Taylor & Francis
Taylor & Francis Group

The Journal of The Textile Institute

The Journal of
The Textile Institute”

S ISSN: 0040-5000 (Print) 1754-2340 (Online) Journal homepage: https://www.tandfonline.com/loi/tjti20

Evolutionary hyper-heuristic for solving the strip-
packing problem

Daniel Domovi¢, Tomislav Rolich & Marin Golub

To cite this article: Daniel Domovié, Tomislav Rolich & Marin Golub (2019) Evolutionary hyper-
heuristic for solving the strip-packing problem, The Journal of The Textile Institute, 110:8,
1141-1151, DOI: 10.1080/00405000.2018.1550136

To link to this article: https://doi.org/10.1080/00405000.2018.1550136

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

@ Published online: 04 Jan 2019.

N
CJ/ Submit your article to this journal &

||I| Article views: 962

A
& View related articles '

RN

(&) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=t;jti20

https://www.tandfonline.com/action/journalInformation?journalCode=tjti20
https://www.tandfonline.com/loi/tjti20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00405000.2018.1550136
https://doi.org/10.1080/00405000.2018.1550136
https://www.tandfonline.com/action/authorSubmission?journalCode=tjti20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjti20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00405000.2018.1550136
https://www.tandfonline.com/doi/mlt/10.1080/00405000.2018.1550136
http://crossmark.crossref.org/dialog/?doi=10.1080/00405000.2018.1550136&domain=pdf&date_stamp=2019-01-04
http://crossmark.crossref.org/dialog/?doi=10.1080/00405000.2018.1550136&domain=pdf&date_stamp=2019-01-04

THE JOURNAL OF THE TEXTILE INSTITUTE
2019, VOL. 110, NO. 8, 1141-1151
https://doi.org/10.1080/00405000.2018.1550136

Taylor & Francis
Taylor &Francis Group

8 OPEN ACCESS ‘ N Checkforupdates‘

Evolutionary hyper-heuristic for solving the strip-packing problem

Daniel Domovi¢® @), Tomislav Rolich®

and Marin Golub®

2Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia; “Faculty of Electrical Engineering and Computing,

University of Zagreb, Zagreb, Croatia

ABSTRACT

Strip-packing problem (marker making) is an optimization problem, where a set of cutting parts needs
to be placed on a marker so that the items do not overlap, and do not exceed the boundaries of a

ARTICLE HISTORY
Received 19 October 2017
Accepted 5 November 2018

marker. In this research a novel Grid algorithm is introduced, and improvement methods: Grid-BLP

and Grid-Shaking. These algorithms were combined with genetic algorithm, and a novel placement
order All equal first. An individual representation of a genetic algorithm has been developed that is
consisted of placement sequence, rotation of a cutting part, the choice of a placement algorithm, and

KEYWORDS

Strip-packing; marker
making; genetic algorithm;
grid algorithm; optimization

dynamic grid parameter. Experiments were conducted to determine the best placement algorithm for
a dataset, and hyper-heuristic efficiency. The implementation has been developed and experiments
were conducted in MATLAB using GEATbx toolbox on five datasets from textile industry: ALBANO,
DAGLI, MAO, MARQUES and MAN SHIRT. The marker efficiency in percentage was recorded with best
results: 85.17, 81.76, 78.67, 84.67 and 87.19% obtained for the datasets, respectively.

1. Introduction

In computer science, a strip-packing problem (marker mak-
ing, lay-planning) is a combinatorial optimization problem,
where a set of items, ie. cutting parts CP={cp;, cps ...,
cpn}, n=|CP|, need to be placed on a marker M so that
items cp; and cp; do not overlap (cp; N cp; = 0) and items
do not exceed the boundaries of a marker (cp; " M = cp;).
Cutting parts are defined as irregular polygons, and marker
is considered to be a rectangular shaped container, as in
(Egeblad, 2008). Since cutting parts are irregularly shaped
the problem is often referred to as nesting problem as in
(Wascher, HaufSner, & Schumann, 2007).

The strip-packing problem is commonly known as marker/
pattern making, pattern layout or lay plan in garment industry
as presented in report (Guo, Wong, Leung, & Li, 2011). In
garment manufacturing, a set of cutting parts needs to be
optimally allocated on a material in order to maximize mater-
ial utilization and to reduce the amount of waste.

The aim of this research was to develop novel algorithms
for solving the strip-packing problem that would achieve com-
petitive results, with possible application in small businesses,
to optimize the garment production and influence their prod-
uctivity. A novel algorithm called Grid is introduced, along-
side its two modifications Grid-BLP and Grid-Shaking. The
latter two algorithms are compaction algorithms that tighten
the placement and improve the Grid solution.

To obtain the solution a genetic algorithm is employed
as an optimization tool. The main role of genetic algorithm

is to guide the search process and to optimize parameters.
The motivation was to set the human interference on the
optimization process to the minimum. Therefore, a novel
individual representation for the genetic algorithm has been
designed. In algorithms in the literature a permutation repre-
sentation of an individual is mostly used to define the order
of placement of cutting parts on a marker. Individual repre-
sentation used in this research consists of four parts. In the
permutation part a placement order of cutting parts is
defined. In the rotation part the rotation angle of a cutting
part is defined. Also, a parameter that can choose one of three
different placement algorithms is added, so that each individ-
ual in a population may be placed according to a different
method (hyper-heuristic). Finally, a dynamic grid method has
been developed that optimizes the density of the grid.

