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ABSTRACT 

 

Neurochemical Levels Correlate with Population Level Differences in Social Structure and  

Individual Behavior in the Polyphenic Spider, Anelosimus studiosus 

 

by 

Jennifer Bryson Price 

 

Anelosimus studiosus is a socially polyphenic spider. Individuals can be classified as 

social/tolerant or solitary/aggressive. These behavioral differences are associated with 

considerable variation in social structure. Here, we begin to examine the physiological 

differences that may underlie the behavioral dimorphism in this species and possible implications 

for the evolution of sociality. Octopamine is a neurotransmitter that has been found to elevate 

aggression in invertebrates. Serotonin has been shown, in some cases, to interact antagonistically 

with octopamine. We used High Pressure Liquid Chromatography with Electrochemical 

Detection to quantify levels of these neurochemicals among adult females from social (multi-

female) and solitary (single-female) webs in east Tennessee. A subset of spiders was scored for 

individual social tendency. We found that higher octopamine levels are associated with a greater 

degree of aggression and intolerance, both at the individual level and the population level, while 

higher levels of serotonin are found in multi-female colonies and social individuals.  
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CHAPTER 1 

INTRODUCTION 

 

Animal Behavior and the Evolution of Cooperation 

 Interactions among organisms and between organisms and their environments drive the 

activities of the biosphere that we know as planet Earth.  Beginning with plants as primary 

producers, vital energy works its way through the food chains and food webs around the globe, 

passing from living thing to living thing and providing the basis for life as we know it. Resources 

that sustain life are of supreme importance and serve as both currency and loot in the game of 

survival. Charles Darwin succeeded in explaining the tragedy and reward associated with this 

truth. The fittest among us acquire the necessary resources to survive and pass our genetic batons 

to our offspring and their offspring and so on. And so it would seem that it would behoove us to 

be ever-selfish, fighting to find and dominate the goods, keeping them for ourselves and our 

mates and our offspring, leaving others to wither away, taking with them the genes that would 

compete with our own in future generations. For most life on earth, that is exactly what happens. 

But somehow, and for some reason, some organisms have come to cooperate with, and even 

depend upon, others. Given what we know about natural selection, how does this happen?  

 Evolution drives sociality only when it is beneficial to the individuals within the group to 

do so. The evolution of cooperation (Axelrod and Hamilton 1981) involves the application of 

Game Theory, which has long been used to analyze phenomena in economics and business, to 

biology (Smith 1973; Smith 1982) and to animal behavior (Fisher 1930; Edwards 2000). The 

concept of transitioning from selfish motivation to cooperation-for-self-benefit is effectively 
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illustrated by the Prisoner‘s Dilemma. The Prisoner‘s Dilemma is a game in which two players 

independently and simultaneously choose to either defect or cooperate. Each choice has a payoff 

(in terms of fitness) determined by the choice of the other player. Whether the other player 

chooses to cooperate or defect, the payoff is highest for defection. However, if both players 

defect, then the payoff for both players is less than if they had both chosen to cooperate. Therein 

lies the dilemma. How does one decide whether to defect or cooperate? The answer to this 

question depends on the probability of future interaction between the players.  

 If the players only interact once and never again, then the best strategy is always to 

defect, but as the likelihood of future interaction increases, the strategy of cooperation becomes 

more valuable. The ―Tit-for-Tat‖ game demonstrates that, over time and repeated interactions 

with the same individual, cooperation based on reciprocity results in the highest overall payoff 

for the players.  If the probability that the players will continue to interact in the future is 

relatively high, then it is in their best interest to cooperate (Axelrod and Hamilton 1981). 

 Fig-pollinating wasps often skew their broods toward female-biased ratios when there are 

many sets of competing foundresses in multiple fruits on the fig tree. Within a single fruit, as the 

number of foundresses increases, the proportion of male offspring also increases and approaches 

a Fisherian sex ratio of 50:50 in response to the intensity of mate competition. But because male 

wasps don‘t pollinate the figs, it is not in the best interest of the tree or the wasps (because they 

need fertilized flowers/developing seeds for their own development) to have an even sex ratio. 

When put in terms of the Prisoner‘s Dilemma game, we consider the payoffs associated with 

different possible combinations of sex ratio strategies chosen by two hypothetical foundress 

wasps. For the fig wasps, there exists a balance between between-group and within-group 

selection. Within each deme (in this case, each syconium), the female who uses the even sex 
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ratio strategy (50:50) receives the higher payoff, but across demes (in the situation where there 

are multiple foundresses and multiple fruits), the highest payoff goes to those groups producing 

the most mated females. The selection acting upon the groups (or across demes) works to 

overwhelm and override the Fisherian ratios within them. The most productive scenario for the 

group is the one in which both females ―cooperate‖ by using a female-biased strategy, thereby 

producing the greatest number of productive (mating and pollinating) female offspring (Herre 

1999).  

 Each syconium/fruit on a wasp-pollinated fig tree contains its own local population of 

interbreeding individuals, and when the mated females leave that fruit as adults, they invade a 

new syconium to begin a new colony. This situation is analogous to that found in populations of 

permanent-social spiders that inbreed and, like the fig wasps, have evolved highly female-biased 

sex ratios (Avilés 1993). Permanent-social spiders demonstrate ―intercolony selection leading to 

female-biased sex ratios‖ (Avilés 1997). 

 These models contributes to our understanding of how a strategy of cooperation can 

invade a strategy of pure defection, how it can take hold and spread throughout the population, 

and how it can eventually become an evolutionarily stable strategy. It allows us to bridge the 

theoretical gap between selfish motivations and the good of the whole, and it helps us to 

understand how individuals who are, by necessity, looking out for themselves have somehow 

managed to form cooperative relationships and even societies. 

