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ABSTRACT 
 
 

Gender-Specific Differences in Spatial Behavior of the Flesh Fly, 

Sarcophaga crassipalpis 

 
 

by 
 

Caleb Paquette  
 
 

Territoriality in the flesh fly, Sarcophaga crassipalpis (Diptera:  Sarcophagidae) was studied in 

the laboratory.  In rectangular enclosures, male flies exhibited a lower tolerance (occupation of 

the same physical space) of same-sex conspecifics than did female flies.  In circular arenas, male 

flies showed significantly higher levels of spatial separation among themselves (as determined 

from nearest neighbor analyses) than did females:  males were distributed uniformly whereas 

females were nearly random.  The male spatial behavior occurred during the photophase but not 

the scotophase of light-dark cycles, suggesting that visual cues are required for maintenance of 

inter-individual spacing.  No significant differences in male spacing behavior occurred between 

subjective day and subjective night in either constant dark or constant light conditions, 

suggesting that spatial patterning is not driven by a circadian rhythm.     
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CHAPTER 1 

INTRODUCTION 

An important decision that all animals must make is where to live.  The area in which an 

animal chooses to live and carry out all necessary activities critical to its survival is defined as 

the home range (Brown and Orians 1970; Baker 1983).  Within the home range, animals often 

establish a territory.  For an area to be recognized as a territory, the area must be defended from 

intruders so that the owner has exclusive rights to the resources found in the area, and the area 

must be one that the owner repeatedly returns to, though the time spent at and faithfulness to a 

specific area differs among different species (Fitzpatrick and Wellington 1983).  Some animals 

defend their entire home range.  For example, workers of the ant species, Oecophylla longinoda, 

patrol their entire home range, defending hundreds of nests distributed among as many as 17 

trees as well as hunting on the ground on which the trees stand (Holldobler and Lumsden 1980).  

The workers aggressively defend their territories from inter- and intraspecific ant intruders.  

Other animals defend areas used for reproductive purposes while some defend only their mate. 

Male dung flies (Scatophaga stercoraria), for instance, remain in physical contact with a female 

after copulation during a “passive phase” in which the female oviposits (Parker 1970).  The 

original male will defend his possession of the female when “searching males” attack. In another 

example, male dragonflies (Plathemis Lydia), after copulation, take a female to an oviposition 

site where they will guard her from intruding males while she oviposits (Jacobs 1960).  The male 

does not remain in contact with the female during oviposition enabling him to mate with other 

females while he guards.  In all cases, territoriality is used to sequester a resource (e.g., food, 

mating space, oviposition site, etc.) that confers some selective advantage to the territorial 

individual. 

 8



Territorial defense consists of behaviors such as vocalization, physical conspicuousness 

or display, and scent marking which serve to identify the owner of the territory to prospective 

rivals (Brown and Orians 1970; Baker 1983).  For example, the songs of birds often play a role 

in the establishment and maintenance of a territory.  Pairs of great tits (Parus major), for 

instance, are more likely to settle in an area where great tit song recordings are not played as 

opposed to areas in which the songs are played (Krebs and others 1978).  Acoustic signaling can 

also play a similar role in invertebrates.  The spatial distribution of male katydids (Panacanthus 

pallicornis) is dependant upon their calling song (Chamorro-R and others 2007).  Deafened 

males aggregate whereas control males will distribute themselves randomly throughout an 

experimental environment. 

Physical display by males is common in species that aggregate at leks, such as black 

grouse (Lyrurus tetrix), ruff (Philomachus pugnax), the Uganda kob (Adenota kob thomasi), and 

the hammer-headed bat (Hypsignathus monstrosus) (Baker 1983).  At lekking sites, males will 

display and fight with each other for the opportunity to mate with visiting females.  Lek behavior 

is not exclusively exhibited by vertebrates as some insects are known to gather at leks as well.  

For example, certain Hawaiian species of Drosophila aggregate at leks where the males will 

visually advertise their presence by adopting a ritualized posture while extruding and 

withdrawing a bubble of fluid from their anal papillae (Spieth 1968, 1974).                

Scent marking identifies the owner of a territory to intruders in many different species, 

vertebrates and invertebrates alike.  Adult members of an Ethiopian wolf pack will scent mark 

near their territory boundaries with the dominant pair marking the most frequently (Sillero-Zubiri 

and Macdonald 1998).  The marking is thought to signal to neighboring packs the composition 

and status of the marking packs, thereby reducing aggressive encounters between them.  For 

 9



invertebrates, workers of the ant species, O. longinoda, mark their territory with colony specific 

pheromones that deter ants from foreign colonies from entering the territory (Holldobler and 

Wilson 1977).  In a second example of invertebrate scent marking, males of the endemic 

Hawaiian species of Drosphila (D. crucigera, D. grimshawi, and D. engyochracea) identify their 

presence on a territory by depositing a film of liquid on the substrate (Spieth 1968, 1974).     

 When advertisement by the territory owner does not dissuade a rival from intruding into 

the territory, the owner must resort to agonistic behavior such as chasing or physically attacking 

the intruder.  The resulting aggressive interactions are often costly for both of the individuals 

involved, often leading to injury or death.  For example, male damselflies (Mnais pruinosa 

costalis Selys) are dimorphic with both non-territorial and territorial individuals present in a 

population (Tsubaki and others 1997).  Due to the costs of aggressive interactions with other 

individuals, the territorial males of this species have a shorter lifespan than do the non-territorial 

individuals.   

Not only can aggression lead directly to exhaustion, injury, or even death, but indirect 

mechanisms related to aggressive behavior can also have harmful consequences on an individual.  

Male mountain spiny lizards (Sceloporus jarrovi) that are given testosterone implants expend 

more energy due to an increased activity period and increased territorial displays than do control 

males (Marler and Moore 1989).  The males with increased testosterone spend less time foraging 

and have lower survivorship than control males.  The lower survivorship is possibly due to 

decreased growth resulting from less foraging or to greater conspicuousness from the increased 

number of territorial displays and higher activity levels.           

 Because territorial defense is costly, the benefits of territorial defense should outweigh 

the costs if an animal is to employ a territorial strategy successfully.  Golden-winged Sunbirds 
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(Nectarinia reichenowi), for instance, defend territories that contain nectar producing Leonotis 

nepetifolia (Labiatae) flowers (Gill and Wolf 1975).  Flowers within a territory usually produce 

more nectar than the flowers found outside of a territory.  Territorial defense is thus beneficial 

when the flowers found outside of the territorial boundaries have low nectar levels.  The calories 

saved from decreased foraging time outweigh the calories lost during territorial defense.  The 

birds choose not to be territorial when nectar production is high in undefended flowers because 

more energy is spent defending the territory than would be spent foraging on flowers outside of a 

territory.   

