43). The intact siderophore left after iron is removed could potentially be reused. The use of 
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hydrolases is siderophore specific and appears to be more costly for the cell due to the 

degradation of the siderophore (63). After iron is released into the cytoplasm, it can be used 

immediately or be stored in a protein such as bacterioferritin (14) 

Staphylococcal Siderophores and Virulence 

While siderophores are important for all bacteria, the processes of mutation and 

horizontal transport have endowed some bacteria with better siderophore systems than others, 

and this can have consequences for virulence. In S. aureus, greater production of siderophore 

(nonspecifically measured by the CAS assay) is correlated with virulence in the form of higher 

bacterial counts in infected mice, larger abcesses, and more inflammation (75). Strains with 

higher siderophore production have also been found to be more resistant to the activity of 

neutrophils in vitro (75). The uncharacterized siderophore Staphylobactin has also been shown to 

be an important virulence factor that separates the highly pathogenic coagulase positive from the 

more opportunistic coagulase-negative staphylococci (CoNS) (24). Mutants that cannot produce 

staphylobactin are unable to persist in vivo in a mouse model. This suggests that non-siderophore 

iron sources such as heme or transferrin may be important in the early stages of infection, and 

siderophores are important in later stages of infection (24). 

Virulence in Other Bacteria 

Siderophores are essential for virulence in a wide range of bacteria and contribute to 

virulence in many ways. In the case of Bordetella pertussis its siderophore alcaligin is important 

in the establishment of infection. Mutant strains that did not produce the alcaligin transporter 

were avirulent in a mouse model and strains with reduced expression of the transporter took 

several more days to colonize mice than the wild-type (12). Siderophores are also known to be 
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significant virulence factors in the enterobacteria. The majority of enterobacteria can produce 

enterobactin, some produce aerobactin, and very few produce yersiniabactin. Aerobactin and 

yersiniabactin are correlated with virulence. In Klebsiella pneumoniae, mutants that cannot make 

yersiniabactin have greatly reduced growth in vivo in the lungs, reduced lethality, and a reduced 

ability to spread systemically. Aerobactin mutants of K. pneumoniae have a reduced ability to 

cause intraperitoneal infections, showing that types of siderophores are important in determining 

which sites strains can colonize (53). While most siderophores are used simply to acquire iron in 

the establishment or persistence of the infection, some siderophores also have a role in evading 

the immune system. Bacillus anthracis produces bacillibactin and petrobactin, which are both 

efficient at binding iron. However, bacillobactin is easily bound by siderocalin, but petrobactin is 

not due to its unusual 3.4-dihydroxybenzoate structure. Thus, the production of petrobactin 

seems to be defensive in nature, as bacillobactin would be sufficient for iron acquisition if 

siderocalin were not present (1). 

Siderocalin 

The majority of the human immune response to siderophores is to tightly sequester iron 

in proteins such as transferrin; however, there is one direct means of defense against 

siderophores, siderocalin. Siderocalin is a member of the lipocalin family and is a part of the 

innate immune system (38). Siderocalin has been shown to bind enterobactin, bacillibactin, 

carboxymycobactins, and parabactin (1, 46). 

However, bacteria are masters at avoiding immune responses including siderocalin. 

Mycobacteria usually colonize intracellular compartments of macrophages, which protects their 

siderophores and allows them to exploit iron-transferrin uptake inside phagosomes (58). Some 
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bacteria that produce siderophores that can be bound by siderocalin occupy niches such as 

intestinal sites where they are protected from the siderocalin in the serum. And of course, many 

bacteria produce siderophores that cannot be bound by siderocalin (1). 

Tear Lipocalin. Tear lipocalin (Tlc) is another human protein with siderophore binding 

capability. It is found in many secretory tissues and glands including tears. Tlc has a deeper, 

more hydrophobic binding pocket than siderocalin and is capable of binding a wide range of 

lipid products as well as siderophores (10). Tlc can bind catecholates, hydroxamates, and mixed 

citrate-hydroxamate siderophores including enterobactin, desferrioxamine B, coprogen, 

ferrichrome, and aerobactin (34). However, the strength of this binding is relatively low and is 

not influenced by the amount of iron carried by the siderophore. Because of this, the effect of Tlc 

may not be significant when binding bacterial siderophores, which can have extremely high iron 

affinity. It may be important in binding the less efficient fungal siderophores (34). 

Siderophores as Drug Targets 

Siderophores are a potential target for antibiotics because stopping the acquisition of iron 

can severely restrict growth. Inhibition of siderophore biosynthesis has been effective in 

reducing in vitro growth of Mycobacterium tuberculosis (84). A bisubstrate inhibitor was used to 

block the MbtA enzyme. MbtA is important in the second step of mycobactin synthesis, which is 

the incorporation of salicylic acid into the core scaffold of mycobactin. Inhibiting this specific 

step could be useful in other species that also use aryl-capped siderophores (84). Siderophore-

antibiotic conjugates are also a promising potential development in treatment of infections. 

Siderophore-antibiotic conjugates enter the bacterial cell through the specific receptors for the 

siderophore, thus bypassing any efflux pumps that would normally remove the antibiotic and 
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foster resistance. The conjugates would also accumulate quickly in the cell due to active 

transport. This has been demonstrated in E. coli with a siderophore-carbacephalosporin 

conjugate (64). Mixed-ligand siderophore-antibiotic conjugates enter through multiple outer 

membrane receptors, possibly accumulating faster in the cell, and lowering the possibility that 

bacteria could gain resistance to this antibiotic delivery method (37). 