  If cooperation and social behavior can evolve from a former state of selfishness and 

aggressive ‗survival of the fittest‘ tendencies, what are the physiological transferrable and 

transmutable traits that parallel this transformation? What are the internal biological factors that 
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influence these differences in intraspecific social and aggressive behaviors over time? What 

physical condition causes aggression or lack thereof? 

Physiology of Aggression 

Octopamine (OA) and serotonin (5-HT) are biogenic amines known to modulate 

aggression-related behaviors in invertebrates (Kravitz 1988). Octopamine acts as a 

neurohormone, a neurotransmitter, and a neuromodulator. It has been suggested that octopamine 

modulates almost every physiological process in invertebrates, and it is considered homologous 

to the noradrenergic system in vertebrates (Roeder 1999). Octopamine is released when energy-

demanding behaviors such as sustained flight (in flying insects), fights, predatory attacks, or anti-

predator escape maneuvers are needed (Roeder 1999). OA has a broad range of effects in 

honeybees, including modulation of dance behavior (Barron et al. 2007), sucrose responsiveness  

(Scheiner et al. 2002), and age-related division of labor  (Schulz and Robinson 2001). In some 

cases, serotonin has been shown to have an opposite modulatory effect. In crayfish, octopamine 

enhances an escape response, but serotonin suppresses the response (Glanzman and Krasne 

1983).  

Both social and non-social invertebrates offer powerful model systems for studying the 

effects of biogenic amines on aggression (Kravitz and Huber 2003). Octopamine null Drosophila 

mutants showed greatly reduced aggression (Baier et al. 2002), and in the same study, serotonin 

was found to have no effect on aggression. However, another study found that increased levels of 

serotonin in the Drosophila brain increased aggressive behavior (Dierick and Greenspan 2007). 

Serotonin is responsible for an extreme behavioral transformation in desert locusts, causing a 
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switch from solitary to group behavior within a matter of hours, with the major behavioral 

change being loss of aversion to conspecifics (Anstey et al. 2009).   

 

Octopamine and Serotonin in Spiders 

Octopamine in spiders acts both in the CNS and peripheral tissues and is found freely 

circulating in the hemolymph. Its role as a spider neurohormone is indicated by this and the 

concentration of octopamine immunoreactive neurons found near hemolymph spaces throughout 

the spider‘s CNS (Seyfarth et al. 1993). Octopamine also acts to modulate numerous 

physiological processes including sensitization and desensitization of mechanosensory neurons 

in spiders (Widmer et al. 2005). Because a spider‘s relationship with its environment occurs 

primarily via interpretation of vibratory cues detected by these mechanosensory neurons 

associated with sensilla (small sensory organs embedded in the exoskeleton) and trichobothria 

(hairs on the exoskeleton) (Foelix 1996), it follows that increased levels of octopamine could be 

associated with greater sensitivity to environmental signals, such as air movement (flying 

predators) and web vibration (conspecifics, prey, or predators).  

Information regarding the role of serotonin in spiders is scarce, and as far as we know, 

only one study involving serotonin and spider behavior has been published. Punzo and Punzo 

(2001) explored the effects of intraspecific male agonistic interaction on serotonin and 

octopamine levels in tarantulas, finding that levels of both serotonin and octopamine decreased 

in both winners and losers following a fight, but they decreased more in the subordinate spiders 

than in the dominant spiders.  
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Sociality in Spiders 

Nearly 42,000 spider species are currently known (Platnick 2010), and of those, the vast 

majority display solitary and aggressive behavior. Only 23 spider species are classified as social 

(Avilés 1997; Agnarsson 2006), and they live, almost without exception, in tropical and 

subtropical areas. Of those 23 social spider species, 11 to 12 occur within the family Theridiidae 

(Agnarsson et al. 2006). Theridiids build tangled three-dimensional cobwebs and exhibit 

extended maternal care of their offspring. It has been suggested that these traits are 

preadaptations (creating a predisposition) for the evolution of social behavior because all that is 

further required to become social is a mutual tolerance of conspecifics (Kullmann 1968; Shear 

1970; Brach 1977). Anelosimus studiosus (Araneae: Theridiidae) is the only species currently 

known to display cooperatively social behavior in a temperate region (Furey 1998; Jones et al. 

2007). Additionally, it is the only species of the described cooperatively social spiders to exhibit 

a behavioral polyphenism, having both social and solitary phenotypes within the species 

(Riechert and Jones 2008; Pruitt and Riechert 2009). The habitat range of A. studiosus extends 

from Argentina in South America, all the way through Central America, and into the New 

England states in North America (Agnarsson 2006). These spiders are small (in this study, mean 

body mass = 0.00636g), and they typically nest in trees and shrubs along waterways (Brach 

1977;  Furey 1998). Members of the species residing in the tropical and subtropical latitudes 

exhibit purely solitary behavior, but with an increase in latitude (moving out of the tropics and 

into more temperate climes), observations of multi-female webs become more frequent (Jones et 

al. 2007; Riechert and Jones 2008). This is surprising considering the fact that evolution of 

spider sociality is thought to be favored by numerous environmental factors, such as greater 

year-round food supply, larger size of spider prey (profitable sharing), niche exploitation in 

response to more intense competition, and group-living/extended maternal care in response to 
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higher levels of predation found in tropical regions (Avilés 1997). While most A. studiosus webs 

in east Tennessee are occupied by a single female and her offspring who cooperate in prey 

capture and web maintenance to their mutual benefit (Jones and Parker 2002), spiders occupying 

relatively cooler microhabitats may build webs that contain over a hundred females (Furey 1998; 

Jones et al. 2007). Benefits of this cooperative arrangement, as compared to social structures of 

tropical spiders, are explained by Jones et al. in a brood-fostering model (2007) and supported by 

findings of higher reproductive success by the multi-female colonies in cooler microclimates 

(Jones et al. 2007; Jones and Riechert 2008). There is much variation not only between the multi-

female colonies and the single-female clusters but also within them. Some individuals within the 

multi-female colonies exhibit solitary behavior, maintaining web space adjacent to others while 

exhibiting aggressive and sometimes even cannibalistic behaviors. Likewise, some females in 

solitary nests show decreased aggression toward prey and tolerance of intraspecific and 

interspecific intrusion into their webs (Pruitt et al. 2008). Considering the broad range of 

behaviors observed in this species, a question arises: What physiological differences might 

underlie this observed behavioral phenomenon? 