Reproductive benefits can be gained from territorial defense as well.  Territorial 

Dryomyza anilis males defend carcasses that serve as oviposition sites and defend females from 

other males during copulation and oviposition (Otronen 1984).  The territorial males have greater 

success capturing females for copulation than do non-territorial males.  Because the territorial 

males are often the last to mate with a female before she oviposits, the sperm of the territorial 

male often has a competitive advantage over existing sperm from previous copulations with 

different males (Baker 1983).  Using radioactively labeled sperm, Parker (1970) showed that the 

last S. stercoraria male to mate with a female fertilizes about 80% of the next batch of eggs that 

she oviposits.   

Territorial disputes can be resolved by asymmetries in resource holding power between 

two opponents, or by asymmetries in the value of the resource to either the owner or the intruder 

(Baker 1983).  For example, asymmetries in size often influence the outcome of conflicts with 

larger individuals having a higher resource holding power than smaller individuals.  In D. 

melanogaster and D. pseudoobscura under field conditions for instance, larger males win more 

aggressive interactions with conspecifics and have a mating advantage with both virgin and 
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inseminated females (Partridge and others 1987).  Similar results were obtained in the laboratory 

for D. melanogaster and D. simulans (Hoffman 1987).  Though differences in size can affect the 

outcome of conflicts, these differences do not always determine the winner of territorial disputes.  

For example, male damselflies (Calopteryx macculata) engage in territorial disputes in which the 

winners had a higher fat content than did the losers in 88% of the contests, whereas other factors 

such as size or flight ability did not influence the outcome of the contests (Marden and Waage 

1990).  Furthermore, the males do not fight until their energy reserves are completely depleted, 

but rather the males seem able to assess the fat reserves of their opponent as fatter males win 

95% of long contests as opposed to 68% of short contests (Marden and Rollins 1994). 

Territoriality is widespread among the insects with no shortage of examples illustrated by 

the Dipterans (for reviews, see Baker 1983; Fitzpatrick and Wellington 1983). Territoriality has 

been extensively studied under laboratory conditions in D. melanogaster.  Males will defend 

food cups against intruding males (Jacobs 1960).  Males that successfully defend these food 

resources have a higher mating success than males that do not (Dow and von Schilcher 1975; 

Hoffman 1987).  Artificial selection studies indicate substantial genetic variation for territorial 

success within wild-type populations (Hoffman 1988). Males selected for territorial success 

escalate encounters more frequently against territory owners and win more of these escalated 

encounters than do unselected control males.  Males from these selected lines are more 

successful in mating than males from unselected lines except under conditions where male 

density is low and therefore not all territories are defended, and in matings with virgin females 

(Hoffman and Cacoyianni 1989).  Evidence suggests that territoriality is thus a conditional 

strategy that males exhibit when it leads to higher mating success.  For example, male D. 

melanogaster typically are more likely to establish territories when females are present and to 
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defend territories that are viewed as good oviposition sites by females.  Thus, the males are less 

likely to defend very large or very small food areas or to establish territories when the density of 

male flies is high (Hoffmann and Cacoyianni 1990).  Males that are 3 days or more posteclosion 

are more likely to establish and successfully defend a territory than are younger males (Hoffman 

1990).  Isolated males are more aggressive and will establish territories more quickly than males 

with prior social experience.  

Territorial defense requires the ability to display aggressive behavior.  In D. 

melanogaster, males and females exhibit gender-selective differences in staged aggressive 

encounters.  Males fight with other males, especially in the presence of a potential mate (Chen 

and others 2002).  Female fights may be elicited in the presence of yeast paste, a desirable food 

(Ueda and Kidokoro, 2002).  Although some agonistic behaviors are common to both sexes, 

males perform higher intensity behaviors that are not seen in females.  Furthermore, males 

establish lasting dominance relationships based upon fighting outcomes whereas females do not 

(Nilsen and others 2004).  Detailed knowledge of behavioral expression patterns derived from 

studies of paired male and paired female agonistic encounters conducted under controlled, 

laboratory conditions (Chen and others 2002; Nilsen and others 2004) substantiates the use of 

Drosophila as a model system to probe the physiological, genetic, and molecular control of 

aggressive behavior (Baier and others 2002; Dierick and Greenspan 2006; Edwards and others 

2006; Vrontou and others 2006). 

 Territorial behavior among Dipterans is known for a number of species in nature as well 

as the laboratory.  Males of the endemic Hawaiian species of Drosophila exhibit courtship 

behavior that, contrary to many other Drosophila species, does not take place on feeding and 

oviposition sites.  Instead, males fly to the surrounding vegetation after feeding and establish 
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territories that they defend against other males and unreceptive females (Spieth 1968, 1974).  

Many flies exhibit aggressive station-keeping behavior.  Male hoverflies (Eristalis) establish a 

station in the environment where they hover and wait for passing insects that they then chase on 

the chance of encountering a potential mate (Collett and Land 1975).  After the chase, the 

hoverflies return to the same area from which they started the chase.  Similar behavior is seen in 

male blow flies (Calliphora) (Collett and Land 1975) and house flies (Musca and Fannia) (Land 

and Collett 1974), except that these flies establish a sitting position from which they chase 

passing insects or objects.  Males of the Sarcophagidae also establish a territorial position from 

which they fly out and attempt to capture females (Arnett 2000; KHJ personal communication).   

Similar perching territorial behavior is observed in butterflies (Baker 1972; Davies 1978; Bitzer 

and Shaw 1979; Jones and others 1998).  Male butterflies will fly toward any intruder that enters 

his territory and if the intruder is a conspecific male, the two butterflies will engage in a 

climbing, spiral flight where each male attempts to establish a position above and behind his 

opponent (Baker 1972).  When the conflict is resolved and the males separate, the previous 

owner of the territory will often return to his original perching spot.      

 In the present study, we examine the phenomenon of territoriality in the flesh fly 

Sarcophaga crassipalpis under artificial, laboratory conditions. In nature, males establish 

perches from which they observe and often chase other insects that appear in the vicinity.  No 

territories have been observed for females (Arnett 2000).  If the male perching behavior is indeed 

an expression of territoriality, then it is expected that there should be significant disparities 

between territorial (male) and non-territorial (female) flesh flies with respect to how the nervous 

system is programmed to respond to same-sex conspecifics.  The working hypothesis is that the 

tendency of male flesh flies to distribute themselves into spatially separate waiting perches in 
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nature is a consequence of a fundamental neural program for maintaining inter-individual 

separation.  If true, then there should be a significant difference in the spatial distribution 

patterns between males and females that will be expressed in virtually any environment, 

including simplified laboratory settings.  
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CHAPTER 2 

MATERIALS AND METHODS 

 

Insects 

Flesh flies, Sarcophaga crassipalpis, were maintained under non-diapause conditions 

(LD 15:9 h, lights-on 07:20 h; 25oC for pupae and adults, 20oC for larvae) in a colony at East 

Tennessee State University. The flies used in this study were taken from generations 102 through 

129.  Newly emerged flies (1 or 2 days post-emergence) were collected for the experiments. 

 

Data Collection 

Three different enclosures were used to investigate the spatial patterning of adult flies.  