The main benefits of Grid algorithm is its universal appli-
cation and flexibility. The Grid algorithm is able to place any
kind of regular or irregular polygon (cutting part) on any
kind of marker, whether it is a rectangular material, irregu-
larly shaped leather (Figure 1), leather with defects or even
holes (Figure 2). Therefore, it can be applied on any type
of dataset.

The benefit of Grid algorithm is that it works with cutting
parts directly - it does not need any kind of approximation to
lower the complexity. In many papers approximations of cut-
ting parts are created as bounding boxes or simplified poly-
gons with smaller number of vertices to lower the
computational complexity.

CONTACT Daniel Domovi¢ @ daniel.domovic@ttf.hr @ Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovi¢a 28a, 10000 Zagreb, Croatia

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in

any way.

http://crossmark.crossref.org/dialog/?doi=10.1080/00405000.2018.1550136&domain=pdf
https://orcid.org/0000-0003-4576-7988
http://orcid.org/0000-0003-0165-9555
http://orcid.org/0000-0002-8042-7076
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com

1142 D. DOMOVIC ET AL.
4000 ¢ T T T T T T
3500 -
3000 -
2500 -
2000
1500 -
1000 -

500 -

L L L

0 i
0 500 1000 1500

2500

L

3500

2000 3000 4000

Figure 1. Placement of dataset MAO on an irregularly shaped marker.

250 T

0 1 1 L |
0 50 100 150 200 250

Figure 2. Placement of dataset ALBANO on an irregularly shaped marker
with holes.

2. Methodology

In this research three algorithms have been introduced:
Grid, Grip-BLP, and Grid-Shaking. The most basic one of
three is the Grid algorithm that places the cutting part on
the first available grid point that satisfies the conditions.
Since some waste (blank) space may still remain between
the cutting parts, which may result in lower density marker
quality, compaction algorithms: Grid-BLP and Grid-Shaking
have been introduced. These algorithms are applied on the
solution obtained by Grid algorithm in order to improve it.

2.1. Grid algorithms

A Grid algorithm is a 2D method used to place cutting
parts on a marker. It is based on a Dotted-board model

Figure 3. Empty grid and search direction.

described in (Toledo, Carravilla, Ribeiro, Oliveira, & Gomes,
2013). In the most basic version of Grid algorithm, a set of
points is created and equidistantly distributed in x and y
direction on the marker (Eq. 1-4).

d(x,- - xi—l)_d(le —x)=0 1)
d(yi = yi-1)=d(Yit1 — yi) = 0 2)
Xie1 < X < Xig ®)
Yie1 <Y < Yin 4)

The number of points in grid in both x and y direction is
defined as an individual parameter (as defined in Section
2.4.1.) and may vary from individual to individual in genetic
algorithm even in the same generation.

A cutting part is placed on marker so that its reference
point (most bottom and left point of its bounding box)
coincides with an available grid point. An available grid
point is found by following the search direction, i.e. from
left to right, and from bottom to the top of marker (Figure
3). Afterwards, a test is performed to determine whether the
cutting part fits into the boundaries of a marker and
whether it overlaps with the partial layout, i.e. previously
placed cutting parts.

An example of a placement of the first nine cutting parts
from a MAN SHIRT dataset using Grid is presented in
Figure 4, where numbers on the cutting parts represent the
order in which they were placed on marker). By using the
Grid method the waste space between cutting parts can be
filled if a cutting part of appropriate size is available in the
placement order (Figures 4c—e).

Improvement algorithms Grid-BLP and Grid-Shaking
have been developed in this research. These algorithms
combine the representation of a marker and the placement
used in Grid, with a BLP or Shaking heuristics. These algo-
rithms are inspired by the bottom-left heuristics and are
used to obtain placement with higher efficiency.

Bottom-left (BL) is a heuristic placement routine that
places polygons on a marker in a series of downwards and
leftwards sliding movements. It was first applied on a rect-
angle placement problem in (Jakobs, 1996). Starting from
the top-right corner, polygon is moved vertically downwards

THE JOURNAL OF THE TEXTILE INSTITUTE . 1143

Figure 4. An example of cutting part placement on grid points and gap filling.

until it touches the partial layout, and then horizontally to
the left until a polygon is touching the current placement
contour from its left and bottom side.

When dealing with placement of irregular items, sliding
algorithms based on rectangles (BL, BLLT, BLD) and sliding
algorithms based on polygons (BLP, BLDP, BLF) are exam-
ined in (Hopper, 2000).

In the newly developed Grid-BLP algorithm, a sliding algo-
rithm based on polygons called BLP, as it is defined in
(Hopper, 2000), is used in this research with Grid. After
choosing the position of a cutting part based on Grid, waste
space may appear between a cutting part and the partial lay-
out. Therefore, the last placed cutting part is nested using
iterative horizontal and vertical moves, i.e. BLP procedure,
starting from the current position in a polygonal layout until
a stable placement is found. A stable position of a cutting part

is a position in which a cutting part cannot be moved more
to the left or down without violating overlapping restrictions.