 

Quantifying Behavior 

Based on observations of individual behavioral differences within a given social 

structure, quantification of these differences is necessary to gain deeper ecological understanding 

of this particular system. Because spiders must both acquire prey and avoid predation, they must 

be capable of performing acts of aggression and acts of avoidance. Spiders that are less 

aggressive toward one another also tend to be generally less aggressive toward prey, and the 
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inverse is also true. Because social tendency and anti-predator response are both considered 

aspects of an overall behavioral syndrome (Sih et al. 2004; Pruitt et al. 2008), a spider‘s response 

to the presence of a predator is related to the spider‘s level of aggression. Cob-web spiders such 

as A. studiosus, when detecting the presence of a predator via vibratory or convective cues, will 

crouch, pull in its legs, and remain motionless for a period of time. This is referred to as a 

‗huddle response.‘ The duration of the huddle response is typically an accurate predictor of 

aggressive tendency, with more aggressive spiders huddling for shorter periods of time and more 

social spiders huddling for longer periods of time (Riechert and Johns 2003; Pruitt et al. 2008). 

Likewise, self-determined distance between individuals (social tendency) can be used as a 

measure of tolerance of conspecifics has been shown to be strongly correlated with living 

strategy (Riechert and Jones 2008; Pruitt et al. 2008). 

To explore the neurochemical underpinnings of population- and colony-level differences 

in social behavior, we investigate the physiological differences underlying the social 

polyphenism in A. studiosus and quantify neurochemical differences between the solitary and 

social phenotypes within the species. Because aggression is the primary behavior displayed 

toward conspecifics by the solitary phenotype, we look for correlations in naturally occurring 

levels of octopamine and serotonin with social and aggression-related behaviors.  

 

Implications for the Evolution of Sociality 

 Results from a recent phylogenetic study suggest that sociality is evolving locally and 

independently in populations of Anelosimus studiosus in east Tennessee (Weber et al., 

unpublished data).  Modifications in neurochemical levels may be an evolutionary pathway to 
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the development of different social behaviors. It is theoretically possible that individual 

populations of A. studiosus could adopt various neurochemical strategies to address the issue of 

maximized fitness by cooperation in the cooler microclimates of our study area.  

 

Hypothesis 

Given data from other arthropod studies, we hypothesize that octopamine levels should 

be higher in individuals, and groups of individuals, displaying more aggressive and less social 

behavior. Based on evidence that serotonin is an antagonist of octopamine (Glanzman and 

Krasne 1983) and that it may increase tolerance of conspecifics in other invertebrates (Anstey et 

al. 2009), we predict that serotonin levels will be higher in multi-female colonies and social 

individuals than in their solitary counterparts. 
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CHAPTER 2 
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Abstract: Anelosimus studiosus is a socially polyphenic spider exhibiting both social and 

subsocial behaviors. Individuals can be classified as social/tolerant or solitary/aggressive 

phenotypes. These behavioral differences are associated with considerable variation in social 

structure. Populations between 26°N latitude (Florida) and 36°N latitude (Tennessee) exhibit a 

behavioral cline, with an increasing proportion of social colonies and social individuals 

occurring as northern latitude increases. In this study, we begin to examine the physiological 

differences that may underlie social and aggressive behavior in this species. Octopamine (OA) is 

a neurotransmitter, neuromodulator, and neurohormone that has been found to elevate aggression 

in several invertebrate species and is commonly thought of as the invertebrate counterpart of 

norepinephrine. Serotonin (5-HT) has been shown to interact agonistically with OA. We used 

High Pressure Liquid Chromatography with Electrochemical Detection (HPLC-ECD) to quantify 

levels of OA and 5-HT among adult females from social (multi-female) and solitary (single-

female) webs in east Tennessee. A subset of spiders was scored for individual anti-predator 

behavior and social tendency. We found that, in general, higher octopamine levels are associated 

with a greater degree of aggression and intolerance, both at the individual level and the 

population level, while higher levels of serotonin are found in multi-female colonies and social 

individuals.  

 

 

 

 

 

Keywords: Anelosimus studiosus, behavioral phenotype, social structure, octopamine, serotonin 
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Introduction 

Physiology of Aggression 

Octopamine (OA) and serotonin (5-HT) are biogenic amines known to modulate 

aggression-related behaviors in invertebrates (Kravitz 1988). Octopamine acts as a 

neurohormone, a neurotransmitter, and a neuromodulator. It has been suggested that octopamine 

modulates almost every physiological process in invertebrates, and it is considered homologous 

to the noradrenergic system in vertebrates (Roeder 1999). Octopamine is released when energy-

demanding behaviors, such as sustained flight (in flying insects), fights, predatory attacks, or 

anti-predator escape maneuvers are needed (Roeder 1999). OA has a broad range of effects in 

honeybees, including modulation of dance behavior (Barron et al. 2007), sucrose responsiveness  

(Scheiner et al. 2002), and age-related division of labor  (Schulz and Robinson 2001). In some 

cases, serotonin has been shown to have an opposite modulatory effect. In crayfish, octopamine 

enhances an escape response, but serotonin suppresses the response (Glanzman and Krasne 

1983).  