The first type of enclosure was a rectangular, transparent Plexiglas chamber (2.3 x 2 x 25.5 cm 

with screen at both ends) placed over a grid pattern of 8 equal-sized spaces (length 3.2 cm, width 

2 cm) labeled A through H (Figure 1).  Food (sugar cube) was located in section A and plastic 

tubing provided access to water in section H. 

 

Figure 1 Rectangular Enclosure    

 

The second and third types of enclosure were made from circular Petri dishes (diameter 

14.2 cm, height 1.6 cm, area 158.4 cm2) (Fig 2).  One type of circular enclosure contained food 
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(a dough-like mixture of powdered confectionary sugar and honey) in the center of the dish 

(Figure 2a), and the other type contained the same food evenly distributed around the peripheral 

edge of the dish (Figure 2b).  A plastic ring (diameter 2.8 cm, height 0.4 cm) held the food in the 

center (occupying an area of 6.2 cm2), while a plastic-coated wire barrier (height 0.3 cm) held 

the food in the periphery (occupying an area of 45.3 cm2).  In both types of circular enclosures, 

water was provided via a 13 x 100 mm polypropylene test tube inserted vertically through the 

center of the Petri dish lid.  A cotton plug prevented water leakage from the inverted test tube.  

The transparent circular enclosures were placed over a grid pattern of concentric circles and 8 

“pie-slice” sectors. 

(a)                                                                          (b) 

         

Figure 2 Circular Enclosures.  (a) Food located in the center.  (b) Food located in the periphery. 

 

All of the experiments were conducted inside an aluminum shed, constructed within the 

laboratory proper.  Temperature (24oC ± 2oC) was regulated by a thermostat-controlled space 

heater.  Illumination was provided by a pair of 40 watt, cool white, fluorescent tubes suspended 1 

m above the enclosures which were placed on a table top.  To minimize vibrations from the 
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observer, the table legs were placed in buckets of sand.  The table surface was surrounded by a 

black cloth suspended from the ceiling.  Because there was no illumination outside of the cloth, 

the observer could monitor the flies through viewing slits in the cloth and be invisible to the flies.  

Black cardboard partitions ensured that flies in any one enclosure were visually isolated from 

flies in all other enclosures (Figure 3). 

 

Figure 3 Enclosure Setup within the Shed.  Groups of 4 females or groups of 4 males were housed in 

circular enclosures separated by black cardboard partitions. 

 

Each experimental enclosure housed a group of 4 females or a group of 4 males. To 

distinguish among individuals within these groups of 4, the flies were cooled on ice and marked 

on the dorsal thorax with a spot of colored enamel.  The flies were then placed in an enclosure 

within the shed and allowed to entrain to the LD 12:12 h cycle (lights-on: 08:00 h, lights-off 
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20:00 h) for two days.  After this entrainment period, observations of spatial patterning were 

made.  For the rectangular enclosures, the position of each fly simply was recorded according to 

which section (A through H) the fly situated itself.  For the circular enclosures, the exact 

locations of the flies were recorded on a circular map that was identical to the circular grid 

underneath the enclosures. 

 

Experiment 1:  Observations of Spatial Patterning in Rectangular Enclosures 

Immediately following two days of entrainment to the LD 12:12 h cycle, observations 

were made for groups of 4 males and groups of 4 females for 3 consecutive days under the same 

LD 12:12 h cycle.  The location of each fly within the enclosure (section A through H) was 

recorded hourly during the photophase, beginning at 09:00 h (1 hour after lights-on) and ending 

at 19:00 h (1 hour before lights-off), thus yielding 11 observations per enclosure per day (Figure 

4).  To quantify the spatial distribution within the rectangular enclosures, we used a measure of 

tolerance:  the proportion of the total number of observations in which 2 or more flies occupied 

the same section of the enclosure.  A statistical comparison of tolerance between males and 

females was made using a chi-square contingency table analysis. 

 

Experiment 2:  Observations of Spatial Patterning in Circular Enclosures 

After two days of entrainment to LD 12:12 h, hourly observations of spatial patterning 

were made during the photophase for 3 consecutive days, as described for the rectangular 

enclosures (Figure 4).  There were 2 different sets of experiments with circular enclosures: one 

with food in the center and the other with food in the periphery.  To quantify the spatial 

patterning within the circular enclosures, we used nearest neighbor statistics. Once the exact 
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location of each individual fly was determined, the distance between each fly and its nearest 

neighbor was measured.  These distances were then used to calculate an R value, a test statistic 

of the degree of clustering (Clark and Evans 1954), for each enclosure at each observation time.  

A random distribution is indicated if R=1; for maximal aggregation, R=0; R values greater than 1 

indicate a tendency toward a uniform distribution with the maximum value of R=2.1491.  

Comparisons of R values were made for the food location, the time of day within the photophase, 

the day of observation, and gender using a mixed procedure ANOVA model with repeated 

measures (SAS Institute). 

Lights On Lights Off

8 9 10 11 12 13 14 15 16 17 18 19 20

Day 1 Day 2 Day 3

8:00 20:00 8:00 20:00 8:00 20:00

 

Figure 4 Light Cycle and Observation Schedule for Rectangular and Circular Enclosure Experiments.  

Figure depicts the 3 observation days following 2 days of entrainment to LD 12:12 h.  Observations were 

made hourly beginning an hour after lights on (09:00) and ending and hour before lights off (19:00) for 3 

consecutive days. 

 

Experiment 3:  Observations of Spatial Patterning in Circular Enclosures under Constant Dark 

Conditions 

Groups of 4 male flies were placed in circular enclosures with food in the center and then 

entrained to LD 12:12 h for 2 days.  Observations of spatial patterning then were made under the 

same LD 12:12 h conditions for 3 consecutive days:  fly positions were recorded at 11 hourly 

observation times during the photophase and 3 times during the scotophase (21:00, 02:00, 07:00 
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h) (Figure 5). Then, during the next 3 consecutive days, the light cycle was switched to constant 

darkness (DD) and position measurements were taken at 3 observation times during the 

subjective day (09:00, 14:00, 19:00 h) and 3 times during the subjective night (21:00, 02:00, 

07:00 h).   R value comparisons for observation times, day of observation, subjective day vs. 

subjective night, and the presence of light vs. dark were accomplished using mixed procedure 

ANOVA with repeated measures. 