S. aureus and Iron 

Although S. aureus has an intrinsically low requirement for iron, (56) it has evolved 

many iron acquisition mechanisms including usage of heme as an iron source, direct acquisition 

of iron from transferrin, and siderophores. It is the only known organism with all three of these 

iron acquisition systems (67). 

Heme 

Heme is the preferred iron source of S. aureus (81). Hemoproteins such as hemoglobin 

and myoglobin account for 80% of the iron in the human body. While siderophores are important 

in persistence of infections, (24) heme usage is important in initiation of infection (81). Mutating 

essential elements of the heme uptake system causes severely reduced virulence in infections of 

C. elegans and murine models (81). 

The main components of the heme uptake system are iron-regulated surface determinant 

(Isd) proteins. The system consists of many components including cell wall anchored proteins, 

membrane transporters, a transpeptidase, cytoplasmic heme-degrading monooxygenases, and a 

sortase (86). The mechanism is thought to be that S. aureus lyses erythrocytes to release the 

hemoglobin, binds hemoglobin with IsdB, removes the heme cofactor, transports the heme into 

the cytoplasm, and then degrades it with monooxygenases (86). 
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Transferrin 

Although transferrin accounts for only 1% of the iron in the human body, (81) it can still 

be an important source of iron for S. aureus. Staphylococcus aureus is unique in this ability, as 

the only other known users of transferrin-bound iron are the non-siderophore producing 

Hemophilus and Neisseria (67). Although some surface proteins such as IsdA (a component of 

the heme system) can bind to transferrin, the main method of iron acquisition from transferrin is 

through siderophores (67). While some siderophores use proteases to liberate iron from 

transferrin, this does not seem to be the case in S. aureus (67). In some studies it has been 

reported that the siderophore staphyloferrin A can remove iron from transferrin (65). 

Siderophores in S. aureus 

Staphylococcus aureus is known to produce at least 4 siderophores: staphyloferrin A, 

staphyloferrin B, aureochelin, and staphylobactin. Staphyloferrin A and B are carboxylate type 

siderophores that are similar in structure. Staphylobactin is a hydroxamate type and aureochelin 

is a catechol type; however, their structures have not yet been published (90). 

Staphyloferrin A. Staphyloferrin A was the first siderophore isolated from staphylococci. 

Staphyloferrin A is a carboxylate type of siderophore, consisting of one ornithine and 2 citric 

acid residues linked by 2 amide bonds (52) (Fig. 1).  It is highly hydrophilic and has a molecular 

weight of 481 Daltons (Da) (22, 61). Staphyloferrin A was first isolated from S. hyicus DSM 

20459, which was the only strain able to produce it when grown in the steel stirred tank reactor 

used. Other strains of staphylococci used in the Meiwes study needed a lower iron concentration 

to induce its production than was possible to obtain in the steel reactor (61). However, 

staphyloferrin A has been detected in S. aureus and many other species of staphylococci. The 
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production of Staphyloferrin A is increased up to 19 times in some strains with the addition of D-

ornithine (52). While not all strains produce staphyloferrin A, and most need supplementation to 

do so, all 37 strains in Meiwes study were able to use staphyloferrin A, indicating that the 

transport system is widespread (61). Genetic information concerning the synthesis and transport 

of staphyloferrin A has also been elucidated. The sfnaABCD gene cluster codes for 

staphyloferrin A biosynthesis. Staphyloferrin A is synthesized independent of the non-ribosomal 

peptide synthase pathway (NIS) using sfaB and sfaD. SfaD form a citryl-D-ornithine 

intermediate and sfaB condenses the second citric acid onto the intermediate. SfaC racemases L-

ornithine to the D-ornithine needed in the molecule (21). The htsABC operon has been 

implicated in both heme transport and staphyloferrin A transport (6).  

 

Figure 1: Structure of Staphyloferrin A (52) 

Staphyloferrin B. Like staphyloferrin A, staphyloferrin B is a carboxylate type 

siderophore that was first isolated from S. hyicus DSM 20459 (61) (Fig. 2). It is highly 

hydrophilic and has a molecular weight of 448 Da. Staphyloferrin B is produced by a wide 
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variety of strains of staphylococci both pathogenic and non-pathogenic (42). The yield of 

staphyloferrin B is increased 2.5 times when L-2,3 diaminopropionic acid is added. (29) 

However, in contrast to staphyloferrin A where D-ornithine supplementation is necessary for 

approximately 70% strains to produce any detectable staphyloferrin A, staphyloferrin B was 

detectably produced without supplementation by approximately 90% of the strains used (61). 

The biosynthesis of staphyloferrin B is thought to be by the NIS pathway and controlled by the 

sbn operon (20). The sbn operon was previously associated with staphylobactin (24). The 

staphyloferrin B synthesis operon of Ralstonia solacearum is similar to the sbn operon in S. 

aureus (7). However, the sbn operon has not been reported in any coagulase-negative 

staphylococci (CoNS), while staphyloferrin B production has been reported (6, 29, 61). 