Both social and non-social invertebrates offer powerful model systems for studying the 

effects of biogenic amines on aggression (Kravitz and Huber 2003). Octopamine null Drosophila 

mutants showed greatly reduced aggression (Baier et al. 2002), and in the same study, serotonin 

was found to have no effect on aggression. However, another study found that increased levels of 

serotonin in the Drosophila brain increased aggressive behavior (Dierick and Greenspan 2007). 

Serotonin is responsible for an extreme behavioral transformation in desert locusts, causing a 

switch from solitary to group behavior within a matter of hours, with the major behavioral 

change being loss of aversion to conspecifics (Anstey et al. 2009).   
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Octopamine and Serotonin in Spiders 

Octopamine in spiders acts both in the CNS and peripheral tissues and is found freely 

circulating in the hemolymph. Its role as a spider neurohormone is indicated by this and the 

concentration of octopamine immunoreactive neurons found near hemolymph spaces throughout 

the spider‘s CNS (Seyfarth et al. 1993). Octopamine also acts to modulate numerous 

physiological processes in spiders, including sensitization and desensitization of mechanosensory 

neurons (Widmer et al. 2005). Because a spider‘s relationship with its environment occurs 

primarily via interpretation of vibratory cues detected by these mechanosensory neurons 

associated with sensilla (small sensory organs embedded in the exoskeleton) and trichobothria 

(hairs on the exoskeleton) (Foelix 1996), it follows that increased levels of octopamine could be 

associated with greater sensitivity to environmental signals, such as air movement (flying 

predators) and web vibration (conspecifics, prey, or predators).  

Information regarding the role of serotonin in spiders is scarce, and as far as we know, 

only one study involving serotonin and spider behavior has been published. Punzo and Punzo 

(2001) explored the effects of intraspecific male agonistic interaction on serotonin and 

octopamine levels in tarantulas, finding that levels of both serotonin and octopamine decreased 

in both winners and losers following a fight, but they decreased more in the subordinate spiders 

than in the dominant spiders.  

Sociality in Spiders 

 

Nearly 42,000 spider species are currently known (Platnick 2010), and of those, the vast 

majority display solitary and aggressive behavior. Only 23 spider species are classified as social 

(Avilés 1997; Agnarsson 2006), and they live, almost without exception, in tropical and 
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subtropical areas. Of those 23 social spider species, 11 or 12 occur within the family Theridiidae 

(Agnarsson et al. 2006). Theridiids build tangled cobwebs and exhibit extended maternal care of 

their offspring. It has been suggested that these traits are preadaptations (creating a 

predisposition) for the evolution of social behavior because all that is further required to become 

social is a mutual tolerance of conspecifics (Kullmann 1968; Shear 1970; Brach 1977). 

Anelosimus studiosus (Araneae: Theridiidae) is the only species currently known to display 

cooperatively social behavior in a temperate region (Furey 1998; Jones et al. 2007). Additionally, 

it is the only species of the described cooperatively social spiders to exhibit a behavioral 

polyphenism, having both social and solitary phenotypes within the species (Riechert and Jones 

2008; Pruitt and Riechert 2009). The habitat range of A. studiosus extends from Argentina in 

South America, all the way through Central America, and into the New England states in North 

America (Agnarsson 2006). These spiders are small (in this study, mean body mass = 0.00636g), 

and they typically nest in trees and shrubs along waterways (Brach 1977;  Furey 1998). 

 Members of the species residing in the tropical and subtropical latitudes exhibit purely 

solitary behavior, but with an increase in latitude (moving out of the tropics and into more 

temperate climes), observations of multi-female webs become more frequent (Jones et al. 2007; 

Riechert and Jones 2008). This is surprising considering the fact that evolution of spider sociality 

is thought to be favored by numerous environmental factors, such as greater year-round food 

supply, larger size of spider prey (profitable sharing), niche exploitation in response to more 

intense competition, and group-living/extended maternal care in response to higher levels of 

predation in tropical regions (Avilés 1997). While most A. studiosus webs in east Tennessee are 

occupied by a single female and her offspring (here referred to as single-female colonies) who 

cooperate in prey capture and web maintenance to their mutual benefit (Jones and Parker 2002), 
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spiders occupying relatively cooler microhabitats may build webs that contain over a hundred 

adult females (Furey 1998; Jones et al. 2007). Webs or nests containing two or more adult 

females and their offspring are referred to as multi-female colonies. Benefits of this cooperative 

arrangement, as compared to social structures of tropical spiders, are explained by Jones et al. in 

a brood-fostering model (2007) and supported by findings of higher reproductive success by the 

multi-female colonies in cooler microclimates  (Jones and Riechert 2008). There is much 

variation not only between the multi-female colonies and the single-female clusters but also 

within them. Some individuals within the multi-female colonies exhibit solitary behavior, 

maintaining web space adjacent to others while exhibiting aggressive and sometimes even 

cannibalistic behaviors. Likewise, some females in solitary nests show decreased aggression 

toward prey and tolerance of intraspecific and interspecific intrusion into their webs (Pruitt et al. 

2008). 