Subjective Day

9 14 19

Subjective Night

21 2 7

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

8:00 20:00 8:00 8:00 8:00 8:00 8:0020:00 20:00 20:00 20:00 20:00

Lights On Lights Off

8 9 101112
151617181920

1314

21 2 7

 

Figure 5 Light Cycle and Observation Schedule for Circular Enclosure Experiments under Constant Dark 

Conditions.  Figure depicts the 6 observation days following 2 days of entrainment to LD 12:12 h.  

Observations were made hourly during the photophase beginning an hour after lights on (09:00) and 

ending and hour before lights off (19:00) and 3 times during the scotophase (21:00, 02:00, and 07:00) on 

days 1 through 3.  On day 4 the light cycle was switched from LD 12:12 h to DD 12:12 h and 3 

observations were made during subjective day (09:00, 14:00, and 19:00) and 3 during subjective night 

(21:00, 02:00, and 07:00).     
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Experiment 4:  Observations of Spatial Patterning in Circular Enclosures under Constant Light 

Conditions 

As in the previous experiment, groups of 4 male flies were placed in circular enclosures 

with food in the center and adapted to LD 12:12 h for 2 days.  During the next 3 consecutive 

days, observations of spatial patterning were made under the same LD 12:12 h conditions. Fly 

positions were recorded at 3 observation times during the photophase (09:00, 14:00, 19:00 h) and 

3 times during the scotophase (21:00, 02:00, 07:00 h) (Figure 6).  For the next 3 consecutive 

days, the flies were subjected to constant light (LL):  position measurements were continued at 

the same times of day.  As in Experiment 3, R value comparisons for observation times, day of 

observation, subjective day vs. subjective night, and the presence of light vs. dark were 

accomplished using mixed procedure ANOVA with repeated measures. 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

8:00 20:00 8:00 8:00 8:00 8:00 8:0020:00 20:00 20:00 20:00 20:00

Subjective Day

9 14 19

Subjective Night

21 2 7

Lights On Lights Off

21 2 79 14 19  

Figure 6 Light Cycle and Observation Schedule for Circular Enclosure Experiments under Constant Light 

Conditions.  Figure depicts the 6 observation days following 2 days entrainment to LD 12:12 h.  Three 

observations were made during the photophase (09:00, 14:00, and 19:00) and 3 were made during the 

scotophase (21:00, 02:00, and 07:00) on days 1 through 3.  On day 4 the light cycle was switched from 

LD 12:12 h to LL 12:12 h and 3 observations were made during subjective day (09:00, 14:00, and 19:00) 

and 3 during subjective night (21:00, 02:00, and 07:00).     
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Experiment 5:  Observations of Interactions between Same-Aged, Socially Naïve Male Flies 

 Because the spatial patterns exhibited by flies are an emergent property of the 

interactions that occur between flies, the interactions resulting in the greater spacing seen 

between male flies were investigated.  Male flies were collected at emergence and placed in 

isolation chambers (Petri dish with an area 50 cm2) with food and water.  The isolation chambers 

were housed within the aluminum shed in LD 12:12 h and 24oC ± 2oC conditions.  The isolation 

chambers were separated from one another by black cardboard partitions.    

 Pairs of 1-, 2-, 3-, 4-, and 6- day old, socially naïve flies were marked on the dorsal 

thorax with a dot of colored enamel and released into a circular arena (Petri dish with an area 50 

cm2) with a barrier dividing the arena in half.  The arena did not contain food or water.  Ten 

minutes after the flies were released into the arena, the barrier was pulled from the arena and the 

pair of flies was videotaped for 1 hour using a Sony Digital HD Handycam, HDR-UX1.  Video 

recordings were analyzed on a Macintosh Powerbook G4 computer with Final Cut Pro HD 

software.  An ethogram of fly behavior was constructed from the video recordings and used for 

basic analyses.  Event recording and basic analyses were performed using JWatcher v.1.0, free 

behavioral analysis software available for public use at http://www.jwatcher.ucla.edu. 

 

Experiment 6:  Determination of the Onset of Mating. 

 To determine the onset of mating, flies were collected at emergence in 2-hour intervals 

and same-aged pairs of males and females were grouped together in cages (volume 1 ft3 with 

screen on all sides) with food, water, and liver.  The cages were housed within the aluminum 

shed in LD 14:10 h and 24oC ± 2oC conditions.  Three cages containing 8, 17, and 20 pairs of 

flies were observed every hour of the photophase for 6 consecutive days beginning the day of 

emergence.  The number of pairs observed mating was recorded at each observation time. 
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CHAPTER 3 

RESULTS 

 

Spatial Patterning in Rectangular Enclosures 

A simple measure of tolerance was used to quantify the spatial patterning exhibited by 

groups of 4 males and groups of 4 females of S. crassipalpis in rectangular enclosures.  Females 

were significantly more tolerant of same-sex conspecifics than were male flies on days 1 and 2, 

but not day 3 of the experiment (chi-square contingency table, χ2 = 6.6, d.f. = 1, P < 0.02 for day 

1; χ2 = 9.9, d.f. = 1, P < 0.01 for day 2; χ2 = 1.4, d.f. = 1, P = 0.23 for day 3).  When the data 

were pooled for all 3 days, females had a significantly higher tolerance for same-sex conspecifics 

than did male flies (χ2 = 18.7, d.f. = 1, P < 0.0001).  For 8 groups of male flies, 2 or more 

individuals were found occupying the same section of the enclosure in 58.0% of 88 observations 

on day 1, 58.0% of 88 observations on day 2, and 63.6% of 88 observations on day 3, and 59.8% 

of 264 total observations.  For 7 groups of females, 2 or more individuals were found in the same 

section of the enclosure in 77.9% of 77 observations on day 1, 81.8% of 77 observations on day 

2, 75.3% of 77 observations on day 3, and 78.4% of 231 total observations (Figure 7). 

To examine if the distribution of flies within the rectangular enclosures differed between 

sections, the mean number of flies observed in each section was determined for days 1, 2, and 3.  

The data were pooled for all 3 days and a one-way ANOVA was used for statistical analysis.   

The number of times females and males were observed in each section of the rectangular 

enclosures (A through H) was significantly different between the 8 sections (ANOVA, F = 

57.57, P < 0.0001 for females; ANOVA, F = 42.27, P < 0.0001 for males).  Females were 

observed significantly more times in section A (location of food) than in sections B through H 
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(Figure 8, Pooled Data).  Females were observed in section H (location of water) significantly 

more times than in sections C through G (Figure 8, Pooled Data).  Like females, males were 

observed significantly more times in section A than in sections B through H (Figure 9, Pooled 

Data). 