Transport of staphyloferrin B is thought to be performed by the SirABC operon (5) 

 

Figure 2: Structure of Staphyloferrin B (42) 

Staphylobactin. Staphylobactin was discovered when researchers studied siderophores 

and virulence in S. aureus. In a mouse kidney model of infection strains that produced 

siderophores showed increased virulence over the coagulase-negative staphylococci (CoNS) that 

did not (24). An operon termed sbn was found to be responsible for the siderophore detected in 
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the study. Mutants of sbnE were found to be avirulent due to lack of siderophore production. 

Because the siderophore was not able to be isolated using the published procedures for 

Staphyloferrin A and B and ESI-MS results were not consistent with the staphyloferrins, the 

siderophore was tentatively named staphylobactin (24). Staphylobactin was extracted using a 

method originally designed for the extraction of ornibactin siderophores in Burkholderia cepacia 

(26, 83). Staphylobactin was later found to be a hydroxamate siderophore with citric acid 

residues (90). An ABC transporter for staphylobactin has been described. The sirABC operon is 

transcribed in the opposite direction of the sbn operon, which is known to code for the 

biosynthetic genes of staphylobactin. SirA is a lipoprotein and sirB and sirC likely code for the 

transmembrane domains of the transporter. Mutants of sirA or sirB are compromised in the 

ability to uptake staphylobactin-iron complexes but not other complexes such as ferric citrate, 

ferric enterobactin, or ferric hydroxamates (24). 

Aureochelin. Aureochelin is a phenolate-catecholate siderophore with a molecular weight 

of 577 Da (22). Its structure is currently unknown. Aureochelin was extracted using an ethyl 

acetate extraction method originally used for catechol siderophores of E. coli (73).  Although no 

transport protein for aureochelin has yet been found, 2 iron repressible proteins of 120 and 88 Da 

were found to correlate with aureochelin production in high and low siderophore producing 

strains. This relationship was variable, however, prompting the authors to speculate that plasmids 

may be involved. These iron repressible proteins are also antigenic, as evidenced by 

immunoblotting using serum from rabbits injected with S. aureus and human serum from 

septicemia patients. Healthy donor serum showed no reaction to the proteins (22). 
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Hydroxamate Uptake System in S. aureus 

S. aureus had been shown to be able to use the exogenous siderophores ferrichrome, 

aerobactin, desferal, (77, 78) and actinoferrin (90). The hydroxamate uptake system consists of 

the fhuCBG operon and proteins fhuD1 and fhuD2. These show homology to the uptake system 

of Bacillus subtilis (78). FhuC codes for an ATP-binding protein, while fhuB and fhuG are 

highly hydrophobic and membrane-bound (13). This operon is unusual due to it containing only 

the membrane spanning and ATPase functions of a classical traffic ATPase but no receptor. 

FhuD1 and fhuD2 are genes outside of the fhuCBG operon that were found to code for 

lipoprotein receptors (78). FhuD2 is involved in the transport of ferrichrome, ferrioxamine B, 

aerobactin, and coprogen. FhuD1 only transported ferrichrome and ferrioxamine B in this study. 

It is unclear why these receptors have overlapping substrate range or why they are separate from 

the overall fhu operon (78).  

FhuD2’s structure and transport properties have been well-studied. Mutagenesis studies 

showed several residues critical for binding and transport of iron-hydroxamates. Specifically, 

Tyr-191, Trp-197, and Glu-202 are necessary for ligand binding (79). Iron-hydroxamate 

transport was impaired by mutagenesis in residues Glu-97 and Glu-231. Residues for 

mutagenesis were chosen based on conserved regions seen in other Gram-positive bacteria such 

as Clostridium acetobutylicum, Streptococcus pyogenes, Bacillus halodurans, and Bacillus 

subtilis.  FhuD2 was not shown to undergo a conformational change upon binding, making it 

significantly different than other known transport systems (79). 

FhuD1 is a receptor that is similar in structure and sequence to fhuD2 albeit with a 

narrower siderophore range (78). In contrast to the highly conserved fhuCBG and fhuD2, fhuD1 
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is not present in all S.aureus strains and its location is variable. FhuD1 binds ferrichrome, 

desferal, and coprogen with a slightly lower affinity than fhuD2 and does not bind aerobactin at 

all. However, binding affinity did not correlate with growth promotion. Knockout mutants of 

FhuD2 were still not able to uptake coprogen or aerobactin, and they required high amounts of 

ferrichrome and desferal to grow. It is hypothesized that fhuD1 is a duplication of fhuD2 and it is 

unknown if there are conditions where its presence confers a selective advantage (80). The entire 

fhu system is regulated by Fur (80). 

Present Work 

The purpose of this study was to determine if strains of S. aureus produced siderophores 

and what siderophore(s) they produced. Strains of S. aureus were obtained from Dr. Sanjay 

Shukla at the Marshfield Clinic in Wisconsin. These strains were screened for siderophore 

production and all were positive. Strain H372 was chosen for further purification due to its high 

siderophore production. Growth conditions were optimized for siderophore production, and 

manual column chromatography and high pressure liquid chromatography (HPLC) were used to 

purify the siderophore for chemical characterization.  
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CHAPTER 2 

MATERIALS AND METHODS 

Bacterial Strains and Characteristics 

Samples of MRSA (methicillin-resistant S. aureus) were received on blood plates from 

Dr. Sanjay Shukla at the Marshfield Clinic in Wisconsin. Antibiotic resistance information was 

also sent with the cultures, as seen in Table 1. The strain used in this study was H372. 