Sometimes a cutting part could have been nested even lover
to the left in the partial layout, but that placement has not been
obtained because BLP only moves down and left. Cutting part
has been caught in the local optima. Therefore, a Grid-Shaking
algorithm has been introduced to move cutting part from a
local optima. Grid-Shaking applies the BLP and BRP (bottom-
right) procedure iteratively. A BRP procedure is performed on
the cutting part by performing a sequence of horizontal right
and down movements, until a stable position is found. Shaking
algorithm uses a procedure to escape local optima that moves
the cutting part away from the stable position in which it has
been trapped after the BLP has found a stable position.

A pseudocode of Grid variants is presented in Figure 5.
A flowchart of the Grid variants is shown in Figure 6.

1144 D. DOMOVIC ET AL.

Define BLP as
Repeat

Move cutting part vertically down to the partial layout of previously placed cutting parts
Move cutting part horizontally left to the partial layout of previously placed cutting parts
Until vertical AND horizontal movement not possible

Define BRP as
Repeat

Move cutting part vertically down to the partial layout of previously placed cutting parts
Move cutting part horizontally right to the partial layout of previously placed cutting parts
Until vertical AND horizontal movement not possible

Define grid
Place a cutting part on a feasible grid point
If Grid-BLP or Grid-Shaking are used
For each cutting part placed on grid
Repeat
Perform BLP
If Grid-shaking algorithm is used

Perform BRP to escape local optima
Perform BLP to tighten the marker towards bottom-left corner of a marker
Until vertical AND horizontal movement not possible

Until all items are placed

Figure 5. Pseudocode of grid variants.

2.2. All equal first (AEF) placement order

In Grid algorithm cutting parts are placed on a marker in
order determined by the sequence permutation which is
obtained with GA. Several equal cutting parts can often be
found in a dataset (e.g. front and back cutting part of a
shirt). For example, as defined in (EURO Special Interest
Group on Cutting and Packing, 2015), dataset ALBANO is
consisted of 24 cutting parts, while there are only eight dif-
ferent cutting parts in total, i.e. eight distinct groups of cut-
ting parts — four groups of four, and four groups of two
identical replicas of the same cutting part.

Therefore, a placement of groups of equal cutting parts
All equal first (AEF) has been developed. The main benefit
of AEF is reducing the search space. Without AEF, the
search space would have been n!, which corresponds to the
number of different permutations in lexicographic order,
and n is the number of cutting parts in a dataset. If n,,
(ng, <n) is the number of groups of different cutting parts
in a dataset, the search space is reduced to n,!.

In order to implement the AEF placement order, a new
individual representation for the genetic algorithm had to
be invented that would suit the need of obtaining the results
for this research, where each permutation sequence has
been assigned an integer value in order to comply with the
restrictions of the GEATbx toolbox used in the research,
and for the MATLAB’s precision limitations.

The factorial number system used by (Knuth, 1997), which
is also known as factoradic in combinatorics, is a mixed radix
numeral system used for numbering permutations. If a num-
ber less than n! is converted to factorial representation, a
sequence of n digits is obtained that can be converted to a
permutation of n, either by using them as Lehmer code or as
inversion table representation as in (Knuth, 1998). An algo-
rithm for such a mapping is presented in (Knuth, 1997).

A decoding procedure had to be developed to transform
the placement sequence of a group of equal elements into
placement order of individual elements (Figure 7). An inte-
ger part of the individual is transformed to factoradic form,
and then into a permutation sequence perm representing
groups of cutting parts which are supposed to be placed on
a marker based on the lexicographic order from this permu-
tation. Perm is consisted of n, elements indicating groups
of elements, and is subjected to decoding process to obtain
a permutation of n elements. An example of decoding n,,
permutation perm=[54 16 3 2 8 7] that defines the order
of placement groups into seq permutation that defines the
order of cutting parts is shown in Figure 8.

The integer decoder algorithm also takes into consideration
the rotation of cutting parts for 180°. In the implementation a
rotation for any arbitrary angle can be taken into consideration.

AEF is used for order sequence in all versions of genetic
algorithm in this research.

2.3. Dynamic grid

Dynamic grid is a parameter of a novel individual represen-
tation in genetic algorithm. With dynamic grid, the grid size
parameters (number of points in x-direction and y-direc-
tion; values can be defined separately) are a part of an indi-
vidual in GA’s population. That way the genetic algorithm
directly influences the parameter definition and further
improvement across the generations.

The benefit of using dynamic grid is that, within the
same generation, various grid densities are investigated
alongside the placement order of cutting parts. That way the
influence of grid density on the marker density can be
determined. In each generation, up to n grid sizes may be
tested, where » is the number of individuals in GA, instead
of using just one grid size for each generation.

THE JOURNAL OF THE TEXTILE INSTITUTE . 1145

A flowchart of the Grid variants is shown in Figure 6.

l Start)

v
Define Mg, Mg,
Cy n, perm,
Wmav Lmz-'.l'

h 4

Create grid points
based on input

v
Select first feasible
point in the search
direction

A 4

Place cutting part
(Cd,) on a grid point

y

Place Cd; on marker

Grid Grid-Shaking

Grid
selection

Grid-BLP

y y

Perform BLP Perform Shaking

v

Remove points

» from Grid under
e L cdi
outside
marker?
No)
- Select next Cdi |« All Cdi’s

placed

Cd; is
overlapping
with other

Yes

Figure 6. Block diagram of Grid, Grid-BLP and Grid-Shaking algorithm.