Figure 7 Tolerance of Conspecifcs.  In rectangular enclosures, female flies have a significantly higher 

tolerance of same-sex conspecifics than do male flies on days 1 and 2, but not day 3.  Depicted is the 

proportion of observations in which 2 or more individuals are found in the same section of the enclosure 

for groups of 4 females (red bars) and groups of 4 males (blue bars).  The observations were made every 

hour of the photophase in LD 12:12 h beginning an hour after lights on and ending an hour before lights 

off for 3 consecutive days.     
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Figure 8 Distribution of Female Flies in Rectangular Enclosures.  Figure depicts the mean (+ SEM) 

number of times flies were observed in each section of the enclosure for days 1, 2, and 3.  The data for all 

3 days were pooled for statistical comparisons between sections.  Females were observed in section A 

significantly more times than in sections B through H.  Females were observed in section H significantly 

more times than in sections C through G.  Within the pooled data graph, bars that do not share letters are 

significantly different from each other (P < 0.05).   

 

To compare distributions between males and females, a chi-square contingency table was 

used for analysis.  The number of females observed in section A was significantly higher than 

the number of males observed in section A (χ2 = 28.43, d.f. = 1, P < 0.000001) (Table 1).  

Females were observed in section A in 41.23% of 924 total observations whereas males were 

observed in section A in 29.67% of 1055 total observations (Figure 10).  Significantly more 

females were observed in sections B and H as well (χ2 = 8.54, d.f. = 1, P < 0.01 for section B; χ2 

= 3.90, d.f. = 1, P < 0.05 for section H) (Table 1).  Males were observed significantly more times 
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in sections E, F, and G than were females (χ2 = 15.02, d.f. = 1, P < 0.001 for section E; χ2 = 

19.48, d.f. = 1, P < 0.0001 for section F; χ2 = 16.70, d.f. = 1, P < 0.0001 for section G) (Table 1).   

Figure 9 Distribution of Male Flies in Rectangular Enclosures.  Figure depicts the mean (+ SEM) number 

of times flies were observed in each section of the enclosure for days 1, 2, and 3.  The data for all 3 days 

were pooled for statistical comparisons between sections.  Males were observed in section A significantly 

more times than in sections B through H.  Within the pooled data graph, bars that do not share letters are 

significantly different from each other (P < 0.05).   
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Spatial Patterning in Circular Enclosures 

Spatial patterning behavior was quantified using R values calculated from classical 

nearest neighbor statistics (Clark and Evans 1954).  These measures of dispersal were 

determined hourly for each enclosure throughout the photophase in LD 12:12 h cycles for 3 

consecutive days.  For both types of circular enclosures, the R values for male flies were 

significantly higher than those for female flies (ANOVA with repeated measurements, F1,33 = 
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85.79, P < 0.0001), indicating a significantly greater departure from a random distribution.  The 

elevation in R values for the males relative to the females was maintained for all 3 days of 

observations (Figure 11).  There was no significant effect of time of day (F1,1180 = 0.63, P = 

0.429) or day of the experiment (F1,1180 = 3.63, P = 0.057) on the R values for either male or 

female flies.                 

A B C D E F G HPr
op

or
tio

n 
O

bs
er

ve
d 

in
 S

ec
tio

n

0.0

0.1

0.2

0.3

0.4

0.5

Female
Male

 
Figure 10 Proportion of Times Flies Found in Each Section of the Rectangular Enclosure.  Red bars 
represent females and blue bars represent males.  Data were pooled for all 3 days of the experiment.  
Significant differences between females and males are shown in Table 1.    

 

Table 1 Chi-square analysis:  Distribution of Females vs. Distribution of Males    

Section of Enclosure 

A 

B 

C 

D 

E 

F 

G 

H 

χ2 P 

28.43 

8.54 

0.97 

2.60 

15.02 

19.48 

16.70 

3.90 

< 0.000001 

< 0.01 

= 0.32 

= 0.11 

< 0.001 

< 0.0001 

< 0.0001 

< 0.05 
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(b) Food in Periphery 
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Figure 11 Mean R Values for Male and Female Flies.  Male and female flesh flies exhibit significantly 

different spatial distributions within circular enclosures.  Depicted are mean (± SEM) R values (an index 

of the degree of clustering, derived from nearest neighbor measures) for groups of 4 males (blue circles) 

and 4 females (red circles) in circular enclosures with food located in the center (a) and with food located 

in the periphery (b).  Observations were made hourly throughout the photophase within LD 12:12 h 

cycles for 3 consecutive days.  The R values for males are consistently and significantly higher than those 

for females, indicating greater spatial separation among male flies:  males tend toward a uniform 

distribution (R > 1), whereas females tend toward a random distribution (R = 1).  
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The location of the food (center vs. periphery) within the circular enclosures had a 

significant effect on the R values:  for both males and females, food in the periphery yielded 

significantly higher R values (indicating greater spatial dispersal) than did food in the center 

(F1,33 = 18.56, P = 0.0001) (Table 2).  However, there was no significant interaction between the 

location of food and the gender of the flies (F1,33 = 0.021, d.f. = 33, P = 0.652).  Male flies 

maintained higher R values (indicating greater spatial separation) than did the female flies, 

regardless of the location of the food. 

Table 2 Mean R values (± SEM) for each day of the experiment. 

Day of Experiment 

 

Day 1 

Day 2 

Day 3 

Food in Center Food in Periphery 

Male 

1.37 (0.033) 

1.48 (0.038) 

1.44 (0.036) 

Female 

1.13 (0.032) 

1.14 (0.033) 

1.09 (0.033) 

Male 

1.56 (0.033) 

1.52 (0.033) 

1.53 (0.032) 

Female 

1.13 (0.043) 

1.27 (0.051) 

1.22 (0.046) 

  

LD Followed by DD 

The previous experiments examined the spatial distribution of male and female flies 

throughout the photophase of LD cycles.  To determine if the relatively high degree of dispersal 

of male flies could be attributed to visual cues, we conducted experiments in which the spatial 

locations of males in the circular enclosures (food in center) were recorded during both the 

photophase and scotophase for 3 consecutive days under LD 12:12 h cycles.  To test for 

circadian rhythmicity in this phenomenon, we extended the experiments for an additional 3 days, 

during which the flies were exposed to DD conditions.   