Quantifying Behavior 

Quantification of individual behavioral differences within a given social structure is 

necessary to gain deeper ecological understanding of this particular system. Because spiders 

must both acquire prey and avoid predation, they must be capable of performing acts of 

aggression and acts of avoidance. Spiders that are less aggressive toward one another also tend to 

be generally less aggressive toward prey, and the inverse is also true. Because social tendency 

and anti-predator response are both considered aspects of an overall behavioral syndrome (Sih et 

al. 2004; Pruitt et al. 2008), a spider‘s response to the presence of a predator is related to the 

spider‘s level of aggression. Cob-web spiders such as A. studiosus, when detecting the presence 

of a predator via vibratory or convective cues, will crouch, pull in its legs, and remain motionless 

for a period of time. This is referred to as a ‗huddle response.‘ The duration of the huddle 
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response is typically an accurate predictor of aggressive tendency, with more aggressive spiders 

huddling for shorter periods of time and more social spiders huddling for longer periods of time 

(Riechert and Johns 2003; Pruitt et al. 2008). Likewise, self-determined distance between 

individuals (social tendency) can be used as a measure of tolerance of conspecifics and has been 

shown to be strongly correlated with living strategy (Riechert and Jones 2008; Pruitt et al. 2008). 

To explore the neurochemical underpinnings of population- and colony-level differences 

in social behavior, we investigate the physiological differences underlying the social 

polyphenism in A. studiosus and quantify neurochemical differences between the solitary and 

social phenotypes within the species. Because aggression is the primary behavior displayed 

toward conspecifics by the solitary phenotype, we look for correlations in naturally occurring 

levels of octopamine and serotonin with social and aggression-related behaviors. Given data 

from other arthropod studies, we hypothesize that octopamine levels should be higher in 

individuals, and groups of individuals, displaying more aggressive and less social behavior. 

Based on evidence that serotonin is an antagonist of octopamine (Glanzman and Krasne 1983) 

and that it may increase tolerance of conspecifics in other invertebrates (Anstey et al. 2009), we 

predict that serotonin levels will be higher in multi-female colonies and social individuals than in 

their solitary counterparts. 

 

Methods 

Collection and Rearing 

 Adult female A. studiosus were collected from both multi-female and single-female webs 

along waterways in east Tennessee (Boone Lake [36°26’51.02” N , 82°25’41.14” W], near 

Warrior‘s Path State Park [36°29’43.26” N , 82°28’21.96” W],  Melton Hill Lake [35°59’29.76” 
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N, 84°11’44.55” W], and Kingsport [36°32’40.83” N, 82°33’16.00” W]) in the months of April 

through July, 2009, and May, 2010. In the laboratory, all spiders were housed in individual 

plastic containers (2 oz.). The spiders were maintained in stable laboratory conditions, with ad 

libitum food and water for a minimum of two weeks to ensure that behavior was not influenced 

by hunger.  

Correlation of Biogenic Amines with Colony Social Structure 

 Octopamine and serotonin levels of individual spiders from both social and solitary webs 

from three populations (Boone Lake, Melton Hill, and Warriors Path) were determined using the 

extraction and HPLC techniques described below. A two-way ANOVA was used to identify 

differences in neurochemical levels (designated as responses) between ‗populations,‘  ‗colony 

strategies,‘ and ‗interactions between population and colony strategy‘ (designated as factors).  

Correlation of Biogenic Amines with Individual Behavior 

Huddle Response 

Behavioral assays were conducted in order to quantify social and aggressive tendencies 

of individuals. Huddle response duration (discussed above) was used as a measure of anti-

predator response. Each spider was removed from her container and lowered into the center of a 

circular glass dish (10 cm diameter) that had been cleaned thoroughly with ethanol and allowed 

to dry. A puff of air from a rubber squeeze bulb was directed at the spider, and if a huddle 

response was induced, a stopwatch was used to record its duration (modeled after Riechert and 

Johns 2003; Pruitt et al. 2008). If a huddle response did not occur, another attempt was made 60 

seconds later. After two attempts, if no response was elicited, the spider was put back in her 

container and tested 24 hours later. If, after two additional trials, the spider still did not huddle, 
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and if she appeared otherwise normal, healthy, and active, she received a huddle response score 

of zero seconds. If, however, a spider did not huddle and appeared lethargic or otherwise 

unhealthy, she was removed from the study.  

Interindividual Distance 

Following Riechert and Jones (2008) and Pruitt and Riechert (2009), two randomly 

selected females were individually marked with colored paint and placed in the center of a 

square transparent plastic container (16cm x 16cm). After 24 hours, distance between the 

individuals (henceforth referred to as ‗interindividual distance‘) was measured to the nearest 0.1 

cm using a ruler and, in cases of close proximity, a caliper. Spatial orientation was also noted. If 

both females were occupying the same corner of the container, they were classified as ‗social‘ 

and were subsequently used as ‗testers.‘ All spiders found occupying adjacent or opposite 

corners were eventually tested against a known social tester. If, after 24 hours, a test subject 

(‗testee‘) was found to occupy the same corner as the known social tester, then the testee was 

also labeled as social. If, however, the test subject positioned herself in an adjacent or opposite 

corner in relation to the tester, she was labeled as ‗solitary‘. Spiders exhibiting cannibalistic 

behavior (as well as the victims of the cannibalistic behavior) were removed from the study. All 

behavioral assays were performed in the laboratory. 

Extraction of Biogenic Amines 

 Individual body mass was recorded to the nearest 0.00001 g (Sartorius CP225D 

analytical balance), and each spider was placed in a 2.0 mL screw-cap vial. The vials were 

subsequently placed in a freezer (-20°C) for 30 to 60 minutes until spiders had expired.  1 mL of 

chilled (4°C) 0.2M perchlorate buffer containing internal standards (10 µg/mL syneprhine for 



26 
 

octopamine, 30µg/mL α-methylserotonin for serotonin), along with a ¼‖ ceramic bead, was 

added to each vial. Spiders were homogenized with a MP Fast-prep 24 sample preparation 

system (tissue grinder), each with two runs at 4.0 m/s for 40 seconds. The vials were centrifuged 

at 4°C at 13,000 RPM for 10 minutes. 500 µL of supernatant from each vial was transferred to a 

2.0 mL filter spin tube (Costar Spin-X, 0.22µm cellulose acetate filter) and centrifuged for 6 

minutes at 13,000 RPM at 4°C to pass all supernatant through the filters. Samples were frozen at 

-80°C until HPLC analysis could be performed.  