Table 1: Marshfield clinic Heathcare-associated (HA-MRSA) Strains. Received November 13, 

2007. 

HA-MRSA     Antibiotic Profile     

Strain Cip
1 

Ery
2 

Cli
3 

Tet
4 

Sxt
5 

Gen
6 

Rif
7 

004 R
a 

R R S
b 

R N
c 

N 

006 R R R S S N N 

008 R R R S R N N 

009 R R R S S N N 

012 R R R S S N N 

015 R R R S S N N 

025 R R R S R N N 

027 R R R S S N N 

032 R R R S S N N 

151 R R R S R N N 

161 R R R R S N N 

162 R R R R S R R 

167 R R R R S R R 

168 R R R R S R R 

174 R R R R S R R 

175 R R R R S R R 

176 R R R R S R R 

181 R R R I
d 

R N N 

182 R R R R R R S 

183 R R R R S R R 

251 R S S S S N N 

273 R R S S S N N 

282 R S S S S N N 
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Table 1 (Continued) 

 323 R R R S S S R 

328 R R R S S S S 

330 R R R R R R S 

331 R R S S S S S 

333 R R R S S S S 

344 R R R S S S S 

346 R R S S S S S 

347 R R R S S S S 

350 R R S S S S S 

354 R R R R R R R 

370 R R R S S S S 

372 R R S S S S S 

377 R R S S S S S 

388 R R R S S S S 

413 R R R S S S S 

418 R R S S S S S 

421 R R S S S S S 

1. Ciprofloxacin 2. Erythromycin 3. Clindamycin 4. Tetracycline 5. Sulfamethoxazole 

6.Gentamycin 7.Rifampin 

a. Resistant  b.Susceptible c.Not tested d.Intermediate 

Glycerol Stocks 

Glycerol stocks of all strains were prepared by growing the bacteria in Luria-Bertani 

(LB) broth for 3 to 4 hours (until OD was 0.5) and adding 0.8 mL of culture to 0.2 mL of sterile 

75% glycerol. These were stored at -80 C. 

Hemolysis 

Hemolysis was measured by spotting bacterial cultures onto blood agar plates and 

observing the clearing of blood cells on the media. Beta hemolysis was noted as clear halos of 

lysed cells around the inoculum.  
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Heme Testing 

Testing for the usage of hemin was performed by observing a growth halo around a paper 

disc impregnated with 10 μl hemin. Three milliliters of nutrient agar with 300 μm dipyridyl was 

mixed with 100 μl of a 24-hour culture of MRSA and poured into a small plate. The hemin disc 

was placed in the middle of the plate. After 24 hours the halo of growth around the disc was 

measured.  

Growth and Siderophore Production 

Growth Conditions 

Strains were grown in LB Broth with 500 μm dipyridyl. The cultures were grown at 37 C 

on a shaker for 24 hours. The cultures were then centrifuged at 10,000 rpm for 15 minutes and 

the supernatant collected. 

Determination of Siderophore Production 

Siderophore production was determined by the use of CAS media. Chrom Azurol S is a 

dye that appears blue when complexed with ferric iron. When the iron is removed, the CAS turns 

yellow. This is a universal assay for the presence of siderophores, although it gives no chemical 

or structural information.  

Supernatant or purified samples were added to wells cut in CAS agar plates and the 

formation of yellow halos indicated the presence of siderophore. Depending on the concentration 

of siderophore and the temperature halo formation could occur in as little as 30 minutes or take 

up to 4 hours.  
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Purification 

For purification of the siderophore a large volume of culture was needed. Batch cultures 

of 4-5 liters were grown in LB broth with 500 μm dipyridyl for 24 hours at 37 C on a rotary 

shaker. The seed inoculum was 10 mL of culture, and 1 mL of erythromycin (concentration 1 mg 

per 1 mL) was added to prevent contamination. After incubation the cultures were centrifuged at 

10,000 rpm for 15 minutes, and the supernatant was collected. To reduce the siderophore’s 

solubility in water the supernatant was acidified to pH 2.00. 

Manual Column Chromatography 

Amberlite XAD-2. XAD-2 binds cyclic compounds, and it was the first step in 

purification. The column was prepared by suspending approximately 100 g of the resin in ddH20, 

and allowing it to sit and expand overnight. The XAD mixture was deaerated, packed into the 

column, and equilibrated with ddH20. The acidified supernatant was passed through the column, 

and the filtrate was collected. The filtrate was checked on CAS media to ascertain if the 

siderophore was bound in the column. After all the supernatant and several bed volumes of 

ddH20 are passed through, methanol is used to elute the substances bound in the column. 

Approximately 50 fractions are collected using a fraction collector. The fractions are checked on 

CAS media to determine siderophore presence. The positive fractions are pooled and 

concentrated by evaporation. 

Sephadex LH-20. Sephadex LH-20 separates molecules based on both size and 

hydrophobicity. The column was prepared by adding 20 g of the sephadex LH-20 to ddH20, 

deaerating it, and packing it in the column. The column was equilibrated with ddH20, and the 

sample was loaded. The column was run with ddH20 and fractions were collected using a 
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fraction collector. The fractions were tested with CAS media, and those testing positive were 

pooled and concentrated.  