 During the 3-day LD portion of the experiment, male flies showed significantly higher 

degrees of dispersal (higher R values) during the photophases than during the scotophases (F = 
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24.85, d.f. = 16, P = 0.0001).  The obvious cycling between day and night, however, was absent 

during the following 3 days under DD (Fig 12).  Consistent with dispersal behavior being driven 

by visual cues, the R values remained relatively low during DD, with no significant differences 

between subjective day and subjective night (F1,16 = 0.01, P = 0.926) and no effect of day of the 

experiment (F1,999 = 1.38, P = 0.241).   
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Figure 12 Mean R Values for the LD Followed by DD Experiment.  R values are depicted for male flies 

for three days of LD 12:12 h followed by 3 days of constant darkness (DD); light conditions are indicated 

by a horizontal bar imbedded in the graph.  Mean (± SEM) R values are illustrated at each observation 

time for all 6 days of the experiment.  The R values are significantly lower during the scotophase than 

during the photophase during the LD 12:12h cycle (days 1 through 3).  The R values remained relatively 

low (at typical scotophase levels) under DD conditions (days 4 through 6) with no significant differences 

between subjective days and subjective nights. 

 

LD Followed by LL 

 The previous experiments indicated no circadian rhythmicity for male spacing behavior 

under constant dark conditions.  However, if the behavior is predicated upon visual cues, then 

darkness presumably could override the expression of the behavior.  Therefore, to further 

confirm that the male spacing behavior is not driven by an endogenous circadian rhythm, we 

provided (after 3 days of LD 12:12 h) groups of male flies with constant light (LL) for 3 

consecutive days.  As shown previously, the R values were significantly higher during the 
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photophase than during the scotophase under LD 12:12 h conditions (F1,8 = 30.08, P = 0.0006) 

(Figure 13).  During the following three days of LL, the R values remained elevated at LD 

photophase levels with no significant differences between subjective day and subjective night 

(F1,8 = 0.00, P = 0.9495).  There was an effect of day on the experiment (F1,311 = 6.58, P = 

0.0108):  this can be observed as a gradual decline in R values over the three days of LL.  
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Figure 13 Mean R values for the LD Followed by LL Experiment.  R values were calculated for male flies 

for 3 days of LD 12:12 h followed by 3 days of constant light (LL); light conditions are indicated by a 

horizontal bar imbedded in the graph.  Mean (± SEM) R values are shown at each observation time for all 

6 days of the experiment.  The R values are significantly higher during the photophase than during the 

scotophase during the LD 12:12 h cycle (days 1 through 3).  The R values remained relatively high (at 

typical photophase levels) under LL conditions (days 4 through 6) with no significant differences between 

subjective days and subjective nights. 

 

Dyadic Interactions Between Male Flies:  Preliminary Results 

 Video recordings of interactions between same-age, socially naïve male flies were used 

to construct an ethogram of fly behavior (Table 3).  Behaviors were divided into 2 groups:  non-

interactive and interactive behaviors.  Non-interactive behaviors are behaviors that are exhibited 

by single flies independent of the actions of other flies while interactive behaviors occur in 

interactions between 2 flies.   
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Male flies spent the greatest proportion of time standing, walking, and grooming.  One-, 

2-, 3-, 4-, and 6-day old flies spent 96.01%, 92.98%, 94.47%, 85.93%, and 86.95% of the total 

observation time performing these 3 behaviors.  Although all age groups spent the greatest 

proportion of time engaged in these 3 non-interactive behaviors, differences did exist in the 

proportion of time each age group spent performing the individual behaviors (Figure 14).  

Younger flies spent significantly more time standing and walking, while older flies spent 

significantly more time grooming.  Three-day old flies spent significantly less time standing and 

walking and significantly more time grooming than did 1-day old flies.  Three-day old flies also 

spent significantly less time standing and significantly more time grooming than did 2-day old 

flies although there was no significant difference in the time spent walking between 2- and 3-day 

old flies.  Three-, 4-, and 6-day old flies did not significantly differ in the time spent walking or 

grooming but, 6-day old flies did spend significantly less time standing than did 3- and 4-day old 

flies.  
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Figure 14 Proportion of Total Time that Flies Spent Standing, Walking, and Grooming Change with Age.  

Note the change in behavior from day 1 to day 3 with 3-day old flies always significantly different from 

1-day old flies.  Bars that do not share letters are significantly different from each other (P < 0.05, Tukey 

type non-parametric multiple comparisons of proportions). 
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Figure 15 Mean (+ SEM) Number of High Intensity Aggressive Events.  High intensity aggressive 

behaviors increase with age.  Figure depicts the mean (+ SEM) number of high intensity aggressive 

events exhibited between pairs of socially naïve flies.  Note the change in the mean number of events 

occurring from day 2 to day 3.    

 

Interactive behaviors include behaviors in which a fly moves toward an opposing fly 

(approach and turn toward) and behaviors in which a fly moves away from an opposing fly 

(avoidance and retreat).  Also included in the interactive behaviors are low intensity (chop, 

uppercut, back kick, head butt, fencing, and boxing) and high intensity aggressive events (lunge, 

holding, wrestling) that involve physical contact between flies.  Preliminary data indicate that the 

number of high intensity aggressive events occurring in dyadic interactions increase as the flies 

age (Figure 15).  Three-, 4-, and 6-day old flies lunge, hold, and wrestle more than do 1- and 2-
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day old flies.  Similar to standing, walking, and grooming, the noticeable change in high 

intensity aggressive events occurs at 3 days of age with 3-, 4-, and 6-day old flies exhibiting 

similar numbers of high intensity aggressive events.  Conversely, whereas flies appear to 

gradually change the proportion of time spent standing, walking, and grooming as they age, high 

intensity aggressive events abruptly change from being rare in 1- and 2-day old flies to being a 

much more frequently observed behavior in 3-, 4-, and 6-day old flies. 
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Figure 16 Proportion of Mated Pairs at Each Observation Time.  Sexual activity increases 3 days after 

eclosion.  Figure depicts the proportion of mated pairs at each observation time.  Flies begin to mate on 

day 2 with a large increase in sexual activity occurring on day 3 and continuing through day 5. 

 

Onset of Mating:  Preliminary Results 

To determine the onset of mating, pairs of male and female flies were observed every 

hour of the photophase (LD 14:10 h) for 6 consecutive days beginning on the day of emergence.  

No flies were observed mating the day of emergence and 1 pair was observed mating on day 1 

(Figure 16).  During day 2, the number of pairs mating increased throughout the day.  Even so, 

the total proportion of pairs mating remained low, never rising above 20%.  On day 3, the 
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number of pairs mating increased to above 20% for all observations with 40% of the pairs mating 

at 17:00 hours.  The number of pairs mating continued to increase on day 4 with 53.3% of the 

pairs mating at 12:00 hours.  A slight decrease in the number of pairs mating was seen 

throughout day 5.  The data indicate that the onset of mating occurs on day 2 with a large 

increase in sexual activity occurring on days 3 and 4. 