Factorial number
system
(factoradic)

Integer

Ly

Figure 7. Mapping between integers and permutation.

Permutation with
groups of cutting
parts

Packing sequence

perm 5 4 1

6

seq 13,14,15,16 | 9,10,11,12 | 1,2

17,18, 19,20

5,6,7,8 | 3,4 | 23,24 | 21,22

Figure 8. Decoder example for ALBANO dataset for seq=1[13 14 15 16 ... 21 22].

2.4. Genetic algorithm

Genetic algorithm (GA) is a metaheuristic algorithm based on
evolutionary computation. As presented in (Golub, 2004), GA
mimics nature’s evolution principle that describes the survival
of the fittest. GA author, John H. Holland, presented the

algorithm in the 1970s motivated by Darwin’s theory of evolu-
tion. GA uses evolutionary methods to search the solution
space in order to find a solution to the optimization problem.

The algorithm starts with initializing a population ie. a
set of individuals called chromosomes. Initial population is

1146 D. DOMOVIC ET AL.

5 3 7 2 1 4 6 8 0

Figure 9. Individual representation.

usually generated randomly within the solution space to
enable searching the entire solution space. Population size
depends on the type of problem, but usually the size from a
few dozen to a few hundred individuals is used.

The algorithm continues with the selection process where
a certain number of individuals from initial populations are
selected based on their fitness to enter the reproductive pro-
cess (recombination and mutation). Fitness of an individual
is calculated using a fitness function f(x). Individuals with
greater fitness value are considered to pass good properties
to their offspring in the recombination process, and improve
the quality of the population in the coming generations.

Recombination is a process of producing new individuals
(offspring) by inheriting genetic material from individuals in a
population (i.e. reproduction process). Individuals are repro-
ducing in order to maintain the good properties of the popu-
lation. The higher the fitness of an individual, the greater the
likelihood of its survival and recombination. In the recombin-
ation process one or two offspring are created. The purpose
of recombination is to create new individuals, ie. offspring
that will be just as good as or better than their parents.

After crossover some individuals mutate. Mutation is
used in GA to escape local optima. Upon completion of the
mutation, the new individuals are evaluated and copied into
the population. Poor specimens are removed from the popu-
lation. The process of selection and reproduction is repeated
until the termination condition is met.

In the selection process a stochastic universal sampling
described in Pohlheim (2003) is used in this research, along-
side discrete recombination from Schlierkamp-Voosen and
Miihlenbein (1993) and integer mutation.

According to Dasgupta, Papadimitriou, and Vazirani
(2006), termination condition may include maximum num-
ber of iterations, maximum number of fitness function eval-
uations, the desired fitness function value, etc.

Genetic algorithm is looking for the best solution in a
feasible solution space. Search space is an area of all possible
solutions to a problem. One possible solution is represented
by one individual in a population. A solution is feasible if it
complies with the constraints of the problem. In GA, the
search for the best solutions results with creating new solu-
tion in a search space.

In this research the GA is hybridized with Grid algorithms
to obtain high quality results. Except for the genetic algorithm,
evolutionary strategies in Wong and Leung (2009), mixed-inte-
ger programming in Fischetti and Luzzi (2009), other methods
based on evolutionary computation (e.g. particle swarm opti-
mization in Shalaby (2013)) are also used in the literature.

2.4.1. Novel individual representation
An example of a novel individual representation is depicted
in Figure 9.

Each individual consists of four parts:

Permutation
Rotation

Placement algorithm
Grid density

L e

The size of defined individual is npy+n+3, where n is the
number of cutting parts to be placed on marker, i.e. size of
a dataset, and n, is the number of different groups of cut-
ting parts.

In the permutation section of an individual the order in
which cutting parts are placed on a marker is defined. For
example, in Figure 9, the fifth cutting part from a dataset
will be placed on the marker first, followed by the third cut-
ting part with and so on. Cutting parts are taken based on
the order in this section.

The second part of an individual is the rotation part.
Each gene can take the integer value n from a set {0, 2}.
Rotation angle is nx90°. The cutting parts are rotated or
not to comply with the restrictions posed by marker making
in textile technology. Each rotation gene is connected to its
correspondent order gene. If ¢p; is the ith cutting part in a
dataset, and # is the number of cutting parts in a dataset,
the corresponding rotation gene has index n+i within
the chromosome.

The third part of the chromosome is the hyper-heuristic
parameter that determines the algorithm which will place
the cutting parts on the marker. The value is an integer
number from a set {1, 2, 3}.

In order to comply with the GEATbx limitations in indi-
vidual representation, a permutation part of an individual is
represented as integer (Figure 10) which is later decoded to
permutation as is described in Section 2.2.