HPLC 

HPLC was performed using a Watters 7.8 mm by 300 mm C-18 column with 0.1% 

Trifluoroacetic acid (TFA) as solvent A and 0.1% TFA/Acetonitrile as solvent B. Both solvents 

were filtered and deaerated before use. A program was created that equilibrated the column with 

15 mL of solvent A, then slowly added solvent B in a gradient until it reached 100% over the 

span of 60 minutes, then finished with 10 mL of solvent B. The sample was injected (generally 

0.5 mL) and the program was started. The fractions were tested on CAS for siderophore activity. 

The positive results were used to refine the gradient until it was determined that the siderophore 

eluted at 23% of solvent B. The samples from each of these runs were collected and concentrated 

by evaporation. When only one peak on the chromatogram was evident, the sample was 

considered pure.  

Characterization 

Atkin’s Test 

After determining siderophore production the next step is to determine siderophore type. 

A positive Atkin’s Test indicates a hydroxamate siderophore. Culture supernatant (0.5 mL) is 

added to 2.5 mL of iron-perchlorate reagent (5 mM Fe(ClO
4
)

3 
in 0.1M HClO

4 
) and absorbance is 

measured after 5 minutes of incubation at room temperature. The formation of a red color 

indicates the presence of hydroxamic acids. Absorbance is measured at 480 nm with sterile 

media as the blank. 
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Arnow’s Test 

The Arnow’s test detects catechol siderophores. A mixture of 1mL supernantant, 1 mL 

0.5 M HCl, 1 mL of 1M NaOH, and 1 mL of Nitrite-molybdenate reagent (10 g sodium nitrite 

and 10g sodium molybdate in 100 mL ddH20) is used. After 5 minutes of incubation at room 

temperature, a red color will form if catechol groups are present. Absorbance is measured at 

500nm with sterile media as a blank.  

Amino acid Analysis 

Siderophores are often conjugates of amino acids. For example both Staphyloferrin A and 

B contain ornithine. For this reason amino acid analysis was performed. It was necessary to 

hydrolyze the sample for amino acid analysis. The sample was hydrolyzed by adding an equal 

volume of 6M HCl and autoclaving at 121 C for 6 hours. Amino acid standards were prepared by 

adding 1 mg/mL of the amino acid to ddh20. Standards of all 20 protein-building amino acids 

plus ornithine were made. The neutralized, hydrolyzed sample and the amino acids standards 

were spotted on TLC plates (approximately 5μL each) and a solvent system of n-propanol/ddH20 

in a 70:30 ratio was used to develop the TLC plate,  

ESMS 

The post-HPLC purified samples were divided into 2 vials and one was complexed with 

iron. These were given to the Analytical Dividion of Eastman Chemical for electrospray mass 

spectrometry (ESMS) analysis. A Varian Monochrom 3 column (C18 50 x 2.0 mm, PN 

A040005oX020) was used with solvent A being deionized water with 260 mg ammonium 

acetate and solvent B was methanol. The sample was dissolved in approximately 200 μl of 
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methanol, and 5 μl was injected at a temperature of 35 C. The ESMS was performed at 10, +25, -

25, +75, and -75 volts. 

NMR 

The sample was also analyzed with 1D 1H Nuclear Magnetic Resonance (NMR). The 

sample was dissolved in 1mL of methanol-d4. A JEOL Eclipse 600 MHz NMR spectrometer 

with a 5mm OD NMR tube was used for the analysis. 
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CHAPTER 3 

RESULTS 

The Marshfield Clinic in Wisconsin initially sent 40 strains of HA-MRSA to our lab. All 

of these strains (listed in Table 1) were screened for siderophore production with the CAS assay, 

and all were positive. However, the amount of siderophore production varied as evidenced by 

differing sizes and brightness of the halos on the CAS plate. Strain H372 had one of the largest 

and brightest halos, so it was chosen for further study. 

S. aureus Strain H372 Characteristics 

In the course of researching the siderophore produced by strain H372, many 

characteristics of this strain were observed. These are summarized in Table 2 and discussed 

further below. 

Table 2: Characteristics of S. aureus H372 

S. aureus Strain H372  

Siderophore Production CAS diameter 14mm 

Hemolysis Beta  

Arnow’s test Negative 

Atkins’ test Negative 

Heme 12mm halo of growth 

Antibiotic Profile  

                      Ciprofloxacin R 

                      Erythromycin R 

                      Clindamycin S 

                      Tetracycline S 

                      Sulfamethoxazole S 

                      Gentamycin S 

                      Rifampin R 

 

Siderophore Production by S. aureus Strain H372 

The CAS assay was used to determine if strain H372 produced a siderophore. The 

bacteria were grown in LB broth with 500 μm dipyridyl for 24 hours and centrifuged. The 
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supernatant was then placed into wells on the CAS plate, and a yellow halo indicated siderophore 

production (Figure 3). The size and relative brightness indicated the amount and iron-chelating 

strength of the siderophore. Strain H372 did not produce siderophore in LB broth, TMS media, 

or Congo Red but did produce siderophore in LB broth with dipyridyl to sequester the ferrous 

iron. The optimum amount of dipyridyl and incubation time for siderophore production were 

determined to be 24 hours in LB broth with 500 μm dipyridyl. These results are summarized in 

Tables 3 and 4. 