Table 3 Ethogram of Male Behavior 

Component Description 

Non-interactive Behaviors  

Standing Fly is still; no locomotion 

Walking Fly walks throughout the arena 

Grooming Fly grooms itself 

Jump Fly jumps into the air 

Bobbing Fly quickly raises and lowers body multiple times 

Pop Up Fly rises from and returns to standing position 

Interactive Behaviors  

Approach Fly advances toward opponent 

Turn Toward Fly turns to face opponent 

Avoidance Fly slowly moves away from advancing fly 

Retreat Fly quickly moves away from advancing fly to 

another area of the arena 

Low Intensity Aggression    

     Chop Downward strike with foreleg 

     Uppercut Upward strike with foreleg 

     Back Kick Strikes with back leg 

     Head Butt* Pushing opponent with head 

     Fencing* Both flies striking each other with one foreleg 

     Boxing* Both flies rear up on back legs and strike each other 

with forelegs 

Lunge* Fly rears up and jumps toward opponent 

Holding* Fly grasps opponent with forelegs and attempts to 

immobilize 
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Component Description 

Wrestling* Both flies grasp each other with forelegs and roll 

around the enclosure striking each other with legs 

Falls on Back Fly falls on back and attempts to right itself 

* Similar behaviors have been described for D. melanogaster  (Chen and others 2002; Nilsen and 

others 2004). 
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CHAPTER 4 

DISCUSSION 

In nature, male flesh flies appear to establish territories from which they fly out and 

attempt to capture females for mating (Arnett 2000).  However, there is no evidence suggesting 

female territoriality.  If males are indeed territorial and females are not, then males and females 

should differ fundamentally in the manner in which they react to same-gender conspecifics under 

a variety of conditions, not just in nature.  Behavioral expression of territoriality in males, but not 

in females, should result from elemental differences in the manner in which males and females 

process and react to information in the environment.  Our findings are consistent with this 

hypothesis.   

 Our results show that, in rectangular enclosures, male flesh flies (S. crassipalpis) have a 

significantly lower tolerance of each other than do female flesh flies.  Males and females also 

differ in how they distribute themselves within the rectangular enclosures.  Because male flies 

have a lower tolerance for other males, we would expect them to distribute themselves evenly 

throughout the enclosure in order to avoid one another.  Our data support this prediction.  The 

number of male flies observed in sections B through H does not significantly differ between 

sections.  However, the presence of food attracts both males and females to section A of the 

enclosure.  Male and female flies are observed significantly more times in section A than in 

sections B through H.  Although both males and females are attracted to the food, significantly 

more females are observed with the food than are males.  Perhaps the weaker attraction to the 

food exhibited by males is due to the lower tolerance of other male conspecifics.  If so, male flies 

are more likely to avoid the food if another male is already positioned there.  Female flies do not 

distribute themselves evenly but rather tend to position themselves in the sections with food and 

water.  Females are observed in section H significantly more times than in sections C through G.  
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Females are also observed in sections B (section next to food source) and H (location of water) 

significantly more times than are the male flies.   

In 2 different types of circular enclosures (i.e., one with food in the center and the other 

with food in the periphery), males maintain a significantly larger spatial separation among 

themselves than do females.  As indicated by nearest neighbor analyses, the males tend to 

distribute themselves uniformly, whereas the females tend toward a random distribution.  In our 

experiments, the territorial behavior displayed by the male flesh flies occurs in highly artificial 

conditions and is evoked in the absence of expected releasing cues (e.g., the presence of potential 

mates, restricted food caches, larviposition sites, etc.)  

 The mechanisms that lead to greater spatial separation and lower spatial tolerance among 

males relative to females remain to be determined.  These gender–specific differences could be 

the result of innate avoidance behavior mechanisms.  For example, if males establish territories 

in order to capture females for mating, then the males should be inclined to prevent other male 

flies from entering the territory, thus ensuring sole access to females entering the territory.  

Physical defense or behavior which identifies the owner to prospective rivals should function to 

keep intruders out (Brown and Orians 1970). Alternatively, the differences between male and 

female spatial patterns in our study may be the result of learned avoidance patterns derived from 

agonistic interactions between male, but not female, flies.  Agonistic interactions between male 

S. crassipalpis do occur in the laboratory, with a distinct increase in intensity occurring 3 days 

after eclosion (Figure 15).  Socially naïve, older flies are more likely to exhibit aggressive 

behaviors such as lunging, holding, and wrestling in interactions with same age conspecifics than 

are younger flies.  Currently, we cannot discriminate between innate and learned behavioral 

mechanisms to explain the gender-specific differences in spatial patterning.  
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Gender-specific differences in behavioral responses to same-sex conspecifics are well 

known in other insects.  For example, in the cockroach Nauphoeta cinerea, males will position 

themselves at regularly spaced, potential territory sites in an observation tank and perform 

guarding and patrolling behaviors (Ewing 1973).  A dominance hierarchy develops among the 

males and not all males are able to guard and patrol a territory, even if potential sites are 

available (Ewing 1972, 1973). In contrast, female cockroaches do not exhibit territorial behavior, 

but instead form a group, usually on a male territory. The gregarious females will stay together 

except when they leave to give birth (Ewing 1973).  In another example, when food is plentiful, 

female field crickets (Gryllus bimaculatus) are significantly less likely to attack, fight for 

significantly shorter times, and exhibit a more limited behavioral repertoire in encounters with 

same-sex conspecifics than male crickets. Also, females change their behavior when food 

becomes scarce, fighting more frequently and successfully than males (Adamo and Hoy 1995).   

In the current study, the location of the food influenced the spacing behavior in the 

circular enclosures:  for both male and female flesh flies, the R values were higher (indicating 

greater spatial dispersal) with food in the periphery than with food in the center of the 

enclosures.  This result is not unexpected.  In rectangular enclosures, males and females were 

attracted to the food as indicated by the greater number of flies located in section A.  In circular 

enclosures with food located in the periphery, the food was positioned around the entire 

circumference of the circular arena and presumably provided a stimulus to attract flies toward the 

edges of the enclosure (encompassing a greater area).  With food placed in the center, the 

attraction presumably was toward the center of the arena (a relatively smaller area).  It is 

interesting to note that neither the male nor the female flesh flies were seen to congregate in the 

vicinity of the food nor did they appear to defend the food in the circular enclosures.  The fact 
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that gender-specific differences in spatial distribution occurred irrespective of container 

geometry attests to the robustness of the phenomenon. 