The reason for that was imposed for two reasons. The
first is the shortcoming of the GEATbx toolbox, designed by
Pohlheim (2007), which is used for genetic algorithm imple-
mentation within this research. By Pohlheim (1998), indi-
viduals in GEATbx can be represented as: integer numbers,
real numbers, permutation and binary tree. Multiple differ-
ent data types within one individual can not be presented at
the same time (e.g. one section of an individual is integer,
the other section is permutation). Therefore, factoradic was
used to decode integer value into permutation sequence,
since a natural mapping between integers when presented in
factoradic form and permutations exists. Therefore, the gen-
etic algorithm in GEATbx uses individuals with integers val-
ues, while the fitness functions decodes integers into
permutation sequence, i.e. a placement order of cutting by
using this representation the possibilities of the GEATbx
toolbox have been improved.

The last part of the individual holds the information of
the number of grid point in the x and y coordinate direc-
tion. The values are integer number, and in this research
they are in range x=[90, 110] and y =90, 110].

THE JOURNAL OF THE TEXTILE INSTITUTE ‘ 1147

3845 0

110

Figure 10. Chromosome representation using radix.

Define GA parameters
Define the number of groups of cutting parts

Create an initial population of m individuals
Calculate initial fitness value of a population

Repeat
Select individuals from population

Perform recombination on selected individuals

Perform mutation on selected individuals

Calculate fitness values of a new population

Decode the integer part of an individual into permutation using factoradic
Decode the permutation into placement sequence

Define rotation on cutting parts

Fetch the algorithm from the individual structure (Grid, Grip-BLP, Grid-Shaking)
Get grid size from individual representation

Create grid points

Calculate objective function value of an individual by placing cutting parts on

marker

based on the placement sequence and the algorithm

Until stopping criteria is met

Figure 11. Hyper-heuristic Grid-All algorithm.

Table 1. Datasets features.

Number of Number of
Dataset different pieces cutting parts Rotations Shapes Source
ALBANO 8 24 0, 180 Polygons, non-polygonal pieces Scanned from sample layout
DAGLI 10 30 with arcs in paper; approximated
MAO 9 20 by polygons
MARQUES 8 24
MAN SHIRT 10 17 Real cutting part made

in Lectra

2.4.2. Hyper-heuristic approach

Just as grid density is a part of an individual in GA, so is
the algorithm in which cutting parts need to be placed on
marker. Besides the Grid, Grid-BLP and Grid-Shaking algo-
rithm, a hyper-heuristic approach Grid-All is developed,
that is able to choose between three different algorithms for
parts placement.

By its initial definition by Burke et al. (2013), a hyper-
heuristic is a high-level approach that, given a particular
problem instance and a number of low-level heuristics, can
select and apply an appropriate low-level heuristic at each
decision point.

The Grid-All algorithm uses a novel individual representa-
tion to change the parameter regarding the placement algo-
rithm choice even within the same population. Each individual
in generation can use different algorithm for the placement of
cutting parts: Grid, Grid-BLP or Grid-Shaking. The pseudo-
code for the Grid-All algorithm is shown in Figure 11.

2.5. Data sets

In computer science experiments to investigate marker mak-
ing are conducted on four datasets: ALBANO, DAGLI,

MAO and MARQUES that can be obtained from EURO
Special Interest Group on Cutting and Packing (2017) in
order to benchmark our obtained results with the ones
obtained in the literature. These datasets are polygonal
approximations of cutting parts in clothing industry for the
sake of lower computational complexity, but in remainder
of the paper they will be referenced as cutting parts. A data-
set MAN SHIRT, which consists of real cutting parts for a
man shirt, has been developed. The information about data-
sets is shown in Table 1.

2.6. Experimental environment and parameters

Applications have been implemented in MATLAB environ-
ment following the algorithms in Section 2. For genetic
algorithm, a GEATbx (Genetic and Evolutionary
Algorithms) toolbox has been used by Pohlheim (2007).

2.6.1. GA parameters

Parameters described in Table 2 are used in the GEATbx
toolbox. One population consisted of 25 individuals is used
in reproduction process of genetic algorithm in 50

1148 D. DOMOVIC ET AL.

generations. Best individual found upon this termination
criterion is considered as the best solution.

During the preliminary research experiments have been
conducted with 100 generations of GA. A significant change
in fitness function value has not been obtained after the
50th generation (Figure 12) or the desired change was not
significant. Therefore, 50 generations have been chosen,
which resulted with faster performance.

Stochastic universal sampling has been used for selection,
with pressure factor equal to 1.6 and generation gap equal
to 0.96. The value of selective pressure determines the fit-
ness assignment and is used by the ranking algorithm, since
fitness assignment is always done by ranking. As defined in
Pohlheim (2007), generation gap determines the fraction of
the population to be reproduced in every generation, i.e. it
describes how many individuals will be produced in com-
parison to the number of individuals in the population. If
generation gap equals to 1, than the same amount of off-
spring as parents is produced and all parents are replaced
with offspring. Still the toolbox remembers the best individ-
ual found in all generations. If generation gap is less than 1,
less offspring than parents is produced so parents with best
solutions are able to survive to the next generation (elitism).
In this research 24 new offspring will be produced
(0.96 x 25=24) in each generation and one individual is
always kept as best individual (elitism).

Fitness function is calculated using (5):

f(x) = 1—(area CP/areaBB), (5)

Table 2. GEATbx parameters for grid algorithms with and without the
dynamic grid.