 

Figure 3: An example of an H372 halo on CAS media 

Table 3: Growth rates and siderophore production in different concentrations of LB Broth + 

Dipyridyl. 

Media Growth at 24 hr (OD at 600 nm) Siderophore Production on CAS 

LB Broth 2.05 No halo 

LB Broth + 250 μm dipyridyl 1.78 10mm halo (light) 

LB Broth + 500 μm dipyridyl 1.61 14mm halo (bright) 

LB Broth + 750 μm dipyridyl 1.49 14mm halo (medium) 

LB Broth +1000 μm dipyridyl 1.30 12mm halo (medium) 
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Table 4: Growth and siderophore production of H372 at different times in LB Broth + 500 μm 

dipyridyl. 

Time Growth (OD at 600 nm) Siderophore Production on CAS 

12 hours 1.23 9mm halo (Very light) 

18 hours 1.37 10 mm halo (medium) 

24 hours 1.64 14mm halo (bright) 

30 hours 1.58 14mm halo (bright) 

36 hours 1.53 12 mm halo (medium) 

48 hours 1.47 12mm halo (medium) 

 

Hemolysis 

Hemolysis correlates with virulence, so H372 was inoculated on a blood agar plate. 

Strain H372 was beta-hemolytic, meaning that it fully cleared the red blood cells around it on the 

plate (Figure 4).  

 

Figure 4: Examples of hemolysis on a blood agar plate 

Heme Usage 

Heme is the preferred source of iron for S. aureus (24), so the heme usage of strain H372 

was determined experimentally. Strain H372 was inoculated onto agar containing dipyridyl, and 

a disc impregnated with hemin was placed on the agar. A ring of growth around the hemin disc 



41 
 

indicated usage of heme as an iron source. The diameter of the ring in H372 was 12 mm, 

indicating that it did have the ability to use heme. 

Siderophore Purification 

After the growth conditions for the optimum production of siderophore were determined, 

H372 was grown in large batch cultures of 4-5 L for purification. After checking for siderophore 

production on CAS, the broth was centrifuged. The supernatant was then acidified to pH 2.00 to 

reduce the solubility of the siderophore for chromatography using an XAD-2 column. 

Manual Column Chromatography 

Amberlite XAD-2. The XAD-2 column was the first column used for purification. The 

acidified supernatant was run through the column, and then the column was washed with ddH20. 

The filtrate and H20 wash were checked for siderophore on CAS to make sure that the 

siderophore had bound in the column. If the CAS assay was negative, elution of the column with 

methanol followed. Fifty fractions of approximately 3mL each were collected. Every other 

fraction was tested on CAS media for siderophore activity, and those testing positive were 

pooled and concentrated by evaporation for further purification. Depending on the flow rate of 

the column, the positive fractions were generally in the range of fractions 15-30 and had a 

brownish-red color. 

Sephadex LH-20. The positive samples were further purified using an LH-20 column. 

The evaporated, post-XAD sample was dissolved in pH 2.00 ddH20 and loaded on the LH-20 

column. The column was run with ddh20 as the solvent and approximately 40 fractions were 

taken. These fractions were checked on CAS for siderophore activity, and the positive fractions 
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were pooled and evaporated. Depending on flow rate the positive fractions were generally in the 

range of fractions 15-25, and had a reddish color.  

HPLC 

After manual column chromatography the sample was further purified by high pressure 

liquid chromatography (HPLC). A Watters C-18 column was used, and an appropriate solvent 

system had to be found. A water/methanol system was attempted first, but the sample was highly 

hydrophilic so it did not work. Then a system of 0.1% trifluoroacetic acid (TFA) as solvent A 

and 0.1% TFA/acetonitrile as solvent B was used, with success. The HPLC was run with this 

solvent system over a gradient of 1-100% solvent B, and the fractions collected and tested on 

CAS.  Two fractions tested positive, and based on the HPLC profile it was somewhere between 

20-40% solvent B. Subsequent HPLC runs were made, further refining the gradient until it was 

determined that the siderophore eluted at 23% solvent B. This percentage of solvent B correlated 

to a specific peak on the HPLC profile (Figure 5) Further HPLC runs were made with fresh 

samples using the refined gradient until only a single peak was evident on the HPLC profile, 

indicating the elution of a possibly pure compound. The fraction corresponding to the peak was 

collected, tested on CAS, dried, and saved for chemical and structural characterization 

experiments. 
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Figure 5: HPLC profile of H372 showing a single peak, indicating a pure siderophore 

 

Siderophore Characterization 

Atkin’s and Arnow’s Tests 

After determining that H372 produced a siderophore, the next step was to characterize the 

siderophore. The Arnow’s test was performed to determine if catechol species were present, and 

the Atkins’ test was performed to determine if hydroxamate species were present. Both tests 

indicate a positive result if the sample turns red or has a spectrophotomer reading of 0.003 or 

greater. The Arnow’s test was negative with no color change and a reading of -0.008. The 