Analysis of Biogenic Amines 

 HPLC-ECD analysis was performed using an ESA Coulochem III with autoinjector and 

autodetector. We used an MD150 column and MD-TM mobile phase (ESA, Inc. Chelmsford, 

MA). Cell potential settings were -150 mV for Channel 1, +650 mV for Channel 2, and +700 

mV for the guard/conditioning cell. Sensitivity was set at 50 µA. 100 µL of each thawed sample 

was transferred into a .25 mL crimp-top vial with  polytetrafluoroethylene crimp seal and loaded 

into 5°C storage tray of the autosampler. Controls of pure HPLC-grade water, 0.2M perchlorate, 

and buffer with internal standards were analyzed at the beginning, in the middle, and at the end 

of every sample batch to check for contamination and establish a baseline. External standards 

(octopamine and serotonin) were also analyzed in every run to verify retention times of target 

amines. 40 µL of each sample was injected for analysis, and each sample was analyzed for 40 

minutes.  

Statistical analysis 

 Minitab 16 was used for statistical analysis. Neurochemical levels were measured using 

methods outlined above. Because our goal was to conduct a relative comparison between groups, 
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we used absolute areas provided by HPLC, rather than estimated concentrations, as indicators of 

neurochemical content. Octopamine levels were normalized by dividing the absolute area under 

the curve for octopamine by that of  synephrine (internal standard for octopamine) within each 

sample, and serotonin levels were normalized by dividing serotonin‘s absolute area by that of α-

methylserotonin (internal standard for serotonin)  within each sample. Body mass was not used 

to normalize data because in adult spiders (all spiders used in this study were adult females) the 

CNS comprises less than 2% of total body mass in some spiders and less than 1% in most 

(Meyer et al. 1984), and neurophysiology and neurochemistry do not change as a function of 

size/mass (Foelix 1996). In adult female spiders, mass is affected by diet (controlled in this 

study) and by reproductive condition (Foelix 1996), and we felt that the use of body mass in data 

normalization would be a source of introduced error.  

Comparisons of means of neurochemical levels (designated as responses) between 

‗populations,‘  ‗test strategies,‘ and ‗interactions between population and test strategy‘ 

(designated as factors) were conducted by performing a 2-way ANOVA. Significance of 

relationships between neurochemical levels and interindividual distance, neurochemical levels 

and huddle response durations, and interindividual distance and huddle response durations were 

analyzed using regression analysis. 

Results 

Octopamine Among Populations and Social Strategies 

 A total of 160 adult female spiders from three populations in east Tennessee (Boone 

Lake, Warriors Path, and Melton Hill) were used to test the hypothesis that octopamine levels 

vary between populations and colony types (Fig. 1). Octopamine levels were significantly 
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different between populations (two-way ANOVA: F=6.11, df=2, p=0.003), with the Boone Lake 

population having the lowest mean and the least variation, while Melton Hill and Warriors Path  

exhibited a wider range of octopamine levels. Single-female colonies had significantly higher 

levels of octopamine than multi-female colonies in all three populations (F=5.89, df=1, p=0.016), 

but there was not a significant interaction between population and colony strategy (F=0.76, df=2, 

p=0.469) (multi N=111, single N=49). 

 

 

Fig. 1   Octopamine levels associated with different colony strategies. Light-colored bars 

indicate mean normalized octopamine levels of single-female colonies, and the dark bars indicate 

mean normalized octopamine levels of multi-female colonies and from three populations of 

Anelosimus studiosus in east Tennessee. Multi-female colonies consist of several to a hundred 

adult females and their offspring, while single-female colonies consist of one adult female and 

her sub-adult offspring.  
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Serotonin Among Populations and Social Strategies 

 Serotonin levels of 144 spiders from Boone Lake, Melton Hill, and Warriors Path were 

analyzed to determine differences between populations and between strategies within those 

populations. Results (Fig. 2) revealed that, like octopamine, serotonin levels were found to differ 

significantly between populations (F=10.71, df=2, p=<0.000). In this case however, serotonin 

levels were higher in colonies displaying the multi-female strategy and lower in the single-

female colonies (F=15.21, df=1, p=<0.000). This trend was only found in two of the populations, 

resulting in a significant interaction between population and colony strategy (F=3.44, df=2, 

p=0.035) (multi N=88, single N=46). 

 

 

Fig. 2   Serotonin levels associated with different Anelosimus studiosus colony strategies in east 

Tennessee. Light-colored bars indicate mean serotonin levels of spiders from single-female 

colonies, and the dark bars indicate mean serotonin levels of spiders from multi-female colonies. 
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 Octopamine and Individual Behavior 

 We scored 138 adult females from two populations (Melton Hill and Kingsport) in the 

laboratory behavioral assays. Of these, 117 scored as solitary, and 21 scored as social. 

Octopamine levels were significantly higher in spiders exhibiting the solitary behavioral 

phenotypes than in spiders with the social phenotype (Fig. 3) (two-way ANOVA: F=6.59, df=2, 

p=0.012), but there was no significant difference between the two populations (F=0.45, df=1, 

p=0.503). There was also not a significant interaction between population and test strategy 

(F=0.01, df=2, p=0.930). The mean interindividual distance between social individuals was 6.28 

cm, and the mean distance between solitary individuals and their social testers was 17.25 cm.  