Parameter Value
Number of individuals 25
Number of generations 50
Number of experiments iterations per dataset 30
Selection Name Stochastic Universal Sampling
Selective Pressure 1.6
Generation Gap 0.96
Recombination Name Discrete recombination
Mutation Name Integer mutation
Termination Name Maximum number of generations
Best objective values
k1 + + -
30
29
28
]
1]
% 27
8

26

25

24

2 o .
0 10 20 30 40 50 60 70 80 90 100
generation

(a)

Figure 12. Fitness function in experiments with 100 generation of GA.

where areaCP is the area of real non approximated cut-
ting parts obtained after the placement algorithm (Grid
algorithms), and areaBB is the area of the marker.

3. Results and discussion

Three novel algorithms for marker making were introduced
in this research and compared for its efficiency. Grid algo-
rithm is the basic algorithm using which cutting parts are
placed on the first feasible point of a grid. Since some waste
(blank) space may still remain between the cutting parts,
which may result in lower marker efficiency, the compaction
algorithms: Grid-BLP and Grid-Shaking have been intro-
duced in order to improve Grid algorithm’s efficiency. It
was therefore assumed:

1. By applying the Grid-BLP and Grid-Shaking algorithms,
markers with higher efficiency will be obtained com-
pared to the markers developed by applying the
Grid algorithm.

2. By applying the Grid-Shaking algorithm the best results
for all datasets will be obtained, since a local optima
can be avoided.

The efficiency of a hyper-heuristic placement has been
calculated to determine which grid algorithm obtains a
marker with the best efficiency with genetic algorithm,
enabled rotation for 180°, AEF placement, and
dynamic grid.

Experiments have been conducted with Grid, Grid-BLP
and Grid-Shaking algorithms individually to determine the
best placement algorithm. These results are compared with
the results of a hyper-heuristic placement Grid-All to deter-
mine the percentage of choosing the best placement algo-
rithm by the hyper-heuristic, the efficiency of obtained
markers, and to confirm hypothesis:

3. By applying the hyper-heuristic Grid-All highest quality
markers will be obtained.

4. Hyper-heuristic Grid-All will choose the best algorithm
in most cases, for a particular data set.

Best abjective values

255

245

24

objective value

235

23

225

o 10 20 30 40 50 60 70 8 80 100
generation

(b)

THE JOURNAL OF THE TEXTILE INSTITUTE . 1149

86.00
84.00
82.00
3
g 80.00
U
S 78.00
5 76.00
g 74.00
] 72.00
=
70.00
68.00
66.00
ALBANO DAGLI MAO MARQUES ~ MAN SHIRT
= GRID 79.23 74.66 72.55 80.43 80.12
GRID BLP 82.26 77.48 74.78 81.65 83.46
mGRIDSHAKING 8231 77.65 75.09 82.16 84.49
mGRID ALL 82.36 78.05 74.58 82.26 84.29

Figure 13. Comparison of average mean results of all algorithms on all test datasets.

Table 3. Hyper-heuristic efficiency.

Dataset Efficiency (%)
ALBANO 80.00
DAGLI 83.33
MAO 70.00
MARQUES 76.67
MAN SHIRT 90.00

Table 4. Comparison with results in literature.
Author dataset Hopper (2000) Egeblad, Nielsen, and Odgaard (2007) Bennell and Song (2010) Shalaby (2013) Optitex Grid algorithms

ALBANO 84.09 87.88 87.88 83.36 86.37 85.17
DAGLI 77.10 87.05 87.99 83.97 82.20 81.76
MAO 68.65 85.15 84.07 784 79.42 78.67
MARQUES 82.73 89.82 88.92 86.47 85.89 84.67
MANSHIRT - - - - 87.19

For each dataset and algorithm 30 experiments have been
conducted, and several parameters are recorded: the worst 12000 3Mid-blbrblp 85.1672 94x96
(minimum) and the best (maximum) obtained solution, the
arithmetic mean of the 30 measurements (the results of
placement density in percentage), the range between the
minimum and the maximum solution, standard deviation, 10000
variance and the standard error.
In Figure 13, a comparison of all mean results for all
datasets is shown. 8000
Grid algorithm obtains the worst results for all datasets
and the Grid-Shaking obtained the best mean results for all
algorithms. Therefore, hypothesis (1) and (2) are valid. It is
proven Grid-BLP and Grid-Shaking escape the local optima. 6000 (g
In Table 3, the results of hyper-heuristic Grid-All effi-
ciency are presented, i.e. the percentage of results Grid-
Shaking obtained the best result for a dataset. In the 4000
remaining cases a Grid-BLP algorithm had obtained better
results. Hyper-heuristic has never obtained the best results
using Grid algorithm.
Hyper-heuristic Grid-All did not always choose Grid- 2000
Shaking, due to the fact the search space is large since three
algorithms can be chosen. In individual algorithm experi-
ments, only a single algorithm has been used. However, the ..
best results out of 30 obtained per algorithm has always 0 1000 2000 3000 4000 5000
been obtained when Grid-Shaking was chosen by the hyper- Figure 14. The overall best result for ALBANO.