Atkin’s test was negative with no color change and a reading of 0.001. The negative results of 

these tests indicated that the siderophore did not belong to the common hydroxamate or catechol 

types. If a siderophore is not a hydroxamate or catechol type, the default category is carboxylate. 
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Amino Acid Analysis 

Many siderophores are conjugates of amino acids, so amino acid analysis was performed 

on the sample to determine the amino acids present. The sample was acid hydrolyzed and spotted 

on a TLC plate alongside amino acid standards. The TLC plate was developed in solvent and 

sprayed with ninhydrin reagent to reveal the spots. The hydrolyzed sample showed the presence 

of 3 products indicated by 3 spots (Figure 6).  Spot 1 had the same Rf value as ornithine. Spot 2 

had the closest Rf value to tryptophan but was close to phenylalanine and isoleucine as well 

(Figure 7). Spot 3 had a higher Rf value than any of the amino acids possibly indicating some 

sort of degradative product that reacted with the ninhydrin but not an amino acid. 
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Figure 6: Amino Acid Analysis with the sample and ornithine 
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Figure 7: Amino Acid Analysis with the sample and 20 amino acids 

A-alanine, R-arginine, N-asparagine, D-aspartic acid, C-cysteine, E-glutamic acid, Q-glutamine, 

G-glycine, H-histidine, I-isoleucine, L-leucine, K-lysine, M-methionine, F-phenylalanine, P-

proline, S-serine, T-threonine, W-tryptophan, V-valine 
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ESMS  

Electron spray mass spectrometry (ESMS) was performed by the Analytical Division of 

Eastman Chemical for the molecular weight and possible structural elucidation of the sample. A 

regular sample and an iron-complexed sample were provided. Unfortunately, the iron-complexed 

sample did not yield any useful data. The reason for this is unknown. 

Figure 8 shows an HPLC profile of the sample. While the HPLC performed at the ETSU 

lab showed a single peak, this HPLC showed 14 peaks. This difference may be explained by the 

use of a different solvent system. The peak with the largest area under the curve corresponds to 

the major product, and this is peak 8. The assumption is that because the purification process was 

designed to isolate a siderophore, the major product will indeed be the siderophore; however, it 

is possible that is not the case. Because the mixture was complex, we did not get useful structural 

information to confirm the likelihood of a siderophore. 

After HPLC the fraction corresponding to each peak was analyzed by ESMS for 

molecular weight data.  The ESMS was perfomed at 10v, -25v, +25v, -75v, and 75v (Figures 8-

13). The 10v setting’s function is to ascertain an accurate mass as the molecules will not break 

apart at that voltage. The mass at the 10v setting appears to be 681 kDa (Figure 9). However, the 

mass at the 25v setting is 658 (Figure 10).  This difference is likely explained by a sodium 

adduct. Sodium adducts are common in ESMS analysis and they add 23 kDa to the molecular 

weight. A sodium adduct is also present in the 75v data (Figure 12). The 25v and 75v settings 

can be used for structural information as fragmentation of the molecule can occur. Some 

fragmentation did occur at +75v as the peak at 681 kDa (molecular weight + sodium) is smaller 

and a new, high peak is seen at 245 kDa. 
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Figure 8: Eastman Chemical HPLC data for strain H372 showing 14 peaks 

 

Figure 9: 10v accurate mass data for H372 sample peak 8 
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Figure 10: ESMS data at +25v 

 

Figure 11:ESMS data at -25v 

 

Figure 12: ESMS data at +75v 
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Figure 13: ESMS data at -75v 

Based on the molecular weight and the combination of the elements carbon, hydrogen, 

oxygen, and nitrogen, the ESMS machine produced possible molecular formulas for the major 

product of the sample (Table 5).  The formulas were then entered into the SciFinder database to 

see if they corresponded to any known siderophores. No corresponding siderophores were found. 

This could indicate a completely new siderophore or that the major product is not a siderophore. 
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Table 5: ESMS elemental composition report (first 12 results, ranked by similarity to sample) 
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NMR 

Nuclear magnetic resonance (NMR) was also performed by the Analytical Division at 

Eastman Chemical. The NMR also shows a very complex mixture in the sample (Figure 14). 

Due to the number of peaks it is difficult to glean useful information from this NMR result. The 

only definitive bonds that can be observed are CH2 bonds (circled in green) and an aromatic ring 

(circled in purple). CH2 bonds are extremely common, so they would be expected in almost any 

NMR analysis. The source of the aromatic rings is unknown. 

 

 

Figure 14: NMR Data. CH2 bonds circled in green, Aromatic ring bonds circled in purple. 
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CHAPTER 4 

DISCUSSION 

The vast majority of organisms need iron to survive, and most bacteria produce 

siderophores for this purpose. Siderophores are known to be important in the pathogenesis of 

bacteria including S. aureus (24). However, most siderophore research focuses on Gram negative 

bacteria. Much less is known about siderophores produced by Gram-positive bacteria including 

siderophores of staphylococci. Staphylococci produce 4 known siderophores: staphyloferrin A, 

staphyloferrin B, staphylobactin, and aureochelin. Only the staphyloferrins have been fully 

characterized; the structures of staphylobactin and aureochelin remain unknown (22, 29, 42). 

Due to the importance of siderophores to virulence, there is a need to know more about the 

siderophores of S. aureus. 