 

 

Fig. 3   Octopamine levels associated with individual spider behavior. The bars indicate 

normalized octopamine levels of behaviorally scored social (dark bars) and solitary (light bars) 

Anelosimus studiosus individuals from two populations.  
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 Huddle response duration was positively correlated with octopamine levels (Fig. 4), 

indicating that as octopamine levels increase, huddle duration times lengthen.  

 

Fig. 4   Octopamine and huddle response. A scatterplot with regression fit line compares 

octopamine levels of individual spiders with their huddle response duration times. Huddle 

response duration was positively correlated with octopamine levels, indicating that as 

octopamine levels increase, huddle duration times lengthen. The relationship was significant 

(regression analysis: p=0.012, R
2
=0.039) 

 

Serotonin and Individual Behavior 

Of the 138 spiders from Kingsport and Melton Hill populations scored in the laboratory 

behavioral assays, we could quantify serotonin levels for 115 of them. Of these, 95 scored as 

solitary, and 20 scored as social. There was no difference in serotonin levels between the two 
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in the social phenotype than in the solitary phenotype (F=10.41, df=1, p=0.002). There was no 

significant interaction between population and test strategy (F=0.14, df=2, p=0.711) (Fig. 5).  

 

 

Fig. 5   Serotonin levels associated with individual spider behavior. The bars indicate serotonin 

levels of social (light bars) and solitary (dark bars) individual spiders from two populations. 

Spiders (total N=115, 95 solitary, 20 social) from Kingsport and Melton Hill populations were 

scored in the laboratory behavioral assays to determine social tendency based on interindividual 

distance.  Serotonin levels were significantly higher in the social phenotype than in the solitary 

phenotype (F=10.41, df=1, p=0.002). There was no difference in serotonin levels between the 

two populations (F=0.71, df=2, p=0.400), and there was no significant interaction between 

population and test strategy (F=0.14, df=2, p=0.711) 
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Fig. 6   Regression plot of serotonin and huddle response (p=0.479, R
2
=0.00) 

 

Discussion 

 The population-level study showed, as predicted, that overall octopamine levels within 

populations were lower in multi-female colonies than in single-female nests. We also found that 

serotonin levels follow the opposite trend, occurring in higher levels in the multi-female colonies 

than in the single-female colonies. Also, based on scores from individual behavioral assays, we 

determined that spiders exhibiting the ‗solitary‘ phenotype generally have higher levels of 

octopamine and lower levels of serotonin than ‗social‘ spiders. These findings support our 

hypothesis that greater social tendencies in spiders are associated with higher levels of serotonin, 

and that higher levels of octopamine may increase aggressive behavior. 
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  Individuals of true social phenotype in Anelosimus studiosus are the minority. Frequency 

of social phenotype among spiders tested in laboratory behavior trials was 15% (21 social of 138 

total), supporting findings by Riechert and Jones (2008) in which the maximum frequency of 

social phenotype at 36° N latitude was 14%.  

 Huddle response duration positively correlated with octopamine levels. This is the 

opposite of what we expected and could be due to differences in technique by the tester because 

the huddle response durations from this study were remarkably lower than measured durations 

from previous studies (Pruitt and Jones, unpublished data). Regression analysis showed that the 

relationship was significant (p=0.012, R-square=0.039). It should be noted that the scatter of the 

points around the regression fit line is loose, and the value of the fit line is not predictive.  

 Our focus on octopamine and serotonin is not to ignore the possible effects of other 

neurochemicals in the social and aggression-related behaviors of spiders. Future research in this 

area should focus on behavioral effects of additional neurotransmitters and their interactions, 

effects of environmental factors on neurochemical levels, and assessing the neurochemical 

differences between and within additional populations of A. studiosus. 

 

Conclusions 

 Anelosimus studiosus offers a unique opportunity to study the neurochemical 

underpinnings of social behavior. The results of this study support the hypothesis that 

octopamine and serotonin levels are related to social behavior in A. studiosus. Between and 

within populations, variations in social and aggressive behavioral tendencies correlate with 

physiological levels of OA and 5-HT. As far as we know, this is the first description of the 
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neurochemical underpinnings of population-level differences in social structure. Additional 

studies are needed to further explore the effects of neurochemicals on behavior, social structure, 

and their potential correlation with the evolution of sociality in spiders. 
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CHAPTER 3 

CULMINATION 

Discussion 

 Animal behavior is the result of a complex set of interactions between multiple factors. 

Externally, we can observe the actions of an animal in relationship to its environment and 

attempt to make connections and assumptions regarding which stimuli induce which responses. 

However, a true understanding of behavioral mechanisms cannot occur without an investigation 

of internal processes. 

 Genetics, epigenetics, nutrition, metabolism, conditioning (experience), neuroanatomy, 

and neurochemistry all play a role in dictating the relationship between an animal‘s internal and 

external worlds. Narrowing the study focus to interactions between animals of the same species 

provides an excellent opportunity to consider the combined effects of internal and external 

causes and effects of the evolution of social behavior. 

 We believe, based on the absence of written and oral indications of the presence of the 

large multi-female colonies in this area prior to 1998 (Furey 1998), that there has been an 

increase in the proportion of social individuals and conspicuous multi-female colonies since the 

introduction of artificial impoundments along the waterways of the Tennessee Valley watershed 

by the  Tennessee Valley Authority beginning in 1933 (Ezzell 2010), which has resulted in 

cooling of areas immediately below dams where cold water from deep lake bottoms is released. 

 Given that (1) the natural variation in individual behaviors observed in Anelosimus 

studiosus is heritable  (Jones and Riechert 2008; Riechert and Jones 2008; Pruitt and Riechert 
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2009), and (2) considering the fact that they have a large range that spans from tropical to 

subtropical to temperate climates, and (3) the spiders living in multi-female colonies in cooler 

microclimates experience greater relative fitness than  those living in single-female webs (Jones 

et al. 2007), we are seeing natural selection in action. The result of this natural selection is that 

we are witnessing the local evolution of populations of A. studiosus as they adapt to their local 

environment.  