1150 D. DOMOVIC ET AL.

- grid-blbrblp 81.756 98x98

50

30

20

0
0 10 20 30 40 50 60

Figure 15. The overall best result for DAGLI.

2500 ?8.6653 101x1|10

2000

1500

1000

500

0

Figure 16. The overall best result for MAO.

heuristic. Therefore, the hypothesis (3) is partially valid, and
hypothesis (4) is valid.

The overall best results obtained in this research have
been noted in Table 4 with a comparison with known
results from the literature. Only Hopper (2000) used bot-
tom-left methods in her research. The results of this
research outperform all off Hopper’s results and are com-
petitive with other researches as well. None of the authors
relied on the AEF order but rather on order obtained by
permutation. AEF placement order has been used since
humans tend to group elements together, and to place big-
ger elements on the marker first, the aim was to investigate

84.6742 103x103
T T T T

110 T T

100

20

0 10 20 30 40 50 60 70 80 90 100 110
Figure 17. The overall best result for MARQUES.

200] r 87.1905 98{x97

160 .

140 |

120

100

0 20 40 60 80 100 120 140
Figure 18. The overall best result for MAN SHIRT.

whether placing the equal cutting parts together will pro-
duce denser placements. The results obtained in Efi Optitex
(2017) are also presented.

In Figures 14-18, the overall best results for presented.

4. Conclusion

In this article novel algorithms: Grid, Grid-BLP, Grid-
Shaking, and a hyper-heuristic approach were introduced. A
novel placement order All equal first (AEF) has been intro-
duced using which all equal cutting parts are placed on the

marker first, before proceeding to the equal cutting parts of
other groups. Algorithms were hybridised with genetic algo-
rithm. An individual representation that consists of: permu-
tation section, rotation section, hyper-heuristic section
where a placement algorithm is chosen, and the section
where the grid density is defined (dynamic grid). An evolu-
tionary hyper-heuristic Grid-All was introduced that uses a
placement defined in the individual structure.

Experiments have been conducted to determine the effi-
ciency of hyper-heuristic placement and to determine which
grid algorithm creates a marker with the highest efficiency.
It has been shown that by applying the Grid-BLP and Grid-
Shaking algorithms markers with higher efficiency than with
the Grid algorithm have been obtained, with Grid-Shaking
obtaining the best results for all datasets since it can escape
local optima.

The best results of a hyper-heuristic version Grid-All has
always been obtained by the Grid-Shaking algorithm, but
this approach did not always obtain the best results overall
as it was assumed, because the flexibility in choosing the
placement algorithm increased the search space.

Funding

This work has been fully supported by Croatian Science
Foundation under the project number 3011 Application of
mathematical modeling and intelligent algorithms in cloth-
ing construction.

ORCID

Daniel Domovic
Tomislav Rolich
Marin Golub

https://orcid.org/0000-0003-4576-7988
http://orcid.org/0000-0003-0165-9555
http://orcid.org/0000-0002-8042-7076

References

Bennell, J. A., & Song, X. (2010). A beam search implementation for
the irregular shape placement problem. Journal of Heuristics, 16(2),
167-188. doi:10.1007/s10732-008-9095-x

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G, Ozcan,
E., & Qu, R. (2013). Hyper-heuristics: A survey of the state of the
art. Journal of the Operational Research Society, 64(12), 1695-1724.
doi:10.1057/jors.2013.71

Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2006).
Algorithms. Retrieved from http://www.cse.ucsd.edu/~dasgupta/
mcgrawhill/

Efi Optitex. (2017). Optitex (Version 12.3) [Computer software].
Retrieved from https://www.optitex.com

Egeblad, J. (2008). Heuristics for multidimensional placement prob-
lems. Kobenhavns Universitet, Faculty of Science, Datalogisk

THE JOURNAL OF THE TEXTILE INSTITUTE ‘ 1151

Institut, Department of Computer Science. Retrieved from http://
forskningsbasen.deff.dk/Share.external?sp=5659a8b80-ac03-11de-
bc73-000ea68e¢967b&sp=Sku

Egeblad, J., Nielsen, B. K., & Odgaard, A. (2007). Fast neighborhood
search for two- and three-dimensional nesting problems. European
Journal of Operational Research, 183(3), 1249-1266. doi:10.1016/
j.ejor.2005.11.063

EURO Special Interest Group on Cutting and Packing. (2017). albano_
2007-05-15, dagli_2007-05-15, mao_2007-04-23, marques_2007-05-
15 [Datasets]. Data sets — ESICUP — EURO Special Interest Group
on Cutting and Packing. Retrieved from https://www.euro-online.
org/websites/esicup/data-sets/#1535972088237-bbcb74e3-b507

Fischetti, M., & Luzzi, I. (2009). Mixed-integer programming models
for nesting problems. Journal of Heuristics, 15(3), 201-226. doi:
10.1007/s10732-008-9088-9

Golub, M. (2004). Genetski algoritam: Prvi dio. Retrieved from http://
www.zemris.fer.hr/~golub/ga/ga_skriptal.pdf

Guo, Z., Wong, W, Leung, S., & Li, M. (2011). Applications of artifi-
cial intelligence in the apparel industry: A review. Textile Research
Journal, 81(18), 1871-1892. doi:10.1177/0040517511411968

Hopper, E. (2000). Two-dimensional placement utilising evolutionary
algorithms and other meta-heuristic methods (Doctoral Thesis).
University of Wales, Cardiff. Retrieved from http://vmk.ugatu.ac.ru/
c%26p/article/HOPPER/PhDisser/partl.pdf

Jakobs, S. (1996). On genetic algorithms for the placement of polygons.
European Journal of Operational Research, 88(1), 165-181. doi:
10.1016/0377-2217(94)00166-9

Knuth, D. E. (1997). The art of computer programming, Volume 2:
Seminumerical algorithms (3rd ed.). Boston, MA: Addison-Wesley
Longman Publishing Co., Inc.