The purpose of this research was to identify and characterize siderophores in S. aureus, 

particularly in antibiotic-resistant strains. Because iron acquisition could be a drug target, it is 

important to learn more about these systems in S. aureus. In the United States alone 94,000 

people a year contract invasive MRSA infections and 19,000 people die of MRSA annually (16). 

In our lab numerous strains of MRSA were tested for siderophore activity, and those possessing 

the greatest siderophore activity were selected for further study. Of those strain H372 was 

selected due to its strong production. After selecting this strain siderophore production needed to 

be optimized and the siderophore characterized. 

Due to the intrinsically low iron requirement of S. aureus (56), it was difficult to find a 

growth medium with sufficient iron restriction. The medium that best supported growth and 

siderophore production was LB Broth with 500μm dipyridyl to sequester iron. Minimal medias 
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such as Fiss, TMS, Congo Red, and MMW were tried, but either growth or siderophore 

production were compromised. 

After optimization of production purification methods were followed based on the 

preliminary chemical characterization of the siderophore. The Arnow’s test for catechol 

siderophores and the Atkin’s test for hydroxamate siderophores were performed. The 

siderophore from H372 tested negative, indicating it is neither a catechol nor hydroxamate type. 

Based on the data we presume it is a carboxylate type siderophore, although there is no definitive 

test for this type. This finding was consistent with the fact that staphyloferrin A and B are both 

carboxylate siderophores. Based on the presumption that it is a carboxylate siderophore, we tried 

to use the published procedures for the purification of the staphyloferrins. 

After determining the optimum conditions and type of siderophore, large batch cultures 

were needed for purification. Purification involved 3 chromatographic processes. First, the 

acidified supernatant was passed through an amberlite XAD-2 column that binds cyclic 

molecules. The CAS-positive fractions from the XAD-2 were then pooled and concentrated. 

Second, the concentrated CAS positive material was passed through a sephadex LH-20 column 

that separates molecules according to size and hydrophobicity. The CAS positive fractions from 

the Sephadex LH-20 were then pooled and concentrated. Third, the concentrated CAS positive 

sample from the sephdex LH-20 column was analyzed with HPLC using a Waters C-18 column. 

The CAS assay was used to follow the siderophore throughout the process. The first HPLC 

solvent system tried was a water/methanol system; however, the siderophore was highly 

hydrophilic and eluted in the water immediately. This hydrophilicity is consistent with 

staphyloferrin A, so the system was changed to the TFA/TFA-acetonitrile that was used during 

the purification of staphyloferrin A (52). The high hydrophilicity of the siderophore is also why 
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thin-layer chromatography (TLC) of the siderophore was never satisfactory. The silica gel plates 

and solvent systems used for TLC were too hydrophobic and the hydrophilic siderophore 

samples did not migrate up the plate. The new solvent system for HPLC worked, and it was 

determined that the siderophore corresponded to a specific peak on the HPLC profile that eluted 

at 23% solvent B. This HPLC profile was significantly different than staphyloferrin A, which 

elutes at between 4-10% of solvent B using the same solvent system (52). When this single peak 

was evident on the HPLC profile, the sample was considered pure.  

Siderophores are usually conjugates of amino acids, so amino acid analysis was 

performed on the sample. The sample was acid-hydrolyzed, spotted on TLC plates, and 

compared to the 20 amino acids and ornithine. The sample showed 3 spots on TLC. The lowest 

spot, designated as spot 1, had the Rf value of ornithine. Spot 2 had the closest Rf value to 

tryptophan, although it was close to phenylalanine and isoleucine as well. Spot 3 was higher than 

all the Rf values for the amino acids, so it is presumably a degradative product that reacted with 

the ninhydrin reagent. The presence of ornithine was intriguing because both staphyloferrin A 

and B contain ornithine.  

The HPLC purified samples were analyzed by ESMS and NMR to attempt to discern 

structural information and molecular weight. Both an iron-complexed and a non iron-complexed 

sample were analyzed. Unfortunately, the iron-complexed sample did not yield any useful data 

for unknown reasons. Although the ESMS profile shows multiple peaks, the probable molecular 

weight based on the major peak is 658, which is significantly different than staphyloferrin A at 

481 Da (61), staphyloferrin B at 448 Da (42), staphylobactin at 822 Da (24), or aureochelin at 

577 Da (22).  The molecular weight data suggest that this siderophore may not be any of the 

known staphylococcal siderophores. The ESMS data were also analyzed using a molecular mass 
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database for known compounds but no matches were found, even when specifically searching for 

siderophores. 

The NMR data suggested the presence of CH2 bonds and an aromatic ring. The CH2 

bonds are too common to assist in identification of the structure of the siderophore.  

The final conclusion of this research is that S. aureus strain H372 produces a hydrophilic 

siderophore that contains ornithine and has a probable molecular weight of 658. The siderophore 

could be novel or it could be that one of the staphyloferrins is present and bound to other 

molecules increasing its molecular weight. 

Future studies for this project include further structural elucidation of this siderophore. 

Although the siderophore appeared pure on HPLC, the complex profiles of the ESMS and NMR 

indicate either that the purity needs to be improved or that the siderophore is degrading during 

the process of purification or storage after purification. The identification and structural 

determination of this siderophore can be helpful in the study of its regulation, biosynthesis, and 

transport.  
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