 Our goal with this study was to investigate and correlate the neurophysiological 

differences that accompany this behavioral adaptation. The population-level study showed, as 

predicted, that overall octopamine levels within populations were lower in multi-female colonies 

and higher in single-female nests. We also found that serotonin levels follow the opposite trend, 

occurring in higher levels in the multi-female colonies and lower levels in the single-female 

colonies. Also, based on scores from individual behavioral assays, we determined that spiders 

exhibiting the ‗solitary‘ phenotype generally have higher levels of octopamine and lower levels 

of serotonin than ‗social‘ spiders. These findings support our hypothesis that greater social 

tendencies in spiders are associated with higher levels of serotonin, and higher levels of 

octopamine correlate with decreased tolerance of conspecifics.  

  Individuals of true social phenotype in A. studiosus are certainly the minority. Frequency 

of social phenotype among spiders tested in laboratory behavior trials was 15% (21 social of 138 

total), supporting findings by Riechert and Jones (2008) in which the maximum frequency of 

social phenotype at 36° N latitude was 14%.  

 Our focus on octopamine and serotonin is not to ignore the possible effects of other 

neurochemicals in the social and aggression-related behaviors of spiders.  
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Conclusions 

 Anelosimus studiosus offers a unique opportunity to study the neurochemical 

underpinnings of social behavior. The results of this study support the hypothesis that 

octopamine and serotonin levels are related to social behavior in A. studiosus. Between and 

within populations, variations in social and aggressive behavioral tendencies appear to correlate 

with physiological levels of OA and 5-HT.  

 As far as we know, this is the first description of the neurochemical underpinnings of 

population-level differences in social structure. Based on the correlations we see here, and based 

on Weber‘s recent phylogenetic findings (unpublished data), it is possible that geographically 

separated populations of Anelosimus studiosus are finding different pathways to evolve sociality. 

 Additional studies are needed to further explore the effects of neurochemicals on 

behavior, social structure, and their potential correlation with the evolution of sociality in 

spiders. 

 

Future Directions of This Research 

 The next important step in the process of investigating this phenomenon will involve an 

ontogenetic study of the neurochemical changes that occur throughout the development and life 

stages of Anelosimus studiosus. Future research in this area should focus on behavioral effects of 

additional neurotransmitters, and their interactions, via experimental administration of 

exogenous monoamines. Effects of environmental factors on neurochemical levels including the 
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effects of varied food intake (scarce versus abundant prey), varied climate (hot versus cold, arid 

versus humid), and varied proximity to conspecifics should be investigated.   
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illustrative examples (with simulations or real data), and point to useful statistical softwares 

(electronic appendix for statistical details or for program script are available). The Methods 
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elsewhere are required to obtain permission from the copyright owner(s) for both the print and online 
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Any material received without such evidence will be assumed to originate from the authors. 

 Online Submission 

 Authors should submit their manuscripts online. Electronic submission substantially reduces the 
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hyperlink ―Submit online‖ on the right and upload all of your manuscript files following the 

instructions given on the screen. 
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o The e-mail address, telephone and fax numbers of the corresponding author 
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 Please provide an abstract of 150 to 250 words. The abstract should not contain any undefined 

abbreviations or unspecified references. 

 Keywords 

 Please provide 4 to 6 keywords which can be used for indexing purposes. 

 Specific remarks  
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 Text Formatting 
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o Use a normal, plain font (e.g., 10-point Times Roman) for text. 

o Use italics for emphasis. 
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o Do not use field functions. 

o Use tab stops or other commands for indents, not the space bar. 

o Use the table function, not spreadsheets, to make tables. 

o Use the equation editor or MathType for equations.  
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use the Microsoft equation editor or MathType instead. 
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 Acknowledgments  
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 Specific Remarks  
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just page-by-page).  
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generic name should be given at first mention. 

 References  

 Citation 
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o This effect has been widely studied (Abbott 1991; Barakat et al. 1995; Kelso and 

Smith 1998; Medvec et al. 1993). 

 Reference list  
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or accepted for publication. Personal communications and unpublished works should only be 
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 Reference list entries should be alphabetized by the last names of the first author of each work.  
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Abbreviations, see  

o www.issn.org/2-22661-LTWA-online.php 

 For authors using EndNote, Springer provides an output style that supports the formatting of in-text 

citations and reference list. 

o EndNote style 

 Please list all authors of a publication. 

 Tables  

o All tables are to be numbered using Arabic numerals.  

o Tables should always be cited in text in consecutive numerical order.  

o For each table, please supply a table caption (title) explaining the components of the 

table.  

o Identify any previously published material by giving the original source in the form of 

a reference at the end of the table caption.  

o Footnotes to tables should be indicated by superscript lower-case letters (or asterisks 

for significance values and other statistical data) and included beneath the table body. 

 Artwork  

 For the best quality final product, it is highly recommended that you submit all of your artwork – 

photographs, line drawings, etc. – in an electronic format. Your art will then be produced to the 
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quality of the artwork provided. 
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depicts. Include the captions in the text file of the manuscript, not in the figure file. 

o Figure captions begin with the term Fig. in bold type, followed by the figure number, 

also in bold type. 

o No punctuation is to be included after the number, nor is any punctuation to be placed 
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o Identify previously published material by giving the original source in the form of a 

reference citation at the end of the figure caption. 
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o To accommodate user downloads, please keep in mind that larger-sized files may 

require very long download times and that some users may experience other problems 

during downloading. 
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