Knuth, D. E. (1998). The art of computer programming, Volume 3:
Sorting and searching (2nd ed.). Redwood City, CA: Addison
Wesley Longman Publishing Co., Inc.

Pohlheim, H. (1998). Genetic and evolutionary algorithm toolbox for
use with MATLAB. Ilmenau, Germany: Dept. Comput. Sci., Univ.
Ilmenau. Retrieved from http://www.geatbx.com/download/
GEATbx_Tutorial_v33c.pdf

Pohlheim, H. (2003). Evolutionary algorithms. Heidelberg: Springer.
Retrieved from http://www.geatbx.com/download/GEATbx_Intro_
Algorithmen_v37.pdf

Pohlheim, H. (2007). GEATbx: Genetic and evolutionary algorithms
toolbox in Matlab. Retrieved from http://www.geatbx.com/

Schlierkamp-Voosen, D., & Miihlenbein, H. (1993). Predictive models
for the breeder genetic algorithm. Evolutionary Computation, 1(1),
25-49. doi:10.1162/evc0.1993.1.1.25

Shalaby, M. A., & Kashkoush, M. (2013). A particle swarm optimiza-
tion algorithm for a 2-D irregular strip placement problem.
American Journal of Operations Research, 03(02), 268-278. doi:
10.4236/ajor.2013.32024

Toledo, F. M. B., Carravilla, M. A., Ribeiro, C., Oliveira, J. F., &
Gomes, A. M. (2013). The Dotted-Board model: A new MIP model
for nesting irregular shapes. International Journal of Production
Economics, 145(2), 478-487. doi:10.1016/j.ijpe.2013.04.009

Wiascher, G., Haufiner, H., & Schumann, H. (2007). An improved typ-
ology of cutting and placement problems. European Journal of
Operational Research, 183(3), 1109-1130. doi:10.1016/j.ejor.2005.12.047

Wong, W. K., & Leung, S. Y. S. (2009). A hybrid planning process for
improving fabric utilization. Textile Research Journal, 79(18),
1680-1695. doi:10.1177/0040517509102225

https://doi.org/10.1007/s10732-008-9095-x
https://doi.org/10.1057/jors.2013.71
http://www.cse.ucsd.edu/<dasgupta/mcgrawhill/
http://www.cse.ucsd.edu/<dasgupta/mcgrawhill/
http://optitex.com/
http://forskningsbasen.deff.dk/Share.external?sp=S659a8b80-ac03-11de-bc73-000ea68e967b&sp=Sku
http://forskningsbasen.deff.dk/Share.external?sp=S659a8b80-ac03-11de-bc73-000ea68e967b&sp=Sku
http://forskningsbasen.deff.dk/Share.external?sp=S659a8b80-ac03-11de-bc73-000ea68e967b&sp=Sku
https://doi.org/10.1016/j.ejor.2005.11.063
https://doi.org/10.1016/j.ejor.2005.11.063
https://paginas.fe.up.pt/<esicup/
https://doi.org/10.1007/s10732-008-9088-9
http://www.zemris.fer.hr/<golub/ga/ga_skripta1.pdf
http://www.zemris.fer.hr/<golub/ga/ga_skripta1.pdf
https://doi.org/10.1177/0040517511411968
http://vmk.ugatu.ac.ru/c%26p/article/HOPPER/PhDisser/part1.pdf
http://vmk.ugatu.ac.ru/c%26p/article/HOPPER/PhDisser/part1.pdf
https://doi.org/10.1016/0377-2217(94)00166-9
http://www.geatbx.com/download/GEATbx_Tutorial_v33c.pdf
http://www.geatbx.com/download/GEATbx_Tutorial_v33c.pdf
http://www.geatbx.com/download/GEATbx_Intro_Algorithmen_v37.pdf
http://www.geatbx.com/download/GEATbx_Intro_Algorithmen_v37.pdf
http://www.geatbx.com/
https://doi.org/10.1162/evco.1993.1.1.25
https://doi.org/10.4236/ajor.2013.32024
https://doi.org/10.1016/j.ijpe.2013.04.009
https://doi.org/10.1016/j.ejor.2005.12.047
https://doi.org/10.1177/0040517509102225

	Abstract
	Introduction
	Methodology
	Grid algorithms
	All equal first (AEF) placement order
	Dynamic grid
	Genetic algorithm
	Novel individual representation
	Hyper-heuristic approach

	Data sets
	Experimental environment and parameters
	GA parameters

	Results and discussion
	Conclusion
	Funding
	References