Our results show that, under light-dark (LD) cycles, the R values for male flies observed 

during the photophase are significantly higher (indicating higher levels of spatial dispersal) than 

those during the scotophase (Figure 12). The tendency toward a uniform distribution in the light 

apparently is relaxed in the dark, during which the R values approach levels indicative of a 

random distribution.  These results suggest that the male spacing behavior is based upon the 

processing of visual rather than tactile, auditory, or olfactory inputs.  The patrolling flights that 

male S. crassipalpis and other Dipterans make in their natural environment might serve to 

visually advertise their presence to conspecific intruders or to visually identify the individual 

entering the territory.  Other insects use different methods to regulate spacing behavior.  Male 

spacing in the katydid Panacanthus pallicornis appears to be based upon the calling song:  

deafened males tend to aggregate whereas control males distribute themselves randomly 

throughout an experimental environment (Chamorro-R and others 2007).  In a second example, 

harvester ants (Pogonomyrmex barbatus and Pogonomyrmex rugosus) chemically establish 

foraging trails that never cross with trails from intraspecific neighboring colonies, effectively 

spacing themselves apart and reducing aggressive encounters (Holldobler and Lumsden 1980).      

Providing further evidence supporting a visual basis for spacing behavior in male flesh 

flies are the results under constant dark (DD; Figure 12) and constant light conditions (LL; 

Figure 13).  In both cases, there are no significant differences in R values between subjective day 

and subjective night observations.  Furthermore, the R values measured during DD and LL are 

similar to those obtained during the scotophase and photophase, respectively, under LD 12:12 h 

conditions.  The absence of significant variation between subjective day and subjective night 
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under constant conditions (DD or LL) suggests that the spacing behavior is not driven by a 

circadian rhythm.   However, because our assay of spacing depends on the collective behavior 

within a group of 4 individuals, the possibility of circadian rhythmicity in 1 or more individuals 

cannot be rejected.  Presumably, the expression of circadian rhythmicity in R values would 

require a high degree of behavioral synchrony among group members.  Although not significant, 

the R values under DD show shallow, but detectable, daily oscillations for two cycles (Figure 

12).  It is important to note that other behaviors in S. crassipalpis (e.g., larval and adult 

locomotor activity, eclosion) are under circadian control (Joplin and Moore 1999).  Further work 

is necessary to determine the relationship between endogenous circadian activity rhythms in 

individual flies and the expression of spacing behavior, the latter being an emergent property of 

multiple interactions within the group. 

 The fruit fly D. melanogaster is currently used as a model system for studying the 

physiological and genetic control of aggression (Baier and others 2002; Chen and others 2002; 

Nilsen and others 2004; Dierick and Greenspan 2006; Edwards and others 2006; Vrontou and 

others 2006).  Male and female fruit flies exhibit different agonistic behaviors and these have 

been well described (Jacobs 1960; Dow and von Schilcher 1975; Hoffman 1987; Ueda and 

Kidokoro 2002; Nilsen and others 2004).  Interestingly, dominance relationships form between 

males but not females (Nilsen and others 2004).   Sex-specific behavioral patterns related to 

courtship and aggression may be attributed to male and female modes of splicing the fruitless 

gene in D. melanogaster (Demir and Dickson 2005; Vrontou and others 2006).  Furthermore, it 

appears that expression of the male-specific fruitless protein establishes male-specific dendritic 

arborization patterns in certain interneurons, thus providing the substrate for sexually dimorphic 

neuronal circuits in the brain (Kimura and others 2005). 
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 We propose that the flesh fly S. crassipalpis can be developed as a model system for 

investigating the physiological and behavioral bases for territoriality.  The sit-and-wait territories 

established by male flesh flies provide an interesting contrast to D. melanogaster and other flies 

that set up and defend territories at food and oviposition sites (Jacobs 1960; Dow and von 

Schilcher 1975; Otronen 1984; Hoffman 1987).  The flesh flies do not appear to defend any type 

of resource except for their perching position and the space surrounding it.  Thus, the territorial 

and aggressive behavior exhibited by the flesh flies can be elicited in a minimal laboratory 

environment.  Not only is the flesh fly system much simpler than the D. melanogaster system, 

there also appears to be an ontogeny to both aggressive and non-aggressive behavior exhibited 

by male flies in simplified dyadic interactions.  The behavior exhibited by male flesh flies may 

have similarities to that exhibited by male butterflies that establish perching sites on vegetation 

and wait for potential mates to fly into the territory (Baker 1972; Davies 1978; Bitzer and Shaw 

1979; Jones and others 1998).  The ability to examine territorial behavior in the laboratory, such 

as in this study, enables detailed explorations of the proximal factors underlying the control and 

patterning of the behavior. 

 

Further Research 

 Because the spatial behavior described in this study is an emergent property resulting 

from interactions among individuals within a group, the interactions that occur among flies need 

to be characterized.  To characterize the interactions, the behavior must first be described.  An 

ethogram of male behavior has been constructed from experiments in which dyadic interactions 

were observed between same-age, socially naïve flies (Table 3).  Males spend the greatest 

proportion of time performing non-interactive behaviors such as walking, standing, and 
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grooming whereas interactions between flies are usually very brief.  Preliminary results indicate 

that both the non-interactive (Figure 14) and high intensity aggressive behaviors (Fig 15) change 

as the flies age.  An ethogram has not been constructed describing behavior in female-female 

interactions.  Because gender specific differences exist in the spatial behavior, it is likely that 

differences between males and females also exist in behavior exhibited in dyadic interactions 

with same-sex conspecifics.  Similarly, because the behavior observed in dyadic interactions 

changes as flies get older, it is likely that the spatial behavior will change with age as well, 

though no experiments investigating the ontogeny of the spatial behavior have been performed at 

this time.  

Not only do changes in non-interactive and interactive behavior occur 3 days after 

eclosion, preliminary results indicate that an increase in sexual activity also occurs at this time 

(Figure 16).  Flies begin mating 2 days after emergence with an increase in sexual activity seen 3 

and 4 days after emergence.  The results from this experiment are pooled from 3 cages with each 

cage containing a different number of pairs.  Thus, density was not controlled for and further 

experiments need to be performed to see if density influences sexual activity and the onset of 

mating.  However, the preliminary results from this experiment and from the dyadic interaction 

experiment do seem to suggest that the changes in behavior and sexual activity occur in parallel 

with each other.  The nature of these parallel changes has yet to be determined.  Furthermore, the 

nature of male-female interactions has not been investigated.  It is possible that flies use different 

behaviors in encounters with conspecifics of the opposite sex than they do in encounters with 

same-sex conspecifics though no data exist to support or refute this idea.        

By examining territorial behavior in the laboratory, S. crassipalpis are placed in 

simplified experimental situations where flies have to react only to conspecifics.  Variables that 
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could possibly influence behavior in ways unknown to the investigators can be controlled for 

thus allowing easier interpretation of the results.  Once the behavior has been completely 

described and quantified for S. crassipalpis, investigations into the physiological, molecular, and 

genetic mechanisms controlling the behavior can be examined. 
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